JP4818003B2 - Pre-coated aluminum fin material for heat exchanger - Google Patents
Pre-coated aluminum fin material for heat exchanger Download PDFInfo
- Publication number
- JP4818003B2 JP4818003B2 JP2006193843A JP2006193843A JP4818003B2 JP 4818003 B2 JP4818003 B2 JP 4818003B2 JP 2006193843 A JP2006193843 A JP 2006193843A JP 2006193843 A JP2006193843 A JP 2006193843A JP 4818003 B2 JP4818003 B2 JP 4818003B2
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- resin
- epoxy resin
- aluminum fin
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims description 69
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 69
- 239000000463 material Substances 0.000 title claims description 62
- 238000000576 coating method Methods 0.000 claims description 100
- 239000011248 coating agent Substances 0.000 claims description 94
- 229920005989 resin Polymers 0.000 claims description 70
- 239000011347 resin Substances 0.000 claims description 70
- 239000003973 paint Substances 0.000 claims description 49
- 239000003822 epoxy resin Substances 0.000 claims description 33
- 229920000647 polyepoxide Polymers 0.000 claims description 33
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 28
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 14
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 125000003158 alcohol group Chemical group 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 238000005260 corrosion Methods 0.000 description 27
- 230000007797 corrosion Effects 0.000 description 26
- 239000003960 organic solvent Substances 0.000 description 26
- 238000011282 treatment Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005238 degreasing Methods 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 230000001476 alcoholic effect Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 239000013527 degreasing agent Substances 0.000 description 4
- 238000005237 degreasing agent Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- -1 silicate compound Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical class CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000011928 denatured alcohol Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006334 epoxy coating Polymers 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000008237 rinsing water Substances 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
Description
本発明は、業務用、家庭用エアコンのコンデンサー、エバポレーター等に用いる熱交換器あるいは自動車用ラジエータ等の熱交換器に用いられるアルミニウムもしくはアルミニウム合金(以下アルミニウムまたはアルミニウム合金を単にアルミニウムという。)熱交換器フィン用材に関し、特に親水性樹脂塗膜を焼きつけた後においてもアルミニウム板材との密着性、親水性樹脂塗膜との密着性が良く、かつアルミニウム板材の加工に良く追随できる耐食性に優れたベース塗膜用組成物、それを塗布したアルミニウムフィン基材、及び更に親水性樹脂塗料を焼き付け塗装したプレコートアルミニウムフィン材に関する。 INDUSTRIAL APPLICABILITY The present invention is an aluminum or aluminum alloy (hereinafter, aluminum or aluminum alloy is simply referred to as aluminum) heat exchange used in heat exchangers used for condensers and evaporators for commercial and household air conditioners, or for radiators for automobiles. With regard to ceramic fin materials, bases with excellent corrosion resistance that can closely follow the processing of aluminum plate materials, especially with good adhesion to aluminum plate materials and even after baking of hydrophilic resin coating films. The present invention relates to a coating film composition, an aluminum fin base material coated with the composition, and a precoated aluminum fin material further coated with a hydrophilic resin paint.
アルミニウム材は軽量で、適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、熱交換器用フィン材として広く使われている。
近年、ルームエアコン等の熱交換器においてもコンパクト化、省エネルギーに対する要求から伝熱効率を更に高める工夫がなされ、ルーバーを立ち起こしたり、熱放散能を高めるためフィンとフィンの隙間を狭くする等を行うようになった。
Aluminum materials are widely used as fin materials for heat exchangers because they are lightweight, have appropriate mechanical properties, and have excellent aesthetics, moldability, corrosion resistance, and the like.
In recent years, heat exchangers such as room air conditioners have also been devised to further improve heat transfer efficiency due to demands for energy saving, raising louvers, and narrowing the gap between fins to increase heat dissipation capacity, etc. It became so.
フィン間隔の隙間を小さくした結果、コンパクト化、省エネには有効であってもフィン上に水が凝縮したときは水滴がフィン間にブリッジを形成し易くなり、そのため通風抵抗が増加したり、この水滴が通風と共振を起こして騒音を発生する、さらには凝縮水のフィン上に滞留するときは、フィン材が腐食易くなるため、腐食生成物の水酸化アルミニウム粉末(白粉)が飛散することが知られている。 As a result of reducing the gap between the fins, even if it is compact and effective for energy saving, when water condenses on the fins, water drops easily form bridges between the fins, which increases the ventilation resistance. When water droplets resonate with ventilation to generate noise, and when they remain on the fins of condensed water, the fin material is likely to corrode, and the aluminum hydroxide powder (white powder) of the corrosion product may scatter. Are known.
熱交換器用フィン材には冷房運転時の水滴形成防止能が求められており,親水性樹脂塗膜をアルミニウム材上に設けた、親水性フィン材が一般的に使われている。
しかし多くの親水性樹脂塗膜はアルミニウム材表面との密着性に劣るため,アルミニウム材と親水性樹脂塗膜の間に中間層を設け,アルミニウム材と親水性樹脂塗膜の密着性を高める処理が行われている。熱交換機用フィン材には親水性に加えて耐食性も求められるが、親水性塗膜は通常防食能が弱いかまたは無いため、耐食性向上のための処理も付加されるのが通例となっている。
The fin material for heat exchanger is required to have the ability to prevent the formation of water droplets during cooling operation, and a hydrophilic fin material in which a hydrophilic resin coating film is provided on an aluminum material is generally used.
However, since many hydrophilic resin coatings are inferior in adhesion to the aluminum material surface, an intermediate layer is provided between the aluminum material and the hydrophilic resin coating to increase the adhesion between the aluminum material and the hydrophilic resin coating. Has been done. The fin material for heat exchangers is required to have corrosion resistance in addition to hydrophilicity. However, since a hydrophilic coating film is usually weak or non-corrosive, treatment for improving corrosion resistance is usually added. .
上記の2つの目的を満足するために,従来スプレーによるリン酸クロメート処理やロールコーター塗布・焼付による塗布型クロメート処理といったクロメート処理が施されてきた。すなわちアルミニウム材上にクロメート皮膜を設け,さらにその上に親水性樹脂塗膜を設けることにより,耐食性,塗膜密着性,親水性を発揮するフィン材が作られてきた。
さらに最近では、商品の差別化を図るため、室内機側、室外機側のそれぞれに高度かつ特殊な性能が求められるようになってきた。例えば室内機側の場合には、汚染性に対する耐性や臭気発生防止があげられる。室外機の場合には、高度の耐食性であったり、着色であったりする。
In order to satisfy the above two purposes, chromate treatments such as phosphoric acid chromate treatment by spraying and coating type chromate treatment by roll coater coating / baking have been performed. In other words, fin materials that exhibit corrosion resistance, coating adhesion, and hydrophilicity have been made by providing a chromate film on an aluminum material and further providing a hydrophilic resin coating film thereon.
Furthermore, recently, in order to differentiate products, advanced and special performance has been demanded for each of the indoor unit side and the outdoor unit side. For example, in the case of the indoor unit side, resistance to contamination and prevention of odor generation can be mentioned. In the case of an outdoor unit, it is highly corrosion resistant or colored.
着色する場合、クロメート皮膜にはほとんど着色が出来ないため、仕上塗膜である親水性樹脂塗膜に着色することになるが、親水性樹脂塗膜は結露水により表面を覆われるため、着色剤(顔料または染料)が流れ出し、ドレイン水に混じることもあるため好ましくない。そのため、最近では防食性ベース塗膜に有機樹脂を用いる方法が考えられている。 When coloring, the chromate film can hardly be colored, so the hydrophilic resin film that is the finished film will be colored, but the hydrophilic resin film is covered with condensed water, so the colorant (Pigment or dye) flows out and may be mixed with drain water, which is not preferable. Therefore, recently, a method of using an organic resin for the anticorrosive base coating film has been considered.
水滴形成防止のためのアルミニウムプレコートフィン材の従来技術としては、水溶性有機高分子物質とケイ酸塩化合物との混合皮膜層をアルミニウム材表面に設ける方法(特許文献1)、熱硬化性樹脂にシリカ微粒子を分散させた皮膜をアルミニウム材表面に塗布する方法(特許文献2)等の提案がある。しかし、このようなケイ酸塩やシリカ微粒子を使用する処理の場合には、これらはある程度の親水性があって前記の問題は回避できるとしても、プレコートした熱交換器用フィン材に使用するときは、軽微ながらシリカ特有の臭気(セメント臭)を有していて不快感があること、親水性は良好なものの、硬質なシリカを含むため、特に大きな問題としては、熱交換器に成形加工するときのプレス加工、絞り加工、しごき加工等の二次成形加工を受ける際に、高価な成形金型の摩耗を大きくするという別の問題を抱えている。 As a prior art of an aluminum precoated fin material for preventing water droplet formation, a method of providing a mixed film layer of a water-soluble organic polymer substance and a silicate compound on the surface of an aluminum material (Patent Document 1), a thermosetting resin There is a proposal such as a method of applying a film in which silica fine particles are dispersed to the surface of an aluminum material (Patent Document 2). However, in the case of treatment using such silicates and silica fine particles, these have a certain degree of hydrophilicity and can avoid the above problem, but when used for pre-coated heat exchanger fin materials It has a slight odor (cement odor) peculiar to silica but has unpleasant sensation. Although it has good hydrophilicity, it contains hard silica. There is another problem of increasing the wear of expensive molding dies when undergoing secondary forming such as pressing, drawing and ironing.
また、アルミニウム材の表面にアクリル樹脂層及びセルロース樹脂層を順次形成し、親水性及び耐食性を向上させる方法(特許文献3)、水溶性有機樹脂とノニオン系界面活性剤を含有する厚さが0.05乃至5μmの親水性樹脂皮膜を形成する方法(特許文献4)、親水性有機化合物に、メラミン樹脂、尿素樹脂又はベンゾグアナミン樹脂を含有する有機硬化剤を添加した親水性樹脂皮膜を形成させる方法(特許文献5)等が提案されている。
これらの処理方法では、硬質な無機質材料が含まれないため工具摩耗が少なく、臭気発生が殆どないという特性を有するものの、冷房運転と暖房運転とを交互に繰り返すと、フィン表面に付着した水滴の接触角が高くなり親水性が低下してしまう場合がある。
In addition, an acrylic resin layer and a cellulose resin layer are sequentially formed on the surface of an aluminum material to improve hydrophilicity and corrosion resistance (Patent Document 3), and the thickness containing a water-soluble organic resin and a nonionic surfactant is 0. A method of forming a hydrophilic resin film having a thickness of 0.05 to 5 μm (Patent Document 4), and a method of forming a hydrophilic resin film in which an organic curing agent containing a melamine resin, a urea resin or a benzoguanamine resin is added to a hydrophilic organic compound (Patent Document 5) and the like have been proposed.
Although these treatment methods do not contain hard inorganic materials, they have the characteristics that there is little tool wear and little odor generation, but when cooling operation and heating operation are repeated alternately, water droplets adhering to the fin surface In some cases, the contact angle increases and hydrophilicity decreases.
本発明はコンデンサー、ラジエーター、エバポレーター等の熱交換器に用いられるアルミニウムフィン、特に家庭室内用エアコンディショナー(以下単に「ルームエアコン」という。)用の、防食性に優れ、かつアルミニウムとの密着性、親水性樹脂塗料との密着性、耐汚染性等が良く、かつ加工による塗膜の傷の発生、剥離、座屈、カラー飛び(成形性)などのない水性ベース塗膜用塗料の開発、該ベース塗料をコートしたアルミニウムフィン材並びに親水性樹脂塗料を焼き付け塗装したプレコートアルミニウムフィン材の開発を目的とする。 The present invention is an aluminum fin used in heat exchangers such as condensers, radiators, evaporators, etc., particularly for an indoor air conditioner (hereinafter simply referred to as “room air conditioner”), and has excellent anticorrosion and adhesion to aluminum. Development of water-based paint for coatings with good adhesion to hydrophilic resin paints, stain resistance, etc., and free from scratches, peeling, buckling, color jumping (formability), etc. The purpose is to develop aluminum fin material coated with base paint and pre-coated aluminum fin material baked and coated with hydrophilic resin paint.
本発明は、
[1] アクリル基を有する樹脂を10〜35重量%含有するエポキシ樹脂系塗料であって、溶剤として直鎖状の炭素数3〜7の含酸素有機溶媒を用いた水性塗料をベース塗膜として設け、該塗膜上に親水性樹脂塗膜を設けたことを特徴とするプレコートアルミニウムフィン材、
[2] 含酸素有機溶媒が、直鎖状の炭素数3〜7であるアルコール、エステル、セロソルブエステル、ケトン、グリコールまたはそれらの混合物である上記[1]に記載のプレコートアルミニウムフィン材、
[3] ベース塗料のエポキシ樹脂が、ビスフェノールA型樹脂である上記[1]に記載のプレコートアルミニウムフィン材、
The present invention
[1] An epoxy resin-based paint containing 10 to 35% by weight of a resin having an acrylic group, and an aqueous paint using a linear oxygen-containing organic solvent having 3 to 7 carbon atoms as a solvent A precoated aluminum fin material characterized in that a hydrophilic resin coating film is provided on the coating film;
[2] The precoated aluminum fin material according to the above [1], wherein the oxygen-containing organic solvent is a linear alcohol having 3 to 7 carbon atoms, ester, cellosolve ester, ketone, glycol, or a mixture thereof.
[3] The precoated aluminum fin material according to the above [1], wherein the epoxy resin of the base paint is a bisphenol A type resin,
[4] アルミニウムフィン基材に、アクリル基を有する樹脂を10〜35重量%含有するエポキシ樹脂系塗料であって、溶剤として炭素数3以上でアルコール性の−OH基またはアルコール性−OH基とエーテル結合を1個以上有する直鎖状アルコールを用いた水性塗料を、塗布、スプレーまたは浸漬した後焼き付けしてベース塗膜を形成し、該ベース塗膜上にアクリル基および/またはポリビニルアルコール基を有する親水性樹脂塗膜を形成するプレコートアルミニウムフィン材の製造方法、 [4] An epoxy resin-based paint containing 10 to 35% by weight of an acrylic group-containing resin on an aluminum fin base material, and having 3 or more carbon atoms and an alcoholic —OH group or an alcoholic —OH group as a solvent An aqueous paint using a linear alcohol having at least one ether bond is applied, sprayed or dipped, and then baked to form a base coating, and acrylic and / or polyvinyl alcohol groups are formed on the base coating. A method for producing a pre-coated aluminum fin material for forming a hydrophilic resin coating film,
[5] アクリル基を有する樹脂を10〜35重量%含有するエポキシ樹脂系塗料であって、直鎖状の炭素数3〜7であるアルコール、エステル、セロソルブエステル、ケトン、グリコールまたはそれらの混合物である溶剤を用いたプレコートアルミニウムフィン材用水性ベース塗料、及び
[6] 上記[1]〜[3]のいずれかに記載のプレコートアルミニウムフィン材を用いたエアコンディショナー用熱交換器、を開発することにより上記の課題を解決した。
[5] An epoxy resin-based paint containing 10 to 35% by weight of a resin having an acrylic group, which is a linear alcohol having 3 to 7 carbon atoms, ester, cellosolve ester, ketone, glycol or a mixture thereof To develop an aqueous base paint for a precoated aluminum fin material using a solvent, and [6] a heat exchanger for an air conditioner using the precoated aluminum fin material according to any one of [1] to [3] above. The above problem has been solved.
本発明は熱交換器に用いるプレコートアルミニウムフィン材に適用した際に、アルミニウムまたはアルミニウム合金板材との密着性が良く、防食性に優れた熱交換器用アルミニウムフィン用ベース塗料を開発した。このベース塗料を塗布、焼き付けした塗膜は、該塗膜上に親水性樹脂を焼きつけた後においてもアルミニウム板材との密着性、親水性樹脂塗膜との密着性に優れ、耐食性に優れ、且つこれらベース塗膜処理及び親水性樹脂の両塗膜を焼きつけたプレコートアルミニウムフィン材の塗膜は、その加工に際してフィン材の変形に良く追随できるため、塗膜の剥離、クラック、座屈などの問題を大幅に改善し、塗膜の破損による防食性の低下を防止できると共に、フィンとフィンの距離が狭い短い熱交換器においても水滴のブリッジによる通風抵抗の増加、水滴の共振による騒音の発生やアルミニウム板材の腐食による白粉の飛散を防止できた。 The present invention has developed a base coating for an aluminum fin for heat exchangers that has good adhesion to aluminum or an aluminum alloy plate and excellent corrosion resistance when applied to a pre-coated aluminum fin material used in a heat exchanger. The coating film applied and baked with this base paint has excellent adhesion to the aluminum plate material, adhesion to the hydrophilic resin coating film, excellent corrosion resistance even after baking the hydrophilic resin on the coating film, and Pre-coated aluminum fin coatings that have been baked on both these base coatings and hydrophilic resin coatings can follow the deformation of the fins well during processing, so there are problems such as coating peeling, cracks, and buckling. In the heat exchanger with a short fin-to-fin distance, the draft resistance increases due to water droplet bridges, and noise is generated due to water droplet resonance. The scattering of white powder due to the corrosion of the aluminum plate material was prevented.
アルミニウムフィン材に対しては、これまで、クロメート処理やベーマイト処理といった処理方法により耐食性ベース塗膜を設けることが一般的であった。しかしながら、このような無機系のベース塗膜では、耐食性に限界があり、早期に腐食が生じたり塗膜密着性が劣化するような問題があった。また、クロメート処理は有害な重金属のクロムを使用しており、リサイクルを含めた環境問題に対しても不利である。
このような問題に対し、最近では有害なクロムに変わり、ジルコニウムやチタンなどを使用したノンクロム処理が検討されているが、耐食性が不十分であったり、密着性が劣る傾向にあるなどいくつかの問題がある。
Until now, it has been common to provide a corrosion-resistant base coating film by a treatment method such as chromate treatment or boehmite treatment for an aluminum fin material. However, such an inorganic base coating film has a problem that corrosion resistance is limited and corrosion occurs early or coating film adhesion deteriorates. Also, the chromate treatment uses harmful heavy metal chromium, which is disadvantageous for environmental problems including recycling.
To deal with such problems, recently chromium-free treatment using zirconium, titanium, etc. has been examined instead of harmful chromium. However, there are some problems such as insufficient corrosion resistance and poor adhesion. There's a problem.
耐食性や塗膜密着性を向上させるためには、ベース塗膜として有機樹脂を用いる方法が有効である。アクリル樹脂,ウレタン樹脂,エポキシ樹脂等が使用されるが、本発明者はエポキシ樹脂に注目した。塗膜の耐食性を考えた場合、アクリル樹脂やウレタン樹脂に比較し、エポキシ樹脂の方が優れているのは周知である。耐候性が若干劣るといった事実もあるようであるが、エアコンのフィン材に適用する場合には、その使用環境においては必要かつ十分な性能を有している。 In order to improve the corrosion resistance and coating film adhesion, a method using an organic resin as the base coating film is effective. An acrylic resin, a urethane resin, an epoxy resin, or the like is used, but the present inventor has paid attention to the epoxy resin. When considering the corrosion resistance of the coating film, it is well known that epoxy resins are superior to acrylic resins and urethane resins. There seems to be a fact that the weather resistance is slightly inferior, but when it is applied to a fin material of an air conditioner, it has necessary and sufficient performance in its use environment.
しかしながら、エポキシ樹脂塗料の全てが適用できるわけではない。溶剤型、水溶性のものなどがあるが、種々の検討を重ねた結果、フィン材に要求される特性として、耐食性,親水性,耐汚染性,成形性の全てを満足させるには、水性エポキシ樹脂塗料が好適であり、さらに、アクリル基を有する樹脂を含有させ、水性化したエポキシ樹脂を使用し、且つこれに特定の有機溶媒を使用し水性樹脂塗料としたベース塗料とすることでその目的を達成できることを確認した。 However, not all epoxy resin paints are applicable. There are solvent-type and water-soluble types. As a result of various studies, water-based epoxy is required to satisfy all of the properties required for fin materials, such as corrosion resistance, hydrophilicity, stain resistance, and moldability. A resin paint is suitable, and further, its purpose is to make a base paint using a water-based epoxy resin containing an acrylic group-containing resin and using a specific organic solvent. Confirmed that can be achieved.
一般的な水性エポキシ樹脂塗料には、種々の目的から、有機溶媒が併用される。これらの有機溶媒が必要以上に塗膜中に残存すると、その後形成する親水性樹脂塗膜の親水性を阻害することが確認された。従って、塗料中の有機溶媒を極力減らすことが必要である。そのためには、溶剤型の塗料よりも、水性エポキシ樹脂塗料の方が有利であり、水性のエポキシ樹脂塗料であれば作業環境汚染の減少、火災の危険性などの課題を解決するためにも適用範囲が広い。 In general water-based epoxy resin paints, an organic solvent is used in combination for various purposes. It was confirmed that when these organic solvents remain in the coating film more than necessary, the hydrophilicity of the hydrophilic resin coating film to be formed thereafter is inhibited. Therefore, it is necessary to reduce the organic solvent in the paint as much as possible. For this purpose, water-based epoxy resin paints are more advantageous than solvent-based paints, and water-based epoxy resin paints can also be applied to solve problems such as reduced work environment contamination and fire hazards. Wide range.
発明者は水性のアクリル変性エポキシ樹脂系塗料を使用し、エアコン用フィン材への適用性を調べた結果、塗料中に使用される有機溶媒の種類により、その特性が著しく変化することを見出した。
水性塗料を作製する場合、樹脂の安定性,分散性等を確保するための理由から有機溶媒を併用することは一般的である。ところが、使用される有機溶媒の種類により、親水性や耐汚染性,塗膜密着性といったフィン材として重要な性能に影響を及ぼすことを発見した。
すなわち、有機溶媒分子中、炭素(C)の数が3〜7で、アルコール性−OH基またはアルコール性−OH基に加えエーテル結合を1個以上有する直鎖型の含酸素有機溶媒、例えばアルコール、エステル、セロソルブエステル、ケトン、グリコールまたはこれらの混合物を使用する。沸点的には180℃以下のものが好ましい。これより高沸点溶媒であると焼き付け時に長時間必要とするばかりでなく塗膜の硬度を高めるのに困難となる。好ましいものとしては代表例としては、ブタノールやブチルセロソルブあるいはこれらの混合物等があげられる。
As a result of investigating the applicability to fin materials for air conditioners using water-based acrylic-modified epoxy resin-based paints, the inventor has found that the characteristics change significantly depending on the type of organic solvent used in the paint. .
When producing a water-based paint, it is common to use an organic solvent in combination for the reason of ensuring the stability and dispersibility of the resin. However, it has been found that the type of organic solvent used has an effect on the performance as a fin material, such as hydrophilicity, stain resistance, and coating film adhesion.
That is, a linear oxygen-containing organic solvent having 3 to 7 carbons (C) in an organic solvent molecule and having at least one ether bond in addition to an alcoholic —OH group or an alcoholic —OH group, such as an alcohol , Esters, cellosolve esters, ketones, glycols or mixtures thereof. The boiling point is preferably 180 ° C. or lower. If the solvent has a higher boiling point than this, not only will it be required for a long time during baking, but it will also be difficult to increase the hardness of the coating film. Preferable examples include butanol, butyl cellosolve or a mixture thereof.
炭素(C)の数が3未満のもの及び直鎖型ではない有機溶媒として、メタノール,エタノール,ベンゼンなどが代表的であり、また環状化合物としてはベンゼン等があるが、メタノールやベンゼンは毒性があるので好ましくない。エタノールなどは、高価であったり、規制等により工業的にはメタノールとの混合による変性アルコールとして使用されるなど使いにくい。 Typical examples of the organic solvent having a carbon (C) number of less than 3 and non-linear type include methanol, ethanol, benzene and the like, and cyclic compounds include benzene, but methanol and benzene are toxic. This is not preferable. Ethanol and the like are expensive and difficult to use because they are used as a denatured alcohol by mixing with methanol due to regulations and the like.
炭素(C)の数が3〜7で側鎖を有する有機溶媒、代表例としてはイソブタノールなどがある。これらは、側鎖を持っており、この側鎖が影響を与える。明確に解析したわけではないが、側鎖を持った有機溶媒がベース塗膜中あると、該塗膜上に設ける親水性樹脂塗膜を塗布および焼付した際に残留しやすく、ベース塗膜に微量残留している該有機溶媒が親水性樹脂塗膜中に拡散し、親水性樹脂塗膜中の親水基に付加または脱水縮合して親水基を疎水基に変換する効果が強く、アルミニウムフィン材の親水性及び耐汚染性に悪影響を与えるものと推定している。そのため、ベース塗料中のエポキシ塗膜中への残留を避けるために、炭素(C)の数が3〜7の直鎖状含酸素有機溶媒を使用することが必要である。
エーテル結合とは、酸素原子の2価の原子価がともに炭化水素残基と結合している場合の[−C−O−C−]結合であるが、この結合は化学的に非常に安定な結合であり、アルミニウムフィン材の親水性及び耐汚染性に側鎖のような悪影響は与えない。
Examples of the organic solvent having 3 to 7 carbons (C) and having side chains include isobutanol. These have side chains that are affected. Although it was not clearly analyzed, if an organic solvent having a side chain is present in the base coating, it tends to remain when the hydrophilic resin coating provided on the coating is applied and baked on the base coating. The aluminum fin material has a strong effect of diffusing a small amount of the remaining organic solvent into the hydrophilic resin coating, and adding or dehydrating condensation to the hydrophilic group in the hydrophilic resin coating to convert the hydrophilic group into a hydrophobic group. It is estimated that it will adversely affect the hydrophilicity and stain resistance of the. For this reason, it is necessary to use a linear oxygen-containing organic solvent having 3 to 7 carbons (C) in order to avoid remaining in the epoxy coating in the base coating.
An ether bond is a [—C—O—C—] bond in which both divalent valences of oxygen atoms are bonded to a hydrocarbon residue, but this bond is chemically very stable. It is a bond and does not adversely affect the hydrophilicity and stain resistance of the aluminum fin material, such as side chains.
また、エポキシ樹脂は末端に反応性に富むエポキシ基があり、適度に−OH基を持っている。この−OH基は樹脂の架橋のみならずアルミニウム基板および親水性樹脂塗膜との密着性に関与しており、フィン材として重要な性能を満足させるために必要不可欠である。可能な限り減少させたくはない。
すなわち、上記以外の有機溶媒が存在すると、塗料を加熱乾燥する際に、該有機溶媒とエポキシ樹脂末端のエポキシ基とが反応し、疎水性のエステル結合を形成し易い。このようなエステル結合が存在すると、エポキシ樹脂中の−OH基を減少させる。
この−OH基は基板との密着性,他のエポキシ樹脂との架橋,親水性樹脂塗膜との水素結合形成等による塗膜同士の密着性に寄与する。親水性樹脂塗膜との密着性が低下し親水性樹脂塗膜が剥離しやすくなるため、結果的に親水性,耐汚染性を阻害する。
Moreover, the epoxy resin has a highly reactive epoxy group at the terminal, and has an appropriate -OH group. This —OH group is involved not only in cross-linking of the resin but also in adhesion to the aluminum substrate and the hydrophilic resin coating film, and is indispensable for satisfying important performance as a fin material. I don't want to reduce it as much as possible.
That is, when an organic solvent other than the above is present, when the coating is heated and dried, the organic solvent and the epoxy group at the end of the epoxy resin react to form a hydrophobic ester bond. When such an ester bond exists, -OH groups in the epoxy resin are reduced.
This —OH group contributes to the adhesion between the coatings by adhesion to the substrate, crosslinking with other epoxy resins, formation of hydrogen bonds with the hydrophilic resin coating, and the like. Since the adhesiveness with the hydrophilic resin coating film is lowered and the hydrophilic resin coating film is easily peeled off, the hydrophilicity and stain resistance are consequently inhibited.
さらに、アクリル基を有する有機樹脂においても影響が確認された。ベース塗膜中に未反応のアクリル基を有する有機樹脂が残留していると、親水性樹脂塗膜を塗布・焼付する際に親水性樹脂塗膜中に混入するため、親水性,耐汚染性を阻害する場合がある。
詳細なメカニズムが不明であるが、アクリル基を有する有機樹脂中のカルボキシル基が親水性樹脂塗膜の−OH基等に水素結合等により付加または脱水縮合等によりエステル化し、親水基の親水性を阻害するためと考えられる。種々の検討よりアクリル基を含有する有機樹脂がエポキシ樹脂重量の35重量%以下であれば、親水性樹脂塗膜に影響を与える影響が少ないことを発見した。
Furthermore, the influence was confirmed also in the organic resin which has an acrylic group. If an organic resin having an unreacted acrylic group remains in the base coating film, it is mixed into the hydrophilic resin coating film when it is applied or baked. May be disturbed.
Although the detailed mechanism is unknown, the carboxyl group in the organic resin having an acrylic group is esterified by addition or dehydration condensation to the —OH group, etc. of the hydrophilic resin coating film by hydrogen bonding, etc. This is thought to be due to inhibition. From various studies, it has been found that if the organic resin containing an acrylic group is 35% by weight or less of the weight of the epoxy resin, there is little influence on the hydrophilic resin coating film.
本発明のアクリル基を有する樹脂を10〜35重量%含有するエポキシ樹脂系塗料中のアクリル基を有する樹脂とは、アクリル酸またはメタクリル酸(以下両者を一括して「(メタ)アクリル酸」と記載する。)、その(メタ)アクリル酸エステル、(メタ)アクリルアミド、(メタ)アクリルニトリルの重合体または共重合体を包含し、さらにはエポキシ樹脂へのグラフト共重合体も含んでも良い。
該アクリル基を有する樹脂を10〜35重量%含有するエポキシ系樹脂を13〜25重量%含有し、好ましくは17〜22重量%、有機溶剤として直鎖状の炭素数3〜7の含酸素有機溶媒を10〜25重量%、好ましくは13〜22重量%、残部は水からなる水性塗料である。
The resin having an acrylic group in the epoxy resin-based paint containing 10 to 35% by weight of the resin having an acrylic group of the present invention is acrylic acid or methacrylic acid (hereinafter referred to as “(meth) acrylic acid” collectively) And a polymer or copolymer of (meth) acrylic acid ester, (meth) acrylamide, and (meth) acrylonitrile may be included, and a graft copolymer to an epoxy resin may also be included.
An epoxy resin containing 10 to 35% by weight of the acrylic group-containing resin is contained in an amount of 13 to 25% by weight, preferably 17 to 22% by weight. The solvent is 10 to 25% by weight, preferably 13 to 22% by weight, and the balance is water-based paint composed of water.
この塗料を用いたプレコートアルミニウムフィン材の製造方法において基材となるアルミニウム合金薄板は、従来から熱交換器用フィン材として使用されているものであれば良く、特に限定されるものではない。すなわち、JIS規格の1100合金、1050合金、1N30合金等の純アルミニウム系合金、あるいは2017合金、2024合金等のAl−Cu系合金、また3003合金、3004合金等のAl−Mn系合金、5052合金、5083合金等のAl−Mg系合金、さらには、6061合金等のAl−Mg−Si系合金などを用いることができる。またアルミニウム合金基材の形状は、薄板であれば良く、シートあるいはコイルのいずれでも良い。 The aluminum alloy thin plate used as a base material in the method for producing a pre-coated aluminum fin material using this paint is not particularly limited as long as it has been conventionally used as a heat exchanger fin material. That is, pure aluminum alloys such as JIS standard 1100 alloy, 1050 alloy and 1N30 alloy, Al-Cu alloys such as 2017 alloy and 2024 alloy, Al-Mn alloys such as 3003 alloy and 3004 alloy, and 5052 alloy Al-Mg based alloys such as 5083 alloy, and Al-Mg-Si based alloys such as 6061 alloy can be used. The shape of the aluminum alloy substrate may be a thin plate, and may be either a sheet or a coil.
この発明の方法を実施するにあたっては、上述のようなアルミニウム基材(薄板)に対して、脱脂(エッチングを含む)、水洗、乾燥を行った後、アクリル基を有するポリマーを含有するエポキシ樹脂系塗料であって、直鎖状の炭素数3〜7の含酸素有機溶媒を用いた水性塗料をベース塗膜として設け、さらに該塗膜上に親水性樹脂塗膜を設けてプレコートアルミニウムフィン材とする。この場合必要に応じ、ベースコートする前の脱脂、水洗工程の後に、酸洗浄、水洗(酸成分除去)工程を追加しても良い。 In carrying out the method of the present invention, the above-mentioned aluminum base (thin plate) is degreased (including etching), washed with water, dried, and then an epoxy resin containing a polymer having an acrylic group. An aqueous paint using a linear C3-C7 oxygen-containing organic solvent is provided as a base coating film, and a hydrophilic resin coating film is further provided on the coating film, and a pre-coated aluminum fin material To do. In this case, if necessary, after the degreasing and water washing steps before base coating, an acid washing and water washing (acid component removal) step may be added.
脱脂処理は重要な要素であり、以下の方法を取るとその効果は絶大である。脱脂処理は圧延油除去及び圧延時に形成される酸化皮膜あるいは水酸化皮膜を除去するために行うものであり、このような皮膜除去が不完全であるとその後設けた塗膜中のアルミ濃度が高くなり目的の塗膜が得られない。
このような目的にはエッチング性を有するpH=9〜13程度のアルカリ性脱脂剤が好適である。
The degreasing treatment is an important factor, and the effect is tremendous when the following method is taken. Degreasing is performed to remove rolling oil and to remove oxide film or hydroxide film formed during rolling. If such film removal is incomplete, the aluminum concentration in the coating film provided thereafter is high. The intended coating film cannot be obtained.
For such purposes, an alkaline degreasing agent having an etching property and having a pH of about 9 to 13 is suitable.
脱脂処理に続き、直ちにリンス処理することが好ましい。脱脂からリンスまでの時間が長いとリンス水がかかるまでの間にアルミ板が乾燥し、アルミニウム板状のスラッジ成分が固着したり、脱脂剤成分が乾燥して付着するために、塗膜形成を施す上で障害となる。
リンスの際は極力pH7〜9の領域を通過する時間が短くなるようにすることが好ましい。このためには大量のリンス水をアルミニウム板上に与えるのが良い。
脱脂処理した後にベース塗膜を設ける。
It is preferable to carry out a rinsing process immediately after the degreasing process. If the time from degreasing to rinsing is long, the aluminum plate dries before the rinsing water is applied, and the aluminum plate-like sludge component adheres or the degreasing agent component dries and adheres. It becomes an obstacle in applying.
In rinsing, it is preferable to shorten the time for passing through the region of pH 7 to 9 as much as possible. For this purpose, it is preferable to apply a large amount of rinse water on the aluminum plate.
A base coating film is provided after degreasing.
プレコートアルミニウムフィン材からフィンを成形する方法としては、ドローレス,DOF,ドローといった成形方法がとられているが、使用するベース塗料中の塗料の種類によっては成形後にカラー内面等で金型とのカジリが発生し、塗膜剥離等の不具合が生じることがある。使用する樹脂自体の特性、例えば 硬さや柔軟性といった性質に左右されると思われる。例えば、焼き付け不十分であったり、有機溶媒の沸点が高く揮散不十分でベース塗膜が柔らかい場合には耐磨耗性が低く、成形中に金型により皮膜がアルミニウム表面から削り取られてしまい耐食性低下を招く。皮膜の柔軟性が乏しい場合にはアルミニウムの変形に皮膜が追従できず、クラック(皮膜が切れる)が生じ、これも耐食性低下を招く。 As methods for forming fins from pre-coated aluminum fin materials, methods such as drawless, DOF, and draw are used. However, depending on the type of paint in the base paint to be used, the inner surface of the collar after molding may be caulked with the mold. May occur and defects such as peeling of the coating film may occur. It seems that it depends on the properties of the resin itself used, such as properties such as hardness and flexibility. For example, if the baking is insufficient, or the boiling point of the organic solvent is high and the volatilization is insufficient and the base coating is soft, the wear resistance is low, and the coating is scraped off from the aluminum surface by the mold during molding. Incurs a decline. When the flexibility of the film is poor, the film cannot follow the deformation of the aluminum and cracks (the film is cut) are generated, which also causes a decrease in corrosion resistance.
アクリル基を有する樹脂を含有するエポキシ樹脂において、アクリル基を有する樹脂を含有する割合がエポキシ系樹脂重量の35%以下であれば、親水性への影響が無いばかりか、成形性にも好適であった。 In an epoxy resin containing a resin having an acrylic group, if the proportion of the resin having an acrylic group is 35% or less of the weight of the epoxy resin, it has no influence on hydrophilicity and is suitable for moldability. there were.
ベース塗膜を設ける方法は浸漬処理またはロールコーターによる塗布が適用できる。
塗膜量(固形分量)は、0.2g/m2以上〜5.0g/m2以下が良い。0.2g/m2未満では耐食性が低下し、5.0g/m2を超えても性能の向上は認められないし、必要以上のコストアップを招く。
As a method of providing the base coating film, immersion treatment or coating by a roll coater can be applied.
Nurimakuryou (solid content) is, 0.2 g / m 2 or more to 5.0 g / m 2 or less is good. If it is less than 0.2 g / m 2 , the corrosion resistance is lowered, and if it exceeds 5.0 g / m 2 , no improvement in performance is observed, resulting in an unnecessary cost increase.
その後、焼付処理をする。焼付処理には、目的を達成できれば熱風炉,赤外炉などが使用可能であり、特に限定されるものではないが、生産性や効率などを考慮すれば、熱風炉の使用が好適である。 Then, a baking process is performed. For the baking treatment, a hot blast furnace, an infrared furnace, or the like can be used as long as the object can be achieved. Although not particularly limited, the use of a hot blast furnace is preferable in consideration of productivity and efficiency.
有機溶媒が存在している間の塗膜の温度はその溶媒の沸点を超えないので、炉温度を高くとっても殆ど効果が無いので風量を制御することが必要となる。具体的には5m/秒以上〜50m/秒以下程度の風速で、乾燥した気体をアルミニウム板に供給すればよい。5m/秒未満ではアルミニウム板上の処理液から揮発した有機溶媒が飽和した気体層がアルミニウム板上に形成されるため、有機溶媒の揮発が遅くなりそれだけ有機溶媒の残留量が多くなる。50m/秒を超えるような風速としても、それ以上乾燥効率が上がらないばかりか、ベース塗料の粘度が低い場合は風紋やムラを生じるので好ましくない。 Since the temperature of the coating film during the presence of the organic solvent does not exceed the boiling point of the solvent, even if the furnace temperature is raised, there is almost no effect, so it is necessary to control the air volume. Specifically, the dried gas may be supplied to the aluminum plate at a wind speed of about 5 m / second to 50 m / second. If it is less than 5 m / sec, a gas layer saturated with the organic solvent volatilized from the treatment liquid on the aluminum plate is formed on the aluminum plate, so that the volatilization of the organic solvent is delayed and the residual amount of the organic solvent increases accordingly. Even if the wind speed exceeds 50 m / sec, not only the drying efficiency does not increase any more, but also when the viscosity of the base paint is low, wind ripples and unevenness occur, which is not preferable.
ベース塗料を塗布した後、アルミニウム板を加熱乾燥する。乾燥温度や時間はベース塗料の特性にあわせて適宜選択すればよいが、200℃以上〜300℃以下で数秒〜数十秒加熱乾燥すればよい。200℃未満では乾燥に時間がかかるとともに、硬化不足,塗膜中に有機溶媒が残留する場合があり好ましくない。また300℃を超えると樹脂によっては樹脂自体の分解が始まるので好ましくない。焼付に要する時間は、5秒以上〜30秒以下であれば良く、ラインの能力や生産性を考慮し、適宜決定すればよい。 After applying the base paint, the aluminum plate is heated and dried. The drying temperature and time may be appropriately selected according to the characteristics of the base paint, but may be heat-dried at 200 ° C. to 300 ° C. for several seconds to several tens of seconds. If it is less than 200 ° C., it takes time to dry, and it is not preferable because curing is insufficient and an organic solvent may remain in the coating film. On the other hand, if the temperature exceeds 300 ° C., decomposition of the resin itself starts depending on the resin. The time required for baking may be 5 seconds or more and 30 seconds or less, and may be appropriately determined in consideration of the line capacity and productivity.
親水性樹脂塗膜としては、通常使用されているアクリル基及び/またはポリビニルアルコール基を含有する塗膜形成要素とする親水性樹脂塗料からなる塗膜が最適である。アクリル基を含有する親水性塗膜は耐汚染性に優れる反面親水性は劣る。一方ポリビニルアルコール基を含有する親水性塗膜は、親水性に優れている反面耐汚染性に劣るので、目的に応じこの両者を併用することが好ましい。塗膜量(固形分量)は、0.2g/m2以上〜2.0g/m2が良い。0.2g/m2未満では親水性が低下し、2.0g/m2を超えても性能の向上は無い。
焼付温度は160℃以上〜300℃以下が良い。160℃未満では塗膜の硬化不足であり、300℃を超えた場合には塗膜の分解が始まる。焼付時間は5秒以上〜30秒以下が良く、ラインの能力や生産性を考慮し、適宜決定すればよい。
As the hydrophilic resin coating film, a coating film made of a hydrophilic resin coating material which is a coating film forming element containing an acrylic group and / or polyvinyl alcohol group which is usually used is optimal. A hydrophilic coating film containing an acrylic group is excellent in stain resistance but is inferior in hydrophilicity. On the other hand, a hydrophilic coating film containing a polyvinyl alcohol group is excellent in hydrophilicity, but is inferior in stain resistance. Therefore, it is preferable to use both in combination according to the purpose. Nurimakuryou (solid content) is, 0.2 g / m 2 or more to 2.0 g / m 2 is good. If it is less than 0.2 g / m 2 , the hydrophilicity is lowered, and even if it exceeds 2.0 g / m 2 , there is no improvement in performance.
The baking temperature is preferably 160 ° C to 300 ° C. When the temperature is lower than 160 ° C, the coating film is insufficiently cured. When the temperature exceeds 300 ° C, the coating film starts to decompose. The baking time is preferably 5 seconds to 30 seconds, and may be appropriately determined in consideration of the line capacity and productivity.
以下、実施例に基づいて、本発明の好適な実施の形態を具体的に説明する。アルミニウム基材は全てJIS3003相当のアルミニウム合金薄板(板厚0.100mm)を用いた。 Hereinafter, preferred embodiments of the present invention will be specifically described based on examples. As the aluminum base material, an aluminum alloy thin plate (thickness 0.100 mm) equivalent to JIS3003 was used.
[実施例1〜6、比較例1〜3]
pH=12の水酸化ナトリウムを主成分とするアルカリ脱脂剤(濃度=1.5%、温度=65℃時間=6秒)にて脱脂した後、約1秒後に水洗し(水量=6リットル/m2、温度=20℃)、乾燥を行った。その後、アクリル基を含有するビスフェノールA型エポキシ樹脂を塗膜形成要素とするベース塗料[ビスフェノールA型樹脂(遊離アクリルポリマー含有量20重量%)20重量部にブタノール7.5重量%、ブチルセロソルブ7.5重量部、残部水からなる水性ベース塗料]で塗装(板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒,乾燥は風速=15m/秒、温度=280℃、時間=10秒,塗膜量=1.5g/m2)を行った。
尚比較例としては、上記水性ベース塗料の遊離アクリルポリマー含有量を代え、有機溶媒としてブタノール6重量部、ブチルセロソルブ6重量部を用いた他は同じ構成のベース塗料を用いた。
ベース塗膜を形成した後、市販のアクリル/ポリビニルアルコールを主成分とする親水性樹脂塗料を塗布,焼付(塗膜量=1.0g/m2,焼付=260℃にて10秒)を行った。
以下、表1の水準の塗膜を作製し、評価した結果を表2に示す。
[Examples 1 to 6, Comparative Examples 1 to 3 ]
After degreasing with an alkaline degreasing agent (concentration = 1.5%, temperature = 65 ° C. time = 6 seconds) containing sodium hydroxide as a main component at pH = 12, it was washed with water after about 1 second (water volume = 6 liters / m 2 , temperature = 20 ° C.) and drying. Thereafter, base paint [bisphenol A type resin (free acrylic polymer content: 20% by weight) 20 parts by weight, butanol 7.5% by weight butyl cellosolve 7. 5 parts by weight, aqueous base paint consisting of remaining water] (plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / second, temperature = 280 C., time = 10 seconds, coating amount = 1.5 g / m 2 ).
As a comparative example, a base paint having the same structure was used except that the content of the free acrylic polymer in the aqueous base paint was changed and 6 parts by weight of butanol and 6 parts by weight of butyl cellosolve were used as the organic solvent.
After forming the base coating film, a commercially available hydrophilic resin paint mainly composed of acrylic / polyvinyl alcohol is applied and baked (coating amount = 1.0 g / m 2 , baking = 260 ° C. for 10 seconds). It was.
Table 2 below shows the results of producing and evaluating coating films having the levels shown in Table 1.
[評価水準]
・密着性評価:バウデン試験機にて3/16φ鋼球を使用し、荷重=100gfにて、無潤滑状態にて摺動させた。[6〜10往復でカジリを生じたもの:△15往復まで異常無し:○とした。]
・親水性評価:出光興産製プレス油AF2Cに浸漬後、160℃にて10分乾燥し、その後塗膜面の水接触角を測定した。[15°以下:○,16〜30°:△とした。]
[Evaluation level]
Adhesion evaluation: A 3 / 16φ steel ball was used with a Bowden testing machine and slid in a non-lubricated state at a load = 100 gf. [6 to 10 round trips causing galling: No error until 15 round trips: ◯. ]
-Hydrophilic evaluation: After being immersed in Idemitsu Kosan press oil AF2C, it dried at 160 degreeC for 10 minutes, and the water contact angle of the coating-film surface was measured after that. [15 ° or less: ○, 16-30 °: Δ . ]
・耐食性評価:JISZ2371による塩水噴霧試験を実施、試験時間=500hr後 貫通孔のない物を○とし、貫通孔が5個以下を△とした。
・耐汚染:パルミチン酸を70℃に加熱し、パルミチン酸蒸気に1時間暴露した後の接触角を測定した。[15°以下:○,16〜30°:△とした。]
・成形性評価:フィンプレスにてDOF成形を実施、10万ショット/ポンチ成形後のカラー内面の塗膜状態を観察した。[異常無し:○、クラック発生:△とした。]
-Corrosion resistance evaluation: A salt spray test according to JISZ2371 was carried out, and after test time = 500 hr, a product without through-holes was marked with ◯, and five or less through-holes were marked with △ .
Contamination resistance: The contact angle was measured after heating palmitic acid to 70 ° C. and exposing it to palmitic acid vapor for 1 hour. [15 ° or less: ○, 16-30 °: Δ . ]
-Formability evaluation: DOF molding was performed with a fin press, and the coating state of the color inner surface after 100,000 shots / punch molding was observed. [No abnormality: ○, crack occurrence: △ . ]
表2の結果からわかるように、本発明の実施例1〜6は、加工時の塗膜密着性や耐食性,親水性,耐汚染性に優れることを示している。 As can be seen from the results in Table 2, Examples 1 to 6 of the present invention show excellent coating film adhesion, corrosion resistance, hydrophilicity, and contamination resistance during processing.
[実施例11〜22]
pH=12の水酸化ナトリウムを主成分とするアルカリ脱脂剤(濃度=1.5%、温度=65℃時間=6秒)にて脱脂した後、約1秒後に水洗し(水量=6リットル/m2、温度=20℃)、乾燥を行った。その後、アクリル基を含有するビスフェノールA型エポキシ樹脂を塗膜形成要素とするベース塗料[ビスフェノールA型樹脂(遊離アクリルポリマー含有量20重量%)20重量部にブタノール7.5重量%、ブチルセロソルブ7.5重量部、残部水からなる水性ベース塗料]を用い、表3に示す条件(板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒、乾燥は風速=15m/秒、時間=10秒)で塗装した後,市販のアクリル/ポリビニルアルコールを主成分とする親水性樹脂塗料を塗布,表3に示す条件で焼付を行った。なお、各特性については実施例1と同様に評価を行った。
[Examples 11 to 22]
After degreasing with an alkaline degreasing agent (concentration = 1.5%, temperature = 65 ° C. time = 6 seconds) containing sodium hydroxide as a main component at pH = 12, it was washed with water after about 1 second (water volume = 6 liters / m 2 , temperature = 20 ° C.) and drying. Thereafter, base paint [bisphenol A type resin (free acrylic polymer content: 20% by weight) 20 parts by weight, butanol 7.5% by weight butyl cellosolve 7. 5 parts by weight, water-based base paint comprising the remaining water] and the conditions shown in Table 3 (plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / Second, time = 10 seconds), a commercially available hydrophilic resin paint mainly composed of acrylic / polyvinyl alcohol was applied, and baked under the conditions shown in Table 3. Each characteristic was evaluated in the same manner as in Example 1.
表4の結果からわかるように、本発明の実施例11〜22は、加工時の塗膜密着性や耐食性,親水性,耐汚染性に優れることを示している。 As can be seen from the results in Table 4, Examples 11 to 22 of the present invention show excellent coating film adhesion, corrosion resistance, hydrophilicity, and contamination resistance during processing.
以上のように、本発明によれば、加工時の塗膜密着性や耐食性,親水性,耐汚染性に優れた熱交換器用アルミニウムフィン材を提供することが出来る。 As described above, according to the present invention, it is possible to provide an aluminum fin material for a heat exchanger that is excellent in coating film adhesion, corrosion resistance, hydrophilicity, and contamination resistance during processing.
本発明は、アルミニウム板材との密着性が良く、防食性に優れた熱交換器用アルミニウムフィン用ベース塗料を開発することにより、このベース塗料を塗布、焼き付けしたアルミニウムフィン材は、該塗膜上に親水性樹脂を焼きつけた後においても密着性、親水性樹脂塗膜との密着性に優れ、耐食性に優れ、且つこれらベース塗膜処理及び親水性樹脂の両塗膜を焼きつけたプレコートアルミニウムフィン材は、その加工に際してフィン材の変形に良く追随できるため、塗膜の剥離、クラック、座屈などの問題を大幅に改善し、塗膜の破損による防食性の低下を防止できると共に、フィンとフィンの距離が狭い短い熱交換器においても水滴のブリッジによる通風抵抗の増加、水滴の共振による騒音の発生やアルミニウム板材の腐食による白粉の飛散を防止できるのでコンデンサー、ラジエーター、エバポレーター等の熱交換器用フィン材として極めて有効に使用できる。 The present invention develops a base paint for aluminum fins for heat exchangers that has good adhesion to an aluminum plate and has excellent anticorrosion properties, so that the aluminum fin material coated and baked with this base paint is applied on the coating film. The pre-coated aluminum fin material is excellent in adhesion and adhesion with the hydrophilic resin coating film even after baking the hydrophilic resin, excellent in corrosion resistance, and baked on both the base coating film treatment and the hydrophilic resin coating film. Because it can follow the deformation of the fin material well during the processing, it can greatly improve the problems such as peeling, cracking, buckling, etc. of the coating film, preventing the deterioration of the corrosion resistance due to the damage of the coating film, Even in a short heat exchanger with a short distance, the draft resistance increases due to water droplet bridges, the generation of noise due to water droplet resonance, and the corrosion of the aluminum plate. Since the dispersion can be prevented condenser, radiator, can be very effectively used as a heat exchanger fin stock evaporator or the like.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006193843A JP4818003B2 (en) | 2006-07-14 | 2006-07-14 | Pre-coated aluminum fin material for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006193843A JP4818003B2 (en) | 2006-07-14 | 2006-07-14 | Pre-coated aluminum fin material for heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008020154A JP2008020154A (en) | 2008-01-31 |
JP4818003B2 true JP4818003B2 (en) | 2011-11-16 |
Family
ID=39076224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006193843A Active JP4818003B2 (en) | 2006-07-14 | 2006-07-14 | Pre-coated aluminum fin material for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4818003B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013096631A (en) * | 2011-10-31 | 2013-05-20 | Mitsubishi Alum Co Ltd | Heat exchanger |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3430482B2 (en) * | 1997-06-30 | 2003-07-28 | 三菱アルミニウム株式会社 | Heat exchange material |
JP2005350704A (en) * | 2004-06-09 | 2005-12-22 | Kansai Paint Co Ltd | Surface treatment composition for metal |
-
2006
- 2006-07-14 JP JP2006193843A patent/JP4818003B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008020154A (en) | 2008-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010096416A (en) | Precoat aluminum fin material for heat exchanger | |
JP4667978B2 (en) | Aluminum painted plate and pre-coated aluminum fin material | |
JP4769112B2 (en) | Aluminum coating material and aluminum fin material for heat exchanger using the same | |
JP5135167B2 (en) | Aluminum painted plate | |
JP6857996B2 (en) | Surface treatment agent, film and surface treatment method | |
JPS60205194A (en) | Fin member material for heat exchanger | |
JP4818003B2 (en) | Pre-coated aluminum fin material for heat exchanger | |
JPH06228459A (en) | Composition for hydrophilicization method for hydrophilicization using the same | |
JPH0768466B2 (en) | Aluminum fin material for heat exchanger | |
JP5125285B2 (en) | Aluminum coating material and manufacturing method thereof | |
JP5125284B2 (en) | Aluminum coating material and manufacturing method thereof | |
JP2001201289A (en) | Aluminum fin material for heat exchanger | |
JP5380846B2 (en) | Painted steel with excellent bending workability | |
JP2011235457A (en) | Metal coating material | |
JP2006213978A (en) | Heat exchanger, refrigerating cycle apparatus and coating material used therefor | |
JP2018115836A (en) | Air-conditioning fin material for indoor equipment featuring low odors and water contents, and method for producing the same | |
JP2004082516A (en) | Metallic sheet precoated with acrylic resin containing silica | |
JP5367975B2 (en) | Method for producing coated aluminum sheet | |
JPH05322469A (en) | Aluminum fin material for heat exchanger of air conditioner, whose surface is treated with hydrophilic coating | |
JP2002162186A (en) | Fin member for heat exchanger having non-chromate reaction type substrate layer and heat exchanger equipped with the same | |
JP4467264B2 (en) | Fin coating composition and fin material | |
JP2000328259A (en) | Precoated fin material for heat exchanger | |
JP2009006231A (en) | Method for manufacturing hydrophilically-treated aluminum plate | |
JP2002161377A (en) | Fin material for heat exchanger with non-chromate coating type primary coating layer, and heat exchanger having the same | |
JP2006326863A (en) | Aluminium material for precoated fin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110722 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110830 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4818003 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |