JP4811984B2 - Thermally driven supercritical fluid supply system - Google Patents

Thermally driven supercritical fluid supply system Download PDF

Info

Publication number
JP4811984B2
JP4811984B2 JP2004359016A JP2004359016A JP4811984B2 JP 4811984 B2 JP4811984 B2 JP 4811984B2 JP 2004359016 A JP2004359016 A JP 2004359016A JP 2004359016 A JP2004359016 A JP 2004359016A JP 4811984 B2 JP4811984 B2 JP 4811984B2
Authority
JP
Japan
Prior art keywords
discharger
heat
pressure
heating
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004359016A
Other languages
Japanese (ja)
Other versions
JP2006167495A (en
Inventor
明 鈴木
良将 鹿内
邦夫 新井
宏 猪股
利之 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tohoku University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tohoku University NUC
Priority to JP2004359016A priority Critical patent/JP4811984B2/en
Publication of JP2006167495A publication Critical patent/JP2006167495A/en
Application granted granted Critical
Publication of JP4811984B2 publication Critical patent/JP4811984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、亜臨界ないし超臨界の高温高圧水等の高圧プロセス流体を供給するための装置において、高圧ポンプや圧縮機等の可動機械を不要とする熱駆動型高圧流体供給装置に関するものであり、更に詳しくは、定容加熱、定圧加熱、及び充填の処理を、複数の吐出器で順次繰り返し、熱膨張により、高圧プロセス流体を連続して吐出することを可能とする熱駆動型高圧流体供給装置であって、熱媒系の流路の設定、及びバルブの切り替えにより、迅速且つ効率的な高圧プロセス流体の供給を可能とするものである。本発明は、例えば、亜臨界ないし超臨界流体である高圧流体を利用した、抽出分離、有機合成反応等の高圧プロセスの技術分野において、ポンプやコンプレッサー等の可動機械を用いない高圧プロセス流体処理システムの構築を可能とするものである。   The present invention relates to a heat-driven high-pressure fluid supply apparatus that does not require a movable machine such as a high-pressure pump or a compressor in an apparatus for supplying a high-pressure process fluid such as subcritical or supercritical high-temperature high-pressure water. More specifically, heat-driven high-pressure fluid supply that enables constant-volume heating, constant-pressure heating, and filling processes to be sequentially repeated with a plurality of dischargers, and allows high-pressure process fluid to be discharged continuously by thermal expansion. The apparatus is capable of supplying a high-pressure process fluid quickly and efficiently by setting a heat medium system flow path and switching a valve. The present invention relates to a high-pressure process fluid processing system that uses a high-pressure fluid such as a subcritical or supercritical fluid and does not use a movable machine such as a pump or a compressor in the technical field of high-pressure processes such as extraction separation and organic synthesis reaction. Is possible.

従来、高温高圧の流体、例えば、亜臨界ないし超臨界流体を利用する反応プロセスは、香料の抽出、廃棄物の処理、有機化合物の合成反応等(特許文献1、2、3参照)の、広い技術分野で利用され、その流体中では、従来にない特異な反応が進行するものとして注目されているが、流体を亜臨界ないし超臨界等の高温高圧とするために、ポンプ、コンプレッサー等の各種高圧発生機械が使用されていた。高圧の二酸化炭素や水は、極めて安定で、人体へ害を及ぼさない安全な物質であり、環境に優しい物質として、また、優れた溶解性を有する溶媒として、抽出、洗浄、廃棄物処理、有機合成等の広範な応用が期待され、研究されている。しかしながら、高温高圧の流体を供給するためには、特別仕様の高圧発生機械類の使用が必要である。また、高圧機械の使用に際しては、高圧流体の漏れ、可動部分からの塵埃の発生、騒音等の問題が発生し、特に、高圧機械類のメンテナンスは高度な専門知識を必要とすることから、高圧プロセスを種々の操作へと広く利用し、普及するに際しての障害となっている。   Conventionally, a reaction process using a high-temperature and high-pressure fluid, for example, a subcritical or supercritical fluid, has a wide range of extraction of fragrance, treatment of waste, synthesis reaction of organic compounds, etc. (see Patent Documents 1, 2, and 3). Although it is used in the technical field, it is attracting attention as a unique reaction that has not occurred in the fluid. In order to make the fluid high temperature and high pressure such as subcritical or supercritical, various kinds of pumps, compressors, etc. A high pressure generator was used. High-pressure carbon dioxide and water are extremely stable, safe substances that do not harm the human body, are environmentally friendly substances, and have excellent solubility as extraction, washing, waste treatment, organic A wide range of applications such as synthesis are expected and studied. However, in order to supply a high-temperature and high-pressure fluid, it is necessary to use specially-designed high-pressure generating machinery. Also, when using high-pressure machines, problems such as leakage of high-pressure fluid, generation of dust from moving parts, noise, etc. occur. In particular, maintenance of high-pressure machines requires advanced expertise. It is an obstacle to the widespread use and widespread use of processes for various operations.

高圧操作に供する圧縮機、ポンプ、反応器等の選定においては、操作圧力、流体流量、使用温度等によって採用する機器が決められるのが一般的であるが、亜臨界ないし超臨界等の高圧プロセスは、通常の化学プロセスとは、流体の種類、流量、圧力等が大きく異なることが多い。そのため、圧縮機自体も特殊なものとなることが多くなり、その選定は容易ではない。また、実際の操作や実験の圧力条件が、既存の高圧発生機械の仕様により制限されることがあり、実験又は反応工程等の最適条件で運転することが困難となる場合がある。また、特殊な機器の使用は、高圧流体供給装置のコスト上昇の一因ともなっている。   In selecting compressors, pumps, reactors, etc. for high-pressure operation, the equipment to be used is generally determined by the operating pressure, fluid flow rate, operating temperature, etc., but high-pressure processes such as subcritical or supercritical In many cases, the type of fluid, flow rate, pressure, and the like are greatly different from those of ordinary chemical processes. For this reason, the compressor itself often becomes special, and its selection is not easy. In addition, the pressure conditions of actual operations and experiments may be limited by the specifications of existing high-pressure generators, and it may be difficult to operate under optimum conditions such as experiments or reaction processes. In addition, the use of special equipment also contributes to an increase in the cost of the high-pressure fluid supply device.

そこで、亜臨界ないし超臨界の流体を利用するプロセスにおいて、ポンプを用いない高圧流体供給システムが提案されている(特許文献4参照)。しかしながら、このシステムは流体輸送の駆動を密度差に求めるものであり、流体輸送に際しての差圧の付与に限界が生じる。例えば、凝縮器、蒸発器を設置し、気液の密度差を利用して差圧を発生させる場合に、凝縮器と蒸発器の高低差でヘッドを付与するため、相当な高低差を取らなければならず、設置場所が制限される。しかも、輸送のための配管の径や、バルブ等のフィッテング類も、圧力損失を考慮して決定しなければならず、大量処理には、それ相当の工夫を要するという問題がある。   Therefore, a high-pressure fluid supply system that does not use a pump in a process that uses a subcritical or supercritical fluid has been proposed (see Patent Document 4). However, this system requires a density difference to drive fluid transportation, and there is a limit to the application of differential pressure during fluid transportation. For example, when a condenser and an evaporator are installed and a differential pressure is generated using the density difference between the gas and liquid, the head is attached by the difference in level between the condenser and the evaporator. Installation location is limited. In addition, the diameter of piping for transportation and fittings such as valves must be determined in consideration of pressure loss, and there is a problem that considerable measures are required for mass processing.

また、可動部分を有しない、熱駆動の超臨界水供給装置(特許文献5参照)が報告されているが、熱駆動システムの駆動原理の概要は示されているものの、その心臓部ともいえる、加熱・冷却方法又はその装置についての具体的な記載はなく、このようなシステムを、実用化して熱駆動システムを構築するには不十分な技術情報しか得られなかった。   In addition, although a heat-driven supercritical water supply device (see Patent Document 5) that does not have a movable part has been reported, although the outline of the drive principle of the heat drive system is shown, it can also be said to be the heart of it, There is no specific description of the heating / cooling method or the apparatus therefor, and only insufficient technical information has been obtained to put such a system into practical use and to construct a thermal drive system.

また、最近、超臨界水中での瞬間的反応により、各種の有機化合物の合成反応が報告され、こうした反応では、反応器内での滞在時間が数秒以下であることが多いが、これを実現させるために、予め反応温度以上に加熱された高圧水を過剰に反応器に供給する操作がなされており、このような操作に適応することが可能な、新しい超高圧流体供給システムが望まれていた。   Recently, synthetic reactions of various organic compounds have been reported due to instantaneous reactions in supercritical water, and in these reactions, the residence time in the reactor is often less than a few seconds. Therefore, an operation of supplying excessively high pressure water previously heated to the reaction temperature to the reactor has been performed, and a new ultrahigh pressure fluid supply system that can be adapted to such an operation has been desired. .

国際公開WO99/53002号明細書International Publication No. WO99 / 53002 特開平10−118609号公報Japanese Patent Laid-Open No. 10-118609 特開2002−285258号公報JP 2002-285258 A 特許第3079157号公報Japanese Patent No. 3079157 特開2003−126673号公報JP 2003-126673 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決することを可能とする新しい熱駆動型高圧流体供給装置を開発することを目標として鋭意研究を積み重ねた結果、吐出器内のプロセス流体(以下、流体とも言う。)を効率的に加熱するとともに、プロセス流体の再充填を素早く行うことを可能とする手法を見出し、本発明を完成するに至った。本発明は、熱エネルギーの授受による流体の状態変化のみによって、実質的に圧力差を付与させ、これによって特段の機械的操作を用いることなく、亜臨界ないし超臨界等の高圧流体を得ることが可能な熱駆動型高圧流体供給装置において、吐出器内のプロセス流体の効率的な加熱と、迅速な再充填を可能とすることを目的とするものである。また、本発明は、吐出器内のプロセス流体を加熱冷却するための、効率の良い熱媒流路系を設定することを目的とするものである。また、本発明は、安定かつ効率的にクリーンな、超臨界流体等の高圧流体を供給することを目的とするものである。また、本発明は、高圧媒体の漏れ、可動部分からの粉塵、騒音等の発生のない高圧流体供給装置を提供することを目的とするものである。また、本発明は、化学合成技術、抽出技術、産業廃棄物処理技術等において、高温高圧の反応場を提供することが可能な熱駆動型高圧流体供給装置を提供することを目的とするものである。   Under such circumstances, the present inventors have developed a new heat-driven high-pressure fluid supply device that makes it possible to drastically solve the problems in the prior art in view of the prior art. As a result of intensive research with the goal of, we have found a method that enables efficient heating of the process fluid (hereinafter also referred to as fluid) in the dispenser and quick refilling of the process fluid. The invention has been completed. The present invention makes it possible to obtain a high-pressure fluid such as subcritical or supercritical without using a special mechanical operation by substantially giving a pressure difference only by changing the state of the fluid due to the transfer of thermal energy. An object of the present invention is to enable efficient heating and quick refilling of a process fluid in a discharger in a possible heat-driven high-pressure fluid supply apparatus. Another object of the present invention is to set an efficient heat medium flow path system for heating and cooling the process fluid in the discharger. It is another object of the present invention to supply a high-pressure fluid such as a supercritical fluid that is clean stably and efficiently. It is another object of the present invention to provide a high-pressure fluid supply apparatus that does not generate high-pressure medium leakage, dust from moving parts, noise, and the like. Another object of the present invention is to provide a heat-driven high-pressure fluid supply apparatus capable of providing a high-temperature and high-pressure reaction field in chemical synthesis technology, extraction technology, industrial waste treatment technology, and the like. is there.

上記課題を解決するための本発明は、熱媒流路内に形成された、1又はそれ以上の吐出器と、加熱器、冷却器を有し、該吐出器内のプロセス流体に、定容加熱、定圧加熱及び充填の各処理を繰り返すことにより、高圧プロセス流体が吐出される熱駆動型高圧媒体供給装置であって、1)各吐出器と加熱器、冷却器が、熱媒流路内で、全て直列で接続され、熱媒流路は単一の循環で、分岐や孤立がないように構成されているか、あるいは、2)熱媒流路は加熱系の循環と冷却系の循環のみで、加熱系は加熱器と被加熱吐出器の直列循環、冷却系は冷却器と被冷却吐出器の直列循環で、分岐や孤立がないように構成されていることを特徴とする熱駆動型高圧流体供給装置、である。 The present invention for solving the above-mentioned problems has one or more discharge devices formed in the heat medium flow path, a heater, and a cooler, and the process fluid in the discharge device has a constant volume. heating, by repeating the processes of constant pressure heating and filling, a heat-driven pressure medium supply device which high pressure process fluid is discharged, 1) the dispenser and heater, cooler, heat medium flow path Either all connected in series, and the heat medium flow path is configured in a single circulation without branching or isolation, or 2) the heat medium flow path is only for the circulation of the heating system and the circulation of the cooling system The heating system is a series circulation of a heater and a heated discharger, and the cooling system is a series circulation of a cooler and a cooled discharger so that there is no branching or isolation. A high-pressure fluid supply device;

本発明の装置は、(1)各吐出器と加熱器、冷却器は、直列に接続されて加熱流路及び冷却流路を形成し、加熱・吐出を完了した吐出器は、冷却流路の最下流に接続され、充填過程を終了した吐出器は、加熱流路の最下流に接続されるように構成されていること、(2)n個の吐出器を有する熱駆動型高圧流体供給装置において、第i番目(iは1〜nの整数)の吐出器の熱媒入口は、加熱器出口、冷却器出口、及び第i+1番目(i+1がn+1の時は1番目)の熱媒出口に接続され、第i番目の吐出器の熱媒出口は、加熱器入口、冷却器入り口、及び第i−1番目(i−1が0のときはn番目)の吐出器の熱媒入口に接続されていること、(3)吐出器を冷却することにより、吐出器内にプロセス流体が充填されること、(4)プロセス流体貯蔵タンクと吐出器の高低のレベル差により、吐出器内にプロセス流体が充填されること、(5)プロセス流体をポンプ輸送することにより、吐出器内にプロセス流体が充填されること、(6)加熱器から直接加熱器へ循環可能な熱媒流路、及び冷却器から直接冷却器へ循環可能な熱媒流路を更に有し、加熱流路及び冷却流路が独立して形成されること、(7)冷却器に流入する熱媒と加熱器に流入する熱媒との間で熱交換を行うことが可能な熱交換器が設けられていること、(8)上記プロセス流体が、亜臨界ないし超臨界の流体であること、(9)上記プロセス流体が、水、二酸化炭素であること、(10)上記定容加熱が、温度250℃以下、圧力400MPa以下で行われること、(11)上記定圧加熱が、800℃以下で行われること、を好ましい態様とするものである。また、本発明は、上記の熱駆動型高圧流体供給装置から供給される高圧流体を反応場とすることを特徴とする高圧流体利用装置、である。   In the apparatus of the present invention, (1) each discharge device, a heater, and a cooler are connected in series to form a heating channel and a cooling channel. The discharge device connected to the most downstream side and completed the filling process is configured to be connected to the most downstream side of the heating flow path, and (2) a thermally driven high-pressure fluid supply device having n discharge devices In the above, the heat medium inlet of the i-th (i is an integer from 1 to n) discharger is the heater outlet, the cooler outlet, and the i + 1th heat medium outlet (the first when i + 1 is n + 1). Connected, the heat medium outlet of the i-th discharger is connected to the heater inlet, the cooler inlet, and the heat medium inlet of the i-1th discharger (nth when i-1 is 0). (3) The process fluid is filled in the discharger by cooling the discharger, (4) Process (5) The process fluid is filled into the dispenser due to the level difference between the body storage tank and the dispenser, and (5) the process fluid is filled into the dispenser by pumping the process fluid. 6) It further has a heat medium flow path that can be circulated from the heater directly to the heater, and a heat medium flow path that can be circulated directly from the cooler to the cooler, and the heating flow path and the cooling flow path are formed independently. (7) a heat exchanger capable of exchanging heat between the heat medium flowing into the cooler and the heat medium flowing into the heater is provided, and (8) the process fluid is A subcritical or supercritical fluid, (9) the process fluid is water or carbon dioxide, and (10) the constant volume heating is performed at a temperature of 250 ° C. or lower and a pressure of 400 MPa or lower. (11) The above constant pressure heating is performed at 800 ° C. or lower. Rukoto, it is an a preferred embodiment. Moreover, this invention is a high pressure fluid utilization apparatus characterized by using the high pressure fluid supplied from said heat drive type high pressure fluid supply apparatus as a reaction field.

次に本発明について、更に詳細に説明する。
本発明は、熱媒流路内に形成された、1又はそれ以上の吐出器と、加熱器、冷却器を有し、該吐出器内のプロセス流体に、定容加熱、定圧加熱及び充填の各処理を繰り返すことにより、高圧プロセス流体が吐出される熱駆動型高圧媒体供給装置であって、各吐出器と加熱器、冷却器が、カスケード構造となるように熱媒流路が構成されていることに特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention includes one or more dischargers, heaters, and coolers formed in a heat medium flow path, and constant volume heating, constant pressure heating, and filling of the process fluid in the dischargers. A heat-driven high-pressure medium supply device that discharges a high-pressure process fluid by repeating each process, and the heat medium flow path is configured so that each discharger, heater, and cooler have a cascade structure. It has a feature in being.

本発明のプロセス流体としては、例えば、水、二酸化炭素が例示されるが、これ等に限定されるものではない。本発明の熱駆動型高圧流体供給装置により供給される高圧プロセス流体は、例えば、亜臨界ないし超臨界の流体であり、例えば、高圧プロセス流体を反応場とする有機合成反応器、抽出器、染色器、晶析器等に供給され、使用される。また、本発明で使用される熱媒としては、水及び熱媒油等が例示されるが、加熱温度条件等に応じて適宜選択され、これ等に限定されるものではない。   Examples of the process fluid of the present invention include water and carbon dioxide, but are not limited thereto. The high-pressure process fluid supplied by the heat-driven high-pressure fluid supply apparatus of the present invention is, for example, a subcritical or supercritical fluid. For example, an organic synthesis reactor, extractor, or dye using a high-pressure process fluid as a reaction field. Supplied and used in a vessel, crystallizer, etc. In addition, examples of the heat medium used in the present invention include water and heat medium oil, but the heat medium is appropriately selected according to the heating temperature condition and the like, and is not limited thereto.

次に、本発明で使用される、高圧プロセス流体を供給するための吐出器について、図1に示した概略図を用いて説明する。吐出器は断熱された高圧容器であり、流体充填用バルブV1と高圧流体吐出用バルブV2を備えている。更に、充填した流体を加熱・冷却するための熱媒体を流通する伝熱管を備えている。この吐出器の内部に収容したプロセス流体に対し、次の、定容加熱、定圧加熱、充填過程を繰り返すことで高圧プロセス流体が吐出され、供給される。   Next, a discharger for supplying a high-pressure process fluid used in the present invention will be described with reference to the schematic diagram shown in FIG. The discharger is a heat-insulated high-pressure vessel and includes a fluid filling valve V1 and a high-pressure fluid discharge valve V2. Furthermore, a heat transfer tube is provided through which a heat medium for heating and cooling the filled fluid is circulated. A high-pressure process fluid is discharged and supplied by repeating the following constant volume heating, constant pressure heating, and filling process with respect to the process fluid accommodated in the discharger.

定容加熱過程:吐出器に流体を充填した状態で両バルブを閉じ、密閉状態で所定圧まで熱する。
定圧加熱過程:吐出側の圧力制御弁V2を開き,内部圧力を一定に保持したまま加熱を続け、熱膨張による流体の吐出を促す。吐出流体は高圧流体利用プロセスへと送られる。あらかじめ定めた温度に達したら加熱を終了する。
充填過程:残留流体を排出するか冷却した上でV1を開き、貯蔵タンク内の流体を再充填する。
定容加熱過程は、温度250℃以下、圧力400MPa以下の条件で行われるのが好ましく、また、定圧加熱過程は、温度800℃以下で行われるのが好ましい。
Constant-volume heating process: Both valves are closed with the dispenser filled with fluid, and heated to a predetermined pressure in a sealed state.
Constant pressure heating process: The pressure control valve V2 on the discharge side is opened, heating is continued with the internal pressure kept constant, and fluid discharge due to thermal expansion is promoted. The discharged fluid is sent to a high-pressure fluid utilization process. When the temperature reaches a predetermined temperature, the heating is terminated.
Filling process: V1 is opened after draining or cooling the residual fluid, and the fluid in the storage tank is refilled.
The constant volume heating process is preferably performed under conditions of a temperature of 250 ° C. or lower and a pressure of 400 MPa or lower, and the constant pressure heating process is preferably performed at a temperature of 800 ° C. or lower.

本発明における、吐出器に流体を充填する過程の具体例として、(1)冷却を利用するもの、(2)流体の高低レベル差を利用するもの、及び(3)ポンプ輸送を利用するものについて説明する。
(1)定圧冷却による充填
定圧加熱による吐出を終えた段階で吐出器内の流体は、例えば、高温・高圧の超臨界状態となっている。この状態から、定容冷却・定圧冷却の2過程を施すことで充填が可能になる。まず、吐出を終えたら吐出用バルブV2を閉じ、密閉状態とする。この状態で伝熱管に低温の熱媒を流し、定容的に冷却を行う。密度を一定として温度が下がっていくので、内部の圧力が低下していく。最終的に圧力が初期の圧力、すなわち、充填流体の圧力と等しくなった段階で定容冷却を終了し、次の定圧冷却に移る。定圧冷却では充填用バルブV1のみを開いて行う。V1を開いて冷却を行うと内部の流体圧力は下がろうとするが、V1の外にある流体との間に圧力差が生じるので流体が自動的に充填される。超臨界流体を定容的に冷却すると多くの場合は気液に分離するが、その場合も同様に定圧冷却を行うことで気相部分が凝縮し、やはり圧力が下がろうとするのでV1の外と圧力差が生じ充填が行われる。
Specific examples of the process of filling the discharger with fluid in the present invention are as follows: (1) using cooling, (2) using difference in level of fluid, and (3) using pumping. explain.
(1) Filling by constant pressure cooling When the discharge by constant pressure heating is finished, the fluid in the discharger is in a supercritical state of, for example, high temperature and high pressure. From this state, filling can be performed by performing two processes of constant volume cooling and constant pressure cooling. First, when the discharge is completed, the discharge valve V2 is closed and sealed. In this state, a low-temperature heat medium is passed through the heat transfer tube to cool the tube at a constant volume. Since the temperature decreases with the density kept constant, the internal pressure decreases. When the pressure finally becomes equal to the initial pressure, that is, the pressure of the filling fluid, the constant volume cooling is finished, and the next constant pressure cooling is started. In the constant pressure cooling, only the filling valve V1 is opened. When V1 is opened and cooling is performed, the internal fluid pressure tends to decrease, but since a pressure difference is generated with the fluid outside V1, the fluid is automatically filled. When the supercritical fluid is cooled to a constant volume, it is often separated into a gas and a liquid. In this case as well, the gas phase portion is condensed by constant pressure cooling, and the pressure tends to decrease. A pressure difference is generated and filling is performed.

(2)高低レベル差による充填
高低レベル差を用いた充填の概略図を図2に示す。この場合は、V1、V2に加え、残留流体回収用のバルブV3を追加し、吐出器より物理的に高い位置に設置した凝縮器へのパスを追加する。更に、凝縮器と吐出器の中間の高さに貯蔵タンクを設置する。冷却による充填と同様に、吐出を終えたら、V1、V2ならびにV3を閉じ、定容冷却を開始する。ある程度圧力が下がった段階でV3を開くと、内部の高圧蒸気は凝縮器へと抜ける。続いてV1を開くと貯蔵タンク内の流体がレベル差により吐出器へと流入する。内部に残留していた流体は蒸発して凝縮器へと移動するか、又はそのまま外に押し出され、やはり蒸発して凝縮器に入り、凝縮して貯蔵タンクに戻る。
(2) Filling with high and low level differences Fig. 2 shows a schematic diagram of filling with high and low level differences. In this case, in addition to V1 and V2, a valve V3 for collecting the residual fluid is added, and a path to a condenser installed at a position physically higher than the discharger is added. In addition, a storage tank is installed at a height intermediate between the condenser and the discharger. Similar to the filling by cooling, when the discharge is finished, V1, V2 and V3 are closed, and constant volume cooling is started. When V3 is opened when the pressure has dropped to some extent, the internal high-pressure steam escapes to the condenser. Subsequently, when V1 is opened, the fluid in the storage tank flows into the discharger due to the level difference. The fluid that remains inside either evaporates and moves to the condenser, or is pushed out as it is, again evaporates into the condenser, condenses and returns to the storage tank.

(3)ポンプ輸送による充填
ポンプ輸送による充填の概略は、V1、V2に加え、残留流体回収用のバルブV3を追加し、凝縮器を設置するとともに、吐出器より凝縮器、貯蔵タンクへのパスを追加し、更に、貯蔵タンクと吐出器の中間にポンプ設置する。吐出器からの高圧プロセス流体の吐出を終えたらV1、V2ならびにV3を閉じ、定容冷却を開始する。ある程度圧力が下がった段階で、V3を開くと内部の高圧蒸気は凝縮器へと抜ける。続いてV1を開くとともに、ポンプを作動させると、貯蔵タンク内の流体が吐出器へと充填される。内部に残留していた流体は、蒸発して凝縮器へと移動するか、又は、そのまま外に押し出され、蒸発して凝縮器に入り、凝縮して貯蔵タンクに戻る。
(3) Filling by pumping The outline of filling by pumping is as follows: V1 and V2, in addition to valve V3 for recovering residual fluid, a condenser installed, and a path from the discharger to the condenser and storage tank In addition, a pump is installed between the storage tank and the discharger. When the discharge of the high-pressure process fluid from the discharger is finished, V1, V2 and V3 are closed and constant volume cooling is started. When V3 is opened at a stage where the pressure has dropped to some extent, the internal high-pressure steam escapes to the condenser. When V1 is subsequently opened and the pump is operated, the fluid in the storage tank is filled into the discharger. The fluid that remains inside either evaporates and moves to the condenser, or is pushed out as it is, evaporates and enters the condenser, condenses and returns to the storage tank.

これらの例示された、異なる機構に基づいた充填方式を比較して、それらのメリット・デメリットを簡単に説明する。冷却による充填は、新たなバルブや凝縮器を追加する必要がなく、非常にシンプルな構成で実現可能である。ただし、用いる流体によっては十分な冷却を行うために高い冷却能力を必要とする。一方、高低レベル差によると、バルブや凝縮器を追加し、タンクを高い位置に設置するために装置が複雑で大きくなる、複雑な流路による抵抗が大きくなる等のデメリットがあるが、ある程度の冷却を行えばよいので熱媒温度をあまり低くする必要がない。また、レベル差を十分にとると、すばやく充填を行うことが可能になる。ポンプ輸送によると、ポンプの強力な充填作用により、システムの適用範囲が増し、柔軟に運転することが可能となるが、新たな可動ポンプを追加する必要がある。 The merits and demerits will be briefly described by comparing these exemplified filling methods based on different mechanisms. Filling by cooling does not require a new valve or condenser and can be realized with a very simple configuration. However, depending on the fluid used, a high cooling capacity is required in order to perform sufficient cooling. On the other hand, depending on the level difference, there are disadvantages such as adding a valve and a condenser and installing the tank at a high position, the device becomes complicated and large, and the resistance due to the complicated flow path increases. Since it is sufficient to perform cooling, it is not necessary to lower the temperature of the heat medium so much. In addition, if a sufficient level difference is taken, filling can be performed quickly. According to pumping, the powerful filling action of the pump increases the scope of the system and enables flexible operation, but a new movable pump needs to be added.

次に、本発明の熱媒系配管ネットワークとバルブ切り替えについて説明する。
本発明では、吐出器が定圧加熱を行っている段階で高圧の超臨界流体が吐出する。その前の加熱、ならびに、その後の冷却・充填は吐出のための準備段階である。よって、連続的な吐出を実現するためには、複数の吐出器を用い、吐出のタイミングをずらすことが必要となる。このとき、熱媒のネットワークをどのように組めば熱効率がよいのか、また、どのようなタイミングで加熱・冷却を切り替えればよいのかということが重要となる。このことに対し、2種類の熱媒系配管ネットワークとそれぞれのバルブ切り替え規則について、具体例を示して説明する。
Next, the heat medium piping network and valve switching according to the present invention will be described.
In the present invention, a high-pressure supercritical fluid is discharged while the discharger is performing constant pressure heating. The heating before that and the subsequent cooling and filling are preparation stages for discharge. Therefore, in order to realize continuous discharge, it is necessary to use a plurality of dischargers and shift the discharge timing. At this time, it is important how the heat medium network is assembled and the heat efficiency is good, and at what timing the heating and cooling should be switched. In contrast, two types of heat medium piping networks and respective valve switching rules will be described with specific examples.

(1)単一熱媒系について
これは、1種類の熱媒を使用しで、吐出器の加熱・冷却を実行するものである。例えば、吐出器を4個とした場合の、熱媒系の配管フロー図を、図3に示す。1〜4の各吐出器は、プロセス流体を充填・吐出するためのバルブV1、V2或いはV3を各々備えているが、ここでは、熱媒の流れのみを考えるので、これらのプロセス流体の流路は省略している。図中に示した吐出器は各5個ずつのバルブを備えているが、これらは熱媒の流れを制御するためのものである。なお、図3では吐出器数を4個としているが、これは一例であり、実際には任意の自然数とすることが出来る。吐出器の数を一般的にnとしたときの熱媒系の配管ルールを示す。熱媒系はn個の吐出器と1台の加熱器、1台の冷却器、熱媒の流量と圧力を調整するバルブとポンプ、及び熱交換器から構成される。第i番目(iは1〜n)の吐出器の熱媒入り口は、加熱器出口、冷却器出口、第i+1番目(i+1がn+1のときは1番目)の吐出器の熱媒出口の3箇所に接続し、それぞれにバルブを設置する。熱媒出口は、加熱器入り口、冷却器入り口、第i−1番目(i−1が0のときはn番目)の吐出器の熱媒入り口に接続し、それぞれバルブを設置する。冷却器出口は、各吐出器の他に加熱器入り口にも接続し、同様に加熱器出口は冷却器入り口にも接続する。必要があれば、加熱器入り口の直前と冷却器入り口の直前に熱交換器を設置する。
(1) About a single heating medium system This uses one kind of heating medium, and performs heating and cooling of a discharger. For example, FIG. 3 shows a piping flow diagram of the heat medium system when there are four dischargers. Each of the dischargers 1 to 4 is provided with valves V1, V2 or V3 for filling and discharging the process fluid. Here, only the flow of the heat medium is considered. Is omitted. The discharger shown in the figure includes five valves each for controlling the flow of the heat medium. In FIG. 3, the number of ejectors is four, but this is only an example, and in practice it can be any natural number. The heating medium system piping rule when the number of dischargers is generally n is shown. The heat medium system includes n discharge devices, one heater, one cooler, a valve and a pump for adjusting the flow rate and pressure of the heat medium, and a heat exchanger. The heat medium inlet of the i-th (i is 1 to n) discharger has three locations: the heater outlet, the cooler outlet, and the heat medium outlet of the i + 1-th discharger (first when i + 1 is n + 1). Connect to and install a valve on each. The heating medium outlet is connected to the heating medium inlet of the heater inlet, the cooler inlet, and the heating medium inlet of the (i-1) th (or nth when i-1 is 0) discharge valve. The cooler outlet is connected to the heater inlet in addition to each discharger, and the heater outlet is also connected to the cooler inlet. If necessary, install heat exchangers just before the heater entrance and just before the cooler entrance.

バルブ切り替えのルールは以下のとおりである。
(a)熱媒流路は単一の循環とし、分岐や孤立はないようにする。つまり、各吐出器と加熱器、冷却器は全て直列で接続される。
(b)加熱・吐出を終了した吐出器は冷却路の最下流に接続する。
(c)冷却・充填を終了した吐出器は加熱路の最下流に接続する。
次に、この規則に則ったバルブ切り替えを、吐出器を4個とした場合で説明する。まず、全吐出器に流体を充填した状態から開始する。開始時に何個の吐出器を加熱し始めるかは任意であるが、ここでは全てを加熱することにする。
The rules for switching valves are as follows.
(A) The heat medium flow path should be a single circulation so that there is no branching or isolation. That is, each discharger, heater, and cooler are all connected in series.
(B) The discharger that has finished heating and discharging is connected to the most downstream side of the cooling path.
(C) The discharger that has finished cooling and filling is connected to the most downstream side of the heating path.
Next, valve switching in accordance with this rule will be described in the case of using four dischargers. First, it starts from a state where all the dispensers are filled with fluid. It is arbitrary how many dispensers start to be heated at the start, but all are heated here.

加熱器を出た高温の熱媒はV42を通って吐出器4を加熱する。若干温度が下がるがまだ十分な熱を持っているので、これを、V33を経由して吐出器3に導入する。同様にV23から吐出器2へ、V13から吐出器1へと流れる。続いてV15を通って冷却器に入る。この段階では、どの吐出器も冷却を行う必要がないのでV52を経由して加熱器へと戻す。ここに挙げたバルブ以外は全て閉とする。この操作を続けると、最も高い温度で加熱された吐出器4が、所定圧に達して吐出を開始する。更に加熱を続けると、次に温度の高い吐出器3が吐出を開始する。同様に、吐出器2、吐出器1が吐出を開始するが、所定の温度に達した吐出器4は冷却過程へと移行する。   The high-temperature heat medium exiting the heater heats the discharger 4 through V42. Although the temperature drops slightly, it still has sufficient heat, so this is introduced into the discharger 3 via V33. Similarly, it flows from V23 to the discharger 2 and from V13 to the discharger 1. Then enter the cooler through V15. At this stage, since it is not necessary to cool any of the dischargers, it returns to the heater via V52. All valves other than those listed here are closed. If this operation is continued, the discharger 4 heated at the highest temperature reaches a predetermined pressure and starts discharging. When the heating is further continued, the discharger 3 having the next highest temperature starts discharging. Similarly, the discharge device 2 and the discharge device 1 start discharging, but the discharge device 4 that has reached a predetermined temperature shifts to a cooling process.

吐出器4のみを冷却とする場合は、加熱器から出た高温の熱媒は、V32を経由して吐出器3へ、V23から吐出器2へ、V13から吐出器1へと流れ、V15を経由して冷却器に入る。続いて、冷却器を出た熱媒はV41を経て吐出器4を冷却し、V44を通って加熱器へと帰ってくる。ここで挙げたバルブ以外は全て閉とする。吐出器3が吐出を終え、冷却過程に入ったら熱媒は加熱器から吐出器2、吐出器1と通って冷却器に入り、冷却器を出た熱媒は、吐出器4、吐出器3と冷却して加熱器へと帰る。先に冷却過程に入った吐出器4が充填を終え、再び加熱の用意が出来たら吐出器1の下流で熱を受ける。つまり熱煤の流れは加熱器、吐出器2、吐出器1、吐出器4、冷却器、吐出器3、加熱器といったループになる。   When only the discharger 4 is cooled, the high-temperature heat medium from the heater flows from V23 to the discharger 3, from V23 to the discharger 2, and from V13 to the discharger 1. Enter the cooler via. Subsequently, the heat medium exiting the cooler cools the discharger 4 via V41 and returns to the heater via V44. All valves other than those listed here are closed. When the discharger 3 finishes discharging and enters the cooling process, the heat medium enters the cooler through the discharger 2 and the discharger 1 from the heater, and the heat medium exiting the cooler is the discharger 4 and the discharger 3. Cool down and return to the heater. When the discharger 4 that has entered the cooling process has finished filling and is ready for heating again, it receives heat downstream of the discharger 1. That is, the flow of hot water becomes a loop of a heater, a discharger 2, a discharger 1, a discharger 4, a cooler, a discharger 3, and a heater.

以上のように、加熱を終えた吐出器は冷却の最下流、冷却・充填を終えた吐出器は加熱の最下流に接続するというルールで運転を続けると、単一の熱媒ループ、すなわち単一の熱媒で全吐出器の加熱・冷却が可能となる。もし加熱器に入る熱媒の温度が冷却器に入る熱媒の温度より低ければ、図3に示した再生熱交換器を用いて熱交換を行うことで熱効率を改善することが出来る。   As described above, if the operation is continued with the rule that the discharger that has finished heating is connected to the most downstream side of cooling and the discharger that has finished cooling and filling is connected to the most downstream side of heating, All the dischargers can be heated and cooled with a single heating medium. If the temperature of the heat medium entering the heater is lower than the temperature of the heat medium entering the cooler, the heat efficiency can be improved by performing heat exchange using the regenerative heat exchanger shown in FIG.

(2)個別熱媒系について
この系は、二種類の熱媒を使用して、吐出器の加熱と冷却を別個の熱媒で実行するものである。単一熱媒系を拡張した個別熱媒系を具体例として説明すると、単一熱媒系にいくつかのパスとバルブ、ポンプを追加したもので、単一熱媒系を内部に含み、その配管系は、吐出器を4個とした場合の配管図を図4に示す。これも、単一熱媒系と同様、吐出器の数は任意である。単一熱媒系との違いは、加熱器から加熱器へ、冷却器から冷却器へのパスを追加し、熱媒の流量と圧力を調整するポンプとバルブが追加された点である。
(2) About individual heating medium system In this system, two types of heating medium are used, and heating and cooling of the discharger are performed by separate heating media. A specific example of an individual heat medium system that is an extension of a single heat medium system is to add several paths, valves, and pumps to the single heat medium system. FIG. 4 shows a piping diagram when the piping system has four discharge devices. Again, the number of ejectors is arbitrary as in the single heat medium system. The difference from the single heat medium system is that a path from the heater to the heater, a path from the cooler to the cooler, and a pump and a valve for adjusting the flow rate and pressure of the heat medium are added.

バルブ切り替えについては、個別熱媒系の配管は、単一熱媒系に2つの新たなパスを追加しただけである、単一熱媒系のバルブ切り替えを適用することで、先ほどと同様の運転が可能である。更に、加熱と冷却を、個別の熱媒循環で行うためのバルブ切り替えルールは次のとおりである。
(a)熱媒流路は、加熱系の循環と冷却系の循環のみとし、分岐や孤立はないようにする。即ち、加熱系は加熱器と被加熱吐出器の直列循環、冷却系は冷却器と被冷却吐出器の直列循環とする。
(b)加熱・吐出を終了した吐出器は冷却路の最下流に接続する。
(c)冷却・充填を終了した吐出器は加熱路の最下流に接続する。
As for valve switching, the individual heat transfer system piping is the same operation as before by applying single heat transfer system valve switching, which is just adding two new paths to the single heat transfer system. Is possible. Furthermore, the valve switching rule for performing heating and cooling by individual heat medium circulation is as follows.
(A) The heat medium flow path is only for circulation of the heating system and circulation of the cooling system, so that there is no branching or isolation. That is, the heating system is a series circulation of a heater and a heated discharger, and the cooling system is a series circulation of a cooler and a cooled discharger.
(B) The discharger that has finished heating and discharging is connected to the most downstream side of the cooling path.
(C) The discharger that has finished cooling and filling is connected to the most downstream side of the heating path.

そこで、吐出器4個の場合での運転例を示す。単一熱媒系と同様に、4個の加熱器全てを加熱することからはじめる。加熱器から出た熱媒は、V42から吐出器4へ、V33から吐出器3へ、V23から吐出器2へ、V13から吐出器1へと流れ、V14を通って加熱器へと帰る。このとき冷却される吐出器はないので、冷却器を出た熱媒はV54を経由してすぐに冷却器に戻る。ここに示したバルブ以外は全て閉とする。始めに、吐出器4が吐出を終え、冷却過程へと移行する。この場合は、加熱器から出た熱媒は、吐出器3、吐出器2、吐出器1の順に加熱し、加熱器へと帰る。冷却器を出た熱媒は、V41を通って吐出器4を冷却し、V45から冷却器に戻る。次に、吐出器3が冷却過程に移行したら、吐出器4の下流で冷却を行う。そのときの熱媒の流れは、加熱器、吐出器2、吐出器1、加熱器の加熱系と、冷却器、吐出器4、吐出器3、冷却器の冷却系からなる。吐出器4が冷却・充填を終え、再び加熱過程に移行したら、吐出器1の下流に接続する。そのときの熱媒の流れは、加熱器、吐出器2、吐出器1、吐出器4、加熱器の加熱系と、冷却器、吐出器3、冷却器の冷却系から構成される。   Therefore, an operation example in the case of four dischargers will be shown. As with a single heat transfer system, start by heating all four heaters. The heat medium exiting from the heater flows from V42 to the discharger 4, from V33 to the discharger 3, from V23 to the discharger 2, from V13 to the discharger 1, and returns to the heater through V14. At this time, since there is no discharger to be cooled, the heat medium exiting the cooler immediately returns to the cooler via V54. All valves other than those shown here are closed. First, the discharger 4 finishes discharging and moves to a cooling process. In this case, the heat medium discharged from the heater is heated in the order of the discharger 3, the discharger 2, and the discharger 1, and returns to the heater. The heat medium exiting the cooler cools the discharger 4 through V41 and returns from V45 to the cooler. Next, when the discharger 3 shifts to the cooling process, cooling is performed downstream of the discharger 4. The flow of the heat medium at that time includes a heater, a discharger 2, a discharger 1, a heating system for the heater, a cooler, a discharger 4, a discharger 3, and a cooling system for the cooler. When the discharger 4 finishes cooling / filling and shifts to the heating process again, it is connected downstream of the discharger 1. The flow of the heat medium at that time is composed of a heater, a discharger 2, a discharger 1, a discharger 4, a heating system of the heater, a cooler, a discharger 3, and a cooling system of the cooler.

以上のように、加熱を終えた吐出器は冷却の最下流に、冷却・充填を終えた吐出器は加熱の最下流に接続する。加熱の最下流からの熱媒は加熱器に戻し、冷却の最下流からの熱媒は冷却器に戻す。もし、加熱器に戻る熱媒の温度が冷却器に戻る熱媒の温度より低ければ、図4に示したように、熱交換器を利用することで熱効率を改善することが出来る。   As described above, the discharger that has finished heating is connected to the most downstream side of cooling, and the discharger that has finished cooling and filling is connected to the most downstream side of heating. The heat medium from the most downstream side of heating is returned to the heater, and the heat medium from the most downstream side of cooling is returned to the cooler. If the temperature of the heat medium returning to the heater is lower than the temperature of the heat medium returning to the cooler, the heat efficiency can be improved by using a heat exchanger as shown in FIG.

次に、本発明の熱駆動型高圧流体供給装置において、作動流体を二酸化炭素とし、充填方法として冷却による方法を採用した場合についての運転例を、シミュレーションに基づいた具体的な数値を用いて説明する。運転目的は、初期状態5℃、4MPaの二酸化炭素を20MPaに昇圧して吐出させることである。吐出終了の条件は、温度が150℃に達した時とした。シミュレーションの結果を図5に示す。図5には、各吐出器の温度変化と、合流した吐出器流体の温度変化、各吐出器の圧力変化、各吐出器の密度変化、各吐出器からの吐出流量と、それらを合流させた吐出流体の流量が示されている。始めは、加熱中の吐出器数が4の状態から開始する。開始直後に、加熱路最上流の吐出器4が、所定圧である20MPaに達し、吐出が始まる。続いて、吐出器3、吐出器2、吐出器1と吐出が始まるが、開始41秒後に吐出器4が、150℃に達して吐出を終了する。この段階で吐出器4は冷却路に入り温度が下がり始める。113秒後に吐出器1の充填が完了し、1周期目が終了する。1周期目は全ての吐出器が同時に加熱されるために、吐出流量が大きくなっているが、2周期目では、各吐出器の温度ピークが周期的に現れていることから、適切なタイミングで、熱媒の切り替えが行われていることがわかる。また、流量のグラフを見ると、各吐出器の吐出流量は間欠的であるが、全てを合流させると、若干の脈動は見られるものの、連続的な吐出が行われていることがわかる。   Next, in the thermally driven high-pressure fluid supply apparatus of the present invention, an operation example in the case where the working fluid is carbon dioxide and the cooling method is adopted as the filling method will be described using specific numerical values based on simulations. To do. The purpose of operation is to discharge carbon dioxide at an initial state of 5 ° C. and 4 MPa to 20 MPa. The condition for termination of discharge was when the temperature reached 150 ° C. The result of the simulation is shown in FIG. In FIG. 5, the temperature change of each discharger, the temperature change of the combined discharger fluid, the pressure change of each discharger, the density change of each discharger, the discharge flow rate from each discharger, and these were combined. The flow rate of the discharge fluid is shown. Initially, the number of ejectors during heating starts from four. Immediately after the start, the uppermost discharger 4 of the heating path reaches a predetermined pressure of 20 MPa, and discharge starts. Subsequently, the discharge is started with the discharge device 3, the discharge device 2, and the discharge device 1, but after 41 seconds from the start, the discharge device 4 reaches 150 ° C. and ends the discharge. At this stage, the discharger 4 enters the cooling path and the temperature starts to drop. After 113 seconds, filling of the discharger 1 is completed, and the first cycle is completed. In the first cycle, all the dischargers are heated at the same time, so the discharge flow rate is large. In the second cycle, the temperature peaks of each discharger appear periodically, so at an appropriate timing. It can be seen that the heating medium is switched. In addition, the flow rate graph shows that the discharge flow rate of each discharger is intermittent, but when all of them are merged, although some pulsation is seen, continuous discharge is performed.

以上、単一熱媒系、個別熱媒系の2通りを示したが、これらに共通する特徴は、加熱及び冷却が、それぞれ直列のカスケード構造となっていることである。これにより温度の高い吐出器は温度の高い熱媒で加熱され、温度の低い吐出器は下流の温度の低い熱媒で加熱されることになり、吐出のタイミングが自動的にずれて連続的な吐出が行われる。また、冷却される一連の吐出器と冷却熱媒、及び加熱される一連の吐出器と加熱熱媒はそれぞれ向流型熱交換器と等価な並びとなっているため、加熱・冷却の効率が良い。   As described above, the single heat medium system and the individual heat medium system are shown, but the feature common to these is that the heating and cooling have a series cascade structure. As a result, the high temperature discharger is heated by the high temperature heating medium, and the low temperature discharger is heated by the downstream low temperature heating medium. Discharging is performed. In addition, a series of cooled discharge devices and cooling heat medium, and a series of heated discharge devices and heating heat medium are arranged in an array equivalent to a counter-current heat exchanger. good.

単一熱媒系の特徴は、熱媒が単一の循環のみで流れるため、一つのポンプで加熱と冷却を同時に行うことが可能であり、装置構造を簡略化出来る点が挙げられる。また、加熱器を出た加熱熱媒は低温となって冷却器に入り、引き続き冷却を行って高温となって加熱器に戻る。すなわち、加熱・冷却の間で熱の再生が行われているので熱効率が良い。ただし、加熱器に戻る熱媒温度が冷却器に戻る熱媒温度より低い場合は逆に熱効率が低下するので、再生熱交換器を用いるのが好ましい。   The feature of the single heat medium system is that the heat medium flows only by a single circulation, so that heating and cooling can be performed simultaneously with one pump, and the structure of the apparatus can be simplified. Moreover, the heating heat medium which came out of the heater becomes low temperature, enters into a cooler, continues cooling, becomes high temperature, and returns to a heater. That is, since heat is regenerated between heating and cooling, thermal efficiency is good. However, if the temperature of the heat medium returning to the heater is lower than the temperature of the heat medium returning to the cooler, the heat efficiency is conversely reduced, so it is preferable to use a regenerative heat exchanger.

一方、個別熱媒系は、加熱・冷却が独立しているので、加熱熱媒と冷却熱媒に異なる物質を用いることができる。これにより、より大きい温度差で加熱・冷却を行うことが可能となる。この場合も、加熱器・冷却器に戻る熱媒温度によっては熱交換器を利用する必要がある。また、個別熱媒系において加熱・冷却に同じ物質を用いた場合は、状況に応じて単一熱媒系のバルブ切り替えルールと個別熱媒系のバルブ切り替えルールを使い分けて運転すると、熱交換器を用いることなく熱効率の低下を回避することが出来る。   On the other hand, since individual heating medium systems are independent of heating and cooling, different substances can be used for the heating and cooling heating medium. Thereby, heating / cooling can be performed with a larger temperature difference. In this case as well, it is necessary to use a heat exchanger depending on the temperature of the heating medium returning to the heater / cooler. In addition, when the same material is used for heating and cooling in an individual heating medium system, the heat exchanger can be operated by using a single heating medium system valve switching rule and an individual heating medium system valve switching rule depending on the situation. A decrease in thermal efficiency can be avoided without using.

本発明は、(1)熱エネルギーのみで圧力差を付与させ、これによって特段の圧縮装置等の可動機械類を用いることなく、超臨界あるいは亜臨界流体等の高圧流体であるプロセス流体を利用した処理システムに適した高圧場を、効率良く提供することができる、(2)送り出し用の高圧ポンプ装置を備える必要がない、装置の構造を簡略した高圧流体供給装置を構築することができる、(3)高圧流体を所望の圧力及び流量に安定的に維持することが可能になる、(4)特段の機械的操作を用いることがないため、高圧媒体の漏れ、可動部分からの粉塵、騒音等の発生のない超高圧流体供給装置を提供することができる、(5)高温高圧の反応場を簡便に提供することが可能であり、超臨界流体等の高圧流体を用いた高圧反応の技術分野において、効率良く高圧場を形成することができる、という格別の効果が奏される。   The present invention uses (1) a process fluid that is a high-pressure fluid such as a supercritical or subcritical fluid without using movable machinery such as a special compression device by applying a pressure difference only by thermal energy. A high-pressure field suitable for a processing system can be efficiently provided. (2) A high-pressure fluid supply apparatus that does not require a high-pressure pump device for delivery and that has a simplified structure can be constructed. 3) It becomes possible to stably maintain the high pressure fluid at a desired pressure and flow rate. (4) Since no special mechanical operation is used, leakage of high pressure medium, dust from moving parts, noise, etc. (5) It is possible to easily provide a high-temperature and high-pressure reaction field, and a technical field of high-pressure reaction using a high-pressure fluid such as a supercritical fluid. In Te, it is possible to form efficiently a high-pressure field, special effect can be attained.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例は、4個の吐出器からなる単一熱媒系の熱駆動高圧流体供給装置を構築した。その熱媒系の配管フロー図を、図3に示す。各吐出器は、プロセス流体の充填用バルブV1と、吐出用V2或いは凝縮器連通用V3を備えていて、例えば、図1又は図2に示すように構成されているが、本発明の特徴点である熱媒の流れを明確に示すために、プロセス流体の流路は省略して記載した。本実施例の熱媒系は、4個の吐出器、1台の加熱器、1台の冷却器、熱媒の流量と圧力を調整するバルブとポンプ、及び再生熱交換器から構成した。図中に示した吐出器は、各5個ずつのバルブを備え、これらは熱媒の流れを制御する。吐出器の数を4としたときの熱媒系の配管を、例えば、第3番目の吐出器について示すと、熱媒入り口は、加熱器出口、冷却器出口、及び第4番目の吐出器の熱媒出口の3箇所に接続し、それぞれにバルブを設置した。熱媒出口は、加熱器入り口、冷却器入り口、及び第2番目の吐出器の熱媒入り口に接続し、バルブを設置した。冷却器出口は、各吐出器の他に、加熱器入り口にも接続し、同様に加熱器出口は冷却器入り口にも接続した。他の吐出器の配管は、例示した第3番目の吐出器と同様に行った。必要があれば、加熱器入り口の直前と冷却器入り口の直前に熱交換器を設置することができる。   In the present embodiment, a single heat medium type heat-driven high-pressure fluid supply apparatus including four dischargers was constructed. FIG. 3 shows a piping flow diagram of the heat medium system. Each discharger includes a process fluid filling valve V1 and a discharge V2 or a condenser communication V3. For example, each discharger is configured as shown in FIG. 1 or FIG. In order to clearly show the flow of the heat medium, the flow path of the process fluid is omitted. The heat medium system of this example was composed of four dischargers, one heater, one cooler, a valve and pump for adjusting the flow rate and pressure of the heat medium, and a regenerative heat exchanger. The discharger shown in the figure includes five valves each for controlling the flow of the heat medium. For example, when the number of the discharge devices is 4 and the piping of the heat medium system is shown for the third discharge device, the heat medium inlet is the heater outlet, the cooler outlet, and the fourth discharge device. It connected to three places of the heat-medium exit, and installed the valve in each. The heat medium outlet was connected to the heater inlet, the cooler inlet, and the heat medium inlet of the second discharger, and a valve was installed. The cooler outlet was connected to the heater inlet in addition to each discharger, and the heater outlet was also connected to the cooler inlet. The piping of other discharge devices was performed in the same manner as the third discharge device illustrated. If necessary, heat exchangers can be installed just before the heater entrance and just before the cooler entrance.

上述の各バルブ切り替えにより、各吐出器と加熱器、冷却器は全て直列で接続し、加熱・吐出を終了した吐出器は冷却路の最下流に、冷却・充填を終了した吐出器は加熱路の最下流に、接続するように制御した。図3に示した高圧流体供給装置を運転することにより、単一の熱媒体で、全ての吐出器の加熱冷却が可能となり、連続した高圧プロセス流体を供給することができた。   By switching each valve described above, each discharger, heater, and cooler are all connected in series, the discharger that has finished heating and discharging is the most downstream of the cooling path, and the discharger that has finished cooling and filling is the heating path. It was controlled to connect to the most downstream side. By operating the high-pressure fluid supply apparatus shown in FIG. 3, it was possible to heat and cool all the dischargers with a single heat medium, and to supply a continuous high-pressure process fluid.

本実施例では、4個の吐出器を有する個別熱媒系の熱駆動高圧流体供給装置を構築した。本装置は、上記の単一熱媒供給系装置に、加熱器から加熱器へ、冷却器から冷却器へのパスを追加し、熱媒の流量と圧力を調整するポンプとバルブを追加した構造とした。その配管図を図4に示す。各バルブ切り替えは、上記単一熱媒系で説明したバルブ切り替えと同様にすることにより運転が可能であったが、本実施例では、加熱と冷却を個別の熱媒循環で行うために、バルブ切り替えは、加熱系は加熱器と被加熱吐出器の直列循環とし、冷却系は冷却器と被冷却吐出器の直列循環とし、加熱・吐出を終了した吐出器は、冷却路の最下流に接続し、冷却・充填を終了した吐出器は、加熱路の最下流に接続するように行った。もし、加熱器に戻る熱媒の温度が冷却器に戻る熱媒の温度より低ければ、図4に示したように熱交換器を利用することで熱効率を改善した。 In this example, to construct the heat-driven high-pressure fluid supply device of the individual heating medium system having four dispenser. This device has a structure in which a pump and a valve for adjusting the flow rate and pressure of the heat medium are added to the above single heat medium supply system device by adding a path from the heater to the heater and from the cooler to the cooler. It was. The piping diagram is shown in FIG. Each valve switching was possible by operating in the same manner as the valve switching described for the single heat medium system, but in this embodiment, in order to perform heating and cooling by individual heat medium circulation, For switching, the heating system is a series circulation of the heater and the heated discharger, the cooling system is a series circulation of the cooler and the cooled discharger, and the discharger that has finished heating and discharge is connected to the most downstream of the cooling path. The discharger after cooling and filling was connected to the most downstream side of the heating path. If the temperature of the heat medium returning to the heater is lower than the temperature of the heat medium returning to the cooler, the heat efficiency was improved by using a heat exchanger as shown in FIG.

本実施例では、プロセス流体を二酸化炭素とし、単一熱媒系の装置により、20MPaの超臨界二酸化炭素流体を形成した。本高圧流体供給装置として、図3に示した構成の装置を使用し、初期状態5℃、4MPaの二酸化炭素を吐出器に供給し、これを、20MPaに昇圧して吐出させることを運転条件とした。吐出終了時点は、吐出器内の二酸化炭素の温度が150℃に達した時とした。熱媒として水を用いた。初期状態の、5℃、4MPaの二酸化炭素を、吐出器内に密閉して加熱する、定容加熱過程により始めた。加熱するに応じて、吐出器内の圧力は、図6に示した、二酸化炭素の定容加熱曲線(密度:896kg/m)に沿って増加し、20MPaの圧力を得るには、二酸化炭素を28℃に昇温することにより達成された。ここで、定容加熱過程は終了し、次の定圧加熱過程に移行した。吐出器からは、20MPaの二酸化炭素が吐出して臨界流体利用プロセスへと供給され始めた。二酸化炭素の圧力を20MPaに保つにあたり、吐出された二酸化炭素の減少分による減圧を補うために昇温した。このときの密度−温度の関係(二酸化炭素の定圧加熱曲線(圧力:20MPa))を図7に示す。28℃、20MPa高圧二酸化炭素は、図7によれば、896Kg/mの密度を有する、これを定圧加熱すると、150℃において、327Kg/mの密度となる。したがって、両数値の差に相当する、569kg/mの二酸化炭素が、20MPaの高圧流体として吐出した。 In this example, carbon dioxide was used as the process fluid, and a 20 MPa supercritical carbon dioxide fluid was formed by a single heat medium system. As the high-pressure fluid supply apparatus, the apparatus having the configuration shown in FIG. 3 is used. The operating condition is that carbon dioxide having an initial state of 5 ° C. and 4 MPa is supplied to the discharger, and the pressure is increased to 20 MPa and discharged. did. The time when the discharge was finished was when the temperature of carbon dioxide in the discharger reached 150 ° C. Water was used as a heating medium. The initial state was started by a constant volume heating process in which 5 ° C. and 4 MPa carbon dioxide were sealed in a discharger and heated. In response to heating, the pressure in the discharger increases along the constant volume heating curve of carbon dioxide (density: 896 kg / m 3 ) shown in FIG. Was achieved by raising the temperature to 28 ° C. Here, the constant volume heating process was completed, and the next constant pressure heating process was started. From the discharger, 20 MPa carbon dioxide was discharged and started to be supplied to the critical fluid utilization process. In maintaining the pressure of carbon dioxide at 20 MPa, the temperature was raised to compensate for the reduced pressure due to the decreased amount of discharged carbon dioxide. The density-temperature relationship (constant pressure heating curve of carbon dioxide (pressure: 20 MPa)) at this time is shown in FIG. 28 ° C., 20 MPa high pressure carbon dioxide, according to FIG. 7, with a density of 896Kg / m 3, which upon pressure heating at 0.99 ° C., a density of 327 kg / m 3. Therefore, 569 kg / m 3 of carbon dioxide corresponding to the difference between the two values was discharged as a high-pressure fluid of 20 MPa.

次に、定圧冷却過程に移り、吐出器は密閉され、冷却器により冷却された熱媒により約5℃に冷却することにより、吐出器内を低圧状態となし、次いで、吐出器の充填用バルブを開けて定圧冷却過程に移行すると、低圧の吐出器内には、プロセス流体の貯蔵タンクより二酸化炭素が自然に供給され、初期状態に戻った。こうした過程を、4個の吐出器で繰り返すことにより、連続して高圧の二酸化炭素を、超臨界流体利用プロセスに供給することができた。   Next, the process proceeds to a constant pressure cooling process, the discharger is hermetically sealed, and the inside of the discharger is brought to a low pressure state by cooling to about 5 ° C. with the heat medium cooled by the cooler. When the process was switched to the constant pressure cooling process, carbon dioxide was naturally supplied from the process fluid storage tank into the low pressure discharge device and returned to the initial state. By repeating such a process with four ejectors, it was possible to continuously supply high-pressure carbon dioxide to the supercritical fluid utilization process.

以上詳述したように、本発明は、熱エネルギーの授受による流体の状態変化のみによって、実質的に圧力差を付与させ、これによって特段の機械的操作を用いることなく、亜臨界ないし超臨界等の高圧流体を得ることが可能な熱駆動型高圧流体供給装置において、吐出器内のプロセス流体の効率的な加熱と、迅速な再充填を可能とするものである。また、本発明は、吐出器内のプロセス流体を加熱・冷却するための、効率の良い熱媒流路系を設定することを可能とするものである。本発明は、高圧のプロセス流体を連続して吐出することが可能な熱駆動型高圧流体供給装置、及びその装置を使用した高温高圧処理システムを提供することを可能とするものであり、特段の機械的操作を用いることなく、亜臨界ないし超臨界等の高圧媒体を得ることを可能とするものである。更に、本発明は、高圧媒体の漏れ、可動部分からの粉塵、騒音等の発生のない高温高圧の反応場を提供するものであり、例えば、化学合成技術、抽出技術、産業廃棄物の処理技術等に有用であり、また、超臨界流体等を用いた高温高圧の処理技術分野に必要な高圧場を効率よく供給することを可能とするものとして有用である。   As described in detail above, the present invention substantially gives a pressure difference only by a change in the state of the fluid due to the transfer of thermal energy, thereby subcritical to supercritical, etc. without using any special mechanical operation. In a heat-driven high-pressure fluid supply apparatus capable of obtaining a high-pressure fluid, it is possible to efficiently heat and quickly refill the process fluid in the discharger. Further, the present invention makes it possible to set an efficient heat medium flow path system for heating and cooling the process fluid in the discharger. The present invention makes it possible to provide a heat-driven high-pressure fluid supply device capable of continuously discharging a high-pressure process fluid, and a high-temperature high-pressure processing system using the device. It is possible to obtain a high-pressure medium such as subcritical or supercritical without using a mechanical operation. Furthermore, the present invention provides a high-temperature and high-pressure reaction field free from leakage of high-pressure medium, dust from moving parts, noise, etc., for example, chemical synthesis technology, extraction technology, industrial waste processing technology. In addition, the high-pressure field necessary for the high-temperature and high-pressure processing technology field using a supercritical fluid or the like can be efficiently supplied.

吐出器の構造の概念図を示す。The conceptual diagram of the structure of a discharger is shown. 吐出器と貯蔵タンクの高低レベル差により流体を吐出器に充填する構造の概念図を示す。The conceptual diagram of the structure which fills a fluid with a fluid by the level difference of a dispenser and a storage tank is shown. 本発明の、単一熱媒系の配管の例を示す。The example of piping of the single heat medium system of this invention is shown. 本発明の、個別熱媒系の配管の例を示す。The example of piping of a separate heat carrier system of the present invention is shown. 本発明の、数値シミュレーションの結果を示す。各図面は、上から順に、吐出流体の温度変化、各吐出器の圧力変化、各吐出器の密度変化、各吐出器からの吐出流量及びこれらを合流させた吐出流体の流量を示す。The result of the numerical simulation of this invention is shown. Each drawing shows, in order from the top, the temperature change of the discharge fluid, the pressure change of each discharger, the density change of each discharger, the discharge flow rate from each discharger, and the flow rate of the discharge fluid that merges them. 二酸化炭素の定容加熱曲線(密度:896kg/m)を示す。A constant volume heating curve of carbon dioxide (density: 896 kg / m 3 ) is shown. 二酸化炭素の定圧加熱曲線(圧力:20MPa)を示す。A constant pressure heating curve (pressure: 20 MPa) of carbon dioxide is shown.

Claims (13)

熱媒流路内に形成された、1又はそれ以上の吐出器と、加熱器、冷却器を有し、該吐出器内のプロセス流体に、定容加熱、定圧加熱及び充填の各処理を繰り返すことにより、高圧プロセス流体が吐出される熱駆動型高圧媒体供給装置であって、1)各吐出器と加熱器、冷却器が、熱媒流路内で、全て直列で接続され、熱媒流路は単一の循環で、分岐や孤立がないように構成されているか、あるいは、2)熱媒流路は加熱系の循環と冷却系の循環のみで、加熱系は加熱器と被加熱吐出器の直列循環、冷却系は冷却器と被冷却吐出器の直列循環で、分岐や孤立がないように構成されていることを特徴とする熱駆動型高圧流体供給装置。 It has one or more dischargers formed in the heat medium flow path, a heater, and a cooler, and each process of constant volume heating, constant pressure heating and filling is repeated for the process fluid in the discharger. by, a heat-driven pressure medium supply device which high pressure process fluid is discharged, 1) the dispenser and heater, cooler, in the heat medium flow path, is connected with all the series, Netsunakadachiryu The path is configured as a single circulation, so that there is no branching or isolation, or 2) The heating medium flow path is only the circulation of the heating system and the circulation of the cooling system, and the heating system is the heater and the heated discharge The heat-driven high-pressure fluid supply device is characterized in that the serial circulation and cooling system of the cooler are configured by serial circulation of the cooler and the cooled discharger so that there is no branching or isolation . 各吐出器と加熱器、冷却器は、直列に接続されて加熱流路及び冷却流路を形成し、加熱・吐出を完了した吐出器は、冷却流路の最下流に接続され、充填過程を終了した吐出器は、加熱流路の最下流に接続されるように構成されている請求項1に記載の熱駆動型高圧流体供給装置。   Each discharger, heater, and cooler are connected in series to form a heating channel and cooling channel, and the discharger that has completed heating and discharging is connected to the most downstream side of the cooling channel, and the filling process is performed. The thermally driven high-pressure fluid supply apparatus according to claim 1, wherein the completed discharger is configured to be connected to the most downstream of the heating flow path. n個の吐出器を有する熱駆動型高圧流体供給装置において、第i番目(iは1〜nの整数)の吐出器の熱媒入口は、加熱器出口、冷却器出口、及び第i+1番目(i+1がn+1の時は1番目)の熱媒出口に接続され、第i番目の吐出器の熱媒出口は、加熱器入口、冷却器入り口、及び第i−1番目(i−1が0のときはn番目)の吐出器の熱媒入口に接続されている請求項1に記載の熱駆動型高圧流体供給装置。   In the heat-driven high-pressure fluid supply apparatus having n dischargers, the heat medium inlet of the i-th (i is an integer from 1 to n) discharger is the heater outlet, the cooler outlet, and the i + 1th ( When i + 1 is n + 1, it is connected to the first heat medium outlet, and the heat medium outlet of the i th discharger is the heater inlet, the cooler inlet, and the i−1 th (i−1 is 0). The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein the heat-driven high-pressure fluid supply apparatus is connected to a heat medium inlet of an n th discharger. 吐出器を冷却することにより、吐出器内にプロセス流体が充填される請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein a process fluid is filled in the discharger by cooling the discharger. プロセス流体貯蔵タンクと吐出器の高低のレベル差により、吐出器内にプロセス流体が充填される請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein the process fluid is filled in the discharger due to a difference in level between the process fluid storage tank and the discharger. プロセス流体をポンプ輸送することにより、吐出器内にプロセス流体が充填される請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein the process fluid is filled in the discharger by pumping the process fluid. 加熱器から直接加熱器へ循環可能な熱媒流路、及び冷却器から直接冷却器へ循環可能な熱媒流路を更に有し、加熱流路及び冷却流路が独立して形成される請求項1に記載の熱駆動型高圧流体供給装置。   A heating medium flow path that can be circulated from the heater directly to the heater, and a heat medium flow path that can be circulated from the cooler directly to the cooler are further provided, and the heating flow path and the cooling flow path are formed independently. Item 2. The heat-driven high-pressure fluid supply device according to item 1. 冷却器に流入する熱媒と加熱器に流入する熱媒との間で熱交換を行うことが可能な熱交換器が設けられている請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, further comprising a heat exchanger capable of exchanging heat between the heat medium flowing into the cooler and the heat medium flowing into the heater. 上記プロセス流体が、亜臨界ないし超臨界の流体である請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein the process fluid is a subcritical or supercritical fluid. 上記プロセス流体が、水又は二酸化炭素である請求項1に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 1, wherein the process fluid is water or carbon dioxide. 上記定容加熱が、温度250℃以下、圧力400MPa以下で行われる請求項10に記載の熱駆動型高圧流体供給装置。   The heat-driven high-pressure fluid supply apparatus according to claim 10, wherein the constant volume heating is performed at a temperature of 250 ° C. or less and a pressure of 400 MPa or less. 上記定圧加熱が、800℃以下で行われる請求項10に記載の熱駆動高圧流体供給装置。   The thermally driven high-pressure fluid supply apparatus according to claim 10, wherein the constant pressure heating is performed at 800 ° C or lower. 上記請求項1から12のいずれかに記載の熱駆動型高圧流体供給装置から供給される高圧流体を反応場とすることを特徴とする高圧流体利用装置。   13. A high-pressure fluid utilization apparatus characterized in that a high-pressure fluid supplied from the heat-driven high-pressure fluid supply apparatus according to any one of claims 1 to 12 is used as a reaction field.
JP2004359016A 2004-12-10 2004-12-10 Thermally driven supercritical fluid supply system Active JP4811984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359016A JP4811984B2 (en) 2004-12-10 2004-12-10 Thermally driven supercritical fluid supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359016A JP4811984B2 (en) 2004-12-10 2004-12-10 Thermally driven supercritical fluid supply system

Publications (2)

Publication Number Publication Date
JP2006167495A JP2006167495A (en) 2006-06-29
JP4811984B2 true JP4811984B2 (en) 2011-11-09

Family

ID=36668796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359016A Active JP4811984B2 (en) 2004-12-10 2004-12-10 Thermally driven supercritical fluid supply system

Country Status (1)

Country Link
JP (1) JP4811984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611376B2 (en) 2012-11-13 2017-04-04 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204407A (en) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology Method and apparatus for producing nitrogen-containing compound
JP5435875B2 (en) * 2008-01-18 2014-03-05 昭和電工ガスプロダクツ株式会社 High-temperature and high-pressure fluid processing test equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557588B2 (en) * 2001-10-26 2004-08-25 株式会社東北テクノアーチ Super / subcritical fluid processing system and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611376B2 (en) 2012-11-13 2017-04-04 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles

Also Published As

Publication number Publication date
JP2006167495A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5199517B2 (en) Thermoelectric energy storage system with intermediate storage tank and method for storing thermoelectric energy
JP3557588B2 (en) Super / subcritical fluid processing system and equipment
CA2804316C (en) Method of conversion of heat into fluid power and device for its implementation
KR101800081B1 (en) Supercritical CO2 generation system applying plural heat sources
KR20070075321A (en) Method for converting thermal energy into mechanical work
RU2673959C2 (en) System and method for energy regeneration of wasted heat
CN103477035A (en) Parallel cycle heat engines
WO2010135165A2 (en) Thermal energy storage apparatus
CN104121046A (en) Non-pump type organic Rankine cycle method and device for power generation
CA3010112C (en) Process and system for extracting useful work or electricity from thermal sources
JP2018512537A (en) Improved pinch point avoiding recuperator for supercritical carbon dioxide power generation system
US5638673A (en) Method and apparatus using hydrogen-occluded alloy for recovering power from waste heat
JP2013036456A (en) Temperature difference power generation apparatus
JP4811984B2 (en) Thermally driven supercritical fluid supply system
US8266918B2 (en) Refrigerant circulating pump, refrigerant circulating pump system, method of pumping refrigerant, and rankine cycle system
PL187114B1 (en) Enhanced heat exchange system
US20220235988A1 (en) Systems and Methods for Compressing Gas Using Heat as Energy Source
US10202874B2 (en) Supercritical CO2 generation system applying plural heat sources
CN105971680A (en) Working fluid for a device, device and method for converting heat into mechanical energy
US4954048A (en) Process and device for conveying boilable liquids
KR20170085851A (en) Supercritical CO2 generation system applying plural heat sources
RU2297578C1 (en) Method and device for controlled fluid transporting
KR102083867B1 (en) Power generating system for supercritical CO2
KR101939029B1 (en) Supercritical CO2 generation system applying plural heat sources
JP2003117509A (en) Cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350