JP4816839B2 - Method for producing separator for polymer electrolyte fuel cell - Google Patents

Method for producing separator for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4816839B2
JP4816839B2 JP2000315050A JP2000315050A JP4816839B2 JP 4816839 B2 JP4816839 B2 JP 4816839B2 JP 2000315050 A JP2000315050 A JP 2000315050A JP 2000315050 A JP2000315050 A JP 2000315050A JP 4816839 B2 JP4816839 B2 JP 4816839B2
Authority
JP
Japan
Prior art keywords
silver
separator
ions
fuel cell
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000315050A
Other languages
Japanese (ja)
Other versions
JP2002124267A (en
Inventor
博道 中田
登 高柳
透 村上
克久 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C.UYEMURA&CO.,LTD.
Toyota Motor Corp
Original Assignee
C.UYEMURA&CO.,LTD.
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.UYEMURA&CO.,LTD., Toyota Motor Corp filed Critical C.UYEMURA&CO.,LTD.
Priority to JP2000315050A priority Critical patent/JP4816839B2/en
Publication of JP2002124267A publication Critical patent/JP2002124267A/en
Application granted granted Critical
Publication of JP4816839B2 publication Critical patent/JP4816839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子電解質型燃料電池用セパレータの製造方法に関し、更に詳述すると、高分子電解質型燃料電池用セパレータの電気的接触性及び耐食性を高めるための表面処理法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
高分子電解質型燃料電池は、出力密度を高くでき、小型軽量化が図れ、電解質が固体であり、かつ低温での作動が可能であるため取り扱いが容易であり、移動用電源として優れた特長を有している。しかも、電池反応が水素ガスと空気中の酸素との反応により、水を生成する反応であり、反応系、生成系のいずれもがクリーンであることから自動車用の次期クリーンエネルギーとして注目されており、実用化のための開発が進められている。
【0003】
高分子電解質型燃料電池の基本構成は、一般にプロトン導電性を示す固体高分子電解質膜を介して片方の側に例えば白金を主触媒とし、カーボン粉末等とを混ぜ合わせ、ポーラス状にした電極を正極として配置し、空気を流し、他方の側に例えば白金触媒の代わりに白金にルテニウムを添加した触媒を用い、正極同様の構成とした電極を負極とし、水素ガスを流すような構造になっている。負極で供給された水素ガスは該固体高分子電解質膜中をプロトンとして移動し、正極側で空気中の酸素ガスと反応し、水を生成する。正極と負極とは、それぞれカーボンメッシュを介してセパレータと電気的に接続し、負極側で放出された電子は負極側のカーボンメッシュ、セパレータを通じ、更に正極側のセパレータ、カーボンメッシュを経て正極側に流れるようになっている。
【0004】
自動車用の燃料電池は、上記セルを複数積層して出力を高めた構成にしている。複数積層した構成ではセパレータの接触抵抗が発電効率に大きく影響する。更に、正極側では運転によって生成した水のpHは2〜3になっており、かつ運転中の生成水の温度は約80℃になる。従って、セパレータ材には電気的接触性がよく、従来から耐酸性に優れた材料としてカーボンの適用が検討されてきている。
【0005】
しかしながら、カーボンセパレータは単位重量もしくは単位体積当りの発電効率が低く、しかも成形性が乏しいため、自由な流路設計が困難であるという欠点がある。
【0006】
更に、自動車用電池として使用する場合には、耐衝撃性、耐振動性も兼備することが必要であるが、カーボンセパレータでは十分な対応ができない。また、これ以外にもカーボンは加工費が高く、燃料電池の低コスト化という点からも対応が困難である。
【0007】
これらの問題を解決するためには金属セパレータの適用が必要であり、素材として軽量なアルミニウムを用いる方式が検討されている。しかし、燃料電池を運転する際に、アルミニウムをセパレータ材として用いると、セパレータが酸性液と接するため耐食性が不十分であり、問題となる。このため、セパレータの耐食性を確保するために、アルミニウムセパレータ上に貴金属をめっきする方法が試みられている。貴金属めっきの種類としては実用面から、金に比べ、比較的安価な銀が候補として挙げられ、検討されている。アルミニウム上への銀めっき膜の形成法は通常ジンケート処理し、その上にニッケルめっき膜を形成し、更にシアン化銀めっき浴により銀めっき膜を形成する方法が用いられている。アルミニウムセパレータ上に銀めっき膜を形成する前にジンケート処理及びニッケルめっき膜を形成する理由は、アルミニウム上への銀めっき膜の密着力を確保するためである。この方法に従えば、銀めっき膜を十分に厚付けしてもアルミニウム下地から銀めっき膜が剥がれることはない。
【0008】
しかし、こうした方法で銀めっき膜を10μm程度形成しても、運転中に銀めっき膜のピンホール等を通して特にニッケル及びアルミニウム等が腐蝕し、基材に対する銀めっき膜の密着性が低下し、安定した電気的接触性を確保することができない。
【0009】
更に従来、特開昭60−115173号公報には、溶融塩燃料電池が開示されているが、この中でSUS316板に銀微粒子と有機溶媒とを主成分とする銀導電ペーストを約100μm厚さにスクリーン印刷し、これを乾燥後、500℃前後で焼付けすることが記載されている。しかし、この方法は、銀コート層が100μmと厚い上、乾燥、焼成工程が必要となるため、高コストであり、しかも生産性が悪いという問題がある。
【0010】
本発明は上記事情を改善するためになされたもので、電気的接触性及び耐食性に優れた高分子電解質型燃料電池用セパレータの安価で効率のよい製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成すべく、ステンレススチール製のセパレータについて検討した。即ち、従来技術の欠点を補う目的でセパレータ材として耐食性に優れたステンレスを用い、かつステンレスセパレータの電気的接触性を高めるために周知の方法に従って脱脂し、塩酸液によりステンレスセパレータを前処理し、シアン化銀めっき浴を用いて銀めっきした。しかし、十分な密着性を得ることができず、高信頼性の燃料電池を作成する上で問題であった。また更に、ステンレス上への銀めっき膜形成用めっき浴として、シアン化銀めっき浴以外に、銀めっき液中で銀イオンを溶解し易いアンモニウムイオン、チオシアン酸イオン、フェロシアン化物イオン、チオ硫酸イオン、エチレンジアミン、ピロリン酸イオン、チオ尿素等を主成分とする浴について種々検討した。しかし、これらはいずれも皮膜自身の機械的強度がないか、あったとしても十分な密着性が得られないという問題があった。
【0012】
このため、本発明者らは更に検討を重ねた結果、ハロゲン化銀溶液を用いて酸性の状態でステンレスセパレータをめっきした場合、特にハロゲン化物イオンを主成分とする錯化剤を含み、pH2以下とした酸性電気銀めっき液を用いてステンレスセパレータをめっきした場合、密着性が高く、かつ電気的接触性、耐食性に優れた銀めっき膜が得られ、この銀めっき膜が形成されたステンレスセパレータを高分子電解質型燃料電池用に用いることにより、優れた放電特性を安定して示すことを見出し、本発明をなすに至った。
【0013】
即ち、本発明は、高分子電解質型燃料電池用のステンレススチール製セパレータ基体を、塩化銀、臭化銀、ヨウ化銀から選ばれる銀イオン供給源を銀イオン濃度として0.02〜55g/L、塩化物イオン、臭化物イオン、ヨウ化物イオンから選ばれるハロゲン化物イオンとアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンから選ばれるカウンターカチオンとからなる水溶性化合物をハロゲン化物イオン濃度として1〜550g/L、及び亜セレン酸カリウム、セレノシアン酸カリウム、セレン酸カリウム、チオシアン酸カリウム、スルファミン酸アンモニウム、チオ硫酸ナトリウム、ゼラチン、トリエタノールアミン、チオ尿素、アラビアゴムの1種又は2種以上を0.05〜30g/L含み、pHが−1.0〜2.0に調製された酸性電気銀めっき液にて陰極電流密度0.01〜5A/dm 2 においてめっきし、上記基体に厚さ0.01〜10μmの銀めっき膜を形成することを特徴とする高分子電解質型燃料電池用セパレータの製造方法を提供する。この場合、上記セパレータ基体を脱脂し、次いで塩酸溶液に浸漬後、直接電気銀めっきを行うようにすることが好ましい。
【0014】
本発明の高分子電解質型燃料電池用ステンレスセパレータは、カーボンメッシュに対する電気的接触性を高めるために、ステンレスセパレータ上に銀めっき膜を形成する際、銀イオンの主錯化剤としてハロゲン化物イオン、特に塩化物イオン、臭化物イオン、ヨウ化物イオンのいずれか1種以上を含み、かつ液のpHを2.0以下の酸性にした電気めっき液を用いる。従って、めっきの際にはステンレス表面の酸化膜が酸性下でハロゲン化物イオンと接し、ステンレス表面の酸化膜が溶解し、下地ステンレス金属上に直接銀めっき膜が形成され、ステンレス板上に密着性の高い状態で銀めっき膜が形成されるものである。従って、工程も簡略化され、めっき膜厚も薄いので、安価に製造し得る。
【0015】
以下、本発明につき更に詳しく説明する。
本発明の高分子電解質型燃料電池用セパレータの製造方法は、セパレータ基体として耐食性及び加工性に優れた材料であるステンレス材を用い、ステンレスの電気的接触性を高めるため、ステンレス表面に耐食性が優れ、密着性に優れた銀めっき膜を形成する。
この場合、ステンレス材としては、公知のものを使用することができる。
【0016】
上記基体に形成される銀めっき膜を得るために用いる電気銀めっき液は、ハロゲン化銀溶液であり、銀イオン及びハロゲン化物イオン(ハロゲンイオン)を含有する。
【0017】
ここで、銀イオン供給源としては、塩化銀、臭化銀、ヨウ化銀の1種又は2種以上を使用し得る。その配合量は、銀イオンとして0.02〜55g/L、好ましくは0.1〜15g/L、更に好ましくは1〜5g/Lである。銀イオン濃度が低すぎると密着性が劣り、多すぎると耐食性が劣る。
【0018】
一方、ハロゲン化物イオンとしては、塩化物イオン(Cl-)、臭化物イオン(Br-)、ヨウ化物イオン(I-)が挙げられる。これらハロゲン化物イオンのカウンターカチオンとしては、ナトリウム、カリウム等のアルカリ金属イオン、マグネシウム、カルシウム等のアルカリ土類金属イオン、アンモニウムイオン等が挙げられ、水溶性化合物が使用される。ハロゲン化物イオンの含有量は、1〜550g/Lであり、好ましくは50〜400g/L、更に好ましくは150〜200g/Lである。少なすぎると密着性が劣り、多すぎると耐食性が劣る。なお、ハロゲン化物イオンは、銀イオン1モルに対し10〜23,000モル、より好ましくは50〜1,000モル、更に好ましくは100〜150モルであることが好ましい。
【0019】
上記銀めっき液には、銀めっき膜の結晶調整剤を配合することが好ましく、結晶調整剤としては、亜セレン酸カリウム、セレノシアン酸カリウム、セレン酸カリウム、チオシアン酸カリウム、スルファミン酸アンモニウム、チオ硫酸ナトリウム、ゼラチン、トリエタノールアミン、チオ尿素、アラビアゴム等の1種又は2種以上を使用することができる。その配合量は、0.05〜30g/Lが好ましく、より好ましくは0.5〜10g/L、更に好ましくは1〜3g/Lである。
【0020】
上記銀めっき液のpHは−1.0以上、2.0以下、好ましくは0.0〜1.5、更に好ましくは0.5〜1.0に調整する。pHが低すぎると接触抵抗が劣り、高すぎると密着性が劣る。なお、pHの調整には、硫酸、塩酸、リン酸等を挙げることができる。また、pHを上げる場合は苛性アルカリ等を用いることができる。
【0021】
上記銀めっき液を用いてめっきする場合は、陰極電流密度(Dk)は0.01〜5A/dm2、好ましくは0.1〜3A/dm2、更に好ましくは0.5〜2A/dm2にてめっきを行う。Dkが低すぎても高すぎても密着性が劣る。なお、めっき温度は5〜90℃、特に30〜60℃とすることができる。撹拌は必ずしも必要としないが、カソードロッキング、スターラー、ポンプ噴流による撹拌を行ってもよい。なお、陽極には銀陽極を用いることができるが、これに限定されず、不溶性陽極でもよい。
【0022】
上記基体に形成される銀めっき膜の厚さは、0.01〜10μmであり、好ましくは0.1〜5μm、更に好ましくは1〜3μmである。膜厚が薄すぎても厚すぎても密着性に劣る。即ち、銀めっき膜自身の内部応力により銀めっき膜の厚さが10μmより厚いと、運転開始前、もしくは運転中に部分的に剥がれが生じ、電気的接触性が低下することがある。また、薄すぎる場合も、密着性が低く、電気的接触性を確保する上で問題を生ずる。
【0023】
なお、上記基体を銀めっきする場合、その前処理方法としては、常法に従って脱脂した後、好ましくは1〜30重量%濃度、更に好ましくは12〜18重量%濃度の塩酸溶液中に5〜60℃、特に10〜30℃で0.5〜5分、特に1〜3分浸漬した後、上記銀めっき液を用いてめっきを行う方法が採用し得る。
【0024】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0025】
[実施例、比較例]
0.15mm×50mm×80mmのオーステナイト系のステンレス製の基板の両面に、それぞれ40mm×70mmの範囲に銀めっき膜が形成されるよう、銀めっき膜のエッジ部となる部分の周囲をフッ素樹脂製耐熱テープ(中興化成社製)でマスクすると共に、耐熱テープの銀めっき液に浸漬しない部分の耐熱テープを除去して、めっき処理の際に基板をリード線と接続するためのリード部を形成した。このように処理されたステンレス製基板を脱脂し、液温20℃の2N塩酸中に1分間浸漬してから水洗した後、表1〜6に示す銀めっき液及びめっき条件でステンレス製基板上にめっき処理を施した。
【0026】
このようにして形成された燃料電池用セパレータについて、下記方法により電気的接触性、基板と銀めっき膜との密着性、及び耐食性の評価試験を行い、更にこれらを総合的に評価した。結果を表1〜6に示す。
【0027】
接触抵抗性評価
ステンレス板1上の銀めっき膜2,2’の電気的接触性は図1に示す装置を用い、接触抵抗を測定し、評価した。接触抵抗の測定は40mm×70mmの大きさにカーボンメッシュ3,3’を切断し、カーボンメッシュ3,3’がそれぞれ銀めっき膜2,2’を介して対向するように位置を調整し、装着した。銀めっき膜2,2’間に直流を流し、カーボンメッシュ3,3’間の電圧(V)を読取り、接触抵抗を求めた。接触抵抗は、所定の荷重下において得られる焼成カーボン板/カーボンメッシュ間の抵抗値を基準(1)とし、その2倍以下を良とし、それより大きい場合を不良とした。なお、図1において、4,4’はマスクテープ、5,5’は締付けロードセル、6,6’は締付け銅板、7は電圧計、8は定電流直流電源を示す。
【0028】
耐食性評価
ステンレス板1上の銀めっき膜2,2’の耐食性の評価は図2に示すようなポリプロピレン製治具9,9’にセットし、腐食試験液中に入れ、腐食試験後、図1に示した装置により接触抵抗を求め、評価した。腐食試験は腐食試験液として硫酸によりpH2に調整した液を用い、液温80℃で100時間浸漬する条件で実施した。腐食試験評価用の銀めっき膜2,2’及びステンレス板1は接触抵抗測定に用いたものと同形状とした。また、腐食試験の際、電気めっき時にリード線と接続するためにステンレス板1のエッジ部のマスクの一部を除去したが、その部分についても腐食液に接しないようにマスクした。次いで、該銀めっき膜2,2’をカーボンメッシュ3,3’を介してカーボン板10,10’と接触させ、図2に示すようにポリプロピレン製治具9,9’で固定し、腐食液中に浸漬した。ポリプロピレン製治具9,9’により固定する際、腐食液はカーボンメッシュ3,3’には染みこむが、銀めっき膜2,2’とカーボンメッシュ3,3’の接触位置がずれない程度にポリプロピレン製治具9,9’に挟んで固定した。腐食試験後、該試料を液中から取り出し、ポリプロピレン製治具9,9’をはずし、ステンレス板1上の銀めっき膜2,2’を十分に水洗し、速やかに乾燥し、再び該接触抵抗測定試験により測定した。腐食試験後の接触抵抗についても、焼成カーボン板/カーボンメッシュ間の抵抗値を基準(1)とし、その2倍以下を良と判定し、1倍以下を優良と判定した。また、2倍を超える場合には不良と判定した。なお、腐食試験後、該試料をポリプロピレン製治具9,9’からはずす際、銀めっき膜2,2’の密着性が低下し、銀めっき膜2,2’がステンレス板1から剥がれたものはその時点で不良と判定した。
【0029】
密着性評価
密着性評価試験は、クロスカット試験により行った。クロスカット試験はステンレス製基板上の銀めっき膜を鋭利なナイフで縦、横について幅2mmの等間隔で16個の桝目をカットし、カットされた桝目部にポリエステル粘着テープを張りつけた後、勢いよく剥がすことにより行った。その際、銀めっき膜がステンレス製基板からテープと共に16個所中1個所も剥がれない場合を良、1個所でも剥がれた場合を不良と判定した。なお、密着性評価で不良と判定した銀めっき膜は、接触抵抗性及び耐食性のいずれも評価を省略した。
【0030】
総合評価
総合評価は、接触抵抗性、密着性、耐食性のいずれもが良と判定されたものを良、接触抵抗性及び密着性が良、耐食性が優良と判定されたものを優良と判定した。
【0031】
【表1】

Figure 0004816839
【0032】
【表2】
Figure 0004816839
【0033】
【表3】
Figure 0004816839
【0034】
【表4】
Figure 0004816839
【0035】
【表5】
Figure 0004816839
【0036】
【表6】
Figure 0004816839
【0037】
【発明の効果】
本発明によれば、高分子電解質型燃料電池用のセパレータとしてステンレス材を用い、ステンレスセパレータ上に直に密着性の高い耐食性銀めっき膜を形成しているため、運転中に酸性水が銀めっき膜のピンホールを通して浸透したとしても、ステンレス自身高耐食性であるため、ステンレスの腐蝕により銀めっき膜の密着性が損なわれることがなく、接触抵抗の増大を抑え、高い発電効率を維持できる。また、銀めっき膜は10μm以下と薄く、しかもステンレス上に直接形成されるので、工程も簡略化され、コスト的にも安価なものである。
【図面の簡単な説明】
【図1】銀めっき膜とカーボンメッシュとの接触抵抗測定方法を説明する概略図である。
【図2】銀めっき膜の耐食性評価試料構成の断面図である。
【符号の説明】
1 ステンレス板
2,2’ 銀めっき膜
3,3’ カーボンメッシュ
4,4’ マスクテープ
5,5’ 締付けロードセル
6,6’ 締付け銅板
7 電圧計
8 定電流直流電源
9,9’ ポリプロピレン製治具
10,10’ カーボン板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a separator for a polymer electrolyte fuel cell, and more particularly to a surface treatment method for improving the electrical contact property and corrosion resistance of a separator for a polymer electrolyte fuel cell.
[0002]
[Prior art and problems to be solved by the invention]
The polymer electrolyte fuel cell has high output density, can be reduced in size and weight, is easy to handle because it is solid, and can be operated at low temperatures. Have. In addition, the battery reaction is a reaction that generates water by the reaction of hydrogen gas and oxygen in the air, and since both the reaction system and the generation system are clean, it is attracting attention as the next clean energy for automobiles. Development for practical use is underway.
[0003]
The basic structure of a polymer electrolyte fuel cell is that, in general, a porous polymer electrode is formed by mixing platinum powder as a main catalyst and carbon powder etc. on one side through a solid polymer electrolyte membrane showing proton conductivity. It is arranged as a positive electrode, air is flowed, and a catalyst in which ruthenium is added to platinum instead of a platinum catalyst is used on the other side, an electrode having the same configuration as the positive electrode is used as a negative electrode, and hydrogen gas is flowed. Yes. The hydrogen gas supplied from the negative electrode moves as protons in the solid polymer electrolyte membrane, and reacts with oxygen gas in the air on the positive electrode side to generate water. The positive electrode and the negative electrode are each electrically connected to the separator via a carbon mesh, and electrons emitted on the negative electrode side pass through the negative electrode carbon mesh and separator, and further pass through the positive electrode separator and carbon mesh to the positive electrode side. It comes to flow.
[0004]
The fuel cell for automobiles has a configuration in which a plurality of the cells are stacked to increase the output. In a configuration in which a plurality of layers are stacked, the contact resistance of the separator greatly affects the power generation efficiency. Further, on the positive electrode side, the pH of the water produced by the operation is 2 to 3, and the temperature of the produced water during the operation is about 80 ° C. Therefore, the separator material has good electrical contact, and conventionally, application of carbon has been studied as a material excellent in acid resistance.
[0005]
However, the carbon separator has a drawback that it is difficult to design a free flow path because the power generation efficiency per unit weight or unit volume is low and the moldability is poor.
[0006]
Furthermore, when used as a battery for automobiles, it is necessary to have both impact resistance and vibration resistance, but a carbon separator cannot sufficiently cope with it. In addition to this, carbon has a high processing cost and is difficult to cope with from the viewpoint of reducing the cost of the fuel cell.
[0007]
In order to solve these problems, it is necessary to apply a metal separator, and a method using lightweight aluminum as a material has been studied. However, when aluminum is used as the separator material when the fuel cell is operated, the separator comes into contact with the acidic liquid, resulting in insufficient corrosion resistance. For this reason, in order to ensure the corrosion resistance of a separator, the method of plating a noble metal on an aluminum separator is tried. As a kind of noble metal plating, silver, which is relatively inexpensive as compared with gold, is listed as a candidate for practical use and is being studied. As a method for forming a silver plating film on aluminum, a method is generally used in which a zincate treatment is performed, a nickel plating film is formed thereon, and a silver plating film is further formed using a silver cyanide plating bath. The reason for forming the zincate treatment and the nickel plating film before forming the silver plating film on the aluminum separator is to ensure the adhesion of the silver plating film on the aluminum. According to this method, even if the silver plating film is sufficiently thick, the silver plating film is not peeled off from the aluminum base.
[0008]
However, even if a silver plating film is formed to a thickness of about 10 μm by such a method, nickel, aluminum, etc. are corroded through the pin holes of the silver plating film during operation, and the adhesion of the silver plating film to the substrate is lowered and stable. It is impossible to ensure the electrical contact.
[0009]
Conventionally, Japanese Unexamined Patent Publication No. 60-115173 discloses a molten salt fuel cell, in which a silver conductive paste mainly composed of silver fine particles and an organic solvent is formed on a SUS316 plate to a thickness of about 100 μm. Are screen-printed, dried, and baked at around 500 ° C. However, this method has a problem that the silver coat layer is as thick as 100 μm, and drying and baking processes are required, so that the cost is high and the productivity is poor.
[0010]
The present invention has been made in order to improve the above circumstances, and an object thereof is to provide an inexpensive and efficient method for producing a polymer electrolyte fuel cell separator excellent in electrical contact and corrosion resistance.
[0011]
Means for Solving the Problem and Embodiment of the Invention
In order to achieve the above object, the present inventors have studied a stainless steel separator. That is, in order to compensate for the disadvantages of the prior art, stainless steel with excellent corrosion resistance is used as a separator material, and degreasing is performed according to a known method in order to increase the electrical contact property of the stainless steel separator, and the stainless steel separator is pretreated with a hydrochloric acid solution, Silver plating was performed using a silver cyanide plating bath. However, sufficient adhesion cannot be obtained, which is a problem in producing a highly reliable fuel cell. Furthermore, as a plating bath for forming a silver plating film on stainless steel, in addition to the silver cyanide plating bath, ammonium ions, thiocyanate ions, ferrocyanide ions, thiosulfate ions that easily dissolve silver ions in the silver plating solution Various baths mainly composed of ethylenediamine, pyrophosphate ion, thiourea and the like were studied. However, there is a problem that none of these films have the mechanical strength of the film itself, or that even if there is any, sufficient adhesion cannot be obtained.
[0012]
For this reason, as a result of further investigations, the inventors of the present invention, when a stainless steel separator is plated in an acidic state using a silver halide solution, include a complexing agent mainly containing halide ions, and has a pH of 2 or less. When the stainless steel separator is plated using the acidic electrosilver plating solution, a silver plating film with high adhesion and excellent electrical contact and corrosion resistance is obtained. The stainless steel separator on which this silver plating film is formed is obtained. It has been found that by using it for a polymer electrolyte fuel cell, excellent discharge characteristics are stably exhibited, and the present invention has been made.
[0013]
That is, the present invention relates to a stainless steel separator substrate for a polymer electrolyte fuel cell, wherein a silver ion source selected from silver chloride, silver bromide and silver iodide is 0.02 to 55 g / L with a silver ion concentration. 1 to 550 g of a water-soluble compound comprising a halide ion selected from chloride ion, bromide ion and iodide ion and a counter cation selected from alkali metal ion, alkaline earth metal ion and ammonium ion as a halide ion concentration / L, and one or more of potassium selenite, potassium selenocyanate, potassium selenate, potassium thiocyanate, ammonium sulfamate, sodium thiosulfate, gelatin, triethanolamine, thiourea, gum arabic, and. Contains 0.5-30 g / L, pH is -1.0-2.0 Plated at cathode current density 0.01~5A / dm 2 at the prepared acidic electro silver plating solution, a polymer electrolyte, and forming a silver plating film having a thickness of 0.01~10μm to said substrate A method for manufacturing a separator for a fuel cell is provided. In this case, degreased upper xenon separator substrate, followed after immersion in hydrochloric acid solution, it is preferable to directly carry out the electric silver plating.
[0014]
The stainless steel separator for a polymer electrolyte fuel cell of the present invention has a halide ion as a main complexing agent of silver ions when a silver plating film is formed on the stainless steel separator in order to improve electrical contact with the carbon mesh. In particular, an electroplating solution containing at least one of chloride ions, bromide ions, and iodide ions and having an acid pH of 2.0 or less is used. Therefore, during plating, the oxide film on the stainless steel surface contacts with halide ions under acidity, the oxide film on the stainless steel surface dissolves, and a silver plating film is formed directly on the underlying stainless steel metal, making it adhesive on the stainless steel plate. The silver plating film is formed in a high state. Accordingly, the process is simplified and the plating film thickness is thin, so that it can be manufactured at low cost.
[0015]
Hereinafter, the present invention will be described in more detail.
The method for producing a separator for a polymer electrolyte fuel cell according to the present invention uses a stainless steel material having excellent corrosion resistance and workability as a separator substrate, and has excellent corrosion resistance on the stainless steel surface in order to increase the electrical contact property of stainless steel. A silver plating film having excellent adhesion is formed.
In this case, a well-known thing can be used as a stainless steel material.
[0016]
The electrosilver plating solution used for obtaining the silver plating film formed on the substrate is a silver halide solution, and contains silver ions and halide ions (halogen ions).
[0017]
Here, the silver ion source, salts, silver bromide, may be used one or more of silver iodide. The compounding quantity is 0.02-55 g / L as silver ion, Preferably it is 0.1-15 g / L, More preferably, it is 1-5 g / L. If the silver ion concentration is too low, the adhesion is inferior, and if too high, the corrosion resistance is inferior.
[0018]
On the other hand, examples of the halide ion include chloride ion (Cl ), bromide ion (Br ), and iodide ion (I ). Examples of the counter cation of these halide ions include alkali metal ions such as sodium and potassium, alkaline earth metal ions such as magnesium and calcium, ammonium ions, and the like, and water-soluble compounds are used. The content of halide ions is 1 to 550 g / L, preferably 50 to 400 g / L, and more preferably 150 to 200 g / L. If the amount is too small, the adhesion is inferior. If the amount is too large, the corrosion resistance is inferior. In addition, it is preferable that halide ion is 10-23,000 mol with respect to 1 mol of silver ions, More preferably, it is 50-1,000 mol, More preferably, it is 100-150 mol.
[0019]
The silver plating solution preferably contains a silver plating film crystal modifier. Examples of the crystal modifier include potassium selenite, potassium selenocyanate, potassium selenate, potassium thiocyanate, ammonium sulfamate, and thiosulfuric acid. One or more of sodium, gelatin, triethanolamine, thiourea, gum arabic and the like can be used. The blending amount is preferably 0.05 to 30 g / L, more preferably 0.5 to 10 g / L, and still more preferably 1 to 3 g / L.
[0020]
The pH of the silver plating solution is adjusted to -1.0 or more and 2.0 or less, preferably 0.0 to 1.5, and more preferably 0.5 to 1.0. When pH is too low, contact resistance is inferior, and when too high, adhesiveness is inferior. In addition, sulfuric acid, hydrochloric acid, phosphoric acid etc. can be mentioned for adjustment of pH. Moreover, when raising pH, a caustic alkali etc. can be used.
[0021]
When plating using the above silver plating solution, the cathode current density (D k ) is 0.01 to 5 A / dm 2 , preferably 0.1 to 3 A / dm 2 , more preferably 0.5 to 2 A / dm. Plating is performed at 2 . If Dk is too low or too high, the adhesion is poor. The plating temperature can be 5 to 90 ° C, particularly 30 to 60 ° C. Agitation is not always necessary, but agitation by cathode rocking, stirrer or pump jet may be performed. In addition, although a silver anode can be used for an anode, it is not limited to this, An insoluble anode may be sufficient.
[0022]
The thickness of the silver plating film formed on the substrate is 0.01 to 10 μm, preferably 0.1 to 5 μm, and more preferably 1 to 3 μm. If the film thickness is too thin or too thick, the adhesion is poor. That is, if the thickness of the silver plating film is greater than 10 μm due to the internal stress of the silver plating film itself, peeling may occur partially before the start of operation or during operation, and the electrical contact may be reduced. Moreover, when it is too thin, adhesiveness is low and a problem arises in ensuring electrical contact.
[0023]
In addition, when silver-plating the said base | substrate, after the degreasing | defatting according to a conventional method as a pretreatment method, Preferably it is 1-30 weight% density | concentration, More preferably, it is 5-60 in the hydrochloric acid solution of 12-18 weight% density | concentration. A method of performing plating using the above silver plating solution after immersion for 0.5 to 5 minutes, particularly 1 to 3 minutes at 10 ° C., particularly 10 to 30 ° C. may be employed.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0025]
[Examples and Comparative Examples]
The periphery of the silver plating film is made of fluororesin so that the silver plating film is formed in the range of 40 mm x 70 mm on both sides of the 0.15 mm x 50 mm x 80 mm austenitic stainless steel substrate. Masked with heat-resistant tape (manufactured by Chuko Kasei Co., Ltd.), removed the heat-resistant tape of the heat-resistant tape that was not immersed in the silver plating solution, and formed the lead part for connecting the substrate to the lead wire during the plating process . The stainless steel substrate thus treated is degreased, immersed in 2N hydrochloric acid at a liquid temperature of 20 ° C. for 1 minute and washed with water, and then on the stainless steel substrate with the silver plating solution and plating conditions shown in Tables 1-6. Plating treatment was performed.
[0026]
The fuel cell separator thus formed was subjected to an evaluation test of electrical contact, adhesion between the substrate and the silver plating film, and corrosion resistance by the following methods, and these were comprehensively evaluated. The results are shown in Tables 1-6.
[0027]
Evaluation of contact resistance The electrical contact properties of the silver plating films 2 and 2 'on the stainless steel plate 1 were evaluated by measuring the contact resistance using the apparatus shown in FIG. Contact resistance is measured by cutting the carbon mesh 3, 3 'into a size of 40mm x 70mm, adjusting the position so that the carbon mesh 3, 3' faces each other through the silver plating film 2, 2 ' did. A direct current was passed between the silver plating films 2 and 2 ', the voltage (V) between the carbon meshes 3 and 3' was read, and the contact resistance was obtained. For the contact resistance, the resistance value between the calcined carbon plate / carbon mesh obtained under a predetermined load was defined as the standard (1), and a value of 2 times or less was good, and a value larger than that was regarded as bad. In FIG. 1, 4 and 4 'are mask tapes, 5 and 5' are clamping load cells, 6 and 6 'are clamping copper plates, 7 is a voltmeter, and 8 is a constant current DC power source.
[0028]
Corrosion resistance evaluation The corrosion resistance of the silver plating films 2 and 2 'on the stainless steel plate 1 is set in polypropylene jigs 9 and 9' as shown in FIG. Thereafter, the contact resistance was obtained and evaluated by the apparatus shown in FIG. The corrosion test was carried out using a solution adjusted to pH 2 with sulfuric acid as a corrosion test solution and immersed for 100 hours at a solution temperature of 80 ° C. The silver plating films 2 and 2 ′ and the stainless steel plate 1 for corrosion test evaluation were the same shape as those used for the contact resistance measurement. Further, in the corrosion test, a part of the mask at the edge portion of the stainless steel plate 1 was removed in order to connect with the lead wire during electroplating, but this portion was also masked so as not to come into contact with the corrosive liquid. Next, the silver plating films 2 and 2 ′ are brought into contact with the carbon plates 10 and 10 ′ through the carbon meshes 3 and 3 ′, and fixed with polypropylene jigs 9 and 9 ′ as shown in FIG. Soaked in. When fixing with the polypropylene jigs 9 and 9 ′, the corrosive liquid soaks into the carbon meshes 3 and 3 ′, but the contact position between the silver plating films 2 and 2 ′ and the carbon meshes 3 and 3 ′ does not shift. It was fixed by being sandwiched between polypropylene jigs 9 and 9 '. After the corrosion test, the sample is taken out from the solution, the polypropylene jigs 9 and 9 ′ are removed, the silver plating films 2 and 2 ′ on the stainless steel plate 1 are sufficiently washed with water, quickly dried, and again the contact resistance. It was measured by a measurement test. Regarding the contact resistance after the corrosion test, the resistance value between the calcined carbon plate / carbon mesh was defined as the standard (1), and the double value or less was judged as good, and the double value or less was judged as excellent. Moreover, when exceeding 2 times, it determined with it being inferior. After the corrosion test, when the sample was removed from the polypropylene jigs 9 and 9 ′, the adhesion of the silver plating films 2 and 2 ′ was lowered, and the silver plating films 2 and 2 ′ were peeled off from the stainless steel plate 1. Was judged as bad at that time.
[0029]
Adhesion evaluation The adhesion evaluation test was performed by a cross-cut test. In the cross-cut test, the silver plating film on the stainless steel substrate was cut with 16 sharp meshes at equal intervals of 2 mm in width and width with a sharp knife, and after applying polyester adhesive tape to the cut meshes, It was done by peeling off well. At that time, the case where the silver plating film could not be peeled off from the stainless steel substrate together with the tape at one place out of 16 places was judged as good, and the case where the silver plating film was peeled off even at one place was judged as bad. In addition, the silver plating film determined to be defective in the adhesion evaluation omitted evaluation of both contact resistance and corrosion resistance.
[0030]
Comprehensive evaluation <br/> Comprehensive evaluation is good if contact resistance, adhesion, and corrosion resistance are all good, excellent contact resistance and adhesion, and excellent corrosion resistance It was determined.
[0031]
[Table 1]
Figure 0004816839
[0032]
[Table 2]
Figure 0004816839
[0033]
[Table 3]
Figure 0004816839
[0034]
[Table 4]
Figure 0004816839
[0035]
[Table 5]
Figure 0004816839
[0036]
[Table 6]
Figure 0004816839
[0037]
【Effect of the invention】
According to the present invention, a stainless steel material is used as a separator for a polymer electrolyte fuel cell, and a highly corrosion-resistant silver plating film is formed directly on the stainless steel separator. Even if it penetrates through the pinholes of the film, since the stainless steel itself has high corrosion resistance, the adhesion of the silver plating film is not impaired by the corrosion of the stainless steel, the increase in contact resistance can be suppressed, and high power generation efficiency can be maintained. Further, since the silver plating film is as thin as 10 μm or less and is formed directly on the stainless steel, the process is simplified and the cost is low.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a method for measuring contact resistance between a silver plating film and a carbon mesh.
FIG. 2 is a cross-sectional view of a sample structure for evaluating corrosion resistance of a silver plating film.
[Explanation of symbols]
1 Stainless steel plate 2, 2 'Silver plating film 3, 3' Carbon mesh 4, 4 'Mask tape 5, 5' Tightening load cell 6, 6 'Tightening copper plate 7 Voltmeter 8 Constant current DC power supply 9, 9' Polypropylene jig 10, 10 'carbon plate

Claims (2)

高分子電解質型燃料電池用のステンレススチール製セパレータ基体を、塩化銀、臭化銀、ヨウ化銀から選ばれる銀イオン供給源を銀イオン濃度として0.02〜55g/L、塩化物イオン、臭化物イオン、ヨウ化物イオンから選ばれるハロゲン化物イオンとアルカリ金属イオン、アルカリ土類金属イオン、アンモニウムイオンから選ばれるカウンターカチオンとからなる水溶性化合物をハロゲン化物イオン濃度として1〜550g/L、及び亜セレン酸カリウム、セレノシアン酸カリウム、セレン酸カリウム、チオシアン酸カリウム、スルファミン酸アンモニウム、チオ硫酸ナトリウム、ゼラチン、トリエタノールアミン、チオ尿素、アラビアゴムの1種又は2種以上を0.05〜30g/L含み、pHが−1.0〜2.0に調製された酸性電気銀めっき液にて陰極電流密度0.01〜5A/dm 2 においてめっきし、上記基体に厚さ0.01〜10μmの銀めっき膜を形成することを特徴とする高分子電解質型燃料電池用セパレータの製造方法。Stainless steel separator substrate for polymer electrolyte fuel cell , 0.02-55 g / L of silver ion source selected from silver chloride, silver bromide and silver iodide, silver ion concentration, chloride ion, bromide 1 to 550 g / L of a water-soluble compound comprising a halide ion selected from ions and iodide ions, and a counter cation selected from alkali metal ions, alkaline earth metal ions, and ammonium ions, as a halide ion concentration, and selenium Contains 0.05-30 g / L of one or more of potassium acid, potassium selenocyanate, potassium selenate, potassium thiocyanate, ammonium sulfamate, sodium thiosulfate, gelatin, triethanolamine, thiourea, gum arabic PH adjusted to -1.0-2.0 Plated at cathode current density 0.01~5A / dm 2 at Kigin plating solution, for a polymer electrolyte fuel cell and forming a silver plating film having a thickness of 0.01~10μm to said substrate Separator manufacturing method. 上記セパレータ基体を脱脂し、次いで塩酸溶液に浸漬後、直接電気銀めっきを行うようにした請求項記載の製造方法。The manufacturing method according to claim 1 , wherein the separator substrate is degreased and then immersed in a hydrochloric acid solution, followed by direct silver electroplating.
JP2000315050A 2000-10-16 2000-10-16 Method for producing separator for polymer electrolyte fuel cell Expired - Fee Related JP4816839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315050A JP4816839B2 (en) 2000-10-16 2000-10-16 Method for producing separator for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315050A JP4816839B2 (en) 2000-10-16 2000-10-16 Method for producing separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002124267A JP2002124267A (en) 2002-04-26
JP4816839B2 true JP4816839B2 (en) 2011-11-16

Family

ID=18794210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315050A Expired - Fee Related JP4816839B2 (en) 2000-10-16 2000-10-16 Method for producing separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4816839B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006020424D1 (en) * 2006-06-30 2011-04-14 Arcelormittal Stainless & Nickel Alloys Printed circuit boards for fuel cell components
JP2008127641A (en) * 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
EP3048186B1 (en) * 2013-09-20 2018-07-04 Toyo Kohan Co., Ltd. Metal-plated stainless steel material, and production method for metal-plated stainless steel material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012182B2 (en) * 1995-11-15 2000-02-21 荏原ユージライト株式会社 Silver and silver alloy plating bath
JPH11162478A (en) * 1997-12-02 1999-06-18 Aisin Seiki Co Ltd Separator for fuel cell
JP2961256B1 (en) * 1998-05-29 1999-10-12 工業技術院長 Silver plating bath, silver / tin alloy plating bath, and plating method using those plating baths

Also Published As

Publication number Publication date
JP2002124267A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP2004506301A (en) Stainless steel substrate processing
EP3062376B1 (en) Stainless steel foil for separators of solid polymer fuel cells
Zhang et al. Electrodeposit copper from alkaline cyanide-free baths containing 5, 5′-dimethylhydantoin and citrate as complexing agents
Xu et al. Porous nickel electrodes with controlled texture for the hydrogen evolution reaction and sodium borohydride electrooxidation
CN103931034A (en) Collector plate for fuel cells and method for producing same
JPH10212591A (en) Nickel electroplating bath or nickel alloy electroplating bath and plating method using the bath
JP2004139951A (en) Separator for fuel cell and its manufacturing method
Flis et al. Catalytic activity of iron, nickel, and nickel‐phosphorus in electroless nickel plating
Maizelis et al. Formation of multilayer metal-hydroxide electrode with developed surface for alkaline water electrolysis
JP4816839B2 (en) Method for producing separator for polymer electrolyte fuel cell
TWI433380B (en) Fuel cell separation material, the use of its fuel cell group
JP5806099B2 (en) Surface treatment method for fuel cell separator
JP4278406B2 (en) Fuel cell separator
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2006302529A (en) Manufacturing method of separator for solid polymer fuel cell
JP2002121693A (en) Free cyanogen electrolytic silver plating bath and silver plating method
JP2002124268A (en) Separator for fuel cell with high-polymer electrolyte and its manufacturing method
JP2005302669A (en) Manufacturing method of aluminum separator for fuel cell
JP2003272653A (en) Metal separator for fuel cell and its manufacturing method
JP2005243595A (en) Separator for solid polymer fuel cell, and the solid polymer fuel cell using the same
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
JP2003338296A (en) Fuel cell member and its manufacturing method
RU2813428C1 (en) Method of processing titanium and its alloys
JP2007238990A (en) Composition for electrolytically forming silver oxide film
WO2021132400A1 (en) Cathode for producing electrolytic manganese dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees