JP4812363B2 - Vacuum thin film forming equipment - Google Patents

Vacuum thin film forming equipment Download PDF

Info

Publication number
JP4812363B2
JP4812363B2 JP2005237120A JP2005237120A JP4812363B2 JP 4812363 B2 JP4812363 B2 JP 4812363B2 JP 2005237120 A JP2005237120 A JP 2005237120A JP 2005237120 A JP2005237120 A JP 2005237120A JP 4812363 B2 JP4812363 B2 JP 4812363B2
Authority
JP
Japan
Prior art keywords
thin film
wire mesh
film forming
forming apparatus
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005237120A
Other languages
Japanese (ja)
Other versions
JP2007051330A (en
Inventor
宣博 倉内
公平 清原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neos Co Ltd
Original Assignee
Neos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neos Co Ltd filed Critical Neos Co Ltd
Priority to JP2005237120A priority Critical patent/JP4812363B2/en
Publication of JP2007051330A publication Critical patent/JP2007051330A/en
Application granted granted Critical
Publication of JP4812363B2 publication Critical patent/JP4812363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、平畳織または綾畳織金網の層を含む真空薄膜形成装置用防着シールド、ならびに薄膜形成室の内壁及び/又は内部部材が当該防着シールドで蔽われていることを特徴とする真空薄膜形成装置に関する。   The present invention is characterized in that the deposition shield for a vacuum thin film forming apparatus including a layer of plain woven or twill woven wire mesh, and the inner wall and / or the internal member of the thin film forming chamber are covered with the deposition shield. The present invention relates to a vacuum thin film forming apparatus.

真空薄膜形成装置には、イオンプレーティング装置、プラズマCVD装置、真空蒸着装置、あるいはスパッタリング装置等がある。これらの装置で、半導体デバイスを製造する際に成膜処理が行われるが、目的とする被成膜物以外の真空薄膜形成装置の真空チャンバー内壁、防着板、シャッターあるいはカバーリング等にも蒸着材料の付着及び堆積が生じる。目的とする基板上に堆積する膜は、所定の膜厚になった後、次工程に送られるため膜の剥離は発生しないが、真空チャンバー内壁、防着板、シャッターあるいはカバーリング等に堆積する膜は蓄積されるために厚膜になり、厚膜が増えた場合、膜の内部応力が大きくなり、堆積物の剥離、脱落を生じる。この剥離物や脱落物の被成膜物への付着は、成膜の汚染となり、特に、半導体デバイス製造工程において大きな問題になっていた。   Examples of the vacuum thin film forming apparatus include an ion plating apparatus, a plasma CVD apparatus, a vacuum deposition apparatus, and a sputtering apparatus. These devices perform film formation when manufacturing semiconductor devices, but they are also deposited on the inner walls of vacuum chambers, deposition plates, shutters, and covers of vacuum thin film forming devices other than the desired film-forming target. Material adhesion and deposition occurs. The film deposited on the target substrate is sent to the next process after reaching a predetermined film thickness, so that the film does not peel off, but is deposited on the inner wall of the vacuum chamber, the deposition plate, the shutter or the cover ring. As the film accumulates, it becomes thicker, and when the thicker film increases, the internal stress of the film increases and the deposits peel and fall off. The adhesion of the exfoliated material and the fallen material to the film formation object causes contamination of the film formation, which has been a big problem particularly in the semiconductor device manufacturing process.

従来、薄膜形成装置内の内壁あるいは内部部材(防着板、シャッターあるいはカバーリング等)の表面処理には、ショットブラストによるブラスト処理又は溶射処理が行われ、付着物との密着性を上げ、内部応力を緩和し、付着物の剥離、脱落を防止する方法が提案されている。しかし、これらのブラスト処理又は溶射処理では、膜の剥離、脱落を十分に防止することができなかった。一方、薄膜形成工程を一定回数繰り返した後、装置の内壁あるいは内部部材上に堆積した膜を人為的に剥離させて除去する再生処理が必要となるが、その際、これらのブラスト処理又は溶射処理をした内壁及び内部部材には蒸着材料が厚く付着するため付着物を剥離しにくいという問題もあった。   Conventionally, surface treatment of an inner wall or an internal member (a deposition plate, a shutter, a cover ring, etc.) in a thin film forming apparatus is performed by blasting or spraying by shot blasting to increase adhesion with deposits and internal A method has been proposed that relieves stress and prevents the separation and dropping of deposits. However, these blast treatments or thermal spraying treatments could not sufficiently prevent the film from peeling off or falling off. On the other hand, after the thin film formation process is repeated a certain number of times, it is necessary to regenerate the film by artificially peeling and removing the film deposited on the inner wall or internal member of the apparatus. There is also a problem that the deposited material is difficult to peel off because the deposited material is thickly attached to the inner wall and the inner member.

また、薄膜形成装置の内壁あるいは内部部材における付着物脱落防止手段として、板状部材、網状部材を重ね合わせること(特許文献1)、パンチングメタル若しくはエキスパンドメタル等の穴明板を設けること(特許文献2)、金属製のメッシュ板を設けること(特許文献3、4)、金網からなる保護部材を設置すること(特許文献5)等の方法がとられているが、薄膜形成の際に、装置の内壁または内部部材の付着物の剥離を抑えることは、依然十分ではなく、より一層の剥離防止効果が望まれていた。
特開昭62−202075号 特開平3−237085号 特開平10−317127号 特開平11−6049号 特開2001−262334号
Further, as a means for preventing deposits from falling off on the inner wall or inner member of the thin film forming apparatus, a plate member or a net member is overlapped (Patent Document 1), or a perforated plate such as a punching metal or an expanded metal is provided (Patent Document). 2), a metal mesh plate is provided (Patent Documents 3 and 4), a protective member made of a wire mesh is installed (Patent Document 5), etc. It has not been sufficient to suppress the peeling of the deposits on the inner wall or the inner member, and a further peeling prevention effect has been desired.
JP-A-62-220205 JP-A-3-237085 JP-A-10-317127 Japanese Patent Laid-Open No. 11-6049 JP 2001-262334 A

本発明は、上記に示した従来の技術の問題点を解決するためになされたものである。すなわち、本発明が解決しようとする課題は、真空薄膜形成装置の内壁または内部部材に対する付着物の剥離、脱落を十分に防止し、さらに再生洗浄を行いやすい表面を提供することである。   The present invention has been made to solve the above-described problems of the prior art. That is, the problem to be solved by the present invention is to provide a surface that can sufficiently prevent peeling and dropping of deposits on the inner wall or inner member of the vacuum thin film forming apparatus and that can be easily regenerated and cleaned.

本発明者らは、鋭意検討を重ねた結果、上記課題を解決するために、薄膜形成室の内壁あるいは内部部材に、平畳織または綾畳織金網の層を含む防着シールドを固定することにより、上記目的が達成されることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors fixed an adhesion shield including a layer of plain woven or twill woven wire mesh on the inner wall or internal member of the thin film forming chamber in order to solve the above-mentioned problems. Thus, the inventors have found that the above object can be achieved and completed the present invention.

即ち、本発明は、以下の各項に示す発明に関する:
項1.平畳織または綾畳織金網の層を含む真空薄膜形成装置用防着シールド;
項2.前記真空薄膜形成装置用防着シールドが、平畳織もしくは綾畳織金網単独、平畳織金網及び/もしくは綾畳織金網を重ね合わせた多層構造、または平畳織及び/もしくは綾畳織金網と、金属薄板、エキスパンドメタル、パンチングメタル、平織金網及び綾織金網からなる群より選択される部材とを重ね合わせた多層構造である、項1に記載の真空薄膜形成装置用防着シールド;
項3.ステンレス、鉄、アルミニウム、および銅からなる群より選択される材料からなる項1または2に記載の真空薄膜形成装置用防着シールド;
項4.薄膜形成室の内壁及び/又は内部部材が、項1〜3のいずれか一項に記載の防着シールドで蔽われていることを特徴とする真空薄膜形成装置;
項5.薄膜形成室の内壁及び/又は内部部材に、項1〜3のいずれか一項に記載の防着シールドを固定することを含む、真空薄膜形成装置の製造方法。
That is, the present invention relates to the invention shown in the following items:
Item 1. An adhesion shield for vacuum thin film forming apparatus comprising a layer of plain woven or twill woven wire mesh;
Item 2. The deposition shield for the vacuum thin film forming apparatus is a plain woven or twill woven wire mesh alone, a multilayer structure in which a flat woven wire mesh and / or a twill woven wire mesh are laminated, or a flat woven and / or twill woven wire mesh. Item 2. A protective shield for a vacuum thin film forming apparatus according to Item 1, which is a multilayer structure in which a member selected from the group consisting of a metal thin plate, expanded metal, punching metal, plain woven wire mesh and twill woven wire mesh is laminated.
Item 3. Item 3. The deposition shield for a vacuum thin film forming apparatus according to Item 1 or 2, comprising a material selected from the group consisting of stainless steel, iron, aluminum, and copper;
Item 4. A vacuum thin film forming apparatus, wherein an inner wall and / or an internal member of the thin film forming chamber is covered with the deposition shield according to any one of Items 1 to 3;
Item 5. The manufacturing method of the vacuum thin film forming apparatus including fixing the deposition shield as described in any one of Claims 1-3 to the inner wall and / or internal member of a thin film formation chamber.

本発明の防着シールドを固定した薄膜形成室の内壁あるいは内部部材は、薄膜製造中に堆積した蒸着材料の剥離が生じず、装置内のパーティクルが減少し、さらに、部材の再生洗浄が容易である。   The inner wall or the inner member of the thin film forming chamber to which the deposition shield of the present invention is fixed does not cause the peeling of the vapor deposition material deposited during the production of the thin film, reduces the particles in the apparatus, and facilitates the regeneration cleaning of the member. is there.

本明細書において「真空薄膜形成装置」とは、ウエハ等の基板表面上に金属膜、半導体膜等の薄膜を形成させる装置のことをいい、例えばイオンプレーティング装置、プラズマCVD装置、真空蒸着装置、スパッタリング装置等が挙げられるが、これらに限定されない。また、本明細書において「真空薄膜形成装置の内部部材」とは、該装置のチャンバ内に設置される機器・部品のことをいい、例えば治具、防着板、シャッター、カバーリング等が挙げられる。   In this specification, the “vacuum thin film forming apparatus” refers to an apparatus for forming a thin film such as a metal film or a semiconductor film on the surface of a substrate such as a wafer. For example, an ion plating apparatus, a plasma CVD apparatus, or a vacuum deposition apparatus. Examples thereof include, but are not limited to, a sputtering apparatus and the like. Further, in this specification, the “internal member of the vacuum thin film forming apparatus” refers to equipment / parts installed in the chamber of the apparatus, such as a jig, a deposition plate, a shutter, and a cover ring. It is done.

本発明において、「防着シールド」とは、真空薄膜形成装置の内壁、内部部材への、蒸着材料の付着を防ぐためのシールドをいう。従って、防着シールドは、真空薄膜形成装置内において蒸着材料の付着が予想される場所に固定される(真空薄膜形成装置内の部材の配置等によって異なるが、例えば、防着板の内側表面だけでなく、薄膜形成室の内壁自体等にも固定される)。   In the present invention, the “adhesion shield” refers to a shield for preventing the deposition material from adhering to the inner wall and inner member of the vacuum thin film forming apparatus. Therefore, the deposition shield is fixed at a position where the deposition material is expected to adhere in the vacuum thin film forming apparatus (for example, only the inner surface of the deposition plate is different depending on the arrangement of members in the vacuum thin film forming apparatus. It is also fixed to the inner wall itself of the thin film forming chamber).

本発明において用いる平畳織金網とは、縦線による網目を大きくし、横線を順次密着させて織りあげた金網で、平織等のような平面的網目の開きはない金網である。綾畳織金網とは、平畳織金網の構成を綾織にしたもので、横線は金網の表裏両面で密着して、平畳織金網の2倍の密度を持つ金網である。平畳織金網の形状を図1に示す。本発明の防着シールドは、単独の平畳織または綾畳織金網の層を含んでいても、平畳織金網及び/または綾畳織金網を重ね合わせた多層構造を含んでいても、平畳織金網及び/または綾畳織金網と、金属薄板、エキスパンドメタル、パンチングメタル、平織金網及び綾織金網からなる群より選択される部材とを重ね合わせた多層構造を含んでいてもよい。多重構造は、最も表層部に平畳織または綾畳織金網があれば、それ以外の層にいずれの部材を用いてもよい。多重構造をとることによって、防着シールドの強度を上げること、防着シールドを固定する場所の形に合わせて変形しやすくすること等の利点がある。また、多層構造のうち一層の部材を、薄膜形成装置内壁または内部部材への取付用治具と一体化させることも可能である。   The flat woven wire mesh used in the present invention is a wire mesh that is woven by enlarging the mesh by the vertical lines and sequentially bringing the horizontal lines into close contact with each other, and does not have a planar mesh opening like the plain weave. A twill woven wire mesh is a twill woven wire mesh with a twill weave. The horizontal lines are in close contact with both front and back surfaces of the wire mesh, and have a density twice that of a plain woven wire mesh. The shape of a plain woven wire mesh is shown in FIG. The protective shield of the present invention may include a single plain woven or twill woven wire mesh layer, or a multilayer structure in which a flat woven wire mesh and / or a twill woven wire mesh are laminated. A multilayer structure in which a tatami woven wire mesh and / or a twill woven wire mesh and a member selected from the group consisting of a metal sheet, an expanded metal, a punching metal, a plain woven wire mesh, and a twill woven wire mesh may be included. As long as the multi-layer structure has a plain woven or twill woven wire mesh at the most surface layer portion, any member may be used for the other layers. By taking a multiple structure, there are advantages such as increasing the strength of the deposition shield and facilitating deformation according to the shape of the place where the deposition shield is fixed. Moreover, it is also possible to integrate one member of the multilayer structure with a jig for attaching to the inner wall of the thin film forming apparatus or the inner member.

平畳織または綾畳織金網の形状は、表面の開口が少なく、蒸着材料が内部部材へ付着しにくい構造である。開口部大きさは、通過粒球子の大きさが約360μm以下、特に約100μm以下であることが好ましい。通過粒球子の大きさが約360μmを超えると蒸着材料等の付着物が、網目を抜けて内部部材に付着してしまう。平畳織または綾畳織金網の横線のメッシュは、約50〜3600メッシュが好ましく、特に約200〜3600メッシュが好ましい。ここで、横線(縦線)のメッシュとは、25.4mm間にある横線(縦線)の数をいう。また、横線のメッシュと縦線のメッシュとの比率は、前者100に対して、好ましくは約6〜24、特に約6〜20が好ましい。平畳織または綾畳織金網の線径は、約15〜800μmが好ましく、特に約15〜250μmが好ましい。また、平畳織または綾畳織金網の厚さは、約50〜1400μmが好ましく、特に約50〜800μmが好ましい。   The shape of the plain woven or twill woven wire mesh is a structure in which there are few openings on the surface and the vapor deposition material hardly adheres to the internal member. The size of the opening is preferably such that the size of the passing particle sphere is about 360 μm or less, particularly about 100 μm or less. When the size of the passing particle sphere exceeds about 360 μm, deposits such as vapor deposition materials pass through the mesh and adhere to the internal member. The horizontal line mesh of the plain woven or twill woven wire mesh is preferably about 50 to 3600 mesh, particularly preferably about 200 to 3600 mesh. Here, the mesh of horizontal lines (vertical lines) refers to the number of horizontal lines (vertical lines) between 25.4 mm. Further, the ratio of the horizontal line mesh to the vertical line mesh is preferably about 6 to 24, particularly about 6 to 20, with respect to the former 100. The wire diameter of the plain woven or twill woven wire mesh is preferably about 15 to 800 μm, more preferably about 15 to 250 μm. The thickness of the plain woven or twill woven wire mesh is preferably about 50 to 1400 μm, and particularly preferably about 50 to 800 μm.

平畳または綾畳織金網の材質としては、特に限定されないが、ステンレス、鉄、アルミニウム、および銅等の金属が挙げられ、金網を構成する径の細い線を加工しやすいこと等の理由から、ステンレスの使用が好ましい。   The material of the flat woven or twill woven wire mesh is not particularly limited, but examples include metals such as stainless steel, iron, aluminum, and copper, and because it is easy to process a thin wire that forms the wire mesh. The use of stainless steel is preferred.

薄膜形成室の内壁あるいは内部部材に、上記平畳織または綾畳織金網の層を含む本発明の防着シールドを固定する方法は、特に限定されず、化学的方法によっても物理的方法によっても固定することができる。   A method for fixing the deposition shield of the present invention including the layer of the plain woven or twill woven wire mesh to the inner wall or the inner member of the thin film forming chamber is not particularly limited, and may be a chemical method or a physical method. Can be fixed.

化学的固定方法としては、接着、圧着、融着等による方法が挙げられるが、これらに限定されない。また、物理的固定方法としては、リベット止め、クリップによる固定、かしめ止め等が挙げられるがこれらに限定されない。より詳細には、例えば、内壁あるいは内部部材にアルミナをメディアとしたショットブラストによるブラスト処理を行って、その処理された表面上に耐熱導電性ペーストを塗り、防着シールドを貼り付ける方法;内壁あるいは内部部材と防着シールドとを溶接あるいはかしめることによって貼り付ける方法;多層構造にした金網を含む防着シールドそのものを薄膜形成装置の部材として使用する方法等が挙げられる。防着シールドの洗浄の点から、取り外し可能な形態での固定が好ましい。   Examples of the chemical fixing method include, but are not limited to, a method using adhesion, pressure bonding, and fusion. Further, examples of the physical fixing method include, but are not limited to, riveting, clip fixing, and caulking. More specifically, for example, a method of performing a blasting process by shot blasting using alumina as a medium on an inner wall or an inner member, applying a heat-resistant conductive paste on the treated surface, and attaching an adhesion shield; Examples include a method in which an internal member and an adhesion shield are attached by welding or caulking; a method in which an adhesion shield itself including a multi-layered metal mesh is used as a member of a thin film forming apparatus. From the viewpoint of cleaning the deposition shield, fixing in a removable form is preferable.

本発明の真空薄膜形成装置において薄膜を形成させる物質としては、窒化タンタル、タンタル、シリカ、窒化珪素、カーバイドチタン、窒化チタン、チタン、タングステン、シリコンタングステン等が挙げられるが、これらに限定されない。   Examples of the material for forming a thin film in the vacuum thin film forming apparatus of the present invention include, but are not limited to, tantalum nitride, tantalum, silica, silicon nitride, carbide titanium, titanium nitride, titanium, tungsten, and silicon tungsten.

以下に、本発明を実施例によって説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
100mm×100mm×3mmのステンレス(SUS304)製の基材Aの表面を♯60アルミナのショットブラスト処理を行い、そのショットブラストされた表面上に耐熱導電性ペーストBを20μm塗布した。耐熱導電性ペーストを塗布した基材Aの表面に、線径94μmと55μmのSUS316ワイヤーで編んだ厚さ200μmの平畳織の金網Cをクリップで挟んで押さえ、200℃で焼結し、本金網を貼り付け、テストピース1とした(図2。尚、簡単のために図2中の平畳織金網Cの構造を簡略化して示した)。テストピース1を超純水中で超音波洗浄を行った。洗浄後にテストピース1を105℃で乾燥させた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Example 1
The surface of a substrate A made of stainless steel (SUS304) of 100 mm × 100 mm × 3 mm was subjected to shot blasting treatment of # 60 alumina, and 20 μm of heat resistant conductive paste B was applied on the shot blasted surface. On the surface of the base material A coated with a heat-resistant conductive paste, a 200 μm thick flat woven wire mesh C knitted with SUS316 wire with a wire diameter of 94 μm and 55 μm is sandwiched and held, and sintered at 200 ° C. A wire mesh was pasted to obtain a test piece 1 (FIG. 2. For simplicity, the structure of the plain woven wire mesh C in FIG. 2 is shown in a simplified manner). The test piece 1 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 1 was dried at 105 ° C.

乾燥後にテストピース1にスパッタリング装置を用いて、3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、321MPaであった。結果を表1に示す。なお、残留応力は堆積する付着物の剥がれやすさを示しており、応力(絶対値)が増加すると密着性が悪化することがいわれている。また、残留応力は引張応力(正の値)および圧縮応力(負の値)の2種類ある。この2種類の絶対値が同じ応力で比較すると、引張応力では、薄膜が基材から剥離する方向に力が働くために、圧縮応力より密着力が低下する。したがって、絶対値が同じの場合、絶対値が負の値の方が正の値よりよい被膜であるとみなせる。
実施例2
基材Aおよび線径80μmと53μmのSUS316ワイヤーで編んだ厚さ200μmの綾畳織の金網にφ5mmの穴を空け、中空部分にリベット止めを行い、テストピース2とした(図3。尚、簡単のために図3中の綾畳織金網Cの構造を簡略化して示した)。テストピース2を超純水中で超音波洗浄を行った。洗浄後にテストピース2を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 1 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was 321 MPa. The results are shown in Table 1. Residual stress indicates the ease with which the deposited deposit is peeled off, and it is said that the adhesiveness deteriorates as the stress (absolute value) increases. There are two types of residual stresses: tensile stress (positive value) and compressive stress (negative value). When these two types of absolute values are compared with the same stress, in the tensile stress, the force acts in the direction in which the thin film peels from the base material, and therefore the adhesion force is lower than the compressive stress. Therefore, when the absolute values are the same, it can be considered that a film having a negative absolute value is a better film than a positive value.
Example 2
A hole of φ5 mm was drilled in a 200 μm thick wire mesh knitted with SUS316 wire of substrate A and wire diameters of 80 μm and 53 μm, and riveted to the hollow part to obtain test piece 2 (FIG. 3). For the sake of simplicity, the structure of the twilled woven wire mesh C in FIG. 3 is shown in a simplified manner). The test piece 2 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 2 was dried at 105 ° C.

乾燥後にテストピース2にスパッタリング装置を用いて、3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、−762MPaであった。結果を表1に示す。
実施例3
基材Aおよび線径40μmと30μmのSUS316ワイヤーで編んだ厚さ100μmの綾畳織の金網にφ5mmの穴を空け、中空部分にリベット止めを行い、テストピース3とした。テストピース3を超純水中で超音波洗浄を行った。洗浄後にテストピース3を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 2 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was -762 MPa. The results are shown in Table 1.
Example 3
A hole of φ5 mm was drilled in a 100 μm-thick twilled woven wire mesh knitted with SUS316 wire having a base material A and wire diameters of 40 μm and 30 μm, and riveted to the hollow part to obtain a test piece 3. The test piece 3 was subjected to ultrasonic cleaning in ultrapure water. The test piece 3 was dried at 105 ° C. after washing.

乾燥後にテストピース3にスパッタリング装置を用いて、3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、−722MPaであった。結果を表1に示す。
実施例4
基材Aおよび線径190μmと140μmのSUS316ワイヤーで編んだ厚さ470μmの綾畳織の金網にφ5mmの穴を空け、中空部分にリベット止めを行い、テストピース4とした。テストピース4を超純水中で超音波洗浄を行った。洗浄後にテストピース4を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 3 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was -722 MPa. The results are shown in Table 1.
Example 4
A hole of φ5 mm was drilled in a 470 μm thick wire mesh woven with SUS316 wire having a base material A and wire diameters of 190 μm and 140 μm, and the hollow part was riveted to obtain a test piece 4. The test piece 4 was subjected to ultrasonic cleaning in ultrapure water. The test piece 4 was dried at 105 ° C. after washing.

乾燥後にテストピース4にスパッタリング装置を用いて、3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、−340MPaであった。結果を表1に示す。
実施例5
実施例2に用いたテストピース2を超純水中で超音波洗浄を行った。洗浄後にテストピースを105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 4 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was -340 MPa. The results are shown in Table 1.
Example 5
The test piece 2 used in Example 2 was subjected to ultrasonic cleaning in ultrapure water. The test piece was dried at 105 ° C. after washing.

乾燥後にテストピース2にスパッタリング装置を用いて300μmの窒化チタンのスパッタ膜を作製した。リベットを切ることで綾畳織金網が剥離でき、結果として基材Aに窒化チタンの付着がなかった。
実施例6
実施例1で使用したテストピース1を超純水中で超音波洗浄を行った。洗浄後にテストピース1を105℃で乾燥させた。
洗浄後に乾燥させたテストピース1の金網上のパーティクル数を気中パーティクルカウンター(リオン株式会社製 KM−20)を用いて測定した。その結果、φ0.2μm以上のパーティクルの数は5個/cmであった。結果を表2に示す。
実施例7
実施例2で使用したテストピース2を超純水中で超音波洗浄を行った。洗浄後にテストピース2を105℃で乾燥させた。
After drying, a 300 μm-thick titanium nitride sputtered film was formed on the test piece 2 using a sputtering apparatus. By cutting the rivets, the twilled woven wire mesh could be peeled off. As a result, there was no adhesion of titanium nitride to the substrate A.
Example 6
The test piece 1 used in Example 1 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 1 was dried at 105 ° C.
The number of particles on the wire mesh of the test piece 1 dried after washing was measured using an air particle counter (KM-20, manufactured by Rion Co., Ltd.). As a result, the number of particles having a diameter of 0.2 μm or more was 5 / cm 2 . The results are shown in Table 2.
Example 7
The test piece 2 used in Example 2 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 2 was dried at 105 ° C.

洗浄後に乾燥させたテストピース2の金網上のパーティクル数を気中パーティクルカウンター(リオン株式会社製 KM−20)を用いて測定した。その結果、φ0.2μm以上のパーティクルの数は15個/cmであった。結果を表2に示す。
比較例1
100mm×100mm×3mmのステンレス(SUS304)製の基材Aの表面を♯46アルミナのショットブラスト処理を行い、そのブラスト処理された表面上にアルミニウムのプラズマ溶射を200μm堆積させ、テストピース5とした。テストピース5を超純水中で超音波洗浄を行った。洗浄後にテストピース5を105℃で乾燥させた。
The number of particles on the wire mesh of the test piece 2 dried after washing was measured using an air particle counter (KM-20, manufactured by Rion Co., Ltd.). As a result, the number of particles having a diameter of 0.2 μm or more was 15 / cm 2 . The results are shown in Table 2.
Comparative Example 1
The surface of the base material A made of stainless steel (SUS304) of 100 mm × 100 mm × 3 mm was subjected to shot blasting treatment of # 46 alumina, and 200 μm of aluminum plasma spraying was deposited on the blasted surface to obtain a test piece 5. . The test piece 5 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 5 was dried at 105 ° C.

乾燥後にテストピース5にスパッタリング装置を用いて3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、1315MPaであった。結果を表1に示す。
比較例2
100mm×100mm×3mmのステンレス(SUS304)製の基材Aの表面を♯46アルミナのショットブラスト処理を行い、そのブラスト処理された表面上に銅のプラズマ溶射を200μm堆積させ、テストピース6とした。テストピース6を超純水中で超音波洗浄を行った。洗浄後にテストピース6を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 5 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was 1315 MPa. The results are shown in Table 1.
Comparative Example 2
The surface of the base material A made of stainless steel (SUS304) of 100 mm × 100 mm × 3 mm was subjected to shot blasting treatment of # 46 alumina, and 200 μm of copper plasma spraying was deposited on the blasted surface to obtain a test piece 6. . The test piece 6 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 6 was dried at 105 ° C.

乾燥後にテストピース6にスパッタリング装置を用いて3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、1471MPaであった。結果を表1に示す。
比較例3
100mm×100mm×3mmのステンレス(SUS304)製の基材Aの表面を♯60アルミナのショットブラスト処理を行い、そのショットブラストされた表面上に耐熱導電性ペーストBを20μm塗布した。耐熱導電性ペーストを塗布した基材A表面に線径100μmのSUS316ワイヤーで編んだ厚さ200μmの平織の金網をクリップで挟んで押さえ、200℃で焼結し、本金網を貼り付け、テストピース7とした。テストピース7を超純水中で超音波洗浄を行った。洗浄後にテストピース7を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 6 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was 1471 MPa. The results are shown in Table 1.
Comparative Example 3
The surface of a substrate A made of stainless steel (SUS304) of 100 mm × 100 mm × 3 mm was subjected to shot blasting treatment of # 60 alumina, and 20 μm of heat resistant conductive paste B was applied on the shot blasted surface. A 200 μm thick plain woven wire mesh knitted with SUS316 wire with a wire diameter of 100 μm is sandwiched between clips on the surface of the base material A coated with heat-resistant conductive paste, sintered at 200 ° C., this wire mesh is attached, and a test piece It was set to 7. The test piece 7 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 7 was dried at 105 ° C.

乾燥後にテストピース7にスパッタリング装置を用いて、3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、4862MPaであった。結果を表1に示す。
比較例4
基材Aおよび線径30μmのSUS316ワイヤーで編んだ厚さ60μmの綾織の金網にφ5mmの穴を空け、中空部分にリベット止めを行い、テストピース8とした。テストピース8を超純水中で超音波洗浄を行った。洗浄後にテストピース8を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 7 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was 4862 MPa. The results are shown in Table 1.
Comparative Example 4
A hole of φ5 mm was drilled in a 60 μm-thick twill wire mesh knitted with SUS316 wire having a base material A and a wire diameter of 30 μm, and the hollow part was riveted to obtain a test piece 8. The test piece 8 was subjected to ultrasonic cleaning in ultrapure water. The test piece 8 was dried at 105 ° C. after washing.

乾燥後にテストピース8にスパッタリング装置を用いて3μmの窒化タンタルのスパッタ膜を作製した。X線回折法を用いて、窒化タンタル膜の残留応力を測定した結果、2203MPaであった。結果を表1に示す。
比較例5
比較例3に用いたテストピース7を超純水中で超音波洗浄を行った。洗浄後にテストピース7を105℃で乾燥させた。
After drying, a sputtered film of 3 μm tantalum nitride was produced on the test piece 8 using a sputtering apparatus. As a result of measuring the residual stress of the tantalum nitride film using the X-ray diffraction method, it was 2203 MPa. The results are shown in Table 1.
Comparative Example 5
The test piece 7 used in Comparative Example 3 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 7 was dried at 105 ° C.

乾燥後にテストピース7にスパッタリング装置を用いて300μmの窒化チタンのスパッタ膜を作製した。窒化チタン皮膜に亀裂が観察された。また、リベットを切ることで平織金網が剥離できたが、基材Aに窒化チタンの付着が残り、再生の際には平織金網剥離後に薬品による付着物除去工程が必要であった。
比較例6
比較例1で使用したテストピース5を超純水中で超音波洗浄を行った。洗浄後にテストピース5を105℃で乾燥させた。洗浄後に乾燥させたテストピース5の溶射皮膜上のパーティクル数を気中パーティクルカウンター(リオン株式会社製 KM−20)を用いて測定した。その結果、φ0.2μm以上のパーティクルの数は30個/cmであった。結果を表2に示す。
After drying, a 300 μm-thick titanium nitride sputtered film was produced on the test piece 7 using a sputtering apparatus. Cracks were observed in the titanium nitride film. Moreover, although the plain weave wire mesh could be peeled off by cutting the rivets, the adhesion of titanium nitride remained on the base material A, and the regeneration required a chemical deposit removal step after peeling the plain weave wire mesh.
Comparative Example 6
The test piece 5 used in Comparative Example 1 was subjected to ultrasonic cleaning in ultrapure water. After washing, the test piece 5 was dried at 105 ° C. The number of particles on the sprayed coating of the test piece 5 dried after washing was measured using an air particle counter (KM-20, manufactured by Rion Co., Ltd.). As a result, the number of particles having a diameter of 0.2 μm or more was 30 / cm 2 . The results are shown in Table 2.

Figure 0004812363
Figure 0004812363

Figure 0004812363
Figure 0004812363

本発明の真空槽を用いた薄膜形成装置において、真空チャンバー内壁、防着板、シャッターあるいはカバーリング等に平畳織または綾畳織金網の層を含む防着シールドを貼り付けることによって、堆積物の剥離、脱落を抑制することに利用できる。   In the thin film forming apparatus using the vacuum chamber of the present invention, the deposit is obtained by attaching an adhesion shield including a layer of plain woven or twilled woven wire mesh to a vacuum chamber inner wall, an adhesion prevention plate, a shutter or a cover ring. It can be used to suppress the peeling and falling off.

図1は、平畳織金網の形状を示す。FIG. 1 shows the shape of a plain woven wire mesh. 図2は、テストピース1の模式図を示す。FIG. 2 shows a schematic diagram of the test piece 1. 図3は、テストピース2・3・4の模式図を示す。FIG. 3 shows a schematic diagram of the test pieces 2, 3, 4. 図4は、テストピース5・6の模式図を示す。FIG. 4 is a schematic diagram of the test pieces 5 and 6.

符号の説明Explanation of symbols

A:基材(SUS304:100mm×100mm×3mm)
B:耐熱導電性ペースト
C:平畳織金網(多層構造の金網も含む)
D:綾畳織金網(多層構造の金網も含む)
E:リベット
A: Base material (SUS304: 100 mm × 100 mm × 3 mm)
B: Heat-resistant conductive paste C: Plain woven wire mesh (including multi-layered wire mesh)
D: Twill woven wire mesh (including multi-layer wire mesh)
E: Rivet

Claims (5)

平畳織または綾畳織金網の層を含む真空薄膜形成装置用防着シールド。 An adhesion shield for a vacuum thin film forming apparatus including a layer of plain woven or twill woven wire mesh. 前記真空薄膜形成装置用防着シールドが、平畳織もしくは綾畳織金網単独、平畳織及び/もしくは綾畳織金網を重ね合わせた多層構造、または平畳織及び/もしくは綾畳織金網と、金属薄板、エキスパンドメタル、パンチングメタル、平織金網及び綾織金網からなる群より選択される部材とを重ね合わせた多層構造である、請求項1に記載の真空薄膜形成装置用防着シールド。 The deposition shield for the vacuum thin film forming apparatus includes a plain woven or twill woven wire mesh alone, a multilayer structure in which a plain woven and / or twill woven wire mesh is laminated, or a flat woven and / or twill woven wire mesh 2. The deposition shield for a vacuum thin film forming apparatus according to claim 1, having a multilayer structure in which a member selected from the group consisting of a thin metal plate, an expanded metal, a punching metal, a plain weave wire mesh, and a twill wire mesh is superposed. 平畳織または綾畳織金網の層がステンレス、鉄、アルミニウム、および銅からなる群より選択される材料からなる請求項1または2に記載の真空薄膜形成装置用防着シールド。 The protective shield for a vacuum thin film forming apparatus according to claim 1 or 2, wherein the layer of the plain woven or twill woven wire mesh is made of a material selected from the group consisting of stainless steel, iron, aluminum, and copper. 薄膜形成室の内壁及び/又は内部部材が、請求項1〜3のいずれか一項に記載の防着シールドで蔽われていることを特徴とする真空薄膜形成装置。 A vacuum thin film forming apparatus, wherein an inner wall and / or an internal member of the thin film forming chamber is covered with the deposition shield according to any one of claims 1 to 3. 薄膜形成室の内壁及び/又は内部部材に、請求項1〜3のいずれか一項に記載の防着シールドを固定することを含む、真空薄膜形成装置の製造方法。 The manufacturing method of a vacuum thin film forming apparatus including fixing the deposition shield as described in any one of Claims 1-3 to the inner wall and / or internal member of a thin film formation chamber.
JP2005237120A 2005-08-18 2005-08-18 Vacuum thin film forming equipment Active JP4812363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237120A JP4812363B2 (en) 2005-08-18 2005-08-18 Vacuum thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237120A JP4812363B2 (en) 2005-08-18 2005-08-18 Vacuum thin film forming equipment

Publications (2)

Publication Number Publication Date
JP2007051330A JP2007051330A (en) 2007-03-01
JP4812363B2 true JP4812363B2 (en) 2011-11-09

Family

ID=37915970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237120A Active JP4812363B2 (en) 2005-08-18 2005-08-18 Vacuum thin film forming equipment

Country Status (1)

Country Link
JP (1) JP4812363B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049017A1 (en) * 2010-10-21 2012-04-26 Leybold Optics Gmbh Device for coating a substrate
KR102075527B1 (en) 2013-05-16 2020-02-11 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
CN107513683A (en) * 2017-08-31 2017-12-26 深圳市华星光电技术有限公司 Plate and preparation method thereof is prevented in one kind vapour deposition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202075A (en) * 1986-02-28 1987-09-05 Toshiba Corp Device for forming thin film
JPH116049A (en) * 1997-06-12 1999-01-12 Nippon Sheet Glass Co Ltd Vacuum film forming equipment
JP2001262334A (en) * 2000-03-21 2001-09-26 Sharp Corp Shutter for sputtering system and sputtering system
JP2005133132A (en) * 2003-10-29 2005-05-26 Toyobo Co Ltd Deposition-preventive plate

Also Published As

Publication number Publication date
JP2007051330A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
TWI336354B (en) Cleaning and refurbishing chamber components having metal coatings
TWI402374B (en) Method and apparatus for the application of twin wire arc spray coatings
JP4950559B2 (en) Formation method of through-hole electrode
JP2015122486A5 (en) Method for forming undercoat and reaction chamber
TW200949013A (en) Ceramic sprayed member, making method, abrasive medium for use therewith
JP4812363B2 (en) Vacuum thin film forming equipment
US11810766B2 (en) Protection of aluminum process chamber components
TWI816854B (en) Sputter trap having a thin high purity coating layer and method of making the same
JP3076768B2 (en) Method for manufacturing member for thin film forming apparatus
JP4430506B2 (en) Vapor deposition equipment
CN210886199U (en) Binding structure of target material
KR101790394B1 (en) Internal member applying apparatus for depositing thin film and method for the same
JP4352539B2 (en) Surface-treated parts for film forming apparatus and surface treatment method for film forming apparatus parts
JP4999264B2 (en) Thin film manufacturing apparatus and manufacturing method thereof
MXPA05007803A (en) Pre-plating surface treatments for enhanced galvanic-corrosion resistance.
JP2011151183A (en) Plasma cvd apparatus and plasma cvd deposition method
WO2021065327A1 (en) Corrosion-resistant member
JP6436829B2 (en) Deposition equipment
JPH09268367A (en) Thin film forming device and method by plasma treatment
WO2017031580A1 (en) Anti-stress coating for process chamber shielding system
JP3534989B2 (en) Component parts for film forming equipment
JP4464188B2 (en) Method of manufacturing an adhesion prevention jig for semiconductor manufacturing equipment
JP2009097063A (en) Vacuum deposition system
JP4519416B2 (en) Anti-contamination device for thin film forming equipment
JP4394666B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4812363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250