JP4810805B2 - Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element - Google Patents

Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element Download PDF

Info

Publication number
JP4810805B2
JP4810805B2 JP2004220049A JP2004220049A JP4810805B2 JP 4810805 B2 JP4810805 B2 JP 4810805B2 JP 2004220049 A JP2004220049 A JP 2004220049A JP 2004220049 A JP2004220049 A JP 2004220049A JP 4810805 B2 JP4810805 B2 JP 4810805B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituent
ring
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004220049A
Other languages
Japanese (ja)
Other versions
JP2005060382A (en
Inventor
昌義 矢部
武 塩谷
秀樹 佐藤
誠治 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004220049A priority Critical patent/JP4810805B2/en
Publication of JP2005060382A publication Critical patent/JP2005060382A/en
Application granted granted Critical
Publication of JP4810805B2 publication Critical patent/JP4810805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Indole Compounds (AREA)

Description

本発明は新規な有機化合物、電荷輸送材料に関するものであり、詳しくは高耐熱性で、かつ電気的な酸化や還元を受けても安定な有機化合物、電荷輸送材料に関するものである。
The present invention relates to a novel organic compound, relates the charge transport material, more particularly a high heat resistance, and electrical oxidation and reduction receiving stable organic compounds also relates the charge transport material.

従来、薄膜型の電界発光(EL)素子としては、無機材料のII−VI族化合物半導体であるZnS、CaS、SrS等に、発光中心であるMnや希土類元素(Eu、Ce、Tb、Sm等)をドープしたものが一般的であるが、上記の無機材料から作製したEL素子は、
1)交流駆動が必要(50〜1000Hz)、
2)駆動電圧が高い(〜200V)、
3)フルカラー化が困難(特に青色)、
4)周辺駆動回路のコストが高い、という問題点を有している。
Conventionally, as a thin film type electroluminescent (EL) element, ZnS, CaS, SrS, etc., which are inorganic material II-VI compound semiconductors, Mn or rare earth elements (Eu, Ce, Tb, Sm, etc.) that are emission centers. ) Is generally used, but an EL element made from the above inorganic material is
1) AC drive is required (50-1000Hz),
2) High driving voltage (~ 200V),
3) Full color is difficult (especially blue),
4) There is a problem that the cost of the peripheral drive circuit is high.

しかし、近年、上記問題点の改良のため、有機薄膜を用いたEL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からのキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンから成る正孔輸送層と8−ヒドロキシキノリンのアルミニウム錯体から成る発光層とを設けた有機電界発光素子の開発(Appl. Phys. Lett., 51巻, 913頁,1987年)により、従来のアントラセン等の単結晶を用いたEL素子と比較して発光効率の大幅な改善がなされている。また、例えば、8−ヒドロキシキノリンのアルミニウム錯体をホスト材料として、クマリン等のレーザー用蛍光色素をドープすること(J. Appl. Phys., 65巻, 3610頁,1989年)で、発光効率の向上や発光波長の変換等も行われており、実用特性に近づいている。   However, in recent years, EL devices using organic thin films have been developed to improve the above problems. In particular, in order to improve luminous efficiency, the type of electrode is optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transporting layer made of aromatic diamine and a light emitting layer made of 8-hydroxyquinoline aluminum complex, (Appl. Phys. Lett., 51, 913, 1987) significantly improves luminous efficiency compared to conventional EL devices using single crystals such as anthracene. Has been made. Further, for example, by using an aluminum complex of 8-hydroxyquinoline as a host material and doping a fluorescent dye for laser such as coumarin (J. Appl. Phys., 65, 3610, 1989), luminous efficiency is improved. In addition, conversion of light emission wavelength and the like are also being performed, which is approaching practical characteristics.

上記の様な低分子材料を用いた電界発光素子の他にも、発光層の材料として、ポリ(p−フェニレンビニレン)、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン]、ポリ(3−アルキルチオフェン)等の高分子材料を用いた電界発光素子の開発や、ポリビニルカルバゾール等の高分子に低分子の発光材料と電子移動材料を混合した素子の開発も行われている。   In addition to the electroluminescent device using the low molecular weight material as described above, as the material of the light emitting layer, poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4 Development of electroluminescent devices using polymer materials such as -phenylene vinylene] and poly (3-alkylthiophene), and devices that mix low molecular light emitting materials and electron transfer materials with polymers such as polyvinyl carbazole. Has been done.

素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。燐光を用いる、即ち、三重項励起状態からの発光を利用すれば、従来の蛍光(一重項)を用いた素子と比べて、3倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されたが(非特許文献1参照)、極めて低い輝度しか得られなかった。その後、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。   As an attempt to increase the luminous efficiency of the device, the use of phosphorescence instead of fluorescence has been studied. If phosphorescence is used, that is, light emission from a triplet excited state is used, an efficiency improvement of about three times is expected as compared with a conventional device using fluorescence (singlet). For this purpose, it has been studied to use a coumarin derivative or a benzophenone derivative as a light emitting layer (see Non-Patent Document 1), but only a very low luminance was obtained. Thereafter, the use of a europium complex has been studied as an attempt to utilize the triplet state, but this also did not lead to highly efficient light emission.

最近、以下に示す白金錯体(T−1)を用いることで、高効率の赤色発光が可能なことが報告された(非特許文献2参照)。その後、以下に示すイリジウム錯体(T−2)を発光層にドープすることで、さらに緑色発光で効率が大きく改善されている(非特許文献3参照)。   Recently, it has been reported that highly efficient red light emission is possible by using the following platinum complex (T-1) (see Non-Patent Document 2). Then, the efficiency is greatly improved by further green light emission by doping the light emitting layer with the iridium complex (T-2) shown below (see Non-Patent Document 3).

Figure 0004810805
Figure 0004810805

有機電界発光素子をフラットパネル・ディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。
しかしながら、前述の文献に記載の燐光分子(T−2)を用いた有機電界発光素子は、高効率発光ではあるが、駆動安定性が実用には不十分であり(非特許文献4参照)、高効率な表示素子の実現は困難な状況である。
上記の駆動劣化の主原因は、発光層の劣化によると推定される。
電極から注入された電荷はある確率で電子−正孔対(励起子)となる。また、一般に三重項励起子による発光(燐光)は一重項励起子による発光(蛍光)に比べその寿命が長く、逆に、熱的な安定性は一重項励起子の方が三重項励起子よりも高い。ここで素子に引加する電流が増えると発光層に注入される電荷は増え、それに伴い励起子とならない電荷の量も増加する。また励起子となったものの中でも発光層中で発光に寄与せず熱失活するものが増加する。そのため発光層の温度が上昇し、特に三重項励起子は一重項励起子と比較して熱的安定性に劣ることから、素子が劣化すると考えられる。このことは燐光分子(T−2)を用いた有機電界発光素子の発光効率が注入電流の上昇とともに大きく低下する事からも推定される(非特許文献3参照)。
In order to apply the organic electroluminescence device to a display device such as a flat panel display, it is necessary to improve the light emission efficiency of the device and at the same time to ensure sufficient stability during driving.
However, the organic electroluminescent element using the phosphorescent molecule (T-2) described in the above-mentioned document has high efficiency light emission, but has insufficient driving stability for practical use (see Non-Patent Document 4). Realization of a highly efficient display element is a difficult situation.
It is estimated that the main cause of the drive deterioration is due to deterioration of the light emitting layer.
The charge injected from the electrode becomes an electron-hole pair (exciton) with a certain probability. In general, light emission (phosphorescence) by triplet excitons has a longer lifetime than light emission (fluorescence) by singlet excitons. Conversely, thermal stability of singlet excitons is higher than that of triplet excitons. Is also expensive. Here, when the current applied to the element increases, the charge injected into the light emitting layer increases, and accordingly, the amount of charges that do not become excitons also increases. Further, among those that have become excitons, those that do not contribute to light emission in the light emitting layer and are thermally deactivated increase. For this reason, the temperature of the light emitting layer is increased, and in particular, triplet excitons are inferior in thermal stability to singlet excitons, so that the device is considered to deteriorate. This is also presumed from the fact that the luminous efficiency of the organic electroluminescent element using phosphorescent molecules (T-2) greatly decreases with the increase in injection current (see Non-Patent Document 3).

これまでに開発された燐光分子を用いた有機電界発光素子の多くは、発光層のホストとして カルバゾリル基を含む材料を用いることを特徴としている。例えば、非特許文献3ではホスト材料として以下に示すビフェニル誘導体を用いている。   Many of the organic electroluminescence devices using phosphorescent molecules developed so far are characterized by using a material containing a carbazolyl group as a host of the light emitting layer. For example, Non-Patent Document 3 uses the following biphenyl derivatives as host materials.

Figure 0004810805
Figure 0004810805

しかし、上記(H−1)は非常に結晶化しやすく、Tgも低いため、膜の安定性が悪いことが知られている上、素子としての発光効率も十分満足のいくものではなかった。
また、特許文献1には、ホスト材料として以下に示す化合物(H−2)が開示されている。
However, since the above (H-1) is very easy to crystallize and Tg is low, it is known that the stability of the film is poor, and the luminous efficiency as an element is not sufficiently satisfactory.
Patent Document 1 discloses a compound (H-2) shown below as a host material.

Figure 0004810805
Figure 0004810805

しかし上記化合物は、製膜性に優れているものの、耐熱性の点で重大な課題を有する。
また、特許文献2には、有機電界発光素子の材料として、以下の化合物などが示唆されている。
However, although the above compound is excellent in film forming property, it has a serious problem in terms of heat resistance.
Patent Document 2 suggests the following compounds and the like as materials for organic electroluminescent elements.

Figure 0004810805
Figure 0004810805

これらの化合物の合成および評価例は明記されてないが、該文献の実施例を見るかぎり、この様な化合物は高電圧下でしか発光が観測されず、肝心な発光輝度、発光効率も全く不十分であり、実用にほど遠いものであった。
非特許文献5には、以下の化合物(H−3)が新規な蛍光材料として開示されているが、該化合物は溶解性が極めて悪く、精製、特性解析などが極めて困難なものであった。
Although the synthesis and evaluation examples of these compounds are not specified, as far as the examples in the literature are concerned, such compounds emit light only under a high voltage, and the essential light emission luminance and light emission efficiency are completely absent. It was sufficient and far from practical use.
Non-Patent Document 5 discloses the following compound (H-3) as a novel fluorescent material, but the compound has extremely poor solubility and is extremely difficult to purify and characterize.

Figure 0004810805
Figure 0004810805

更に該文献には、(H−3)の溶解性を改善する目的で、6つのN−カルバゾリル基の3,6−位に計12本の長鎖アルキル基を導入した化合物(図示せず)が開示され、その特異的な光励起発光特性が報告されている。
しかしながら、長鎖アルキル基は分子運動が大きく、この様な基を多数有する化合物は、発光材料としては発光効率の点で不利である。また、該化合物の電界発光特性などについての検討は全くなされていない。
上述の理由から、特に燐光分子を用いた有機電界発光素子においては、特にその材料面において、実用化に向けての素子の耐熱性と発光効率に大きな問題を抱えているのが実状である。
特表2003−515897号公報 特開平6−1972号公報 第51回応用物理学会連合講演会、28a-PB-7、1990年 Nature, 395巻,151頁,1998年 Appl. Phys. Lett., 75巻,4頁,1999 Jpn. J. Appl. Phys., 38巻,L1502頁,1999年 Chemical Physics Letters, 289(1998), 13-18
Further, in this document, for the purpose of improving the solubility of (H-3), a compound in which a total of 12 long-chain alkyl groups are introduced at the 3,6-positions of 6 N-carbazolyl groups (not shown) Have been disclosed and their specific photoexcited emission properties have been reported.
However, long-chain alkyl groups have large molecular motion, and a compound having many such groups is disadvantageous in terms of luminous efficiency as a light-emitting material. In addition, no study has been made on the electroluminescence characteristics of the compound.
For the reasons described above, in particular, organic electroluminescent devices using phosphorescent molecules have a serious problem in the heat resistance and luminous efficiency of the device for practical use, particularly in terms of the material.
Special table 2003-515897 gazette JP-A-6-1972 The 51st Japan Society of Applied Physics, 28a-PB-7, 1990 Nature, 395, 151, 1998 Appl. Phys. Lett., 75, 4, pp. 1999 Jpn. J. Appl. Phys., 38, L1502, 1999 Chemical Physics Letters, 289 (1998), 13-18

本発明者は上記実状に鑑み、高効率かつ高い駆動安定性を有する有機電界発光素子を提供することを目的として鋭意検討した結果、特に発光層に、特定の化合物を用いることで、上記課題を解決することができることを見出し、本発明を完成するに至った。   As a result of intensive studies aimed at providing an organic electroluminescence device having high efficiency and high driving stability in view of the above situation, the present inventor has solved the above problem by using a specific compound particularly in the light emitting layer. The inventors have found that the problem can be solved and have completed the present invention.

本発明者らが鋭意検討した結果、ある骨格を有する化合物が上記諸課題を解決できることを見いだし、本発明に至った。
即ち本発明は、下記一般式(I)で表わされる有機化合物を含んでなる電荷輸送材料、有機電界発光素子材料、および該化合物を含む層を有する有機電界発光素子に存する。
As a result of intensive studies by the present inventors, it has been found that a compound having a certain skeleton can solve the above-mentioned problems, and has led to the present invention.
That is, the present invention resides in the organic electroluminescent device having a charge transport material comprising an organic compound represented by the following general formula (I), the organic electroluminescent element material, and a layer containing the compound.

Figure 0004810805
Figure 0004810805

(式中、環Aは5又は6員環の単環又は2〜5縮合環からなる芳香族炭化水素環、または5又は6員環の単環又は2〜4縮合環からなる芳香族複素環を表し、nは3以上の整数を表す。
該環Aは、隣接した3以上の置換位置に、−NR12基を有し、かつ、1以上の置換位置が、無置換であるか、或いは炭素数1〜8の直鎖または分岐のアルキル基、炭素数2〜9のアルケニル基、炭素数2〜9のアルキニル基、炭素数7〜15のアラルキル基、置換基を有していてもよい炭素数1〜8のアルキル基を1つ以上有するアルキルアミノ基、置換基を有していてもよい炭素数6〜12の芳香族炭化水素基を有するアリールアミノ基、置換基を有していてもよい5または6員環の芳香族複素環基を有するヘテロアリールアミノ基、置換基を有していてもよい炭素数2〜10のアシル基を有するアシルアミノ基、置換基を有していてもよい炭素数1〜8のアルコキシ基、炭素数6〜12の芳香族炭化水素基を有するアリールオキシ基、5または6員環の芳香族環基を有するヘテロアリールオキシ基、置換基を有していてもよい炭素数2〜10のアシル基、置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基、置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基、炭素数2〜10のアルキルカルボニルオキシ基、カルボキシル基、シアノ基、水酸基、メルカプト基、炭素数1〜8のアルキルチオ基、炭素数6〜12のアリールチオ基、置換基を有していてもよいスルホニル基、置換基を有していてもよいシリル基、置換基を有していてもよいボリル基、置換基を有していてもよいホスフィノ基、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基よりなる群から選ばれる基にて置換されている。また、一分子中に含まれるn個の−NR12基はそれぞれ同一であっても、異なっていてもよい。但し、−NR基は、いずれも下記式R−27で表される基である。)

Figure 0004810805
(式中、LおよびLは水素原子または、炭素数1〜6のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基、およびフェニル基よりなる群から選ばれる置換基を表す。) (In the formula, ring A is a 5- or 6-membered monocyclic ring or an aromatic hydrocarbon ring composed of 2 to 5 condensed rings, or a 5- or 6-membered monocyclic ring or an aromatic heterocyclic ring composed of 2 to 4 condensed rings. N represents an integer of 3 or more.
The ring A has a —NR 1 R 2 group at three or more adjacent substitution positions, and one or more substitution positions are unsubstituted, or a linear or branched group having 1 to 8 carbon atoms. An alkyl group having 2 to 9 carbon atoms, an alkynyl group having 2 to 9 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, and an alkyl group having 1 to 8 carbon atoms which may have a substituent. An alkylamino group having one or more, an arylamino group having an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms, an optionally substituted 5- or 6-membered aromatic ring A heteroarylamino group having a heterocyclic group, an acylamino group having an acyl group having 2 to 10 carbon atoms which may have a substituent, an alkoxy group having 1 to 8 carbon atoms which may have a substituent, Aryloxy group having an aromatic hydrocarbon group having 6 to 12 carbon atoms A heteroaryloxy group having a 5- or 6-membered aromatic ring group, an optionally substituted acyl group having 2 to 10 carbon atoms, and an optionally substituted substituent having 2 to 10 carbon atoms Alkoxycarbonyl group, optionally substituted aryloxycarbonyl group having 7 to 13 carbon atoms, alkylcarbonyloxy group having 2 to 10 carbon atoms, carboxyl group, cyano group, hydroxyl group, mercapto group, 1 to carbon atoms An alkylthio group having 8 carbon atoms, an arylthio group having 6 to 12 carbon atoms, a sulfonyl group which may have a substituent, a silyl group which may have a substituent, a boryl group which may have a substituent, In a group selected from the group consisting of an optionally substituted phosphino group, an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group Has been replaced. Further, the n —NR 1 R 2 groups contained in one molecule may be the same or different. However, the —NR 1 R 2 group is a group represented by the following formula R-27. )
Figure 0004810805
(In the formula, L 1 and L 2 are a hydrogen atom , an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. It represents a substituent selected from the group consisting of a dialkylamino group having an alkyl chain, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group .)

一般式(I)で表される化合物は、環A上の隣接した3個以上の置換位置に、連続して−NR12基が結合する。環Aと実質的に同一平面上にある非常に近接した位置に3つ以上、より好ましくは4つ以上、更に好ましくは5つ以上の窒素原子(−NR12基)が連続的に並ぶことによって、優れた電荷輸送性と電気的酸化還元耐久性が発現される。また、少なくとも1以上の置換位置に、水素原子または−NR12基とは異なる基が結合することにより、分子の対称性が低下し、溶解性が向上する。
なお本発明において、「置換位置」とは、環Aについて無置換の状態を仮定した時に、水素原子が結合されている位置、即ち置換可能な位置を意味する。
In the compound represented by formula (I), —NR 1 R 2 groups are successively bonded to three or more adjacent substitution positions on ring A. Three or more, more preferably four or more, and even more preferably five or more nitrogen atoms (-NR 1 R 2 groups) are continuously arranged at very close positions substantially in the same plane as ring A. As a result, excellent charge transportability and electrical redox durability are exhibited. In addition, when a hydrogen atom or a group different from the —NR 1 R 2 group is bonded to at least one or more substitution positions, the symmetry of the molecule is lowered and the solubility is improved.
In the present invention, the “substitution position” means a position where a hydrogen atom is bonded, that is, a substitutable position, assuming that the ring A is not substituted.

本発明の有機化合物を用いた有機電界発光素子の発光層によれば、低電圧において高輝度・高効率で発光させることが可能となり、さらには素子の安定性が向上する。
また、優れた耐熱性、製膜性、電荷輸送性、発光特性から、素子の層構成に合わせて、発光材料、正孔注入材、正孔輸送材、電子注入材、電子輸送材、正孔阻止材、電子阻止材などとしても適用可能である。
従って、本発明による有機電界発光素子はフラットパネル・ディスプレイ(例えばOAコンピュータ用や壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。
また、本発明の有機化合物は、本質的に優れた酸化還元安定性を有することから、電子写真感光体などにも有用である。
According to the light emitting layer of the organic electroluminescent element using the organic compound of the present invention, it is possible to emit light with high luminance and high efficiency at a low voltage, and further, the stability of the element is improved.
In addition, due to its excellent heat resistance, film-forming property, charge transportability, and light emission characteristics, it can be used in accordance with the layer structure of the device, light emitting material, hole injection material, hole transport material, electron injection material, electron transport material, hole It can also be applied as a blocking material, an electronic blocking material, or the like.
Therefore, the organic electroluminescent device according to the present invention is a flat panel display (for example, for OA computers and wall-mounted televisions), an in-vehicle display device, a light source utilizing characteristics of a mobile phone display or a surface light emitter (for example, a light source of a copying machine, It can be applied to liquid crystal displays and back light sources for instruments, display panels, and indicator lights, and its technical value is great.
The organic compound of the present invention is also useful for electrophotographic photoreceptors and the like because of its inherently excellent redox stability.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されない。
本発明の有機化合物は、下記一般式(I)で表される。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents.
The organic compound of the present invention is represented by the following general formula (I).

Figure 0004810805
Figure 0004810805

(式中、環Aは任意の芳香族環を表し、nは3以上の整数を表す。
該環Aは、隣接した3以上の置換位置に、−NR12基(但し、R1およびR2は、各々独立に任意の置換基を表すか、あるいは互いに結合して置換基を有していてもよい環状アミノ基を形成する。)を有し、かつ、1以上の置換位置が、無置換であるか、或いは該−NR12基とは異なる任意の基に置換されている。また、一分子中に含まれるn個の−NR12基は、それぞれ同一であっても異なっていてもよい。)
−NR12基におけるN原子は、同一分子中に存在する他の−NR12基におけるN原子と、電気的(含、静電的)に分子内相互作用可能な距離に位置していることが重要である。好ましくは、2つの窒素原子のファンデアワールス半径の和と略等しいか、それ以下の距離である。かつ、近接しすぎて環Aが変形をしたり、環Aと−NR12基との結合距
離が延びたり、結合角が著しく変化したりして、化合物が有する利用機能としての電気的酸化還元に対する繰返し安定性を損なわないよう、ある程度距離が離れていることも重要である。この観点から、該N−N間距離は、好ましくは1.5オングストローム以上であり、より好ましくは2.0オングストローム以上であり、更に好ましくは2.5オングストローム以上である。また、好ましくは5.0オングストローム以下であり、より好ましくは4.0オングストローム以下であり、更に好ましくは3.5オングストローム以下である。
(In the formula, ring A represents an arbitrary aromatic ring, and n represents an integer of 3 or more.
The ring A has a —NR 1 R 2 group (provided that R 1 and R 2 each independently represents an arbitrary substituent, or are bonded to each other to have a substituent at three or more adjacent substitution positions. And one or more substitution positions are unsubstituted or substituted with an arbitrary group different from the —NR 1 R 2 group. Yes. Further, the n —NR 1 R 2 groups contained in one molecule may be the same or different. )
-NR 1 N atom in R 2 groups, and N atoms in addition to -NR 1 R 2 group present in the same molecule, electrical (including, electrostatic) positioned intramolecular interactions possible distance It is important that Preferably, the distance is approximately equal to or less than the sum of van der Waals radii of two nitrogen atoms. In addition, the ring A is deformed by being too close, the bond distance between the ring A and the —NR 1 R 2 group is extended, or the bond angle is remarkably changed. It is also important that the distance is some distance so as not to impair the repeated stability against redox. From this viewpoint, the N-N distance is preferably 1.5 angstroms or more, more preferably 2.0 angstroms or more, and further preferably 2.5 angstroms or more. Further, it is preferably 5.0 angstroms or less, more preferably 4.0 angstroms or less, and further preferably 3.5 angstroms or less.

尚、前記N−N間距離とは、通常のMM2計算手法(例えば、M.J.Dudek, J.W.Ponder共著、「J. Comput. Chem.」(16, 791−816 (1995))参照))を用いて、本発明の有機化合物の最安定構造を導くことによって得られる、各原子間の空間位置から算出される値を指す。
本発明の化合物は、−NR12基を一分子中にn個有しており、nは3以上の整数である。好ましくは10以下、より好ましくは8以下、最も好ましくは6以下である。上限を越えると、蒸着による製膜が困難となったり、合成による副生成物の増加や生成物の溶解性低下により材料の高純度化が困難となるおそれがあり好ましくない。
本発明記載のR1およびR2としては、任意の基を適用可能であり、互いに同一であっても異なっていてもよい。例示するならば、
置換基を有していてもよいアルキル基(好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。)、
置換基を有していてもよいアルケニル基(好ましくは、炭素数2から9のアルケニル基であり、例えばビニル、アリル、1−ブテニル基などが挙げられる。)、
The NN distance is a normal MM2 calculation method (for example, “J. Compute. Chem.” (16, 791-816 (1995)), co-authored by M. J. Dudek and J. W. Ponder. And the value calculated from the spatial position between the atoms obtained by deriving the most stable structure of the organic compound of the present invention.
The compound of the present invention has n —NR 1 R 2 groups in one molecule, and n is an integer of 3 or more. Preferably it is 10 or less, more preferably 8 or less, and most preferably 6 or less. Exceeding the upper limit is not preferable because film formation by vapor deposition is difficult, and it is difficult to increase the purity of the material due to an increase of by-products by synthesis and a decrease in solubility of the product.
Arbitrary groups can be applied as R 1 and R 2 in the present invention, and they may be the same or different from each other. To illustrate,
An alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, tert, -Butyl group and the like).
An alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, such as vinyl, allyl, 1-butenyl group, etc.),

置換基を有していてもよいアルキニル基(好ましくは、炭素数2から9のアルキニル基であり、例えばエチニル、プロパルギル基などが挙げられる。)、
置換基を有していてもよいアラルキル基(好ましくは、炭素数7から15のアラルキル基であり、例えばベンジル基などが挙げられる。)、
置換基を有していてもよいアシル基(好ましくは、置換基を有していてもよい炭素数2〜10のアシル基であり、例えばホルミル、アセチル、ベンゾイル基などが含まれる)、
An alkynyl group which may have a substituent (preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups);
An aralkyl group which may have a substituent (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group);
An acyl group which may have a substituent (preferably an acyl group having 2 to 10 carbon atoms which may have a substituent, for example, a formyl, acetyl, benzoyl group, etc.),

置換基を有していてもよいアルコキシカルボニル基(好ましくは置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニル基などが含まれる)、
置換基を有していてもよいアリールオキシカルボニル基(好ましくは置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基であり、例えばフェノキシカルボニル基などが含まれる)、
置換基を有していてもよいアルキルカルボニルオキシ基(好ましくは置換基を有していてもよい炭素数2〜10のアルキルカルボニルオキシ基であり、例えばアセトキシ基などが含まれる)、
カルボキシル基、
An alkoxycarbonyl group which may have a substituent (preferably an alkoxycarbonyl group having 2 to 10 carbon atoms which may have a substituent, including, for example, methoxycarbonyl and ethoxycarbonyl groups),
An aryloxycarbonyl group which may have a substituent (preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, such as a phenoxycarbonyl group);
An alkylcarbonyloxy group which may have a substituent (preferably an alkylcarbonyloxy group having 2 to 10 carbon atoms which may have a substituent, including, for example, an acetoxy group),
Carboxyl group,

置換基を有していてもよい芳香族炭化水素基(例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が含まれる)
または置換基を有していてもよい芳香族複素環基(例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、
フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が含まれる)などが挙げられる。
An aromatic hydrocarbon group which may have a substituent (for example, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, etc. A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring is included)
Or an aromatic heterocyclic group which may have a substituent (for example, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, Pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring,
Furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, benzimidazole ring And monovalent groups derived from 5- or 6-membered monocyclic rings or 2-4 condensed rings such as perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring).

上述した各基が有しうる置換基としては、具体例中にも記載したが、例えば炭素数1〜6程度のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子(特にフッ素原子または塩素原子)、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基およびフェニル基などが挙げられる。
前記一般式(I)において、同一分子中の複数の−NR12基間で生じる、N原子同士の分子内相互作用に加えて、R1同士、R2同士またはR1−R2間での分子内相互作用をも得られ、電荷輸送性と電気的酸化還元耐久性の向上が得られる点から、R1およびR2としては、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基が好ましく、置換基を有していてもよい芳香族炭化水素基がより好ましい。
中でも特に、以下に示す基が好ましいが、これらに限定されるものではない。
Examples of the substituent that each of the above-described groups may have are described in the specific examples. For example, an alkyl group having about 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom (particularly a fluorine atom or chlorine). Atom), an alkenyl group having 2 to 6 carbon atoms, a dialkylamino group having an alkyl chain having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group.
In the general formula (I), in addition to intramolecular interactions between N atoms occurring between a plurality of —NR 1 R 2 groups in the same molecule, R 1 to each other, R 2 to each other, or R 1 to R 2 R 1 and R 2 are aromatic hydrocarbons which may have a substituent from the viewpoint that an intramolecular interaction at the same temperature can be obtained, and an improvement in charge transportability and electrical redox durability can be obtained. An aromatic heterocyclic group which may have a group or a substituent is preferable, and an aromatic hydrocarbon group which may have a substituent is more preferable.
Among them, the following groups are particularly preferable, but are not limited thereto.

Figure 0004810805
Figure 0004810805

上記各基のうち、適度な酸化還元電位差を有する観点から、より好ましくはR−1,R−2,R−3,R−8であり、R−1,R−2,R−8が更に好ましい。
一方、本発明の有機化合物は、不必要な分子運動による励起子の無放射失活(熱失活)を抑制して発光量子効率を向上させる観点からは、−NR12基はR1とR2が直接または連結基を介して連結されて、環を形成している場合(以下、環状−NR12基と称す。)が好ましい。N原子同士の分子内相互作用に加えて、環状−NR12同士での分子内相互作用をも得られ、電荷輸送性と電気的酸化還元耐久性の向上が得られるという点で、−NR12は、自らに含まれるN原子上の非共有電子対と共役可能なπ電子を有している場合がより好ましく、基全体としては芳香族基(芳香族炭化水素基および芳香族複素環基)である場合が好ましい。
環状−NR12として、上述の観点からより好ましい環基を、以下に示すが、これらに限定されるものではない。
Among the above groups, R-1, R-2, R-3, and R-8 are more preferable from the viewpoint of having an appropriate redox potential difference, and R-1, R-2, and R-8 are more preferable. preferable.
On the other hand, in the organic compound of the present invention, from the viewpoint of improving the emission quantum efficiency by suppressing nonradiative deactivation (thermal deactivation) of excitons due to unnecessary molecular motion, the —NR 1 R 2 group is R 1. And R 2 are linked directly or via a linking group to form a ring (hereinafter referred to as cyclic —NR 1 R 2 group). In addition to the intramolecular interaction between N atoms, an intramolecular interaction between cyclic —NR 1 R 2 can be obtained, and the improvement in charge transportability and electrical redox durability can be achieved. More preferably, NR 1 R 2 has a π electron that can be conjugated with an unshared electron pair on the N atom contained in itself, and the group as a whole is an aromatic group (aromatic hydrocarbon group and aromatic group). A heterocyclic group is preferred.
As cyclic -NR 1 R 2 , more preferable cyclic groups from the above viewpoint are shown below, but are not limited thereto.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

上記各構造中、L1およびL2は、水素原子あるいは、R1およびR2が有しうる置換基として挙げた基に代表される、任意の置換基を表す。なお、上記環状−NR12基は、L1
およびL2以外にも任意の置換基を有していても良い。
上記各基のうち、適度な酸化還元電位差を有する点、および電気的酸化還元に対する安定性の点からは、R−14,R−15,R−16,R−21,R−22,R−24,R−27,R−32,R−39,およびR−40がより好ましく、R−14,R−16,R−21,R−22,R−27,R−40が更に好ましく、R−14,R−27が一層好ましく、R−27が最も好ましい。
In each of the above structures, L 1 and L 2 represent a hydrogen atom or an arbitrary substituent represented by a group exemplified as a substituent that R 1 and R 2 may have. The cyclic -NR 1 R 2 group is L 1
In addition to L 2 , it may have an arbitrary substituent.
Among the above groups, R-14, R-15, R-16, R-21, R-22, R- from the viewpoint of having an appropriate redox potential difference and stability against electrical redox. 24, R-27, R-32, R-39, and R-40 are more preferable, R-14, R-16, R-21, R-22, R-27, and R-40 are more preferable. -14, R-27 is more preferred, and R-27 is most preferred.

環状−NR12は、任意の置換基を有してもよく、例えば、
置換基を有していてもよいアルキル基(好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。)、
置換基を有していてもよいアルケニル基(好ましくは、炭素数2から9のアルケニル基であり、例えばビニル、アリル、1−ブテニル基などが挙げられる。)、
置換基を有していてもよいアルキニル基(好ましくは、炭素数2から9のアルキニル基であり、例えばエチニル、プロパルギル基などが挙げられる。)、
置換基を有していてもよいアラルキル基(好ましくは、炭素数7から15のアラルキル基であり、例えばベンジル基などが挙げられる。)、
置換基を有していてもよいアミノ基
Cyclic —NR 1 R 2 may have any substituent, for example
An alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, tert, -Butyl group and the like).
An alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, such as vinyl, allyl, 1-butenyl group, etc.),
An alkynyl group which may have a substituent (preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups);
An aralkyl group which may have a substituent (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group);
An amino group optionally having a substituent

[好ましくは、置換基を有していてもよい炭素数1から8のアルキル基を1つ以上有するアルキルアミノ基(例えばメチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ基などが挙げられる。)、
置換基を有していてもよい、炭素数6〜12の芳香族炭化水素基を有するアリールアミノ基(例えばフェニルアミノ、ジフェニルアミノ、ジトリルアミノ基などが挙げられる。)、
置換基を有していてもよい、5または6員環の芳香族複素環基を有するヘテロアリールアミノ基(例えばピリジルアミノ、チエニルアミノ、ジチエニルアミノ基などが含まれる。)、
置換基を有していてもよい、炭素数2〜10のアシル基を有するアシルアミノ基(例えばアセチルアミノ、ベンゾイルアミノ基などが含まれる。)]、
[Preferably, an alkylamino group having one or more alkyl groups having 1 to 8 carbon atoms which may have a substituent (for example, methylamino, dimethylamino, diethylamino, dibenzylamino group, etc.),
An arylamino group having an aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent (for example, phenylamino, diphenylamino, ditolylamino group, etc.);
A heteroarylamino group having a 5- or 6-membered aromatic heterocyclic group which may have a substituent (for example, pyridylamino, thienylamino, dithienylamino group, etc.);
An acylamino group having an acyl group having 2 to 10 carbon atoms which may have a substituent (for example, acetylamino, benzoylamino group and the like are included)],

置換基を有していてもよいアルコキシ基(好ましくは置換基を有していてもよい炭素数1〜8のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ基などが含まれる)、
置換基を有していてもよいアリールオキシ基(好ましくは炭素数6〜12の芳香族炭化水素基を有するものであり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ基などが含まれる。)、
置換基を有していてもよいヘテロアリールオキシ基(好ましくは5または6員環の芳香族複素環基を有するものであり、例えばピリジルオキシ、チエニルオキシ基などが含まれる)、
置換基を有していてもよいアシル基(好ましくは、置換基を有していてもよい炭素数2〜10のアシル基であり、例えばホルミル、アセチル、ベンゾイル基などが含まれる)、
An alkoxy group which may have a substituent (preferably an alkoxy group having 1 to 8 carbon atoms which may have a substituent, for example, a methoxy, ethoxy, butoxy group, etc.);
An aryloxy group which may have a substituent (preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy group, etc. ),
An optionally substituted heteroaryloxy group (preferably having a 5- or 6-membered aromatic heterocyclic group, including, for example, pyridyloxy, thienyloxy groups),
An acyl group which may have a substituent (preferably an acyl group having 2 to 10 carbon atoms which may have a substituent, for example, a formyl, acetyl, benzoyl group, etc.),

置換基を有していてもよいアルコキシカルボニル基(好ましくは置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニル基などが含まれる)、置換基を有していてもよいアリールオキシカルボニル基(好ましくは置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基であり、例えばフェノキシカルボニル基などが含まれる)、
置換基を有していてもよいアルキルカルボニルオキシ基(好ましくは置換基を有していてもよい炭素数2〜10のアルキルカルボニルオキシ基であり、例えばアセトキシ基などが含まれる)、
カルボキシル基、
シアノ基、
水酸基、
メルカプト基、
An alkoxycarbonyl group which may have a substituent (preferably an alkoxycarbonyl group having 2 to 10 carbon atoms which may have a substituent, including methoxycarbonyl, ethoxycarbonyl group, etc.), substituted An aryloxycarbonyl group which may have a group (preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, such as a phenoxycarbonyl group),
An alkylcarbonyloxy group which may have a substituent (preferably an alkylcarbonyloxy group having 2 to 10 carbon atoms which may have a substituent, including, for example, an acetoxy group),
Carboxyl group,
A cyano group,
Hydroxyl group,
Mercapto group,

置換基を有していてもよいアルキルチオ基(好ましくは炭素数1〜8までのアルキルチ
オ基であり、例えば、メチルチオ基、エチルチオ基などが含まれる。)、
置換基を有していてもよいアリールチオ基(好ましくは炭素数6〜12までのアリールチオ基であり、例えば、フェニルチオ基、1―ナフチルチオ基などが含まれる。)、
置換基を有していてもよいスルホニル基(例えばメシル基、トシル基などが含まれる)、
置換基を有していてもよいシリル基(例えばトリメチルシリル基、トリフェニルシリル基などが含まれる)、
置換基を有していてもよいボリル基(例えばジメシチルボリル基などが含まれる)、
置換基を有していてもよいホスフィノ基(例えばジフェニルホスフィノ基などが含まれる)、
置換基を有していてもよい芳香族炭化水素基(例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が含まれる)
An alkylthio group which may have a substituent (preferably an alkylthio group having 1 to 8 carbon atoms, including, for example, a methylthio group, an ethylthio group, etc.);
An arylthio group which may have a substituent (preferably an arylthio group having 6 to 12 carbon atoms, including, for example, a phenylthio group, a 1-naphthylthio group, etc.);
A sulfonyl group which may have a substituent (for example, mesyl group, tosyl group and the like are included),
A silyl group which may have a substituent (for example, a trimethylsilyl group, a triphenylsilyl group, etc.),
An optionally substituted boryl group (for example, a dimesitylboryl group),
Phosphino group which may have a substituent (for example, diphenylphosphino group and the like are included),
An aromatic hydrocarbon group which may have a substituent (for example, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, etc. A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring is included)

または置換基を有していてもよい芳香族複素環基(例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が含まれる)などが挙げられる。   Or an aromatic heterocyclic group which may have a substituent (for example, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, Pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring , Pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, sinoline ring, quinoxaline ring, benzimidazole ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring, etc. Environment Etc. include monovalent group).

上述した各基が有しうる置換基としては、具体例中にも記載したが、例えば炭素数1〜6程度のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子(特にフッ素原子または塩素原子)、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基およびフェニル基などが挙げられる。
化合物における分子振動を制限する観点からは、前記一般式(I)における環状−NR12基は、無置換であるか、置換基を有していてもよいアルキル基、または置換基を有していてもよい芳香族炭化水素基(中でも炭素数6〜12程度の炭化水素基)を有する場合が好ましく、無置換であるか、メチル基またはフェニル基で置換されている場合が特に好ましい。
Examples of the substituent that each of the above-described groups may have are described in the specific examples. For example, an alkyl group having about 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom (particularly a fluorine atom or chlorine). Atom), an alkenyl group having 2 to 6 carbon atoms, a dialkylamino group having an alkyl chain having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group.
From the viewpoint of limiting molecular vibrations in the compound, the cyclic —NR 1 R 2 group in the general formula (I) is unsubstituted or has an alkyl group which may have a substituent, or a substituent. It may preferably have an aromatic hydrocarbon group (in particular, a hydrocarbon group having about 6 to 12 carbon atoms), particularly preferably unsubstituted or substituted with a methyl group or a phenyl group.

前記一般式(I)における環Aは、1以上の置換位置が無置換(水素原子が結合している)であるか、あるいは前記−NR12基とは異なる任意の基にて置換されている。これは、該化合物の溶解性向上(溶解性が悪いと、昇華精製以外の精製手法が無くなるため、化合物の高純度化に問題を生じる)あるいは電荷輸送性の観点から重要である。
「前記−NR12基とは異なる任意の基」としては、前記−NR12基の定義を満たすが、実際の環Aにおいて3個以上隣接して結合している−NR12基とは異なる基、であってもよく、また−NR12基の定義を満たさない基であってもよい。好ましくは、−NR12基の定義を満たさない基である。このような基としては、例えば、
In the general formula (I), the ring A is substituted at one or more substitution positions with no substitution (a hydrogen atom is bonded) or with any group different from the —NR 1 R 2 group. ing. This is important from the viewpoint of improving the solubility of the compound (if the solubility is poor, there is no purification method other than sublimation purification, which causes a problem in increasing the purity of the compound) or charge transportability.
As "any group that is different from the -NR 1 R 2 group" satisfies the definition of the -NR 1 R 2 group, but three or more adjoining attached at the actual ring A -NR 1 R it may be different groups, the 2 groups, or may be a group which does not meet the definition of -NR 1 R 2 group. A group that does not satisfy the definition of the —NR 1 R 2 group is preferable. Examples of such groups include:

置換基を有していてもよいアルキル基(好ましくは炭素数1から8の直鎖または分岐のアルキル基であり、例えばメチル、エチル、n−プロピル、2−プロピル、n−ブチル、イソブチル、tert−ブチル基などが挙げられる。)、
置換基を有していてもよいアルケニル基(好ましくは、炭素数2から9のアルケニル基であり、例えばビニル、アリル、1−ブテニル基などが挙げられる。)、
置換基を有していてもよいアルキニル基(好ましくは、炭素数2から9のアルキニル基
であり、例えばエチニル、プロパルギル基などが挙げられる。)、
置換基を有していてもよいアラルキル基(好ましくは、炭素数7から15のアラルキル基であり、例えばベンジル基などが挙げられる。)、
An alkyl group which may have a substituent (preferably a linear or branched alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, n-propyl, 2-propyl, n-butyl, isobutyl, tert, -Butyl group and the like).
An alkenyl group which may have a substituent (preferably an alkenyl group having 2 to 9 carbon atoms, such as vinyl, allyl, 1-butenyl group, etc.),
An alkynyl group which may have a substituent (preferably an alkynyl group having 2 to 9 carbon atoms, such as ethynyl and propargyl groups);
An aralkyl group which may have a substituent (preferably an aralkyl group having 7 to 15 carbon atoms, such as a benzyl group);

置換基を有していてもよいアミノ基
[好ましくは、置換基を有していてもよい炭素数1から8のアルキル基を1つ以上有するアルキルアミノ基(例えばメチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ基などが挙げられる。)、
置換基を有していてもよい炭素数6〜12の芳香族炭化水素基を有するアリールアミノ基(例えばフェニルアミノ、ジフェニルアミノ、ジトリルアミノ基などが挙げられる。)、
置換基を有していてもよい5または6員環の芳香族複素環基を有するヘテロアリールアミノ基(例えばピリジルアミノ、チエニルアミノ、ジチエニルアミノ基などが含まれる。)、
An amino group which may have a substituent [preferably, an alkylamino group having one or more alkyl groups having 1 to 8 carbon atoms which may have a substituent (for example, methylamino, dimethylamino, diethylamino, Dibenzylamino group, etc.),
An arylamino group having an aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent (for example, phenylamino, diphenylamino, ditolylamino group, etc.);
A heteroarylamino group having a 5- or 6-membered aromatic heterocyclic group which may have a substituent (for example, pyridylamino, thienylamino, dithienylamino group, etc.);

置換基を有していてもよい、炭素数2〜10のアシル基を有するアシルアミノ基(例えばアセチルアミノ、ベンゾイルアミノ基などが含まれる。)]、
置換基を有していてもよいアルコキシ基(好ましくは置換基を有していてもよい炭素数1〜8のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ基などが含まれる)、
置換基を有していてもよいアリールオキシ基(好ましくは炭素数数6〜12の芳香族炭化水素基を有するものであり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ基などが含まれる。)、
An acylamino group having an acyl group having 2 to 10 carbon atoms which may have a substituent (for example, acetylamino, benzoylamino group and the like are included)],
An alkoxy group which may have a substituent (preferably an alkoxy group having 1 to 8 carbon atoms which may have a substituent, for example, a methoxy, ethoxy, butoxy group, etc.);
An aryloxy group which may have a substituent (preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, including, for example, phenyloxy, 1-naphthyloxy, 2-naphthyloxy group, etc. ),

置換基を有していてもよいヘテロアリールオキシ基(好ましくは5または6員環の芳香族環基を有するものであり、例えばピリジルオキシチエニルオキシ基などが含まれる)、
置換基を有していてもよいアシル基(好ましくは、置換基を有していてもよい炭素数2〜10のアシル基であり、例えばホルミル、アセチル、ベンゾイル基などが含まれる)、
置換基を有していてもよいアルコキシカルボニル基(好ましくは置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニル基などが含まれる)、
An optionally substituted heteroaryloxy group (preferably having a 5- or 6-membered aromatic ring group, including, for example, a pyridyloxythienyloxy group),
An acyl group which may have a substituent (preferably an acyl group having 2 to 10 carbon atoms which may have a substituent, for example, a formyl, acetyl, benzoyl group, etc.),
An alkoxycarbonyl group which may have a substituent (preferably an alkoxycarbonyl group having 2 to 10 carbon atoms which may have a substituent, including, for example, methoxycarbonyl and ethoxycarbonyl groups),

置換基を有していてもよいアリールオキシカルボニル基(好ましくは置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基であり、例えばフェノキシカルボニル基などが含まれる)、
置換基を有していてもよいアルキルカルボニルオキシ基(好ましくは炭素数2〜10のアルキルカルボニルオキシ基であり、例えばアセトキシ基などが含まれる)、
カルボキシル基、
シアノ基、
水酸基、
メルカプト基、
An aryloxycarbonyl group which may have a substituent (preferably an aryloxycarbonyl group having 7 to 13 carbon atoms which may have a substituent, such as a phenoxycarbonyl group);
An alkylcarbonyloxy group which may have a substituent (preferably an alkylcarbonyloxy group having 2 to 10 carbon atoms, including, for example, an acetoxy group),
Carboxyl group,
A cyano group,
Hydroxyl group,
Mercapto group,

置換基を有していてもよいアルキルチオ基(好ましくは炭素数1〜8までのアルキルチオ基であり、例えば、メチルチオ基、エチルチオ基などが含まれる。)、
置換基を有していてもよいアリールチオ基(好ましくは炭素数6〜12までのアリールチオ基であり、例えば、フェニルチオ基、1―ナフチルチオ基などが含まれる。)、
置換基を有していてもよいスルホニル基(例えばメシル基、トシル基などが含まれる)、
置換基を有していてもよいシリル基(例えばトリメチルシリル基、トリフェニルシリル基などが含まれる)、
置換基を有していてもよいボリル基(例えばジメシチルボリル基などが含まれる)、
置換基を有していてもよいホスフィノ基(例えばジフェニルホスフィノ基などが含まれる)、
置換基を有していてもよい芳香族炭化水素基(例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環由来の1価の基が含まれる)
An alkylthio group which may have a substituent (preferably an alkylthio group having 1 to 8 carbon atoms, including, for example, a methylthio group, an ethylthio group, etc.);
An arylthio group which may have a substituent (preferably an arylthio group having 6 to 12 carbon atoms, including, for example, a phenylthio group, a 1-naphthylthio group, etc.);
A sulfonyl group which may have a substituent (for example, mesyl group, tosyl group and the like are included),
A silyl group which may have a substituent (for example, a trimethylsilyl group, a triphenylsilyl group, etc.),
An optionally substituted boryl group (for example, a dimesitylboryl group),
Phosphino group which may have a substituent (for example, diphenylphosphino group and the like are included),
An aromatic hydrocarbon group which may have a substituent (for example, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, fluoranthene ring, etc. A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-5 condensed ring is included)

または置換を有していてもよい芳香族複素環基(例えばフラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環などの、5または6員環の単環または2〜4縮合環由来の1価の基が含まれる)などが好ましい例として挙げられる。   Or an optionally substituted aromatic heterocyclic group (eg, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolo) Imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, A monovalent group derived from a 5- or 6-membered monocyclic ring or a 2-4 condensed ring such as a pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a sinoline ring, a quinoxaline ring, a benzimidazole ring, a perimidine ring or a quinazoline ring Is included) It is mentioned as preferable examples.

前記一般式(I)における環Aは、1以上の置換位置が無置換(水素原子が結合している)であるか、あるいは前記−NR12基とは異なる任意の基にて置換されているが、該化合物に、適度に広い酸化還元電位差を持たせる目的においては、水素原子もしくは炭化水素基(アルキル基、アルケニル基、アルキニル基、アラルキル基または芳香族炭化水素基)であるのが好ましい。また、化合物における分子振動を制限する観点及び、電気的酸化・還元に対する耐久性を持たせる観点からは、好ましくは、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよい芳香族炭化水素基(中でも炭素数6〜12程度の芳香族炭化水素基)または置換基を有していてもよい芳香族複素環基(ピリジル基など)であり、特に好ましくは水素原子、メチル基、ピリジル基またはフェニル基であり、最も好ましくはピリジル基またはフェニル基である。 In the general formula (I), the ring A is substituted at one or more substitution positions with no substitution (a hydrogen atom is bonded) or with any group different from the —NR 1 R 2 group. However, for the purpose of imparting a moderately wide redox potential to the compound, it is a hydrogen atom or a hydrocarbon group (an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group or an aromatic hydrocarbon group). preferable. Further, from the viewpoint of limiting molecular vibrations in the compound and from the viewpoint of imparting durability against electrical oxidation / reduction, the compound preferably has a hydrogen atom, an alkyl group which may have a substituent, or a substituent. An aromatic hydrocarbon group that may be present (in particular, an aromatic hydrocarbon group having about 6 to 12 carbon atoms) or an aromatic heterocyclic group that may have a substituent (such as a pyridyl group), particularly preferably. A hydrogen atom, a methyl group, a pyridyl group or a phenyl group is most preferred, and a pyridyl group or a phenyl group is most preferred.

なお分子振動の抑制および昇華性の確保の点から、「−NR12基とは異なる任意の基」の分子量は小さい方がよく、具体的には500以下程度が好ましく、200以下程度が更に好ましい。
前記一般式(I)で表される化合物の分子量は、通常4000以下が好ましく、2500以下がより好ましく、1500以下が更に好ましい。また200以上が好ましく、300以上がより好ましく、400以上がさらに好ましい。分子量が上限を越えると、昇華性が著しく低下して電界発光素子を制作する際の蒸着操作において支障を来すおそれあるいは、溶剤に対する溶解性の低下により、高純度に精製することが困難となったり、湿式法による塗膜が困難となったりするおそれがあり、分子量が下限値未満であると、ガラス転移温度、融点、気化温度、製膜性など低下するため、耐熱性が著しく損なわれる可能性がある。
一般式(I)における環Aは芳香族環を表す。
From the viewpoint of suppressing molecular vibration and ensuring sublimation, the molecular weight of “an arbitrary group different from the —NR 1 R 2 group” should be small, specifically about 500 or less, preferably about 200 or less. Further preferred.
The molecular weight of the compound represented by the general formula (I) is usually preferably 4000 or less, more preferably 2500 or less, and still more preferably 1500 or less. Moreover, 200 or more are preferable, 300 or more are more preferable, and 400 or more are further more preferable. If the molecular weight exceeds the upper limit, the sublimation property is remarkably lowered, which may hinder the vapor deposition operation when producing the electroluminescent device, or it becomes difficult to purify to high purity due to the lower solubility in the solvent. If the molecular weight is less than the lower limit, the glass transition temperature, melting point, vaporization temperature, film-forming property, etc. will decrease, and heat resistance may be significantly impaired. There is sex.
Ring A in general formula (I) represents an aromatic ring.

具体的には、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環などの、5または6員環の単環または2〜5縮合環からなる芳香族炭化水素環;
フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール
環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環などの5または6員環の単環または2〜4縮合環からなる芳香族複素環が挙げられる。
環Aが単環である場合の、好ましい例を以下に挙げるが、本発明はこれらに限定される訳ではない。
Specifically, for example, a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, a fluoranthene ring, etc. Or an aromatic hydrocarbon ring composed of 2 to 5 condensed rings;
Furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene Ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline Examples thereof include aromatic heterocycles composed of a 5- or 6-membered monocyclic ring or a 2-4 condensed ring such as a ring, a benzimidazole ring, a perimidine ring, and a quinazoline ring.
Preferred examples in the case where ring A is a single ring are given below, but the present invention is not limited thereto.

Figure 0004810805
Figure 0004810805

また、環Aが縮合環である場合の好ましい例を以下に挙げるが、本発明はこれらに限定される訳ではない。   Moreover, although the preferable example in case the ring A is a condensed ring is given below, this invention is not necessarily limited to these.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

なお環Aは、「−NR12基とは異なる任意の基」として、下記式(I’) Ring A is represented by the following formula (I ′) as “an arbitrary group different from the —NR 1 R 2 group”.

Figure 0004810805
で表される基を有し、一化合物中に本発明の特徴的構造を2以上有していても良い。このような化合物の例としては、例えば下記化合物が挙げられるが、これに限定されない。
Figure 0004810805
And one compound may have two or more characteristic structures of the present invention. Examples of such compounds include, but are not limited to, the following compounds.

Figure 0004810805
Figure 0004810805

なお、上記例示化合物A−1〜A−38におけるR41〜R50は、各々独立に、水素原子であるか、或いは環Aが有しうる基として前掲した基に代表される任意の基を表す。
式A−36中、Zは直接結合または2価の連結基を表す。該2価の連結基としては、例えば
置換基を有してもよいアルカン基(パーフルオロアルカン基を含む)、
置換基を有してもよいアルケン基、
置換基を有してもよいアルキン基、
−NRa−(但し、Raは任意の置換基)、−O−、−CO−、−COO−、−SO−、−SO2
置換基を有してもよいアミド基、
置換基を有してもよいシリル基、
置換基を有してもよいボリル基、
置換基を有してもよいホスフィノ基、
置換基を有していてもよい芳香族炭化水素基、
または置換基を有していてもよい芳香族複素環基などが挙げられる。
各々の具体例としては、環Aが有しうる任意の基の例として前掲した、1価の基に対応する2価の基が挙げられ、これらが有しうる置換基としても、前記任意の基が有しうるものと同様の基が挙げられる。
またRaとしても、環Aが有しうる任意の基の例として前掲した基と同様の基が挙げら
れる。
連結基Zとして、とりわけ好ましい例を以下に記す。
In the above exemplary compounds A-1 to A-38, R 41 to R 50 are each independently a hydrogen atom, or any group typified by the group listed above as the group that Ring A may have. To express.
In formula A-36, Z represents a direct bond or a divalent linking group. Examples of the divalent linking group include an alkane group (including a perfluoroalkane group) that may have a substituent,
An alkene group which may have a substituent,
An alkyne group which may have a substituent,
—NR a — (wherein R a is an optional substituent), —O—, —CO—, —COO—, —SO—, —SO 2
An amide group which may have a substituent,
A silyl group which may have a substituent,
An optionally substituted boryl group,
A phosphino group which may have a substituent,
An aromatic hydrocarbon group which may have a substituent,
Or the aromatic heterocyclic group etc. which may have a substituent are mentioned.
Specific examples of each include the divalent group corresponding to the monovalent group described above as an example of the arbitrary group that the ring A may have. The same group as what a group may have is mentioned.
In addition, as R a , the same groups as those listed above can be given as examples of arbitrary groups that ring A may have.
Particularly preferred examples of the linking group Z are described below.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

環Aに関する上記具体例の中でも、適度な酸化還元電位差を有する点および電気的酸化還元に対する安定性の点からは、A−1,A−2,A−3,A−4,A−5,A−8,A−9,A−10,A−11,A−16,A−17,A−18,A−19,A−20,A−21,A−22,A−23,A−24,A−25,A−28,A−29,A−30,A−31,A−32,A−33,A−34,A−35,A−36,A−37,A−38がより好ましく、A−1,A−5,A−9,A−10,A−11,A−17,A−18,A−22,A−24,A−28,A−32,A−35,A−36,A−38が更に好ましく、A−1,A−5が最も好ましい。
前記一般式(I)で表わされる化合物の中でも、広い酸化還元電位差を有する点、電気
的酸化還元に対する安定性の点、三重項励起状態エネルギーを高くする点、および、溶解性を向上させて、湿式法による塗布製膜を容易にしたり、化合物の高純度精製を容易にする観点から、下記一般式(II)或いは、下記一般式(III)で表わされる化合物が好まし
い。
Among the above specific examples relating to ring A, A-1, A-2, A-3, A-4, A-5, from the viewpoint of having an appropriate redox potential difference and stability against electrical redox. A-8, A-9, A-10, A-11, A-16, A-17, A-18, A-19, A-20, A-21, A-22, A-23, A- 24, A-25, A-28, A-29, A-30, A-31, A-32, A-33, A-34, A-35, A-36, A-37, A-38 More preferably, A-1, A-5, A-9, A-10, A-11, A-17, A-18, A-22, A-24, A-28, A-32, A-35. , A-36, and A-38 are more preferable, and A-1 and A-5 are most preferable.
Among the compounds represented by the general formula (I), the point having a wide redox potential difference, the point of stability against electrical redox, the point of increasing triplet excited state energy, and the solubility are improved, From the viewpoint of facilitating coating film formation by a wet method and facilitating high-purity purification of the compound, compounds represented by the following general formula (II) or the following general formula (III) are preferred.

Figure 0004810805
Figure 0004810805

式(II)中、X1〜X5は、−NR12基を表す。−NR12基は、一般式(I)と同義である。X1〜X5は、それぞれ同一であっても異なっていてもよい。A0は、−NR12
基とは異なる任意の置換基を表す。
Wherein (II), X 1 ~X 5 represents -NR 1 R 2 group. The —NR 1 R 2 group has the same meaning as in the general formula (I). X 1 to X 5 may be the same or different from each other. A 0 is —NR 1 R 2
An arbitrary substituent different from the group is represented.

Figure 0004810805
Figure 0004810805

式(III)中、Y1〜Y5は、−NR12基を表す。−NR12基は、一般式(I)と同
義である。Y1〜Y5は、それぞれ同一であっても異なっていてもよい。
以下に、前記一般式(I)で表される化合物の、好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。なお、表中のPhは無置換のフェニル基を表す。
In formula (III), Y 1 to Y 5 represent a —NR 1 R 2 group. The —NR 1 R 2 group has the same meaning as in the general formula (I). Y 1 to Y 5 may be the same or different from each other.
Preferred specific examples of the compound represented by the general formula (I) are shown below, but the present invention is not limited thereto. In the table, Ph represents an unsubstituted phenyl group.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

前記一般式(I)で表される公知の手法を用いて合成することができる。
例えば、環Aにおいて、−NR12基あるいはその他の置換基を導入したい置換位置にフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子や、トリメチルシリル基などのシリル基、水素原子などを有する環A前駆体を用いて合成する場合、該環A前駆体をH−NR12あるいはその誘導体と反応させることにより、−NR12基を導入することができる。また、導入したい置換基に対応する誘導体を反応させることにより、任意の置換基を導入することができる。
−NR12基を導入したい置換位置に、−NH2基または−NHR1基、あるいはそれらの誘導体を有する環A前駆体を用いて合成する場合、該環A前駆体を、X−R1およびX
−R2(Xはハロゲン原子など)と反応させることにより、−NR12基を導入すること
ができる。
It can synthesize | combine using the well-known method represented with the said general formula (I).
For example, in the ring A, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a silyl group such as a trimethylsilyl group, a hydrogen atom, or the like at a substitution position where a —NR 1 R 2 group or other substituent is to be introduced. In the case of synthesizing using a ring A precursor having a -NR 1 R 2 group can be introduced by reacting the ring A precursor with H-NR 1 R 2 or a derivative thereof. Moreover, arbitrary substituents can be introduced by reacting a derivative corresponding to the substituent to be introduced.
When synthesizing using a ring A precursor having a —NH 2 group, a —NHR 1 group, or a derivative thereof at a substitution position where a —NR 1 R 2 group is to be introduced, the ring A precursor is converted to X—R 1 and X
By reacting with —R 2 (X is a halogen atom or the like), a —NR 1 R 2 group can be introduced.

これらの反応方法として、例えば、・Cu、CuO、CuIなどの0〜2価の銅触媒、炭酸ナトリウム、炭酸カリウムなどの塩基を用いたウルマン法(溶媒としては、例えば無溶媒、グリセリンなどが挙げられる)、・水素化ナトリウム、tert−ブトキシカリウム、トリエチルアミン、LDA(リチウムジイソプロピルアミン)、n−BuLiなどを用いた強塩基法(溶媒としては、例えばTHF、1,4−ジオキサン、ジエチルエーテル、DMF、DMAなどが使用できる)、・環A上のハロゲン元素をホウ素で置換し、リン酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸銀などの塩基存在下で、テトラキス(トリフェニルフォスフィン)パラジウムなどのパラジウム触媒を用いて反応させるスズキカップリング法(溶媒としては、例えばトルエン、エタノール、水などが使用できる)、   As these reaction methods, for example, Ullman method using a base such as 0 to 2 valent copper catalysts such as Cu, CuO and CuI, sodium carbonate and potassium carbonate (the solvent includes, for example, no solvent, glycerin, etc. Strong base method using sodium hydride, tert-butoxypotassium, triethylamine, LDA (lithium diisopropylamine), n-BuLi, etc. (as solvents, for example, THF, 1,4-dioxane, diethyl ether, DMF , DMA, etc. can be used) ・ Substitution of the halogen element on ring A with boron, in the presence of a base such as potassium phosphate, sodium carbonate, cesium carbonate, silver carbonate, tetrakis (triphenylphosphine) palladium, etc. Suzuki coupling method using palladium catalyst (as solvent For example, toluene, ethanol, water can be used),

・酢酸パラジウムなどの2価のパラジウム錯体、必要に応じてトリ(tert−ブチル)フォスフィン、トリフェニルフォスフィン、dppf(1,1′−ビス(ジフェニルフォスフィノ)フェロセン)などの交換配位子、tert−ブトキシナトリウム、炭酸銀などの強塩基を用いて反応させるパラジウム法(溶媒としては、例えばDMF,DMAなどが使用できる)、・酢酸銅などの2価の銅触媒、トリエチルアミンなどの塩基、必要に応じてモレキュラーシーブスなどの脱水剤存在下で反応させる、2価銅触媒法(溶媒としては、例えばジクロロメタンなどが使用できる)、
水銀ランプなどを用いて光を照射して反応させる光反応法、
超音波を照射して反応させる超音波法、
電子レンジなどを用いて電子線を照射して反応させる電子線法、
300℃以上の高熱をかけて反応させる高熱法、
塩化スズなどを用いたスズ触媒法、
塩化アルミニウム、四塩化チタン、トリフルオロボロンなどを用いたルイス酸法、
オキシ塩化リン、ポリリン酸、硫酸などを用いた強酸法、
酢酸鉛などを用いた鉛法、など、種々の公知の反応から、化合物の種類により適宜選択して採用すればよい。
Exchange ligands such as divalent palladium complexes such as palladium acetate, tri (tert-butyl) phosphine, triphenylphosphine, dppf (1,1′-bis (diphenylphosphino) ferrocene) as necessary, Palladium method in which a strong base such as tert-butoxy sodium or silver carbonate is used for reaction (for example, DMF or DMA can be used as a solvent), a divalent copper catalyst such as copper acetate, a base such as triethylamine, and the like Depending on the divalent copper catalyst method in which the reaction is carried out in the presence of a dehydrating agent such as molecular sieves (for example, dichloromethane can be used as a solvent),
Photoreaction method that reacts by irradiating light using a mercury lamp, etc.,
An ultrasonic method of reacting by irradiating ultrasonic waves,
An electron beam method in which an electron beam is irradiated and reacted using a microwave oven,
A high-temperature method of reacting by applying high heat of 300 ° C. or higher,
Tin catalyst method using tin chloride,
Lewis acid method using aluminum chloride, titanium tetrachloride, trifluoroboron, etc.
Strong acid method using phosphorus oxychloride, polyphosphoric acid, sulfuric acid,
What is necessary is just to select suitably according to the kind of compound from various well-known reactions, such as the lead method using lead acetate.

より好ましくは、環Aにおいて−NR12基あるいはその他の置換基を導入したい置換位置に、フッ素原子を有している環A前駆体を用い、水素化ナトリウム、tert−ブトキシカリウム、トリエチルアミン、LDA、n−BuLiなどを用いた強塩基法にて合成する場合である。なぜなら、同一芳香環上に3つ以上のフッ素原子を有する化合物と、強塩基によって水素引き抜きを受けたアニオン性2級アミンとの反応は、・ラジカル的に進行するため、反応が短時間で完結し、・置換反応が開始された分子(この場合、環Aとなるべき前駆体分子)が、未反応の分子(環Aとなるべき未反応の前駆体分子)よりも優先的に置換反応されるため、多置換反応にも関わらず、副生成物の収率が非常に小さく、・仮にF置換体が残存していても、Fを含まない目的物に比べて遙かに昇華性がよいので、昇華精製によって容易に除去可能である、等、多くの利点を有するためである。
一分子中に2種類の−NR12基を有する、一般式(I)で表される化合物の合成スキーム例を、以下に示す。
More preferably, a ring A precursor having a fluorine atom at a substitution position to which -NR 1 R 2 group or other substituent is to be introduced in ring A, sodium hydride, tert-butoxypotassium, triethylamine, This is a case of synthesis by a strong base method using LDA, n-BuLi or the like. This is because the reaction between a compound having three or more fluorine atoms on the same aromatic ring and an anionic secondary amine that has undergone hydrogen abstraction by a strong base proceeds radically, so the reaction is completed in a short time. The molecule in which the substitution reaction has started (in this case, the precursor molecule that should become ring A) is preferentially substituted over the unreacted molecule (the unreacted precursor molecule that should become ring A). Therefore, in spite of the multi-substitution reaction, the yield of by-products is very small. Even if the F-substituted product remains, the sublimation property is much better than the target product containing no F. Therefore, it has many advantages such as being easily removable by sublimation purification.
An example of a synthesis scheme of the compound represented by the general formula (I) having two kinds of —NR 1 R 2 groups in one molecule is shown below.

Figure 0004810805
Figure 0004810805

前記一般式(I)で表される化合物は、適度な電荷輸送性を有するため、電荷輸送材料として電子写真感光体、有機電界発光素子、光電変換素子、有機太陽電池、有機整流素子等に好適に使用できる。
また、結晶化し難く、ガラス転移温度が高いため薄膜形成性に優れるため、耐熱性に優れ、長期間安定に駆動(発光)する有機電界発光素子を提供することが可能であり、有機電界発光素子材料として好適である。
続いて、本発明の化合物を用いた有機電界発光素子について説明する。
本発明の有機電界発光素子は、陽極、陰極、およびこれら両極間に設けられた発光層を有し、該発光層として、または該発光層と陽極又は陰極との間に有する層として、前記一般式(I)で表される化合物を含有する層を有することを特徴とする。
Since the compound represented by the general formula (I) has an appropriate charge transporting property, it is suitable as an electrophotographic photosensitive member, an organic electroluminescent device, a photoelectric conversion device, an organic solar cell, an organic rectifying device, etc. as a charge transporting material. Can be used for
In addition, since it is difficult to crystallize and has a high glass transition temperature, it has excellent thin film formability. Therefore, it is possible to provide an organic electroluminescent device that has excellent heat resistance and can be stably driven (emitted) for a long period of time. Suitable as a material.
Then, the organic electroluminescent element using the compound of this invention is demonstrated.
The organic electroluminescent device of the present invention has an anode, a cathode, and a light emitting layer provided between both electrodes, and the general electroluminescent element as the light emitting layer or as a layer between the light emitting layer and the anode or cathode. It has the layer containing the compound represented by Formula (I), It is characterized by the above-mentioned.

前記一般式(I)で表される化合物は、発光層と陽極との間に設けられた正孔輸送性の層に含有される場合、適度に低い酸化電位と適度に高い還元電位を有していることが望ましく、特に繰返し電気的酸化にも安定している必要があるため、前記−NR12基におけるR1とR2が連結されていないもの(例えばジアリールアミノ基など)が望ましい。より好ましい例としては、具体例として前掲した構造のうち、R−1,R−2,R−3,R−8が挙げられ、R−1,R−2,R−8が更に好ましい。
また、発光層と陰極との間に設けられた電子輸送性の層に含有される場合、適度に高い酸化電位と適度に低い還元電位を有していることが望ましく、特に繰返し電気的還元にも安定している必要がある。従って、前記−NR12基におけるR1とR2は、直接または連結基を介して連結されてなる環状−NR12基が望ましく、中でもN原子や縮合環基を多く含んだ構造であるのがより好ましい。好ましい例としては、例えば具体例として前掲した構造のうち、R−14,R−15,R−20,R−21,R−24,R−25,R−26,R−27,R−28,R−29,R−30,R−31,R−32,R−33,R−34,R−35,R−36,R−37,R−40,R−41,R−42,R−43,R−44,R−45,R−46等があげられ、R−14,R−15,R−20,R−21,R−24,R−27,R−28,R−32,R−34,R−40が更に好ましい。
When the compound represented by the general formula (I) is contained in a hole transporting layer provided between the light emitting layer and the anode, the compound has a moderately low oxidation potential and a moderately high reduction potential. In particular, since it is necessary to be stable even in repeated electric oxidation, it is preferable that R 1 and R 2 in the —NR 1 R 2 group are not linked (for example, a diarylamino group). . More preferable examples include R-1, R-2, R-3, and R-8 among the structures listed above as specific examples, and R-1, R-2, and R-8 are more preferable.
In addition, when contained in an electron transporting layer provided between the light emitting layer and the cathode, it is desirable to have a moderately high oxidation potential and a moderately low reduction potential, especially for repeated electrical reduction. Need to be stable. Thus, R 1 and R 2 in the -NR 1 R 2 groups, cyclic -NR 1 R 2 group is desirable comprising linked directly or through a linking group, it contains many among them N atoms or fused ring group structure in It is more preferable that Preferable examples include, for example, R-14, R-15, R-20, R-21, R-24, R-25, R-26, R-27, R-28 among the structures listed above as specific examples. , R-29, R-30, R-31, R-32, R-33, R-34, R-35, R-36, R-37, R-40, R-41, R-42, R -43, R-44, R-45, R-46, etc., and R-14, R-15, R-20, R-21, R-24, R-27, R-28, R-32 , R-34, and R-40 are more preferable.

さらに、発光層中に、特にホスト材料として含まれる場合には、適度に高い酸化電位と適度に高い還元電位を有していることが望ましく、特に電気的酸化還元を繰返しても変質しにくい安定性が必要である。従って、前記−NR12基におけるR1とR2は、直接または連結基を介して連結されてなる環状−NR12基が望ましく、更に、芳香族複素環を含み、縮合環基を適度に多く含んだ構造である場合がより好ましい。好ましい例としては、
例えば具体例として前掲した構造のうち、R−14,R−15,R−16,R−21,R−22,R−24,R−27,R−32,R−39,R−40等が挙げられ、R−14,R−16,R−21,R−22,R−27,R−39,R−40が更に好ましく、R−14,R−27が一層好ましく、R−27が最も好ましい。
Furthermore, when it is contained in the light-emitting layer, particularly as a host material, it is desirable to have a moderately high oxidation potential and a moderately high reduction potential. Sex is necessary. Thus, R 1 and R 2 in the -NR 1 R 2 groups, cyclic -NR 1 R 2 group is desirable comprising linked directly or through a linking group, further comprises an aromatic heterocyclic fused ring group More preferable is a structure containing a moderate amount of. As a preferable example,
For example, among the structures listed above as specific examples, R-14, R-15, R-16, R-21, R-22, R-24, R-27, R-32, R-39, R-40, etc. R-14, R-16, R-21, R-22, R-27, R-39, R-40 are more preferable, R-14, R-27 are more preferable, and R-27 is Most preferred.

本発明において、前記一般式(I)で表される化合物は、正孔輸送性と電子輸送性が共に優れており、また両者のバランスがよく、さらに三重項励起子のエネルギー準位が高いとの理由から、発光層材料、中でもホスト材料として使用した場合に、その長所が最も生かされるため好ましい。
本発明の有機電界発光素子において、同一の層内に2種以上の前記一般式(I)で表される化合物が含有されていても良い。また、2以上の層に前記一般式(I)で表される化合物が含有されている場合、これらの層に含有される該化合物は同一のものであっても異なるものであってもよい。
なお、本発明の有機電界発光素子において、陰極−発光層間を「電子輸送層」と称し、2つ以上の場合は陰極に接している層を「電子注入層」、それ以外の層を総称して「電子輸送層」と称す。また、陰極−発光層間に設けられた層のうち、発光層に接している層を、特に「正孔阻止層」と称する場合がある。
以下に、添付図面を参照して、前記一般式(I)で表される化合物を、発光層に含有する場合を例に、本発明の有機電界発光素子の実施の形態を詳細に説明する。
In the present invention, the compound represented by the general formula (I) is excellent in both hole transportability and electron transportability, has a good balance between both, and further has a high triplet exciton energy level. For this reason, when it is used as a light emitting layer material, particularly as a host material, it is preferable because the advantages are most utilized.
In the organic electroluminescent element of the present invention, two or more compounds represented by the general formula (I) may be contained in the same layer. When the compound represented by the general formula (I) is contained in two or more layers, the compounds contained in these layers may be the same or different.
In the organic electroluminescence device of the present invention, the cathode-light emitting layer is referred to as an “electron transport layer”, and in the case of two or more layers, the layer in contact with the cathode is referred to as an “electron injection layer”, and the other layers are collectively referred to. This is referred to as an “electron transport layer”. Of the layers provided between the cathode and the light emitting layer, the layer in contact with the light emitting layer may be particularly referred to as a “hole blocking layer”.
Hereinafter, with reference to the attached drawings, embodiments of the organic electroluminescent device of the present invention will be described in detail by taking as an example the case where the compound represented by the general formula (I) is contained in a light emitting layer.

図1は本発明に用いられる一般的な有機電界発光素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、4は正孔輸送層、5は発光層、6は正孔阻止層、8は陰極を各々表わす。
基板1は有機電界発光素子の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板またはフイルムが好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機電界発光素子が劣化することがあるので好ましくない。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。
FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic electroluminescence device used in the present invention. 1 is a substrate, 2 is an anode, 4 is a hole transport layer, 5 is a light emitting layer, and 6 is a light emitting layer. A hole blocking layer, 8 represents a cathode.
The substrate 1 serves as a support for the organic electroluminescent element, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sheet, or the like is used. In particular, a glass plate, a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, polysulfone, or a film is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic electroluminescent element may be deteriorated by the outside air that has passed through the substrate, which is not preferable. For this reason, a method of providing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.

基板1上には陽極2が設けられるが、陽極2は正孔輸送層4への正孔注入の役割を果たすものである。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/またはスズの酸化物などの金属酸化物、ヨウ化銅などのハロゲン化金属、カーボンブラック、あるいは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子などにより構成される。陽極2は通常、スパッタリング法、真空蒸着法などにより形成されることが多い。また、銀などの金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末などで陽極2を形成する場合には、適当なバインダー樹脂溶液中に分散させて、基板1上に塗布することにより形成することもできる。さらに、導電性高分子で陽極2を形成する場合には、電解重合により基板1上に直接重合薄膜を形成したり、基板1上に導電性高分子を塗布して形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。   An anode 2 is provided on the substrate 1, and the anode 2 plays a role of hole injection into the hole transport layer 4. The anode 2 is usually made of metal such as aluminum, gold, silver, nickel, palladium, platinum, metal oxide such as oxide of indium and / or tin, metal halide such as copper iodide, carbon black, or poly It is composed of conductive polymers such as (3-methylthiophene), polypyrrole, and polyaniline. In general, the anode 2 is often formed by a sputtering method, a vacuum deposition method, or the like. Further, when the anode 2 is formed of metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, and conductive polymer fine powder, It can also be formed by dispersing and coating on the substrate 1. Further, when the anode 2 is formed of a conductive polymer, a polymerized thin film can be directly formed on the substrate 1 by electrolytic polymerization, or a conductive polymer can be applied to the substrate 1 (Appl). Phys. Lett., 60, 2711, 1992).

陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。
陽極2の厚みは、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが望ましい。この場合、陽極の厚みは通常5nm以上、好ましくは10nm以上であり、また通常1000nm
以下、好ましくは500nm以下程度である。不透明でよい場合は陽極2の厚みは任意であり、所望により金属で形成して基板1を兼ねてもよい。
The anode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
The thickness of the anode 2 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm.
Hereinafter, it is preferably about 500 nm or less. When it may be opaque, the thickness of the anode 2 is arbitrary, and if desired, it may be formed of metal to serve as the substrate 1.

図1に示す構成の素子において、陽極2の上には正孔輸送層4が設けられる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。また、発光層5に接するために発光層からの発光を消光したり、発光層との間でエキサイプレックスを形成して効率を低下させないことが求められる。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子にはさらに耐熱性が要求される。従って、Tgとして85℃以上の値を有する材料が望ましい。   In the element having the configuration shown in FIG. 1, a hole transport layer 4 is provided on the anode 2. As conditions required for the material of the hole transport layer, it is necessary that the material has a high hole injection efficiency from the anode and can efficiently transport the injected holes. For this purpose, the ionization potential is small, the transparency to visible light is high, the hole mobility is high, the stability is high, and impurities that become traps are less likely to be generated during manufacturing and use. Required. Further, in order to contact the light emitting layer 5, it is required not to quench the light emitted from the light emitting layer or to form an exciplex with the light emitting layer to reduce the efficiency. In addition to the above general requirements, when the application for in-vehicle display is considered, the element is further required to have heat resistance. Therefore, a material having a Tg value of 85 ° C. or higher is desirable.

このような正孔輸送材料としては、例えば、4,4′−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5−234681号公報)、4,4′,4′−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J. Lumin., 72−74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem. Commun., 2175頁、1996年)、2,2′,7,7′−テトラキス−(ジフェニルアミノ)−9,9′−スピロビフルオレン等のスピロ化合物(Synth.
Metals, 91巻、209頁、1997年)等が挙げられる。これらの化合物は、単独で用いてもよいし、必要に応じて、複数種混合して用いてもよい。
Examples of such a hole transport material include two or more tertiary amines represented by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, and two or more Aromatics having a starburst structure such as aromatic diamines in which condensed aromatic rings are substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4 ', 4'-tris (1-naphthylphenylamino) triphenylamine Group amine compounds (J. Lumin., 72-74, 985, 1997), aromatic amine compounds consisting of tetramers of triphenylamine (Chem. Commun., 2175, 1996), 2, 2 Spiro compounds such as', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth.
Metals, 91, 209, 1997). These compounds may be used alone or in combination as necessary.

上記の化合物以外に、正孔輸送層4の材料として、ポリビニルカルバゾール、ポリビニルトリフェニルアミン(特開平7−53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym. Adv. Tech., 7巻、33頁、1996年)等の高分子材料が挙げられる。
正孔輸送層4は、スプレー法、印刷法、スピンコート法、ディップコート法、ダイコート法などの通常の塗布法や、インクジェット法、スクリーン印刷法など各種印刷法等の湿式成膜法や、真空蒸着法などの乾式成膜法で形成することができる。
塗布法の場合は、正孔輸送材料を1種または2種以上を、必要により正孔のトラップにならないバインダー樹脂や塗布性改良剤などの添加剤を添加し、適当な溶剤に溶解して塗布溶液を調製し、スピンコート法などの方法により陽極2上に塗布し、乾燥して正孔輸送層4を形成する。バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔移動度を低下させるので、少ない方が望ましく、通常、50重量%以下が好ましい。
In addition to the above compounds, polyarylene ether sulfone (Polym. Adv. Tech.) Containing polyvinyl carbazole, polyvinyl triphenylamine (Japanese Patent Laid-Open No. 7-53953), and tetraphenylbenzidine as the material of the hole transport layer 4 is used. , 7, p. 33, 1996).
The hole transport layer 4 may be formed by a normal coating method such as a spray method, a printing method, a spin coating method, a dip coating method, or a die coating method, a wet film forming method such as various printing methods such as an ink jet method or a screen printing method, or a vacuum. It can be formed by a dry film formation method such as a vapor deposition method.
In the case of the coating method, one or more hole transport materials are added, and if necessary, additives such as binder resins and coating property improving agents that do not trap holes are added and dissolved in a suitable solvent. A solution is prepared, applied onto the anode 2 by a method such as spin coating, and dried to form the hole transport layer 4. Examples of the binder resin include polycarbonate, polyarylate, and polyester. When the binder resin is added in a large amount, the hole mobility is lowered.

真空蒸着法の場合には、正孔輸送材料を真空容器内に設置されたルツボに入れ、真空容器内を適当な真空ポンプで10-4Pa程度にまで排気した後、ルツボを加熱して、正孔輸送材料を蒸発させ、ルツボと向かい合って置かれた、陽極2が形成された基板1上に正孔輸送層4を形成させる。
正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。この様に薄い膜を一様に形成するためには、一般に真空蒸着法がよく用いられる。
図1に示す素子において、正孔輸送層4の上には発光層5が設けられる。発光層5は、電界を与えられた電極間において、陽極から注入されて正孔輸送層を移動する正孔と、陰極から注入されて正孔阻止層6を移動する電子との再結合により励起されて強い発光を示す化合物より形成される。
発光層5に用いられる該化合物としては、安定な薄膜形状を有し、固体状態で高い発光
(蛍光または燐光)量子収率を示し、正孔および/または電子を効率よく輸送することができる化合物であることが必要である。さらに電気化学的かつ化学的に安定であり、トラップとなる不純物が製造時や使用時に発生しにくい化合物であることが要求される。
In the case of the vacuum evaporation method, the hole transport material is put in a crucible installed in a vacuum vessel, the inside of the vacuum vessel is evacuated to about 10 −4 Pa with a suitable vacuum pump, and then the crucible is heated, The hole transport material is evaporated and a hole transport layer 4 is formed on the substrate 1 on which the anode 2 is formed, which is placed facing the crucible.
The thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and is usually 300 nm or less, preferably 100 nm or less. In order to uniformly form such a thin film, a vacuum deposition method is generally used.
In the element shown in FIG. 1, a light emitting layer 5 is provided on the hole transport layer 4. The light emitting layer 5 is excited by recombination of holes injected from the anode and moving through the hole transport layer and electrons injected from the cathode and moved through the hole blocking layer 6 between the electrodes to which an electric field is applied. And formed from a compound that exhibits strong luminescence.
The compound used for the light emitting layer 5 is a compound that has a stable thin film shape, exhibits a high emission (fluorescence or phosphorescence) quantum yield in a solid state, and can efficiently transport holes and / or electrons. It is necessary to be. Further, it is required to be a compound that is electrochemically and chemically stable and does not easily generate impurities as traps during production or use.

前記一般式(I)で表される化合物は、このような条件を満たすため、有機電界発光素子における発光層材料として用いることが好ましい。発光層5は、該化合物のみからなる層であってもよいが、以下に述べる様々な目的で、発光材料(ドーパント)をも含有する層であることが好ましい。
素子の発光効率を向上させるとともに発光色を変える目的で、例えば、8−ヒドロキシキノリンのアルミニウム錯体をホスト材料として、クマリン等のレーザー用蛍光色素をドープすること(J. Appl. Phys., 65巻, 3610頁, 1989年)等が行われており、本発明の有機電界発光素子における発光層に対しても、蛍光色素をドープすることは好ましい。
ドープ用材料としては、クマリン以外にも各種の蛍光色素が使用できる。青色発光を与える蛍光色素としては、ペリレン、ピレン、アントラセン、クマリンおよびそれらの誘導体等が挙げられる。緑色蛍光色素としては、キナクリドン誘導体、クマリン誘導体等が挙げられる。黄色蛍光色素としては、ルブレン、ペリミドン誘導体等が挙げられる。赤色蛍光色素としては、DCM系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
Since the compound represented by the general formula (I) satisfies such a condition, it is preferably used as a light emitting layer material in an organic electroluminescent element. The light emitting layer 5 may be a layer made of only the compound, but is preferably a layer containing a light emitting material (dopant) for various purposes described below.
For the purpose of improving the light emission efficiency of the device and changing the emission color, for example, doping a fluorescent dye for laser such as coumarin with an aluminum complex of 8-hydroxyquinoline as a host material (J. Appl. Phys., Volume 65). , 3610, 1989) and the like, and it is preferable to dope a fluorescent dye also to the light emitting layer in the organic electroluminescent device of the present invention.
As a doping material, various fluorescent dyes can be used in addition to coumarin. Examples of fluorescent dyes that emit blue light include perylene, pyrene, anthracene, coumarin, and derivatives thereof. Examples of the green fluorescent dye include quinacridone derivatives and coumarin derivatives. Examples of yellow fluorescent dyes include rubrene and perimidone derivatives. Examples of red fluorescent dyes include DCM compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthene and the like.

上記のドープ用蛍光色素以外にも、ホスト材料に応じて、レーザー研究,8巻,694頁,803頁,958頁(1980年);同9巻,85頁(1981年)、に列挙されている蛍光色素などが発光層用のドープ材料として使用することができる。
ホスト材料に対して上記蛍光色素がドープされる量は、10-3重量%以上が好ましく、0.1重量%がより好ましい。また10重量%以下が好ましく、3重量%以下がより好ましい。下限値を下回ると、素子の発光効率向上に寄与できない場合があり、上限値を越えると濃度消光が起き、発光効率の低下に至る可能性がある。
Other than the above-mentioned fluorescent dyes for doping, depending on the host material, listed in Laser Research, 8, 694, 803, 958 (1980); 9, 9, 85 (1981). Fluorescent dyes and the like that can be used as a doping material for the light emitting layer.
The amount of the fluorescent dye doped with respect to the host material is preferably 10 −3 wt% or more, and more preferably 0.1 wt%. Moreover, 10 weight% or less is preferable and 3 weight% or less is more preferable. If the lower limit is not reached, it may not be possible to contribute to improving the luminous efficiency of the device. If the upper limit is exceeded, concentration quenching may occur, leading to a reduction in luminous efficiency.

一方、燐光発光を示す発光層は、通常、燐光性ドーパントとホスト材料を含んで形成される。燐光性ドーパントとしては、例えば周期表7ないし11族から選ばれる金属を含む有機金属錯体が挙げられ、該金属錯体のT1(最低励起三重項準位)より高いT1を有する電荷輸送性有機化合物をホスト材料として使用することが好ましい。前記一般式(I)で表される化合物は、この燐光発光を示す発光層におけるホスト材料としても、好適に使用できる。
周期表7ないし11族から選ばれる金属を含む燐光性有機金属錯体における、該金属として好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、および金が挙げられる。これらの有機金属錯体として、好ましくは下記一般式(i)または一般式(ii)で表される化合物が挙げられる。
On the other hand, a light-emitting layer that emits phosphorescence is usually formed including a phosphorescent dopant and a host material. Examples of the phosphorescent dopant include organometallic complexes containing a metal selected from Groups 7 to 11 of the periodic table, and charge transporting organic compounds having a T1 higher than the T1 (lowest excited triplet level) of the metal complex. It is preferable to use it as a host material. The compound represented by the general formula (I) can be suitably used as a host material in the light emitting layer exhibiting phosphorescence emission.
Preferred examples of the metal in the phosphorescent organometallic complex containing a metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As these organometallic complexes, compounds represented by the following general formula (i) or general formula (ii) are preferable.

Figure 0004810805
(式中、Mは金属、pは該金属の価数を表す。LおよびL’は二座配位子を表す。jは0または1または2を表す。)
Figure 0004810805
(In the formula, M represents a metal, p represents a valence of the metal, L and L ′ represent a bidentate ligand, and j represents 0, 1 or 2.)

Figure 0004810805
Figure 0004810805

(式中、M7は金属、Tは炭素または窒素を表わす。Tが窒素の場合はR14、R15は無く
、Tが炭素の場合はR14、R15は水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表わす。
12、R13は水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表わし、互いに連結して環を形成しても良い。)
一般式(i)中の二座配位子LおよびL’はそれぞれ以下の部分構造を有する配位子を示す。
(Wherein M 7 represents a metal, T represents carbon or nitrogen. When T is nitrogen, there is no R 14 or R 15 , and when T is carbon, R 14 or R 15 represents a hydrogen atom, a halogen atom, or an alkyl. Group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, alkylamino group, aralkylamino group, haloalkyl group, hydroxyl group, aryloxy group, substituent Represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
R 12 and R 13 are hydrogen atom, halogen atom, alkyl group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, alkylamino group, aralkylamino group, haloalkyl group , A hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and may be linked to each other to form a ring. )
In the general formula (i), the bidentate ligands L and L ′ each represent a ligand having the following partial structure.

Figure 0004810805
Figure 0004810805

(環A1および環A1’は各々独立に、芳香族炭化水素基または芳香族複素環基を表わし、置換基を有していてもよい。環A2および環A2’は含窒素芳香族複素環基を表わし、置換基を有していてもよい。R’、R’’およびR’’’はそれぞれハロゲン原子;アルキル基;アルケニル基;アルコキシカルボニル基;メトキシ基;アルコキシ基;アリールオキシ基;ジアルキルアミノ基;ジアリールアミノ基;カルバゾリル基;アシル基;ハロアルキル基またはシアノ基を表す。)
一般式(i)で表される化合物として、さらに好ましくは下記一般式(ia)、(ib)(ic)で表される化合物が挙げられる。
(Ring A1 and Ring A1 ′ each independently represents an aromatic hydrocarbon group or an aromatic heterocyclic group, which may have a substituent. Ring A2 and Ring A2 ′ are nitrogen-containing aromatic heterocyclic groups. R ′, R ″, and R ′ ″ each represent a halogen atom; an alkyl group; an alkenyl group; an alkoxycarbonyl group; a methoxy group; an alkoxy group; an aryloxy group; (Amino group; diarylamino group; carbazolyl group; acyl group; haloalkyl group or cyano group)
More preferred examples of the compound represented by the general formula (i) include compounds represented by the following general formulas (ia), (ib) (ic).

Figure 0004810805
Figure 0004810805

(式中、M4は金属、pは該金属の価数を表す。環A1は置換基を有していてもよい芳
香族炭化水素基を表わし、環A2は置換基を有していてもよい含窒素芳香族複素環基を表わす。)
(Wherein M 4 represents a metal, p represents a valence of the metal, ring A 1 represents an aromatic hydrocarbon group which may have a substituent, and ring A 2 may have a substituent. Represents a good nitrogen-containing aromatic heterocyclic group.)

Figure 0004810805
Figure 0004810805

(式中、M5は金属、pは該金属の価数を表す。環A1は置換基を有していてもよい芳
香族炭化水素基または芳香族複素環基を表わし、環A2は置換基を有していてもよい含窒素芳香族複素環基を表わす。)
(Wherein M 5 represents a metal, p represents a valence of the metal, ring A 1 represents an aromatic hydrocarbon group or aromatic heterocyclic group which may have a substituent, and ring A 2 represents a substituent. Represents a nitrogen-containing aromatic heterocyclic group which may have

Figure 0004810805
Figure 0004810805

(式中、M6は金属、pは該金属の価数を表し、jは0または1または2を表す。環A
1および環A1’は各々独立に、置換基を有していてもよい芳香族炭化水素基または芳香族複素環基を表わし、環A2および環A2’は各々独立に、置換基を有していてもよい含窒素芳香族複素環基を表わす。)
一般式(ia)、(ib)、(ic)で表される化合物の環A1および環A1として、好ましくは、フェニル基、ビフェニル基、ナフチル基、アントリル基、チエニル基、フリル基、ベンゾチエニル基、ベンゾフリル基、ピリジル基、キノリル基、イソキノリル基、
またはカルバゾリル基が挙げられる。
環A2および環A2’として、好ましくは、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、ベンゾチアゾール基、ベンゾオキサゾール基、ベンゾイミダゾール基、キノリル基、イソキノリル基、キノキサリル基、またはフェナントリジル基が挙げられる。
(Wherein M 6 is a metal, p is a valence of the metal, and j is 0, 1 or 2. Ring A
1 and ring A1 ′ each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group, and ring A2 and ring A2 ′ each independently have a substituent. A nitrogen-containing aromatic heterocyclic group which may be )
As the ring A1 and ring A1 of the compounds represented by the general formulas (ia), (ib), and (ic), a phenyl group, a biphenyl group, a naphthyl group, an anthryl group, a thienyl group, a furyl group, a benzothienyl group are preferable. , Benzofuryl group, pyridyl group, quinolyl group, isoquinolyl group,
Or a carbazolyl group is mentioned.
Ring A2 and ring A2 ′ are preferably a pyridyl group, pyrimidyl group, pyrazyl group, triazyl group, benzothiazole group, benzoxazole group, benzimidazole group, quinolyl group, isoquinolyl group, quinoxalyl group, or phenanthridyl group. Can be mentioned.

一般式(ia)、(ib)および(ic)で表される化合物が有していてもよい置換基としては、フッ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;ビニル基等の炭素数2〜6のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜6のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;ジフェニルアミノ基等のジアリールアミノ基;カルバゾリル基;アセチル基等のアシル基;トリフルオロメチル基等のハロアルキル基;シアノ基等が挙げられ、これらは互いに連結して環を形成しても良い。
なお、環A1が有する置換基と環A2が有する置換基が結合、または環A1’が有する置換基と環A2’が有する置換基が結合して、一つの縮合環を形成してもよく、このような縮合環としては7,8−ベンゾキノリン基等が挙げられる。
環A1、環A1’、環A2および環A2’の置換基として、より好ましくはアルキル基、アルコキシ基、芳香族炭化水素基、シアノ基、ハロゲン原子、ハロアルキル基、ジアリールアミノ基、またはカルバゾリル基が挙げられる。
式(ia)、(ib)におけるM4ないしM5として好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金または金が挙げられる。
式(ii)におけるM7として好ましくは、ルテニウム、ロジウム、パラジウム、銀、レ
ニウム、オスミウム、イリジウム、白金または金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
前記一般式(i)、(ia)、(ib)および(ic)で示される有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるわけではない。
Examples of the substituent that the compounds represented by the general formulas (ia), (ib) and (ic) may have include a halogen atom such as a fluorine atom; a C 1-6 carbon atom such as a methyl group and an ethyl group An alkyl group; an alkenyl group having 2 to 6 carbon atoms such as a vinyl group; an alkoxycarbonyl group having 2 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group; An aryloxy group such as a phenoxy group and a benzyloxy group; a dialkylamino group such as a dimethylamino group and a diethylamino group; a diarylamino group such as a diphenylamino group; a carbazolyl group; an acyl group such as an acetyl group; A haloalkyl group; a cyano group, and the like, which may be linked to each other to form a ring.
In addition, the substituent which ring A1 and the substituent which ring A2 has may combine, or the substituent which ring A1 'and the substituent which ring A2' may combine may form one condensed ring, Examples of such a condensed ring include a 7,8-benzoquinoline group.
As the substituent for ring A1, ring A1 ′, ring A2 and ring A2 ′, an alkyl group, an alkoxy group, an aromatic hydrocarbon group, a cyano group, a halogen atom, a haloalkyl group, a diarylamino group, or a carbazolyl group is more preferable. Can be mentioned.
M 4 to M 5 in the formulas (ia) and (ib) are preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold.
M 7 in formula (ii) is preferably ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum or gold, and particularly preferably a divalent metal such as platinum or palladium.
Specific examples of the organometallic complexes represented by the general formulas (i), (ia), (ib) and (ic) are shown below, but are not limited to the following compounds.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

前記一般式(ii)で表わされる有機金属錯体の具体例を以下に示すが、下記の化合物に限定されるわけではない。なお、式中のMeはメチル基、Etはエチル基を表す。   Specific examples of the organometallic complex represented by the general formula (ii) are shown below, but are not limited to the following compounds. In the formula, Me represents a methyl group, and Et represents an ethyl group.

Figure 0004810805
Figure 0004810805

さらに、前記一般式(I)で表される化合物を含む発光層は、燐光性ドーパントと共に、前述の蛍光色素をも含有していてもよい。
発光層中にドーパントとして含有される有機金属錯体の量は、0.1重量%以上が好ましく、また30重量%以下が好ましい。下限値を下回ると素子の発光効率向上に寄与できない場合があり、上限値を上回ると有機金属錯体同士が2量体を形成する等の理由で濃度消光が起き、発光効率の低下に至る可能性がある。
燐光発光を示す発光層における燐光性ドーパントの量は、従来の蛍光(1重項)を用いた素子において、発光層に含有される蛍光性色素(ドーパント)の量より、若干多い方が好ましい傾向がある。また燐光性ドーパントと共に蛍光色素が発光層中に含有される場合、該蛍光色素の量は、0.05重量%以上が好ましく、0.1重量%以上がより好ましい。また10重量%以下が好ましく、3重量%以下がより好ましい。
Furthermore, the light emitting layer containing the compound represented by the general formula (I) may contain the above-described fluorescent dye together with the phosphorescent dopant.
The amount of the organometallic complex contained as a dopant in the light emitting layer is preferably 0.1% by weight or more, and more preferably 30% by weight or less. If the lower limit is not reached, it may not be possible to contribute to improving the luminous efficiency of the device. If the upper limit is exceeded, concentration quenching may occur due to the formation of a dimer between organometallic complexes, etc. There is.
The amount of the phosphorescent dopant in the light emitting layer exhibiting phosphorescence tends to be preferably slightly larger than the amount of the fluorescent dye (dopant) contained in the light emitting layer in a conventional device using fluorescence (singlet). There is. When the fluorescent dye is contained in the light emitting layer together with the phosphorescent dopant, the amount of the fluorescent dye is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more. Moreover, 10 weight% or less is preferable and 3 weight% or less is more preferable.

発光層5の膜厚は、通常3nm以上、好ましくは5nm以上であり、また通常200nm以下、好ましくは100nm以下である。
なお、発光層5は、本発明の性能を損なわない範囲で上記以外の成分を含んでいてもよい。
例えば、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体(特開平6−322362号公報)、ビススチリルベンゼン誘導体(特開平1−245087号公報、同
2−222484号公報)、ビススチリルアリーレン誘導体(特開平2−247278号公報)、(2−ヒドロキシフェニル)ベンゾチアゾールの金属錯体(特開平8−315983号公報)、シロール誘導体、等の蛍光発光を生じる発光層材料、4,4'−N,N'−ジカルバゾールビフェニルなどのカルバゾール誘導体(WO 00/70655号公報)、トリス(8−ヒドロキシキノリン)アルミニウム(USP 6,303,238号公報)、2,2',2''−(1,3,5−ベンゼントリル)トリス[1−フェニル−1H−ベ
ンズイミダゾール](Appl. Phys. Lett., 78巻, 1622項, 2001)、ポリビニルカルバゾ
ール(特開2001−257076号公報)等の燐光発光を生じる発光層材料などを含有していても良い。
The thickness of the light emitting layer 5 is usually 3 nm or more, preferably 5 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
In addition, the light emitting layer 5 may contain components other than the above in the range which does not impair the performance of this invention.
For example, a metal complex such as an aluminum complex of 8-hydroxyquinoline (JP 59-194393 A), a metal complex of 10-hydroxybenzo [h] quinoline (JP 6-322362 A), a bisstyrylbenzene derivative ( JP-A-1-245087 and JP-A-2-222484), bisstyrylarylene derivatives (JP-A-2-247278), metal complexes of (2-hydroxyphenyl) benzothiazole (JP-A-8-315983) , A light emitting layer material that emits fluorescence such as silole derivatives, carbazole derivatives such as 4,4′-N, N′-dicarbazolebiphenyl (WO 00/70655), tris (8-hydroxyquinoline) aluminum (USP) 6,303,238), 2,2 ′, 2 ″-(1,3,5- Luminescent layer that generates phosphorescence such as benzenetolyl) tris [1-phenyl-1H-benzimidazole] (Appl. Phys. Lett., 78, 1622, 2001), polyvinylcarbazole (Japanese Patent Laid-Open No. 2001-257076), etc. It may contain materials.

発光層も正孔輸送層と同様の方法で形成することができる。上述の蛍光色素および/または燐光色素(燐光性ドーパント)を発光層のホスト材料にドープする方法を以下に説明する。
塗布の場合は、前記発光層ホスト材料と、ドープ用色素、さらに必要により、電子のトラップや発光の消光剤とならないバインダー樹脂や、レベリング剤等の塗布性改良剤などの添加剤を添加し溶解した塗布溶液を調整し、スピンコート法などの方法により正孔輸送層4上に塗布し、乾燥して発光層5を形成する。バインダー樹脂としては、ポリカーボネート、ポリアリレート、ポリエステル等が挙げられる。バインダー樹脂は添加量が多いと正孔/電子移動度を低下させるので、少ない方が望ましく、50重量%以下が好ましい。
The light emitting layer can also be formed by the same method as the hole transport layer. A method for doping the above-described fluorescent dye and / or phosphorescent dye (phosphorescent dopant) into the host material of the light emitting layer will be described below.
In the case of coating, the above light emitting layer host material, dope dye, and if necessary, additives such as a binder resin that does not become an electron trap or a light quenching quencher, and a coating property improving agent such as a leveling agent are added and dissolved. The applied coating solution is prepared, applied onto the hole transport layer 4 by a method such as spin coating, and dried to form the light emitting layer 5. Examples of the binder resin include polycarbonate, polyarylate, and polyester. When the amount of the binder resin added is large, the hole / electron mobility is lowered. Therefore, the smaller amount is desirable, and 50% by weight or less is preferable.

真空蒸着法の場合には、前記ホスト材料を真空容器内に設置されたるつぼに入れ、ドープする色素を別のるつぼに入れ、真空容器内を適当な真空ポンプで1.0×10-4Torr程度にまで排気した後、各々のるつぼを同時に加熱して蒸発させ、るつぼと向かい合って置かれた基板上に層を形成する。また、他の方法として、上記の材料を予め所定比で混合したものを同一のるつぼを用いて蒸発させてもよい。
上記各ドーパントが発光層中にドープされる場合、発光層の膜厚方向において均一にドープされるが、膜厚方向において濃度分布があっても構わない。例えば、正孔輸送層との界面近傍にのみドープしたり、逆に、正孔阻止層界面近傍にドープしてもよい。
発光層も正孔輸送層と同様の方法で形成することができるが、通常は真空蒸着法が用いられる。
In the case of the vacuum deposition method, the host material is put in a crucible installed in a vacuum vessel, the dye to be doped is put in another crucible, and the inside of the vacuum vessel is 1.0 × 10 −4 Torr with an appropriate vacuum pump. After evacuating to a degree, each crucible is heated and evaporated simultaneously to form a layer on the substrate placed opposite the crucible. As another method, a mixture of the above materials in a predetermined ratio may be evaporated using the same crucible.
When each said dopant is doped in a light emitting layer, although doped uniformly in the film thickness direction of a light emitting layer, there may exist concentration distribution in a film thickness direction. For example, it may be doped only in the vicinity of the interface with the hole transport layer, or conversely, it may be doped in the vicinity of the interface of the hole blocking layer.
The light emitting layer can also be formed by the same method as the hole transport layer, but usually a vacuum deposition method is used.

図1に示す素子において、正孔阻止層6は発光層5の上に、発光層5の陰極側の界面に接するように積層される。
正孔阻止層は、正孔輸送層から移動してくる正孔を陰極に到達するのを阻止する役割と、陰極から注入された電子を効率よく発光層の方向に輸送することができる化合物より形成されることが好ましい。正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いことが必要とされる。正孔阻止層6は正孔と電子を発光層内に閉じこめて、発光効率を向上させる機能を有する。
In the element shown in FIG. 1, the hole blocking layer 6 is laminated on the light emitting layer 5 so as to be in contact with the cathode side interface of the light emitting layer 5.
The hole blocking layer has a role of blocking the holes moving from the hole transport layer from reaching the cathode, and a compound that can efficiently transport the electrons injected from the cathode toward the light emitting layer. Preferably it is formed. The physical properties required for the material constituting the hole blocking layer are required to have high electron mobility and low hole mobility. The hole blocking layer 6 has a function of confining holes and electrons in the light emitting layer and improving luminous efficiency.

本発明で用いられる正孔阻止層のイオン化ポテンシャルは発光層のイオン化ポテンシャル(発光層がホスト材料とドーパントを含んでいる場合にはホスト材料のイオン化ポテンシャル)より0.1eV以上大きいことが好ましい。イオン化ポテンシャルは物質のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義される。イオン化ポテンシャルは光電子分光法で直接定義されるか、電気化学的に測定した酸化電位を基準電極に対して補正しても求められる。後者の方法の場合、例えば飽和甘コウ電極(SCE)を基準電極として用いたとき、   The ionization potential of the hole blocking layer used in the present invention is preferably 0.1 eV or more larger than the ionization potential of the light emitting layer (or the ionization potential of the host material when the light emitting layer contains a host material and a dopant). The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of a material to the vacuum level. The ionization potential can be defined directly by photoelectron spectroscopy or can be determined by correcting the electrochemically measured oxidation potential relative to the reference electrode. In the case of the latter method, for example, when a saturated sweet potato electrode (SCE) is used as a reference electrode,

Figure 0004810805
で定義される。(“Molecular Semiconductors”,Springer−Verla
g,1985年、98頁)。
Figure 0004810805
Defined by ("Molecular Semiconductors", Springer-Verla
g, 1985, page 98).

さらに、本発明で用いられる正孔阻止層の電子親和力(EA)は、発光層の電子親和力(発光層がホスト材料とドーパントを含んでいる場合にはホスト材料の電子親和力)と比較して同等以上であることが好ましい。電子親和力もイオン化ポテンシャルと同様に真空準位を基準として、真空準位にある電子が物質のLUMO(最低空分子軌道)レベルに落ちて安定化するエネルギーで定義される。電子親和力は、上述のイオン化ポテンシャルから光学的バンドギャップを差し引いて求められるか、電気化学的な還元電位から下記の式で同様に求められる。   Furthermore, the electron affinity (EA) of the hole blocking layer used in the present invention is equivalent to the electron affinity of the light emitting layer (when the light emitting layer contains a host material and a dopant, the electron affinity of the host material). The above is preferable. Similar to the ionization potential, the electron affinity is also defined by the energy at which the electrons in the vacuum level fall to the LUMO (lowest unoccupied molecular orbital) level of the material and stabilize, with the vacuum level as a reference. The electron affinity can be obtained by subtracting the optical band gap from the above-mentioned ionization potential, or similarly obtained from the electrochemical reduction potential by the following formula.

Figure 0004810805
従って、本発明で用いられる正孔阻止層は、酸化電位と還元電位をもちいて、(正孔阻止材料の酸化電位)−(発光材料の酸化電位)≧0.1V(正孔阻止材料の還元電位)≧(発光材料の還元電位)と表現することも出来る。
さらに後述の電子輸送層を有する素子の場合には、正孔阻止層の電子親和力は電子輸送層の電子親和力と比較して同等以下であることが好ましい。
(電子輸送材料の還元電位)≧(正孔阻止材料の還元電位)≧(発光材料の還元電位)
このような条件を満たす正孔阻止材料として、好ましくは、下記一般式(VII)で表わ
される混合配位子錯体が挙げられる。
Figure 0004810805
Therefore, the hole blocking layer used in the present invention uses an oxidation potential and a reduction potential, and (the oxidation potential of the hole blocking material) − (the oxidation potential of the light emitting material) ≧ 0.1 V (the reduction of the hole blocking material). It can also be expressed as (potential) ≧ (reduction potential of the light emitting material).
Further, in the case of an element having an electron transport layer described later, the electron affinity of the hole blocking layer is preferably equal to or less than that of the electron transport layer.
(Reduction potential of electron transport material) ≧ (Reduction potential of hole blocking material) ≧ (Reduction potential of light emitting material)
As a hole blocking material satisfying such conditions, a mixed ligand complex represented by the following general formula (VII) is preferably used.

Figure 0004810805
Figure 0004810805

(式中、R16〜R21は、水素原子または任意の置換基を表す。M8はアルミニウム、ガリ
ウム、インジウムから選ばれる金属原子を表す。L5は以下に示す一般式(VIIa)、(VIIb)、(VIIc)のいずれかで表される。
(Wherein R 16 to R 21 represent a hydrogen atom or an arbitrary substituent. M 8 represents a metal atom selected from aluminum, gallium, and indium. L 5 represents a general formula (VIIa) shown below, ( It is represented by either VIIb) or (VIIc).

Figure 0004810805
Figure 0004810805

(式中、Ar11〜Ar15は、置換基を有していてもよい芳香族炭化水素環基または置換基を有していてもよい芳香族複素環基を表し、Z3はシリコンまたはゲルマニウムを表す。)
前記一般式(VII) において、R16〜R21は水素原子または任意の置換基を表すが、好ましくは水素原子;塩素、臭素等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;ベンジル基等のアラルキル基;ビニル基等の炭素数2〜6のアルケニル基;シアノ基;アミノ基;アシル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜6のアルコキシカルボニル基;カルボキシル基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;ジエチルアミノ基、ジイソプロピルアミノ基等のジアルキルアミノ基;ジベンジルアミノ基、ジフェネチルアミノ基などのジアラルキルアミノ基;トリフルオロメチル基等のα−ハロアルキル基;水酸基;置換基を有していてもよいフェニル基、ナフチル基等の芳香族炭化水素環基;置換基を有していてもよいチエニル基、ピリジル基等の芳香族複素環基を表わす。
(In the formula, Ar 11 to Ar 15 represent an aromatic hydrocarbon ring group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and Z 3 represents silicon or germanium. Represents.)
In the general formula (VII), R 16 to R 21 represent a hydrogen atom or an arbitrary substituent, preferably a hydrogen atom; a halogen atom such as chlorine or bromine; a carbon number of 1 to 6 such as a methyl group or an ethyl group. An aralkyl group such as a benzyl group; an alkenyl group having 2 to 6 carbon atoms such as a vinyl group; a cyano group; an amino group; an acyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group; A C2-C6 alkoxycarbonyl group such as a carbonyl group or an ethoxycarbonyl group; a carboxyl group; an aryloxy group such as a phenoxy group or a benzyloxy group; a dialkylamino group such as a diethylamino group or a diisopropylamino group; a dibenzylamino group; Diaralkylamino groups such as diphenethylamino groups; α-haloalkyl groups such as trifluoromethyl groups; hydroxyl groups; substituents Represents an aromatic hydrocarbon ring group such as a phenyl group or naphthyl group which may have an aromatic group; an aromatic heterocyclic group such as a thienyl group or a pyridyl group which may have a substituent.

前記芳香族炭化水素環基および芳香族複素環基が有しうる置換基としては、フッ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1〜6のアルキル基;ビニル基等の炭素数2〜6のアルケニル基;メトキシカルボニル基、エトキシカルボニル基等の炭素数2〜6のアルコキシカルボニル基;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェノキシ基、ベンジルオキシ基などのアリールオキシ基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;アセチル基等のアシル基;トリフルオロメチル基等のハロアルキル基;シアノ基等が挙げられる。R16ないしR21としてより好ましくは水素原子、アルキル基、ハロゲン原子またはシアノ基が挙げられる。またR19としては、シアノ基が特に好ましい。 Examples of the substituent that the aromatic hydrocarbon ring group and aromatic heterocyclic group may have include a halogen atom such as a fluorine atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; and a carbon such as a vinyl group. An alkenyl group having 2 to 6 carbon atoms; an alkoxycarbonyl group having 2 to 6 carbon atoms such as a methoxycarbonyl group and an ethoxycarbonyl group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group; a phenoxy group and a benzyloxy group A dialkylamino group such as a dimethylamino group and a diethylamino group; an acyl group such as an acetyl group; a haloalkyl group such as a trifluoromethyl group; a cyano group and the like. R 16 to R 21 are more preferably a hydrogen atom, an alkyl group, a halogen atom or a cyano group. R 19 is particularly preferably a cyano group.

上記式(VII)中、Ar11〜Ar15として、具体的には、置換基を有していてもよいフェ
ニル基、ビフェニル基、ナフチル基等の芳香族炭化水素環基またはチエニル基、ピリジル基等の芳香族複素環基を表わす。
前記一般式(VII) で表わされる化合物の好ましい具体例を以下に示すが、これらに限定するものではない。
In the above formula (VII), as Ar 11 to Ar 15 , specifically, an aromatic hydrocarbon ring group such as phenyl group, biphenyl group, naphthyl group or the like which may have a substituent, thienyl group, pyridyl group Represents an aromatic heterocyclic group such as
Preferred specific examples of the compound represented by the general formula (VII) are shown below, but are not limited thereto.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

なお、これらの化合物は正孔阻止層中に、単独で用いてもよいし、必要に応じて、各々混合して用いてもよい。   In addition, these compounds may be used independently in a hole-blocking layer, and may be mixed and used as needed.

Figure 0004810805
Figure 0004810805

正孔阻止材料としては、前記一般式(VII) の混合配位子錯体の他に、以下の構造式で示される1,2,4−トリアゾール環残基を少なくとも1個有する化合物を用いることができる。
前記構造式で表わされる1,2,4−トリアゾール環残基を少なくとも1個有する化合物の具体例を以下に示す。
As the hole blocking material, in addition to the mixed ligand complex of the general formula (VII), a compound having at least one 1,2,4-triazole ring residue represented by the following structural formula may be used. it can.
Specific examples of the compound having at least one 1,2,4-triazole ring residue represented by the above structural formula are shown below.

Figure 0004810805
Figure 0004810805

正孔阻止材料として、さらに、以下の構造式で示されるフェナントロリン環を少なくとも1個有する化合物が挙げられる。   Examples of the hole blocking material further include compounds having at least one phenanthroline ring represented by the following structural formula.

Figure 0004810805
Figure 0004810805

前記構造式で表わされるフェナントロリン環を少なくとも1個有する化合物の具体例を以下に示す。   Specific examples of the compound having at least one phenanthroline ring represented by the above structural formula are shown below.

Figure 0004810805
Figure 0004810805

さらに正孔阻止材料として、以下の構造式で示される2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も用いることができる。   Further, as the hole blocking material, a compound having at least one pyridine ring substituted at the 2,4,6-position represented by the following structural formula can also be used.

Figure 0004810805
Figure 0004810805

(式中、R91、R92およびR93は、各々独立に、水素原子または任意の置換基を表す。連結基Qはn’価の連結基を表し、ピリジン環と連結基Qはピリジン環の2〜6位のいずれか1つと直接結合している。n’は1〜8の整数である。)
上記構造式で表わされる2,4,6位が置換されたピリジン環を少なくとも1個有する化合物の具体例を以下に示すが、これらに限定されるものではない。
(In the formula, R 91 , R 92 and R 93 each independently represents a hydrogen atom or an arbitrary substituent. The linking group Q represents an n′-valent linking group, and the pyridine ring and the linking group Q are pyridine rings. Directly bonded to any one of positions 2 to 6. n ′ is an integer of 1 to 8.)
Specific examples of the compound having at least one pyridine ring substituted at the 2,4,6-position represented by the above structural formula are shown below, but are not limited thereto.

Figure 0004810805
Figure 0004810805

正孔阻止層6の膜厚は、通常0.3以上、好ましくは0.5nm以上であり、また通常100nm以下、好ましくは50nm以下である。正孔阻止層も正孔輸送層と同様の方法で形成することができるが、通常は真空蒸着法が用いられる。
陰極8は、正孔阻止層6を介して発光層5に電子を注入する役割を果たす。陰極8として用いられる材料は、前記陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なうには、仕事関数の低い金属が好ましく、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属またはそれらの合金が用いられる。具体例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム−リチウム合金等の低仕事関数合金電極が挙げられる。さらに、陰極と発光層または電子輸送層の界面にLiF、MgF2、Li2O等の極薄絶縁膜(0.1〜5nm)を挿入することも、素子の効率を向上させる有効な方法である(Appl. Phys. Lett., 70巻,152頁,1997年;特開平10−74586号公報;IEEE Trans. Electron. Devices,44巻,1245頁,1997年)。陰極8の膜厚は通常、陽極2と同様である。低仕事関数金属から成る陰極を保護する目的で、この上にさらに、仕事関数が高く大気に対して安定な金属層を積層することは素子の安定性を増す。この目的のために、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。
The film thickness of the hole blocking layer 6 is usually 0.3 or more, preferably 0.5 nm or more, and is usually 100 nm or less, preferably 50 nm or less. The hole blocking layer can also be formed by the same method as the hole transporting layer, but usually a vacuum deposition method is used.
The cathode 8 serves to inject electrons into the light emitting layer 5 through the hole blocking layer 6. The material used for the cathode 8 can be the material used for the anode 2, but a metal having a low work function is preferable for efficient electron injection, such as tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. Furthermore, inserting an ultrathin insulating film (0.1 to 5 nm) such as LiF, MgF2, or Li2O at the interface between the cathode and the light emitting layer or the electron transporting layer is also an effective method for improving the efficiency of the device (Appl Phys., Lett., 70, 152, 1997; JP-A-10-74586; IEEE Trans. Electron. Devices, 44, 1245, 1997). The film thickness of the cathode 8 is usually the same as that of the anode 2. For the purpose of protecting the cathode made of a low work function metal, further laminating a metal layer having a high work function and stable to the atmosphere on the cathode increases the stability of the device. For this purpose, metals such as aluminum, silver, copper, nickel, chromium, gold, platinum are used.

素子の発光効率をさらに向上させることを目的として、図2および図3に示すように、正孔阻止層6と陰極8の間に電子輸送層7が設けられていてもよい。電子輸送層7は、電界を与えられた電極間において陰極から注入された電子を効率よく正孔阻止層6の方向に輸送することができる化合物より形成される。
このような条件を満たす材料としては、8−ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59−194393号公報)、10−ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3−または5−ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第 5,645,948号)、キノキサリン化合物(特開平6−207169号公報)、フェナントロリン誘導体(特開平5−331459号公報)、2−t−ブチル−9,10−N,N′−ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
For the purpose of further improving the luminous efficiency of the device, an electron transport layer 7 may be provided between the hole blocking layer 6 and the cathode 8 as shown in FIGS. The electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the hole blocking layer 6.
Materials satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, Styryl biphenyl derivative, silole derivative, 3- or 5-hydroxyflavone metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948), quinoxaline compound No. 207169), phenanthroline derivatives (Japanese Patent Laid-Open No. 5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, n-type hydrogenated amorphous silicon carbide, n-type sulfide Examples include zinc and n-type zinc selenide.

電子輸送層6の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常200nm以下、好ましくは100nm以下である。
電子輸送層7は、正孔輸送層4と同様にして塗布法あるいは真空蒸着法により正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が用いられる。
正孔注入の効率をさらに向上させ、かつ、有機層全体の陽極への付着力を改善させる目的で、正孔輸送層4と陽極2との間に陽極バッファ層3を挿入することも行われている(図3参照)。陽極バッファ層3を挿入することで、初期の素子の駆動電圧が下がると同時に、素子を定電流で連続駆動した時の電圧上昇も抑制される効果がある。陽極バッファ層に用いられる材料に要求される条件としては、陽極とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、すなわち、融点及びガラス転移温度が高く、融点としては 300℃以上、ガラス転移温度としては 100℃以上であることが好ましい。さらに、イオン化ポテンシャルが低く陽極からの正孔注入が容易なこと、正孔移動度が大きいことが挙げられる。
The thickness of the electron transport layer 6 is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
The electron transport layer 7 is formed by laminating on the hole blocking layer 6 by a coating method or a vacuum deposition method in the same manner as the hole transport layer 4. Usually, a vacuum deposition method is used.
An anode buffer layer 3 is also inserted between the hole transport layer 4 and the anode 2 for the purpose of further improving the efficiency of hole injection and improving the adhesion of the entire organic layer to the anode. (See FIG. 3). By inserting the anode buffer layer 3, the driving voltage of the initial element is lowered, and at the same time, an increase in voltage when the element is continuously driven with a constant current is suppressed. As conditions required for the material used for the anode buffer layer, a uniform thin film can be formed with good contact with the anode, and it is thermally stable, that is, the melting point and the glass transition temperature are high, and the melting point is 300 ° C. or higher. The glass transition temperature is preferably 100 ° C. or higher. Furthermore, the ionization potential is low, hole injection from the anode is easy, and the hole mobility is high.

この目的のために、これまでに銅フタロシアニン等のフタロシアニン化合物(特開昭63−295695号公報)、ポリアニリン(Appl. Phys. Lett., 64巻、1245頁,1994年)、ポリチオフェン(Optical Materials, 9巻、125頁、1998年)等の有機化合物や、スパッタ・カーボン膜(Synth. Met., 91巻、73頁、1997年)や、バナジウム酸化物、ルテニウム酸化物、モリブデン酸化物等の金属酸化物(J. Phys. D, 29巻、2750頁、1996年)が報告されている。   For this purpose, phthalocyanine compounds such as copper phthalocyanine (Japanese Patent Laid-Open No. 63-295695), polyaniline (Appl. Phys. Lett., 64, 1245, 1994), polythiophene (Optical Materials, 9, 125, 1998), etc., sputtered carbon films (Synth. Met., 91, 73, 1997), metals such as vanadium oxide, ruthenium oxide, molybdenum oxide Oxides (J. Phys. D, 29, 2750, 1996) have been reported.

また、正孔注入・輸送性の低分子有機化合物と電子受容性化合物を含有する層(特開平11−251067号公報、特開2000−159221号公報等に記載)や、芳香族アミノ基等を含有する非共役系高分子化合物に、必要に応じて電子受容性化合物をドープしてなる層(特開平11−135262号公報、特開平11−283750号公報、特開2000−36390号公報、特開2000−150168号公報、特開平2001−223084号公報、およびWO97/33193号公報など)、またはポリチオフェン等の導電性ポリマーを含む層(特開平10−92584号公報)なども挙げられるが、これらに限定されるものではない。   In addition, a layer containing a hole injection / transporting low molecular organic compound and an electron accepting compound (described in JP-A-11-251067, JP-A-2000-159221, etc.), an aromatic amino group, etc. A layer obtained by doping the contained non-conjugated polymer compound with an electron-accepting compound as necessary (Japanese Patent Laid-Open Nos. 11-135262, 11-283750, 2000-36390, Examples include JP 2000-150168, JP-A 2001-223084, and WO 97/33193), or layers containing a conductive polymer such as polythiophene (JP-A 10-92584). It is not limited to.

上記陽極バッファ層材料としては、低分子・高分子いずれの化合物を用いることも可能である。
陽極バッファ層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には、さらに、スパッタ法や電子ビーム蒸着法、プラズマCVD法が用いられる。
以上の様にして形成される陽極バッファ層3の膜厚は、低分子化合物を用いて形成され
る場合、下限は通常3nm、好ましくは10nm程度であり、上限は通常100nm、好ましくは50nm程度である。また高分子化合物を用いて形成される陽極バッファ層3の、膜厚の下限は通常5nm、好ましくは10nm程度であり、上限は通常1000nm、好ましくは500nm程度である。
As the anode buffer layer material, either a low molecular compound or a high molecular compound can be used.
In the case of the anode buffer layer, a thin film can be formed in the same manner as the hole transport layer, but in the case of an inorganic material, a sputtering method, an electron beam evaporation method, or a plasma CVD method is further used.
When the anode buffer layer 3 formed as described above is formed using a low molecular weight compound, the lower limit is usually 3 nm, preferably about 10 nm, and the upper limit is usually 100 nm, preferably about 50 nm. is there. The lower limit of the thickness of the anode buffer layer 3 formed using the polymer compound is usually 5 nm, preferably about 10 nm, and the upper limit is usually about 1000 nm, preferably about 500 nm.

本発明の有機電界発光素子は、図1とは逆の構造、すなわち、基板上に陰極8、正孔阻止層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、既述したように少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。同様に、図2または図3に示した前記各層構成とは逆の順に積層することも可能である。また、図1〜3のいずれの層構成においても、本発明の趣旨を逸脱しない範囲で、上述以外の任意の層を有していてもよく、また上記複数の層の機能を併有する層を設けることにより、層構成を簡略化する等、適宜変形を加えることが可能である。   The organic electroluminescence device of the present invention has a structure opposite to that shown in FIG. 1, that is, a cathode 8, a hole blocking layer 6, a light emitting layer 5, a hole transport layer 4 and an anode 2 can be laminated on a substrate in this order. As described above, it is also possible to provide the organic electroluminescence device of the present invention between two substrates, at least one of which is highly transparent. Similarly, the layers can be stacked in the reverse order of the layer configuration shown in FIG. 2 or FIG. Moreover, in any layer structure of FIGS. 1-3, in the range which does not deviate from the meaning of this invention, it may have arbitrary layers other than the above-mentioned, and the layer which has the function of several said layers together By providing, it is possible to appropriately modify the layer structure, for example.

以上、前記一般式(I)で表される化合物を、発光層に含有する層構成を例に、本発明の有機電界発光素子について説明したが、前述したように、一般式(I)で表される化合物は、発光層と陰極または陽極との間に設けられた任意の層に含有されていても良く、その場合の発光層は、一般式(I)で表される化合物から選択されたものであっても、それ以外の材料からなるものであっても良い。
本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX−Yマトリックス状に配置された構造のいずれにおいても適用することができる。
本発明によれば、一般式(I)で表される化合物を用いることにより、駆動安定性に優れ、駆動寿命が長く、さらに高発光効率および低駆動電圧である有機電界発光素子を得ることができる。
As described above, the organic electroluminescent element of the present invention has been described by taking as an example the layer structure containing the compound represented by the general formula (I) in the light emitting layer. The compound to be formed may be contained in an arbitrary layer provided between the light emitting layer and the cathode or the anode, and the light emitting layer in that case is selected from the compounds represented by the general formula (I) Even if it is a thing, it may consist of other materials.
The present invention can be applied to any of an organic electroluminescent element having a single element, an element having a structure arranged in an array, and a structure having an anode and a cathode arranged in an XY matrix.
According to the present invention, by using the compound represented by the general formula (I), it is possible to obtain an organic electroluminescence device having excellent driving stability, long driving life, high light emission efficiency and low driving voltage. it can.

次に、本発明を実施例によって更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例の記載に限定されるものではない。
(合成例)
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to description of a following example, unless the summary is exceeded.
(Synthesis example)

Figure 0004810805
Figure 0004810805

120℃で30分間窒素フローを行ったグリセロール20mL中に、2−(2,4−ジフルオロフェニル)ピリジン480mgと、トリスアセチルアセトナトイリジウム489mgを加え、210℃で7時間攪拌した。室温まで冷却後、メタノール20mL、水20mLを加え、析出した沈殿を濾過した。
得られた沈殿物をカラムクロマトグラフィー(展開溶媒はジクロロメタン)により精製後、昇華精製により淡黄色の固体190mgを得た。得られた化合物のマススペクトル分析の結果、目的とする化合物1であることが確認出来た。
なお、本合成例によると、化合物1はfacialとmeridionalの異性体混合物として得られ、また脱フッ素化された化合物2,3,4も含まれていた。
(実施例1)
480 mg of 2- (2,4-difluorophenyl) pyridine and 489 mg of trisacetylacetonatoiridium were added to 20 mL of glycerol subjected to nitrogen flow at 120 ° C. for 30 minutes, and stirred at 210 ° C. for 7 hours. After cooling to room temperature, 20 mL of methanol and 20 mL of water were added, and the deposited precipitate was filtered.
The obtained precipitate was purified by column chromatography (developing solvent was dichloromethane) and then sublimation purified to obtain 190 mg of a pale yellow solid. As a result of mass spectrum analysis of the obtained compound, it was confirmed that it was the target compound 1.
According to this synthesis example, compound 1 was obtained as a mixture of facial and meridional isomers, and defluorinated compounds 2, 3, and 4 were also included.
(Example 1)

Figure 0004810805
Figure 0004810805

窒素雰囲気下、水素化ナトリウム(55%,2.4g)の無水DMF(N,N−ジメチルホルムアミド)(40ml)懸濁液にカルバゾール(9.2g)の無水DMF(50ml)溶液を20分かけて滴下し、室温で30分、50℃で50分撹拌した後、1,2,3,4,5−ペンタフルオロピリジン(1.7g)のDMF(10ml)溶液を10分かけ
て滴下し、室温で40分、80℃で70分間撹拌した。得られた溶液を水(200ml)中に滴下し、析出した沈殿を濾過、水(20ml)、エタノール(3×50ml)で洗浄した。得られた固体をクロロホルムで抽出し、クロロホルム−エタノールからの再結晶で精製し、目的物1(3.5g)を得た。この化合物のガラス転移温度は216℃、気化温度は476℃、融点は449℃であった。
1H-NMR(270MHz, CDCl3), 7.76(d, 4H), 7.48(d, 4H), 7.40(d, 4H), 7.35(d, 2H), 7.44(t, 4H), 6.94-6.74(m, 16H), 6.60(t, 4H), 6.52(t, 2H)
DEI-MS m/z = 904(M+)(実施例2)
Under a nitrogen atmosphere, a solution of carbazole (9.2 g) in anhydrous DMF (50 ml) was added over 20 minutes to a suspension of sodium hydride (55%, 2.4 g) in anhydrous DMF (N, N-dimethylformamide) (40 ml). After stirring at room temperature for 30 minutes and at 50 ° C. for 50 minutes, a DMF (10 ml) solution of 1,2,3,4,5-pentafluoropyridine (1.7 g) was added dropwise over 10 minutes, The mixture was stirred at room temperature for 40 minutes and at 80 ° C. for 70 minutes. The obtained solution was dropped into water (200 ml), and the deposited precipitate was filtered and washed with water (20 ml) and ethanol (3 × 50 ml). The obtained solid was extracted with chloroform and purified by recrystallization from chloroform-ethanol to obtain Target 1 (3.5 g). This compound had a glass transition temperature of 216 ° C., a vaporization temperature of 476 ° C., and a melting point of 449 ° C.
1 H-NMR (270 MHz, CDCl 3 ), 7.76 (d, 4H), 7.48 (d, 4H), 7.40 (d, 4H), 7.35 (d, 2H), 7.44 (t, 4H), 6.94-6.74 ( m, 16H), 6.60 (t, 4H), 6.52 (t, 2H)
DEI-MS m / z = 904 (M + ) (Example 2)

Figure 0004810805
Figure 0004810805

窒素雰囲気下、水素化ナトリウム(55%,2.4g)の無水DMF(N,N−ジメチルホルムアミド)(80ml)懸濁液にカルバゾール(9.2g)の無水DMF(80ml)溶液を15分かけて滴下し、50℃で45分撹拌した後、氷浴中、1,2,3,4,5−ペンタフルオロトルエン(1.8g)を滴下し、氷浴中で10分、50℃で15分、80℃で25分、100℃で15分、120℃で40分、加熱還流下で3時間撹拌した。これを室温まで冷却後、沈殿を濾別し、メタノールで洗浄後、水(200ml)に分散させてから沸騰洗浄し、目的物2(6.6g)を得た。また、先の濾液(DMF溶液)と洗液(メタノール溶液)との混合物から析出した沈殿を濾過、水(200ml)に分散させてから沸騰洗浄し、目的物2(2.1g)を得た。この化合物の気化温度は512℃、融点は448℃であった。
1H-NMR(270MHz, CDCl3), 7.75(dd, 4H), 7.33-7.27(m, 8H), 7.18(dd, 8H), 7.12-7.03(m, 8H), 6.75-6.61(m, 12H), 2.04(s, 3H)
DEI-MS m/z = 917(M+)(実施例3)
Under a nitrogen atmosphere, a solution of carbazole (9.2 g) in anhydrous DMF (80 ml) was added to an anhydrous DMF (N, N-dimethylformamide) (80 ml) suspension of sodium hydride (55%, 2.4 g) over 15 minutes. After stirring at 50 ° C. for 45 minutes, 1,2,3,4,5-pentafluorotoluene (1.8 g) was added dropwise in an ice bath, and 10 minutes in an ice bath at 15 ° C. for 15 minutes. The mixture was stirred at 80 ° C. for 25 minutes, 100 ° C. for 15 minutes, 120 ° C. for 40 minutes, and heated under reflux for 3 hours. After cooling to room temperature, the precipitate was separated by filtration, washed with methanol, dispersed in water (200 ml) and then washed with boiling to obtain the desired product 2 (6.6 g). In addition, the precipitate deposited from the mixture of the previous filtrate (DMF solution) and the washing solution (methanol solution) was filtered, dispersed in water (200 ml), washed by boiling, and the target product 2 (2.1 g) was obtained. . The vaporization temperature of this compound was 512 ° C., and the melting point was 448 ° C.
1 H-NMR (270 MHz, CDCl 3 ), 7.75 (dd, 4H), 7.33-7.27 (m, 8H), 7.18 (dd, 8H), 7.12-7.03 (m, 8H), 6.75-6.61 (m, 12H ), 2.04 (s, 3H)
DEI-MS m / z = 917 (M + ) (Example 3)

Figure 0004810805
Figure 0004810805

窒素雰囲気下、水素化ナトリウム(55%,2.1g)の無水DMF(N,N−ジメチルホルムアミド)(70ml)懸濁液にカルバゾール(8.0g)の無水DMF(80ml)溶液を20分かけて滴下し、50℃で70分撹拌した後、1,2,3,5−ヘキサフルオロベンゼン(1.5g)を滴下し、70℃で100分、90℃で15分、120℃で80分、加熱還流下で4.5時間撹拌した。これを室温まで冷却後、水(70ml)、メタノール(30ml)を加えて十分に撹拌してから沈殿を濾別し、水、メタノールで洗浄後、クロロホルム−トルエンで抽出した。抽出物をカラム精製してからクロロホルム−エタノールからの再結晶で精製し、目的物3(5.5g)を得た。この化合物の融点は448℃、沸点は478℃であった。
1H-NMR(270MHz, CDCl3), 8.22(s, 2H), 8.18(d, 2H), 7.80-7.75(m, 6H), 7.49(t, 2H), 7.42-7.29(m, 8H), 7.09-7.01(m, 10H), 6.80(t, 2H), 6.69(t, 2H)
DEI-MS m/z = 738(M+)
Under a nitrogen atmosphere, a solution of carbazole (8.0 g) in anhydrous DMF (80 ml) was added over 20 minutes to a suspension of sodium hydride (55%, 2.1 g) in anhydrous DMF (N, N-dimethylformamide) (70 ml). After stirring at 50 ° C. for 70 minutes, 1,2,3,5-hexafluorobenzene (1.5 g) was added dropwise, and at 70 ° C. for 100 minutes, 90 ° C. for 15 minutes, and 120 ° C. for 80 minutes. The mixture was stirred for 4.5 hours under heating to reflux. After cooling this to room temperature, water (70 ml) and methanol (30 ml) were added and stirred well, then the precipitate was filtered off, washed with water and methanol, and extracted with chloroform-toluene. The extract was purified by column and then purified by recrystallization from chloroform-ethanol to obtain the desired product 3 (5.5 g). This compound had a melting point of 448 ° C. and a boiling point of 478 ° C.
1 H-NMR (270 MHz, CDCl 3 ), 8.22 (s, 2H), 8.18 (d, 2H), 7.80-7.75 (m, 6H), 7.49 (t, 2H), 7.42-7.29 (m, 8H), 7.09-7.01 (m, 10H), 6.80 (t, 2H), 6.69 (t, 2H)
DEI-MS m / z = 738 (M + )

(実施例4) Example 4

Figure 0004810805
Figure 0004810805

窒素雰囲気下、ペンタフルオロアニリン(0.74g)、1,2−ジベンゾイルエタン(1.05g)、p−トルエンスルホン酸・1水和物(0.23g)、トルエン(25ml)の混合溶液を、加熱還流下で6時間撹拌した。これを室温まで冷却後、水(100ml)、トルエン(100ml)を加えて十分に撹拌してから有機層を分取し、無水硫酸マグネシウムで乾燥後、濾過、濃縮し、得られた混合物をシリカゲルカラムクロマトグラフィーで精製し、目的物4(1.19g)を得た。
EI-MS m/z = 385(M+)
窒素雰囲気下、水素化ナトリウム(55%,0.68g)の無水N,N−ジメチルホルムアミド(100ml)懸濁液にカルバゾール(2.60g)を10分かけて添加し、60℃で20分撹拌した後、氷冷条件下で目的物4(1.0g)を添加し、加熱還流下で5時間撹拌した。これを室温まで冷却後、酢酸エチル(10ml)、水(20ml)、エタノール(20ml)を加えて、よく撹拌した。析出した沈殿を濾別し、エタノールで洗浄後、残った残渣からクロロホルム(300ml)中、加熱環流条件で抽出し、得られた抽出液を濃縮後、テトラヒドロフラン(100ml)−クロロホルム(100ml)中、およびクロロホルム(100ml)中で加熱還流下で懸濁洗浄し、目的物5(0.40g)を得た。この化合物の融点は340℃、沸点は571℃であった。
MALDI-TOF-MS m/z = 1120.77(M+)
Under a nitrogen atmosphere, a mixed solution of pentafluoroaniline (0.74 g), 1,2-dibenzoylethane (1.05 g), p-toluenesulfonic acid monohydrate (0.23 g), and toluene (25 ml) The mixture was stirred for 6 hours under reflux. After cooling this to room temperature, water (100 ml) and toluene (100 ml) were added and stirred well, then the organic layer was separated, dried over anhydrous magnesium sulfate, filtered and concentrated, and the resulting mixture was purified by silica gel. Purification by column chromatography gave the target product 4 (1.19 g).
EI-MS m / z = 385 (M +)
Under a nitrogen atmosphere, carbazole (2.60 g) was added to an anhydrous N, N-dimethylformamide (100 ml) suspension of sodium hydride (55%, 0.68 g) over 10 minutes, and the mixture was stirred at 60 ° C. for 20 minutes. After that, the target product 4 (1.0 g) was added under ice-cooling conditions, and the mixture was stirred for 5 hours under heating to reflux. After cooling to room temperature, ethyl acetate (10 ml), water (20 ml) and ethanol (20 ml) were added and stirred well. The deposited precipitate was separated by filtration, washed with ethanol, extracted from the remaining residue in chloroform (300 ml) under heating and reflux conditions, and the obtained extract was concentrated and then added in tetrahydrofuran (100 ml) -chloroform (100 ml). Then, suspension washing was performed in chloroform (100 ml) with heating under reflux to obtain the intended product 5 (0.40 g). This compound had a melting point of 340 ° C. and a boiling point of 571 ° C.
MALDI-TOF-MS m / z = 1120.77 (M +)

(実施例5) (Example 5)

Figure 0004810805
Figure 0004810805

窒素雰囲気下、水素化ナトリウム(55%,3.13g)の無水N,N−ジメチルホルムアミド(200ml)懸濁液にカルバゾール(12.0g)を10分かけて添加し、80℃で50分撹拌した後、2,3,4,5,6−ペンタフルオロビフェニル(2.5g)を添加し、80℃で30分、加熱還流下で5時間撹拌した。これを室温まで冷却後、沈殿を濾別し、メタノールで洗浄後、残渣をクロロホルム(200ml)−モノクロロベンゼン(150ml)で加熱環流条件で撹拌洗浄した。残った残渣からモノクロロベンゼン(300ml)中、加熱環流条件で抽出し、得られた抽出液を濃縮後、メタノール中で懸濁洗浄し、目的物6(1.5g)を得た。この化合物の融点は観測されず、ガラス転移温度は、301℃、気化温度は526℃であった。
DEI-MS m/z = 979(M+)
Under a nitrogen atmosphere, carbazole (12.0 g) was added to an anhydrous N, N-dimethylformamide (200 ml) suspension of sodium hydride (55%, 3.13 g) over 10 minutes, and the mixture was stirred at 80 ° C. for 50 minutes. Then, 2,3,4,5,6-pentafluorobiphenyl (2.5 g) was added, and the mixture was stirred at 80 ° C. for 30 minutes and heated under reflux for 5 hours. After cooling to room temperature, the precipitate was filtered off and washed with methanol. The residue was stirred and washed with chloroform (200 ml) -monochlorobenzene (150 ml) under heating and reflux conditions. The remaining residue was extracted in monochlorobenzene (300 ml) under heating and reflux conditions, and the resulting extract was concentrated and then suspended and washed in methanol to obtain the desired product 6 (1.5 g). The melting point of this compound was not observed, the glass transition temperature was 301 ° C., and the vaporization temperature was 526 ° C.
DEI-MS m / z = 979 (M +)

(実施例6) (Example 6)

Figure 0004810805
Figure 0004810805

窒素気流中、氷浴中で、ジフェニルアミン(1.69g)の無水テトラヒドロフラン(32ml)溶液に、ノルマルブチルリチウムのノルマルヘキサン溶液(1.6M,6.2
5ml)を滴下し、室温で1時間撹拌した。得られた溶液を、窒素気流中、氷冷下でペンタフルオロピリジン(10.0ml)の無水テトラヒドロフラン(70ml)溶液に34分かけて滴下し、5.8時間撹拌した。得られた溶液に、塩水50mlを加えた後、塩化メチレン(150ml)で抽出、乾燥(無水硫酸マグネシウム)、濾過、濃縮した。得られた固体を、メタノール(40ml)中で懸濁洗浄して精製し、目的物7(1.56g)を得た。
EI-MS, m/z=318(M+)
窒素気流中、水素化ナトリウム(55%,1.07g)の無水N,N−ジメチルホルムアミド(50ml)懸濁液にカルバゾール(4.09g)を添加し、80℃で35分撹拌した後、目的物7(1.56g)を添加し、加熱還流下で5.5時間撹拌した。これを室温まで冷却後、水10ml、メタノール20mlを加えてから沈殿を濾別した。得られた
固形分を、クロロホルム抽出後、クロロホルム−メタノールからの再沈殿で精製し、目的物8(4.25g)を得た。この化合物のガラス転移温度は検出されず、融点は420℃、気化温度は472℃であった。
DEI-MS m/z = 906(M+)
In a nitrogen stream and in an ice bath, a solution of diphenylamine (1.69 g) in anhydrous tetrahydrofuran (32 ml) was added to a normal hexane solution of normal butyl lithium (1.6 M, 6.2).
5 ml) was added dropwise and stirred at room temperature for 1 hour. The obtained solution was added dropwise over 34 minutes to a solution of pentafluoropyridine (10.0 ml) in anhydrous tetrahydrofuran (70 ml) under nitrogen cooling in a nitrogen stream and stirred for 5.8 hours. To the resulting solution was added 50 ml of brine, extracted with methylene chloride (150 ml), dried (anhydrous magnesium sulfate), filtered and concentrated. The obtained solid was purified by suspension washing in methanol (40 ml) to obtain the desired product 7 (1.56 g).
EI-MS, m / z = 318 (M +)
Carbazole (4.09 g) was added to a suspension of sodium hydride (55%, 1.07 g) in anhydrous N, N-dimethylformamide (50 ml) in a nitrogen stream and stirred at 80 ° C. for 35 minutes. Product 7 (1.56 g) was added, and the mixture was stirred with heating under reflux for 5.5 hours. After cooling to room temperature, 10 ml of water and 20 ml of methanol were added, and the precipitate was filtered off. The obtained solid was extracted with chloroform and purified by reprecipitation from chloroform-methanol to obtain the desired product 8 (4.25 g). The glass transition temperature of this compound was not detected, the melting point was 420 ° C., and the vaporization temperature was 472 ° C.
DEI-MS m / z = 906 (M +)

(実施例7)
実施例1および2で得られた化合物(目的物1および2)の薄膜を、各々真空蒸着法によりガラス基板上に作成した。得られた薄膜は、いずれも透明なアモルファス膜であり,室温,窒素雰囲気下で1か月保存後も結晶化は見られなかった。このことから,本発明の化合物は,安定性・耐熱性に優れた有機電界発光素子の材料として好適に用いられる。
(比較例1)
実施例7と同様にしてCBPの薄膜を作成した。この薄膜は約24時間で結晶化・白濁が観測された。
(Example 7)
Thin films of the compounds (target products 1 and 2) obtained in Examples 1 and 2 were each formed on a glass substrate by vacuum deposition. The obtained thin films were all transparent amorphous films, and no crystallization was observed after storage for 1 month at room temperature in a nitrogen atmosphere. Thus, the compound of the present invention is suitably used as a material for an organic electroluminescence device having excellent stability and heat resistance.
(Comparative Example 1)
A CBP thin film was prepared in the same manner as in Example 7. In this thin film, crystallization and cloudiness were observed in about 24 hours.

Figure 0004810805
Figure 0004810805

(実施例8)
図3に示す構造を有する有機電界発光素子を以下の方法で作製した。
ガラス基板1の上にインジウム・スズ酸化物(ITO)透明導電膜2を 150nm堆積したもの(スパッター成膜品;シート抵抗15Ω)を通常のフォトリソグラフィ技術と塩酸エッチングを用いて 2mm幅のストライプにパターニングして陽極を形成した。パターン形成したITO基板を、アセトンによる超音波洗浄、純水による水洗、イソプロピルアルコールによる超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
次に、陽極バッファ層3として下記構造の芳香族ジアミン含有ポリエーテル(P-1)
(重量平均分子量25,300;ガラス転移温度171℃)およびこの(P-1)に対し10重量%の下記化合物(P-2)を下記の条件で、上記ガラス基板上にスピンコートした。
(Example 8)
An organic electroluminescent element having the structure shown in FIG. 3 was produced by the following method.
An indium tin oxide (ITO) transparent conductive film 2 deposited on a glass substrate 1 with a thickness of 150 nm (sputtered film; sheet resistance 15 Ω) is formed into a 2 mm wide stripe using normal photolithography and hydrochloric acid etching. An anode was formed by patterning. The patterned ITO substrate was cleaned in the order of ultrasonic cleaning with acetone, water with pure water, and ultrasonic cleaning with isopropyl alcohol, then dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
Next, an aromatic diamine-containing polyether (P-1) having the following structure as the anode buffer layer 3
(Weight average molecular weight 25,300; glass transition temperature 171 ° C.) and 10% by weight of the following compound (P-2) based on this (P-1) were spin-coated on the glass substrate under the following conditions.

Figure 0004810805
Figure 0004810805

溶媒 安息香酸エチル
P−1濃度 20[mg/ml]
P−2濃度 2[mg/ml]
スピナ回転数 1500[rpm]
スピナ回転時間 30[秒]
乾燥条件 100℃1時間
Solvent Ethyl benzoate P-1 concentration 20 [mg / ml]
P-2 concentration 2 [mg / ml]
Spinner speed 1500 [rpm]
Spinner rotation time 30 [seconds]
Drying conditions 100 ° C for 1 hour

上記のスピンコートにより膜厚30nmの均一な薄膜が形成された。
次に、陽極バッファ層3を塗布成膜した基板1を真空蒸着装置内に設置した。この装置の粗排気を油回転ポンプにより行った後、装置内の真空度1.0×10-4Pa以下になるまでク
ライオポンプを用いて排気した。
上記装置内に配置されたセラミックるつぼに入れた、以下に示す、4,4'-ビス[N-(1-
フェナンチル)-N-フェニルアミノ]ビフェニル
A uniform thin film having a thickness of 30 nm was formed by the above spin coating.
Next, the substrate 1 on which the anode buffer layer 3 was applied and formed was placed in a vacuum evaporation apparatus. After rough evacuation of the apparatus using an oil rotary pump, the apparatus was evacuated using a cryopump until the degree of vacuum in the apparatus was 1.0 × 10 −4 Pa or less.
The following 4,4′-bis [N- (1-), placed in a ceramic crucible placed in the above device
Phenanthyl) -N-phenylamino] biphenyl

Figure 0004810805
Figure 0004810805

をるつぼの周囲のタンタル線ヒーターで加熱して蒸着を行った。この時のるつぼの温度は、301〜311℃の範囲で制御した。蒸着時の真空度6.4x10-5Pa、蒸着速度は0.2nm/秒で膜厚60nmの正孔輸送層4を得た。
引続き、発光層5として、実施例1で得られた目的物1、および本文中に(T−2)で示したイリジウム錯体(下記)を別々のセラミックるつぼに設置し、2元同時蒸着法により成膜を行った。
Vapor deposition was performed by heating with a tantalum wire heater around the crucible. At this time, the temperature of the crucible was controlled in the range of 301 to 311 ° C. A hole transport layer 4 having a thickness of 60 nm was obtained at a vacuum degree of 6.4 × 10 −5 Pa and a deposition rate of 0.2 nm / sec.
Subsequently, as the light-emitting layer 5, the target product 1 obtained in Example 1 and the iridium complex (shown below) shown in (T-2) in the text were placed in separate ceramic crucibles, and subjected to a binary co-evaporation method. Film formation was performed.

Figure 0004810805
Figure 0004810805

目的物1のるつぼ温度は 268℃に、蒸着速度は 0.10nm/秒に制御し、イリジウム錯体
(T−2)は267〜268℃の温度範囲に制御し、膜厚30nmでイリジウム錯体(T−2)が目的物1に対して5重量%含有された発光層5を正孔輸送層4の上に積層した。蒸着時の真空度は7.7×10-5Paであった。
さらに、正孔阻止層6として本文中に(HB−12)で示した化合物をるつぼ温度を 181℃として、蒸着速度0.1nm/秒で10nmの膜厚で積層した。蒸着時の真空度は4.4×10-5Pa
であった。
正孔阻止層6の上に、電子輸送層7として以下の構造式(ET−1)に示すアルミニウムの8−ヒドロキシキノリン錯体、Al(C9H6NO)3
The crucible temperature of the target product 1 is controlled to 268 ° C., the deposition rate is controlled to 0.10 nm / second, the iridium complex (T-2) is controlled to a temperature range of 267 to 268 ° C., and the iridium complex (T− The light emitting layer 5 containing 2% by weight of 2) was laminated on the hole transport layer 4. The degree of vacuum during deposition was 7.7 × 10 −5 Pa.
Further, a compound shown as (HB-12) in the text as a hole blocking layer 6 was laminated with a crucible temperature of 181 ° C. and a film thickness of 10 nm at a deposition rate of 0.1 nm / second. Vacuum degree during deposition is 4.4 × 10 -5 Pa
Met.
On the hole blocking layer 6, an aluminum 8-hydroxyquinoline complex represented by the following structural formula (ET-1) as an electron transport layer 7, Al (C 9 H 6 NO) 3

Figure 0004810805
Figure 0004810805

を蒸着した。この時のアルミニウムの8−ヒドロキシキノリン錯体のるつぼ温度は 243〜
257℃の範囲で制御し、蒸着時の真空度は4.2×10-5Pa、蒸着速度は0.2nm/秒で膜厚は35nmとした。
上記の正孔輸送層、発光層、正孔阻止層及び電子輸送層を真空蒸着する時の基板温度は
室温に保持した。
ここで、電子輸送層7までの蒸着を行った素子を一度前記真空蒸着装置内より大気中に取り出して、陰極蒸着用のマスクとして 2mm幅のストライプ状シャドーマスクを、陽極2のITOストライプとは直交するように素子に密着させて、別の真空蒸着装置内に設置して有機層と同様にして装置内の真空度が5×10-4Pa以下になるまで排気した。陰極8とし
て、先ず、フッ化リチウム(LiF)をモリブデンボートを用いて、蒸着速度0.01nm/秒、
真空度5×10-4Paで、0.5nmの膜厚で電子輸送層7の上に成膜した。次に、アルミニウムを同様にモリブデンボートにより加熱して、蒸着速度0.5nm/秒、真空度1×10-3Paで膜厚80nmのアルミニウム層を形成して陰極8を完成させた。以上の2層型陰極8の蒸着時の基板
温度は室温に保持した。
Was deposited. At this time, the crucible temperature of the 8-hydroxyquinoline complex of aluminum is 243 to
It was controlled in the range of 257 ° C., the degree of vacuum during deposition was 4.2 × 10 −5 Pa, the deposition rate was 0.2 nm / second, and the film thickness was 35 nm.
The substrate temperature when vacuum-depositing the hole transport layer, the light emitting layer, the hole blocking layer, and the electron transport layer was maintained at room temperature.
Here, the element on which the electron transport layer 7 has been deposited is once taken out from the vacuum deposition apparatus into the atmosphere, and a 2 mm wide stripe-shaped shadow mask is used as a cathode deposition mask. The device was placed in close contact with each other so as to be orthogonal to each other, placed in another vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus was 5 × 10 −4 Pa or less in the same manner as the organic layer. As the cathode 8, first, lithium fluoride (LiF) is vapor deposited at a rate of 0.01 nm / second using a molybdenum boat.
The film was formed on the electron transport layer 7 at a vacuum degree of 5 × 10 −4 Pa and a film thickness of 0.5 nm. Next, aluminum was similarly heated by a molybdenum boat to form an aluminum layer having a thickness of 80 nm at a deposition rate of 0.5 nm / second and a degree of vacuum of 1 × 10 −3 Pa, thereby completing the cathode 8. The substrate temperature at the time of vapor deposition of the above two-layer cathode 8 was kept at room temperature.

以上の様にして、2mm×2mm のサイズの発光面積部分を有する有機電界発光素子が得ら
れた。この素子の発光特性を表−2に示す。表−2において、発光効率は100cd/m2での
値、輝度/電流は輝度−電流密度特性の傾きを、電圧は 100cd/m2での値を各々示す。素子の発光スペクトルの極大波長は 514nmであり、イリジウム錯体(T−2)からのものと同定された。
As described above, an organic electroluminescent element having a light emitting area portion having a size of 2 mm × 2 mm was obtained. The light emission characteristics of this element are shown in Table-2. In Table 2, luminous efficiency is a value at 100 cd / m 2 , luminance / current is a slope of luminance-current density characteristics, and voltage is a value at 100 cd / m 2 . The maximum wavelength of the emission spectrum of the device was 514 nm, which was identified as that from the iridium complex (T-2).

(実施例9)
発光層のホスト材料である目的物1を、実施例2にて得られた目的物2に代えた他は実施例8と同様にして素子を作製した。この素子の発光特性を表−1に示す。素子の発光スペクトルの極大波長は実施例8とほぼ同じ 514nmであり、イリジウム錯体(T−2)からのものと同定された。
Example 9
A device was fabricated in the same manner as in Example 8, except that the target 1 which was the host material of the light emitting layer was replaced with the target 2 obtained in Example 2. The light emission characteristics of this element are shown in Table-1. The maximum wavelength of the emission spectrum of the device was about 514 nm, which was almost the same as in Example 8, and it was identified as that from the iridium complex (T-2).

(比較例2)
発光層のホスト材料である目的物1を、比較例1にて使用したCBPに代えた他は、実施例8と同様にして素子を作製した。この素子の発光特性を表−2に示す。素子の発光スペクトルの極大波長は実施例8とほぼ同じ 512nmであり、イリジウム錯体(T−2)からのものと同定された。実施例8、9と比較して発光効率が低く、駆動電圧が高い。
(Comparative Example 2)
A device was fabricated in the same manner as in Example 8, except that the target 1 which was the host material of the light emitting layer was replaced with the CBP used in Comparative Example 1. The light emission characteristics of this element are shown in Table-2. The maximum wavelength of the emission spectrum of the device was 512 nm, which was almost the same as in Example 8, and was identified as that from the iridium complex (T-2). Compared with Examples 8 and 9, the luminous efficiency is low and the driving voltage is high.

(比較例3)
発光層のホスト材料である目的物1を、下記に示す、目的物1の類似化合物を用いた他は、実施例8と同様にして素子を作製した。この素子の発光特性を表−2に示す。素子の発光スペクトルの極大波長は519nm、色度はCIE(x,y)=(0.32,0.61)であり、有機イリジウ
ム錯体(T−2)からのものと同定された。実施例8,9と比較して、発光効率が低い。
(Comparative Example 3)
A device was fabricated in the same manner as in Example 8 except that the target compound 1 which is the host material of the light emitting layer was used and a similar compound of target compound 1 shown below was used. The light emission characteristics of this element are shown in Table-2. The maximum wavelength of the emission spectrum of the device was 519 nm, and the chromaticity was CIE (x, y) = (0.32, 0.61), which was identified as that from the organic iridium complex (T-2). Compared with Examples 8 and 9, the luminous efficiency is low.

Figure 0004810805
Figure 0004810805

Figure 0004810805
Figure 0004810805

(実施例10)
発光層のドーパント材料であるイリジウム錯体(T−2)を、合成例1にて得られた下記青色発光イリジウム錯体(X)を含む混合物に代えた他は実施例8と同様にして素子を作製した。
(Example 10)
A device was fabricated in the same manner as in Example 8, except that the iridium complex (T-2), which is the dopant material of the light emitting layer, was replaced with the mixture containing the following blue light emitting iridium complex (X) obtained in Synthesis Example 1. did.

Figure 0004810805
Figure 0004810805

この素子の発光特性を表−3に示す。素子の発光スペクトルの極大波長は486nmであり
、イリジウム錯体(X)を含む混合物からのものと同定された。
(実施例11)
発光層のホスト材料である目的物1を目的物2に代えた他は、実施例10と同様にして素子を作製した。この素子の発光特性を表−3に示す。素子の発光スペクトルの極大波長は484nmであり、イリジウム錯体(X)を含む混合物からのものと同定された。
(比較例4)
発光層のホスト材料である目的物1をCBPに代えた他は、実施例10と同様にして素子を作製した。この素子の発光特性を表−3に示す。実施例10および11と比較して発光スペクトルがブロードであり,発光効率が低く、駆動電圧が高い。
The light emission characteristics of this element are shown in Table-3. The maximum wavelength of the emission spectrum of the device was 486 nm, and it was identified to be from a mixture containing iridium complex (X).
(Example 11)
A device was fabricated in the same manner as in Example 10 except that the target 1 as the host material of the light emitting layer was replaced with the target 2. The light emission characteristics of this element are shown in Table-3. The maximum wavelength of the emission spectrum of the device was 484 nm, and it was identified to be from a mixture containing iridium complex (X).
(Comparative Example 4)
A device was fabricated in the same manner as in Example 10 except that the target product 1 as the host material of the light emitting layer was replaced with CBP. The light emission characteristics of this element are shown in Table-3. Compared to Examples 10 and 11, the emission spectrum is broad, the emission efficiency is low, and the drive voltage is high.

Figure 0004810805
Figure 0004810805

(実施例12)
陽極バッファ層3の材料として、下記に示す構造式の芳香族アミノ基を有する非共役系高分子化合物(P−1)および電子受容性化合物(P−3)からなる材料を、正孔阻止層6として下記に示すピリジン誘導体(HB−21)を用い、有機低分子層(正孔輸送層4ないし電子輸送層7までの層)の膜厚を下記の通り変更した他は、実施例8と同様にして素子を作製した。
芳香族アミノ基を有する非共役系高分子化合物(P−1)
(Example 12)
As a material for the anode buffer layer 3, a material comprising a non-conjugated polymer compound (P-1) having an aromatic amino group having the structural formula shown below and an electron accepting compound (P-3) is used as a hole blocking layer. Example 8 except that the pyridine derivative (HB-21) shown below as 6 was used and the film thickness of the organic low molecular layer (layer from the hole transport layer 4 to the electron transport layer 7) was changed as described below. A device was fabricated in the same manner.
Non-conjugated polymer compound having an aromatic amino group (P-1)

Figure 0004810805
Figure 0004810805

重量平均分子量 :29400
数平均分子量 :12600
電子受容性化合物(P−3):特願2004−68958号の0059欄の表中に記載されている番号A−1のイオン化合物
Weight average molecular weight: 29400
Number average molecular weight: 12600
Electron-accepting compound (P-3): ionic compound of number A-1 described in the table in the 0059 column of Japanese Patent Application No. 2004-68958

スピンコート条件
溶媒 安息香酸エチル
塗布液濃度 2[wt%]
P−1:P−3 10:2
スピナ回転数 1500[rpm]
スピナ回転時間 30[秒]
乾燥条件 230℃ 15分
上記のスピンコートにより膜厚30nmの均一な薄膜が形成された。
有機低分子層
正孔輸送層4(40nm) 4,4'-ビス[N-(1-フェナンチル)-N-フェニルアミノ]ビフェ
ニル
発光層5(30nm) ホスト材料:実施例1で得られた目的物1
Spin coating conditions Solvent Ethyl benzoate Coating concentration 2 [wt%]
P-1: P-3 10: 2
Spinner speed 1500 [rpm]
Spinner rotation time 30 [seconds]
Drying condition 230 ° C. 15 minutes A uniform thin film having a thickness of 30 nm was formed by the above spin coating.
Organic low molecular layer hole transport layer 4 (40 nm) 4,4′-bis [N- (1-phenanthyl) -N-phenylamino] biphenyl light emitting layer 5 (30 nm) Host material: purpose obtained in Example 1 Thing 1

Figure 0004810805
Figure 0004810805

正孔阻止層6(5nm) 以下の構造式(HB−21)に示すピリジン誘導体   Hole blocking layer 6 (5 nm) Pyridine derivatives represented by the following structural formula (HB-21)

Figure 0004810805
Figure 0004810805

電子輸送層7(30nm) Alの8−ヒドロキシキノリン錯体(ET−1)
この素子の発光特性を表−4に示す。素子の発光スペクトルの極大波長は515nm、色度
はCIE(x,y)=(0.32,0.61)であり、有機イリジウム錯体(T−2)からのものと同定された。
Electron transport layer 7 (30 nm) 8-hydroxyquinoline complex of Al (ET-1)
The light emission characteristics of this element are shown in Table-4. The maximum wavelength of the emission spectrum of the device was 515 nm, and the chromaticity was CIE (x, y) = (0.32,0.61), which was identified as that from the organic iridium complex (T-2).

Figure 0004810805
Figure 0004810805

(実施例13)
正孔阻止層6を設けなかった他は、実施例12と同様にして素子を作製した。
この素子の発光特性を表−4に示す。素子の発光スペクトルの極大波長は515nm、色度
はCIE(x,y)=(0.31,0.62)であり、有機イリジウム錯体(T−2)からのものと同定された。正孔阻止層なしにも拘わらず、高い発光効率を示した。
(実施例14)
発光層のホスト材料として目的物1の代わりに、下記に示す、実施例5で得られた目的物6を用いた他は、実施例12と同様にして素子を作製した。
この素子の発光特性を表−4に示す。素子の発光スペクトルの極大波長は515nm、色度
はCIE(x,y)=(0.32,0.62)であり、有機イリジウム錯体(T−2)からのものと同定された。
(Example 13)
A device was fabricated in the same manner as in Example 12 except that the hole blocking layer 6 was not provided.
The light emission characteristics of this element are shown in Table-4. The maximum wavelength of the emission spectrum of the device was 515 nm, and the chromaticity was CIE (x, y) = (0.31,0.62), which was identified as that from the organic iridium complex (T-2). Despite the absence of the hole blocking layer, high luminous efficiency was exhibited.
(Example 14)
A device was fabricated in the same manner as in Example 12 except that the target product 6 obtained in Example 5 shown below was used instead of the target product 1 as the host material of the light emitting layer.
The light emission characteristics of this element are shown in Table-4. The maximum wavelength of the emission spectrum of the device was 515 nm, and the chromaticity was CIE (x, y) = (0.32, 0.62), which was identified as that from the organic iridium complex (T-2).

Figure 0004810805
Figure 0004810805

(実施例15)
正孔阻止層を設けなかった他は、実施例14と同様にして素子を作製した。
この素子の発光特性を表−4に示す。素子の発光スペクトルの極大波長は515nm、色度
はCIE(x,y)=(0.31,0.62)であり、有機イリジウム錯体(T−2)からのものと同定された。正孔阻止層なしにも拘わらず、高い発光効率を示した。
(Example 15)
A device was fabricated in the same manner as in Example 14 except that the hole blocking layer was not provided.
The light emission characteristics of this element are shown in Table-4. The maximum wavelength of the emission spectrum of the device was 515 nm, and the chromaticity was CIE (x, y) = (0.31,0.62), which was identified as that from the organic iridium complex (T-2). Despite the absence of the hole blocking layer, high luminous efficiency was exhibited.

有機電界発光素子の一例を示した模式断面図。The schematic cross section which showed an example of the organic electroluminescent element. 有機電界発光素子の別の例を示した模式断面図。The schematic cross section which showed another example of the organic electroluminescent element. 有機電界発光素子の別の例を示した模式断面図。The schematic cross section which showed another example of the organic electroluminescent element.

符号の説明Explanation of symbols

1 基板
2 陽極
3 陽極バッファ層
4 正孔輸送層
5 発光層
6 正孔阻止層
7 電子輸送層
8 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Anode buffer layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Cathode

Claims (15)

下記一般式(I)で表わされる有機化合物を含有してなる、電荷輸送材料。
Figure 0004810805
式中、環Aは5又は6員環の単環又は2〜5縮合環からなる芳香族炭化水素環、または5又は6員環の単環又は2〜4縮合環からなる芳香族複素環を表し、nは3以上の整数を表す。
該環Aは、隣接した3以上の置換位置に、−NR基を有し、かつ、1以上の置換位置が、無置換であるか、或いは炭素数1〜8の直鎖または分岐のアルキル基、炭素数2〜9のアルケニル基、炭素数2〜9のアルキニル基、炭素数7〜15のアラルキル基、置換基を有していてもよい炭素数1〜8のアルキル基を1つ以上有するアルキルアミノ基、置換基を有していてもよい炭素数6〜12の芳香族炭化水素基を有するアリールアミノ基、置換基を有していてもよい5または6員環の芳香族複素環基を有するヘテロアリールアミノ基、置換基を有していてもよい炭素数2〜10のアシル基を有するアシルアミノ基、置換基を有していてもよい炭素数1〜8のアルコキシ基、炭素数6〜12の芳香族炭化水素基を有するアリールオキシ基、5または6員環の芳香族環基を有するヘテロアリールオキシ基、置換基を有していてもよい炭素数2〜10のアシル基、置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基、置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基、炭素数2〜10のアルキルカルボニルオキシ基、カルボキシル基、シアノ基、水酸基、メルカプト基、炭素数1〜8のアルキルチオ基、炭素数6〜12のアリールチオ基、置換基を有していてもよいスルホニル基、置換基を有していてもよいシリル基、置換基を有していてもよいボリル基、置換基を有していてもよいホスフィノ基、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基(但し、下記式R−27は除く。)よりなる群から選ばれる基にて置換されている。また、一分子中に含まれるn個の−NR基は、それぞれ同一であっても、異なっていてもよい。但し、−NR基は、いずれも下記式R−27で表される基である。
Figure 0004810805
(式中、LおよびLは水素原子または、炭素数1〜6のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基、およびフェニル基よりなる群から選ばれる置換基を表す。)
A charge transport material comprising an organic compound represented by the following general formula (I).
Figure 0004810805
[ Wherein, ring A is a 5- or 6-membered monocyclic ring or an aromatic hydrocarbon ring composed of 2 to 5 condensed rings, or a 5- or 6-membered monocyclic ring or an aromatic heterocyclic ring composed of 2 to 4 condensed rings N represents an integer of 3 or more.
The ring A has a —NR 1 R 2 group at three or more adjacent substitution positions, and one or more substitution positions are unsubstituted, or a linear or branched group having 1 to 8 carbon atoms. An alkyl group having 2 to 9 carbon atoms, an alkynyl group having 2 to 9 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, and an alkyl group having 1 to 8 carbon atoms which may have a substituent. An alkylamino group having one or more, an arylamino group having an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms, an optionally substituted 5- or 6-membered aromatic ring A heteroarylamino group having a heterocyclic group, an acylamino group having an acyl group having 2 to 10 carbon atoms which may have a substituent, an alkoxy group having 1 to 8 carbon atoms which may have a substituent, Aryloxy having an aromatic hydrocarbon group having 6 to 12 carbon atoms Heteroaryloxy group having a 5- or 6-membered aromatic ring group, an optionally substituted acyl group having 2 to 10 carbon atoms, and optionally having 2 to 10 carbon atoms Alkoxycarbonyl group, optionally substituted aryloxycarbonyl group having 7 to 13 carbon atoms, alkylcarbonyloxy group having 2 to 10 carbon atoms, carboxyl group, cyano group, hydroxyl group, mercapto group, carbon number 1 -8 alkylthio group, arylthio group having 6 to 12 carbon atoms, sulfonyl group which may have a substituent, silyl group which may have a substituent, boryl group which may have a substituent A phosphino group which may have a substituent, an aromatic hydrocarbon group which may have a substituent, and an aromatic heterocyclic group which may have a substituent (provided that the following formula R-27 the group consisting of the exception.) is It is substituted at al chosen group. Further, the n —NR 1 R 2 groups contained in one molecule may be the same or different. However, the —NR 1 R 2 group is a group represented by the following formula R-27. ]
Figure 0004810805
(In the formula, L 1 and L 2 are a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. It represents a substituent selected from the group consisting of a dialkylamino group having an alkyl chain, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group.)
有機化合物が、上記一般式(I)中、環Aは、隣接した3以上の置換位置に、−NR基を有し、かつ、1以上の置換位置が、無置換であるか、或いは炭素数1〜8の直鎖または分岐のアルキル基、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基よりなる群から選ばれる分子量が200以下である基にて置換されていることを特徴とする請求項1に記載の電荷輸送材料。 In the general formula (I), the ring A has an —NR 1 R 2 group at three or more adjacent substitution positions, and one or more substitution positions are unsubstituted. Or it is chosen from the group which consists of a C1-C8 linear or branched alkyl group, the aromatic hydrocarbon group which may have a substituent, and the aromatic heterocyclic group which may have a substituent. The charge transport material according to claim 1, wherein the charge transport material is substituted with a group having a molecular weight of 200 or less. 有機化合物が、上記一般式(I)中、環Aはベンゼン環またはピリジン環であり、nが4または5であることを特徴とする請求項1または2のいずれか1項に記載の電荷輸送材料。   The charge transport according to any one of claims 1 and 2, wherein in the general formula (I), the ring A is a benzene ring or a pyridine ring, and n is 4 or 5. material. 有機化合物が、下記一般式(II)で表される、請求項1記載の電荷輸送材料。
Figure 0004810805
(式中、X〜Xは、前記式R−27で表される基を表す。X〜Xは、それぞれ同一であっても、異なっていてもよい。Aは、水素原子または、炭素数1〜8の直鎖または分岐のアルキル基、炭素数2〜9のアルケニル基、炭素数2〜9のアルキニル基、炭素数7〜15のアラルキル基、置換基を有していてもよい炭素数1〜8のアルキル基を1つ以上有するアルキルアミノ基、置換基を有していてもよい炭素数6〜12の芳香族炭化水素基を有するアリールアミノ基、置換基を有していてもよい5または6員環の芳香族複素環基を有するヘテロアリールアミノ基、置換基を有していてもよい炭素数2〜10のアシル基を有するアシルアミノ基、置換基を有していてもよい炭素数1〜8のアルコキシ基、炭素数6〜12の芳香族炭化水素基を有するアリールオキシ基、5または6員環の芳香族環基を有するヘテロアリールオキシ基、置換基を有していてもよい炭素数2〜10のアシル基、置換基を有していてもよい炭素数2〜10のアルコキシカルボニル基、置換基を有していてもよい炭素数7〜13のアリールオキシカルボニル基、炭素数2〜10のアルキルカルボニルオキシ基、カルボキシル基、シアノ基、水酸基、メルカプト基、炭素数1〜8のアルキルチオ基、炭素数6〜12のアリールチオ基、置換基を有していてもよいスルホニル基、置換基を有していてもよいシリル基、置換基を有していてもよいボリル基、置換基を有していてもよいホスフィノ基、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基よりなる群から選ばれる置換基を表す。)
The charge transport material according to claim 1, wherein the organic compound is represented by the following general formula (II).
Figure 0004810805
(Wherein, X 1 to X 5, the formula .X 1 to X 5 represents a group represented by R-27 are identical, respectively, may be different .A 0 is a hydrogen atom Or a linear or branched alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 9 carbon atoms, an alkynyl group having 2 to 9 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, and a substituent. An alkylamino group having one or more alkyl groups having 1 to 8 carbon atoms, an arylamino group having an aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent, and a substituent. A heteroarylamino group having a 5- or 6-membered aromatic heterocyclic group which may have, an acylamino group having a C2-10 acyl group which may have a substituent, and a substituent. C1-C8 alkoxy group, C6-C12 aromatic An aryloxy group having a hydrocarbon group, a heteroaryloxy group having a 5- or 6-membered aromatic ring group, an optionally substituted acyl group having 2 to 10 carbon atoms, and a substituent An optionally substituted alkoxycarbonyl group having 2 to 10 carbon atoms, an optionally substituted aryloxycarbonyl group having 7 to 13 carbon atoms, an alkylcarbonyloxy group having 2 to 10 carbon atoms, a carboxyl group, a cyano group, A hydroxyl group, a mercapto group, an alkylthio group having 1 to 8 carbon atoms, an arylthio group having 6 to 12 carbon atoms, a sulfonyl group which may have a substituent, a silyl group which may have a substituent, and a substituent. Boryl group which may have, phosphino group which may have substituent, aromatic hydrocarbon group which may have substituent and aromatic heterocyclic group which may have substituent Group of It represents an al substituent selected.)
有機化合物が、上記一般式(II)中、Aが、水素原子、炭素数1〜8の直鎖または分岐のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であり、分子量が200以下であることを特徴とする請求項4に記載の電荷輸送材料。 In the above general formula (II), A 0 is a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an aromatic hydrocarbon group or substituent which may have a substituent. The charge transport material according to claim 4, wherein the charge transport material is an aromatic heterocyclic group optionally having a molecular weight of 200 or less. 有機化合物が、前記式R−27中のLおよびLが水素原子、メチル基またはフェニル基であり、Aが水素原子、アルキル基または置換基を有していてもよい芳香族複素環基であることを特徴とする請求項4又は5に記載の電荷輸送材料。 In the organic compound, L 1 and L 2 in the formula R-27 are a hydrogen atom, a methyl group or a phenyl group, and A 0 is an aromatic heterocycle which may have a hydrogen atom, an alkyl group or a substituent. 6. The charge transport material according to claim 4, wherein the charge transport material is a group. 下記一般式(III)で表される有機化合物を含有してなる、電荷輸送材料。
Figure 0004810805
(式中、Y〜Yは、下記式R−27で表される基を表す。Y〜Yは、それぞれ同一であっても、異なっていてもよい。)
Figure 0004810805
(式中、LおよびLは水素原子または、炭素数1〜6のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基、およびフェニル基よりなる群から選ばれる置換基を表す。)
A charge transport material comprising an organic compound represented by the following general formula (III).
Figure 0004810805
(Wherein, Y 1 to Y 5 are the .Y 1 to Y 5 represents a group represented by the following formula R-27, may be the same, respectively, may be different.)
Figure 0004810805
(In the formula, L 1 and L 2 are a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. It represents a substituent selected from the group consisting of a dialkylamino group having an alkyl chain, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group.)
有機化合物の分子量が4000以下である、請求項1〜7に記載の電荷輸送材料。 The charge transport material according to claim 1, wherein the organic compound has a molecular weight of 4000 or less. 請求項1〜8のいずれかに記載の有機化合物を含有してなる、有機電界発光素子材料。 The organic electroluminescent element material formed by containing the organic compound in any one of Claims 1-8. 基板上に、陽極、陰極、およびこれら両極間に設けられた発光層を有する有機電界発光素子において、請求項1〜8のいずれかに記載の有機化合物を含む層を有する、有機電界発光素子。 The organic electroluminescent element which has a layer containing the organic compound in any one of Claims 1-8 in the organic electroluminescent element which has an anode, a cathode, and the light emitting layer provided between these both on a board | substrate. 請求項1〜8のいずれかに記載の有機化合物を含む層が発光層である、請求項10記載の有機電界発光素子。 The organic electroluminescent element of Claim 10 whose layer containing the organic compound in any one of Claims 1-8 is a light emitting layer. 発光層が、請求項1〜8のいずれかに記載の有機化合物をホスト材料とし、該ホスト材料に対して、有機金属錯体がドープされてなることを特徴とする、請求項11に記載の有機電界発光素子。 Light-emitting layer, the organic compound according to any one of claims 1 to 8 as a host material, with respect to the host material, the organometallic complex is characterized by comprising doped, organic claim 11 Electroluminescent device. 更に、発光層の陰極側界面に接する正孔阻止層を有する、請求項10〜12のいずれかに
記載の有機電界発光素子。
Furthermore, the organic electroluminescent element in any one of Claims 10-12 which has a hole-blocking layer which contact | connects the cathode side interface of a light emitting layer.
下記一般式(III)で表される有機化合物。
Figure 0004810805
(式中、Y〜Yは、下記式R−27で表される基を表す。Y〜Yは、それぞれ同一であっても、異なっていてもよい。)
Figure 0004810805
(式中、LおよびLは水素原子または、炭素数1〜6のアルキル基、炭素数1〜4のアルコキシ基、ハロゲン原子、炭素数2〜6のアルケニル基、炭素数1〜4のアルキル鎖を有するジアルキルアミノ基、炭素数1〜4のアルキルチオ基、およびフェニル基よりなる群から選ばれる置換基を表す。)
An organic compound represented by the following general formula (III).
Figure 0004810805
(Wherein, Y 1 to Y 5 are the .Y 1 to Y 5 represents a group represented by the following formula R-27, may be the same, respectively, may be different.)
Figure 0004810805
(In the formula, L 1 and L 2 are a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. It represents a substituent selected from the group consisting of a dialkylamino group having an alkyl chain, an alkylthio group having 1 to 4 carbon atoms, and a phenyl group.)
分子量が4000以下である、請求項14記載の有機化合物。 The organic compound of Claim 14 whose molecular weight is 4000 or less.
JP2004220049A 2003-07-31 2004-07-28 Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element Expired - Lifetime JP4810805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220049A JP4810805B2 (en) 2003-07-31 2004-07-28 Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003204940 2003-07-31
JP2003204940 2003-07-31
JP2004220049A JP4810805B2 (en) 2003-07-31 2004-07-28 Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element

Publications (2)

Publication Number Publication Date
JP2005060382A JP2005060382A (en) 2005-03-10
JP4810805B2 true JP4810805B2 (en) 2011-11-09

Family

ID=34379944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220049A Expired - Lifetime JP4810805B2 (en) 2003-07-31 2004-07-28 Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP4810805B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966537B2 (en) 2014-12-29 2018-05-08 Dow Global Technologies Llc Compositions with 2,3-disubstituted indoles as charge transport materials, and display devices fabricated therefrom
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363133B2 (en) * 2003-09-09 2009-11-11 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
JP2005194350A (en) * 2004-01-05 2005-07-21 Mitsubishi Chemicals Corp Luminescent material, host material, and electroluminescent element using the same
JP4810668B2 (en) * 2004-05-31 2011-11-09 コニカミノルタホールディングス株式会社 Organic electroluminescence element, lighting device and display device
JP4751596B2 (en) * 2004-11-08 2011-08-17 富士フイルム株式会社 Light emitting element
JP5008557B2 (en) 2005-05-24 2012-08-22 パイオニア株式会社 Organic electroluminescence device
WO2007069740A1 (en) * 2005-12-16 2007-06-21 Pioneer Corporation Organic electroluminescent device
JP5124943B2 (en) * 2005-12-27 2013-01-23 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5164389B2 (en) 2006-03-28 2013-03-21 キヤノン株式会社 Amino compound for organic light emitting device and organic light emitting device having the same
JP2008147354A (en) * 2006-12-08 2008-06-26 Idemitsu Kosan Co Ltd Organic electroluminescence element
JP5624270B2 (en) * 2007-09-18 2014-11-12 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5402639B2 (en) * 2007-10-26 2014-01-29 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
US20160126478A1 (en) * 2013-05-09 2016-05-05 Nitto Denko Corporation Emissive compounds for light emitting devices
DE102015101767A1 (en) * 2015-02-06 2016-08-11 Technische Universität Dresden Blue fluorescence emitter
JP6694830B2 (en) * 2015-02-13 2020-05-20 出光興産株式会社 Compound, composition, organic electroluminescence device, and electronic device
KR101883772B1 (en) * 2015-03-20 2018-08-01 대주전자재료 주식회사 Benzimidazole derivatives and organic electroluminescent device comprising same
GB201507340D0 (en) * 2015-04-29 2015-06-10 Univ St Andrews Light emitting devices and compounds
JP7081924B2 (en) * 2015-05-08 2022-06-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent material, luminescent thin film, organic electroluminescence element, display device and lighting device
JP7083247B2 (en) * 2015-05-08 2022-06-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent material, luminescent thin film, organic electroluminescence element, display device and lighting device
JP6705148B2 (en) * 2015-10-15 2020-06-03 コニカミノルタ株式会社 π-conjugated compound, organic electroluminescent element material, light emitting material, light emitting thin film, organic electroluminescent element, display device and lighting device
JP7044580B2 (en) * 2018-02-15 2022-03-30 国立大学法人愛媛大学 New aromatic compounds
CN109456247A (en) * 2018-11-08 2019-03-12 烟台九目化学制品有限公司 A kind of umbrella shape contains the preparation and application of pyrrole structure class advanced luminescent material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110940B2 (en) * 1991-06-05 1995-11-29 住友化学工業株式会社 Organic electroluminescent device
JP3498533B2 (en) * 1997-04-30 2004-02-16 東洋インキ製造株式会社 Light emitting material for organic electroluminescent device and organic electroluminescent device using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966537B2 (en) 2014-12-29 2018-05-08 Dow Global Technologies Llc Compositions with 2,3-disubstituted indoles as charge transport materials, and display devices fabricated therefrom
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Also Published As

Publication number Publication date
JP2005060382A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4810805B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP4561221B2 (en) Compound, charge transport material and organic electroluminescence device
JP4992183B2 (en) Luminescent layer forming material and organic electroluminescent device
JP4325197B2 (en) Organic electroluminescence device
EP1672961B1 (en) Compound, charge transport material and organic electroluminescent device
JP5250516B2 (en) A novel blue light emitter for use in organic electroluminescent devices
JP5261887B2 (en) Monoamine compound, charge transport material, and organic electroluminescence device
JP5098177B2 (en) Organic compounds, charge transport materials, and organic electroluminescent devices
KR101338343B1 (en) Organic electroluminescent device material and organic electroluminescent device
JP4622433B2 (en) Compound, electron transport material and organic electroluminescence device
WO2018168667A1 (en) High-molecular-weight compound having substituted triarylamine skeleton
JP4082297B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP2003252888A (en) Organic iridium complex and organic electroluminescent element using the same
JP2005213188A (en) Compound, charge transport material, organic electroluminescent element material and organic electroluminescent element
JP2005170809A (en) Compound, charge transport material, organic electroluminescenct device material and organic electroluminescent device
JP4734849B2 (en) Aluminum mixed ligand complex compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP2004307380A (en) New compound, charge transport material, organic electroluminescent element material and organic electroluminescent element
JP5057633B2 (en) Organic compounds having m-linked aromatic 6-membered rings
JP2004335415A (en) Charge transfer material, organic electroluminescent device material, and organic electroluminescent device
JP4677926B2 (en) Organic electroluminescence device
JP2006028101A (en) Organometal complex and organic electroluminescent element
JP4088656B2 (en) Organic electroluminescence device
JP4930361B2 (en) Organic electroluminescent element material and organic electroluminescent element using the same
WO2022191141A1 (en) High molecular weight compounds having indeno-dibenzoheterole structure as partial structure, and organic electroluminescent elements comprising said high molecular weight compounds
JP2005041789A (en) New nitrogen-containing condensed heterocyclic compound, charge transport material, organic electroluminescent element material and organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4810805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term