JP4808594B2 - Injection molding equipment - Google Patents

Injection molding equipment Download PDF

Info

Publication number
JP4808594B2
JP4808594B2 JP2006306198A JP2006306198A JP4808594B2 JP 4808594 B2 JP4808594 B2 JP 4808594B2 JP 2006306198 A JP2006306198 A JP 2006306198A JP 2006306198 A JP2006306198 A JP 2006306198A JP 4808594 B2 JP4808594 B2 JP 4808594B2
Authority
JP
Japan
Prior art keywords
flow path
sprue
inner flow
sprue bush
path component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006306198A
Other languages
Japanese (ja)
Other versions
JP2008119938A (en
Inventor
太士 丸一
賢二 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006306198A priority Critical patent/JP4808594B2/en
Publication of JP2008119938A publication Critical patent/JP2008119938A/en
Application granted granted Critical
Publication of JP4808594B2 publication Critical patent/JP4808594B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、キャビティー内に射出成形機より射出された溶融樹脂を供給するスプルーを構成するスプルーブッシュを備え、そのスプルーブッシュに温度調節通路を設けた射出成形装置に関するものである。   The present invention relates to an injection molding apparatus that includes a sprue bush that constitutes a sprue that supplies molten resin injected from an injection molding machine into a cavity, and that is provided with a temperature control passage.

従来のスプルーブッシュに温度調節通路を設けてなる射出成形装置として、図6に示すようなスプルーブッシュ1を2部品で構成し、挿入側スプルーブッシュ3の外周に二重螺旋で構成された流路4を設けたものを、嵌合側スプルーブッシュ5に組み込むことで、温度調節通路2を構成するものがあった(例えば、特許文献1参照)。   As an injection molding apparatus in which a temperature control passage is provided in a conventional sprue bushing, a sprue bushing 1 as shown in FIG. 6 is constituted by two parts, and a flow passage constituted by a double helix on the outer periphery of the insertion side sprue bushing 3. In some cases, the temperature adjusting passage 2 is configured by incorporating the portion 4 provided in the fitting side sprue bush 5 (see, for example, Patent Document 1).

また、他の例として、図7(a),(b)に示すようなスプルーブッシュ1の外周面に二重螺旋で構成された流路4を設けたものに、スプルーブッシュ1の外周を覆うように、流路4に対する連通穴6を持つ外筒体7を、スプルーブッシュ1にロウ付けもしくは拡散接合させることで、前述の温度調節通路2を構成していたものや、図8(a),(b)に示すように流路4を螺旋状ではなく蛇行状に加工したものもあった(例えば、特許文献2参照)。
特開2002−326266号公報 特開2003−220633号公報
As another example, the outer periphery of the sprue bush 1 as shown in FIGS. 7 (a) and 7 (b) is provided with a flow path 4 composed of a double helix on the outer peripheral surface of the sprue bush 1. As described above, the outer cylinder 7 having the communication hole 6 for the flow path 4 is brazed or diffusion-bonded to the sprue bush 1 to constitute the temperature control passage 2 described above, or FIG. , (B), the flow path 4 has been processed into a meandering shape instead of a spiral shape (see, for example, Patent Document 2).
JP 2002-326266 A JP 2003-220633 A

しかしながら、図6に示す従来の構成においては、スプルーブッシュ1が2部品からなる構成となっており、各々が嵌合する全面においては温調媒体も流れるため、錆,スケール(水垢)の発生によって、メンテナンス時の分解が困難となっていた。   However, in the conventional configuration shown in FIG. 6, the sprue bush 1 is configured by two parts, and the temperature control medium also flows on the entire surface where each fits. Therefore, due to the generation of rust and scale (scale) Disassembly during maintenance has been difficult.

また、流路4が二重螺旋となっているため、スプルー長さによっては流路断面積が大きく取れず、そのため流速は早くなるが圧力損失による流量低下で温調効果が十分に得られない。その上スプルーブッシュ1の温調媒体の出入口に至る温調機からの回路において、この回路を形成する部品間にて液密性が必要となるが、図6に示す例では、液密性を保持するための構成が非常に複雑になるという問題があった。   In addition, since the flow path 4 has a double helix, the cross-sectional area of the flow path cannot be increased depending on the sprue length. Therefore, the flow rate is increased, but the temperature control effect cannot be sufficiently obtained due to the flow rate decrease due to pressure loss. . In addition, in the circuit from the temperature controller that reaches the inlet / outlet of the temperature adjusting medium of the sprue bushing 1, liquid tightness is required between the components forming this circuit. In the example shown in FIG. There has been a problem that the configuration for holding becomes very complicated.

また、図7(a)に示す従来の構成においては、前記と同様に流路4が二重螺旋となっているため、スプルー長さによっては流路断面積が大きく取れず、流速は早くなるが圧力損失による流量低下で温調効果が十分に得られない。また、流路4を覆う外筒体7と挿入側スプルーブッシュ3との2部品がロウ付けもしくは拡散接合されており分解することができない構造となっている。   Further, in the conventional configuration shown in FIG. 7A, the flow path 4 has a double helix as described above. Therefore, depending on the sprue length, the cross-sectional area of the flow path cannot be increased, and the flow velocity is increased. However, the temperature control effect cannot be obtained sufficiently due to a decrease in flow rate due to pressure loss. Further, the two parts of the outer cylindrical body 7 covering the flow path 4 and the insertion side sprue bushing 3 are brazed or diffusion bonded, and cannot be disassembled.

そのために、錆,スケール(水垢)が発生しても除去することができないため、流量低下による温調効果の劣化を招き、このため射出された樹脂が十分に冷却されずに、成形品の品質への影響は避けられなかった。加えて2部品を嵌合させた後にロウ付けもしくは拡散接合することから、これらの処理を行う接合手段によって、コスト高になってしまうという課題もあった。   For this reason, even if rust and scale (scale) are generated, they cannot be removed, resulting in deterioration of the temperature control effect due to a decrease in the flow rate. As a result, the injected resin is not cooled sufficiently and the quality of the molded product is reduced. The influence on was inevitable. In addition, since the brazing or diffusion bonding is performed after the two parts are fitted, there is a problem that the cost is increased by the bonding means for performing these processes.

本発明は、前記従来技術の問題を解決することに指向するものであり、簡易な構造で液密性が高く、高効率のスプルー温度調節が可能な射出成形装置を提供することを目的とする。   The present invention is directed to solving the problems of the prior art, and an object of the present invention is to provide an injection molding apparatus that has a simple structure, high liquid tightness, and high-efficiency sprue temperature adjustment. .

前記の目的を達成するために、本発明に係る請求項1に記載した射出成形装置は、キャビティー内に射出成形機より射出された溶融樹脂を供給するスプルーを構成するスプルーブッシュと、スプルーブッシュの温度を調節する温度調節通路とを設けた射出成形装置において、スプルーの外周に配置した温度調節通路の一部を構成する内流路部品と、内流路部品の溶融樹脂を供給する射出成形機側の端部と嵌合する上部スプルーブッシュと、内流路部品の溶融樹脂を射出するキャビティー側の端部と嵌合する下部スプルーブッシュと、上部スプルーブッシュあるいは下部スプルーブッシュのいずれかに設けた温度調節通路の一部に繋がる連通穴とを備え、内流路部品を上部スプルーブッシュおよび下部スプルーブッシュにより覆い前記スプルーブッシュを構成するとともに、前記温度調節通路を前記内流路部品の一部と、前記上部スプルーブッシュの前記内流路部品が接触する内周面とにより構成したことによって、メンテナンス時の内流路部品の分解が容易となり、錆,スケール(水垢)を簡単に除去でき、さらに高効率の熱交換が可能となり成形サイクルを短縮することができる。 In order to achieve the above object, an injection molding apparatus according to claim 1 of the present invention comprises a sprue bush that constitutes a sprue that supplies molten resin injected from an injection molding machine into a cavity, and a sprue bush. In an injection molding apparatus provided with a temperature adjustment passage for adjusting the temperature of the inner flow path component constituting a part of the temperature adjustment passage disposed on the outer periphery of the sprue, and injection molding for supplying a molten resin of the inner flow path component The upper sprue bush that fits with the machine end, the lower sprue bush that fits with the cavity end that injects the molten resin of the inner flow path component, and either the upper sprue bush or the lower sprue bush A communication hole connected to a part of the provided temperature control passage, and the inner flow path component is covered with an upper sprue bush and a lower sprue bush. With constituting a Mesh, a portion of said temperature adjusting passage in said flow path part, by the inner passage part of the upper sprue bushing is constituted by an inner peripheral surface contacting the inner passage for maintenance Parts can be easily disassembled, rust and scale (water scale) can be easily removed, and more efficient heat exchange is possible, thus shortening the molding cycle.

また、請求項2に記載した射出成形装置は、請求項1の射出成形装置であって、温度調節通路は、内流路部品でスプルー軸方向に蛇行した流路を形成する複数の溝部および壁部と、この壁部と接触する内流路部品と嵌合する上部スプルーブッシュまたは下部スプルーブッシュの内周面とからなり、スプルーブッシュと嵌合する側で内流路部品の端部における周方向の壁部は上部スプルーブッシュまたは下部スプルーブッシュの前記内流路部品と接触する接触面であることによって、上下分割したスプルーブッシュと、スプルー軸方向に蛇行した流路となる溝部を持つ内流路部品の3部品の構成において、流路は内流路部品と嵌合した上下いずれかのスプルーブッシュの内周面にのみ接触させて構成して、温調媒体の流動長が長く取れ高効率の熱交換を可能とし、かつ溝部の開放部により流路を形成するスプルーブッシュと内流路部品の分解が容易となり、錆,スケール(水垢)を簡単に除去できる。 Further, an injection molding apparatus according to claim 2 is the injection molding apparatus of claim 1, a temperature controller communication path, a plurality of grooves forming a flow path meandering sprue axis direction inner passage part and It consists of a wall and the inner peripheral surface of the upper sprue bush or the lower sprue bush that engages with the inner flow path component that comes into contact with the wall. The wall in the direction is the contact surface of the upper sprue bush or the lower sprue bush that comes into contact with the inner flow path component, so that the inner flow having a vertically divided sprue bush and a groove that forms a flow path meandering in the sprue axial direction. In the configuration of the three parts of the road parts, the flow path is configured by contacting only the inner peripheral surface of the upper and lower sprue bushes fitted with the inner flow path parts, so that the flow length of the temperature control medium can be increased and high efficiency is achieved. of Enables the exchange and to, and degradation of the sprue bushing and the inner passage components forming the flow path is facilitated by the opening of the groove, rust can easily remove scale (water stain).

また、請求項に記載した射出成形装置は、請求項1または2の射出成形装置であって、内流路部品の材質の熱伝導率をAとし、上部スプルーブッシュの材質の熱伝導率をBとし、下部スプルーブッシュの材質の熱伝導率をCとしたとき、次の条件「A>BあるいはA>C」を満足することによって、内流路部品の材質が金属系だけでなく、熱伝導率が小さい非金属材も使用でき、高効率の熱交換が可能となり成形サイクルを短縮することができる。 The injection molding apparatus according to claim 3 is the injection molding apparatus according to claim 1 or 2 , wherein the heat conductivity of the material of the inner flow path component is A, and the heat conductivity of the material of the upper sprue bush is Assuming that the thermal conductivity of the material of the lower sprue bush is C and that the following condition “A> B or A> C” is satisfied, the material of the inner flow path component is not only metallic but also heat Non-metallic materials with low conductivity can also be used, enabling highly efficient heat exchange and shortening the molding cycle.

また、請求項に記載した射出成形装置は、請求項1〜の射出成形装置であって、内流路部品の溶融樹脂を射出するキャビティー側の端面が、下部スプルーブッシュの底面と同一位置に達していることによって、内流路部品が包含するスプルー長さを拡大でき、スプルー温調範囲が拡大されて、最も蓄熱するスプルー根元も温調ができ、さらに高効率の熱交換が可能となり成形サイクルを短縮することができる。 An injection molding apparatus according to a fourth aspect of the present invention is the injection molding apparatus according to any one of the first to third aspects, wherein the end surface on the cavity side for injecting the molten resin of the inner flow path component is the same as the bottom surface of the lower sprue bushing. By reaching the position, the length of the sprue included in the inner flow path component can be expanded, the sprue temperature adjustment range can be expanded, the temperature of the most heat-storing sprue base can be adjusted, and more efficient heat exchange is possible. Thus, the molding cycle can be shortened.

本発明によれば、スプルーブッシュのメンテナンス時の分解が容易で、錆,スケール(水垢)を簡単に除去でき、さらに高効率の熱交換ができスプルー温度調整が可能となり、成形サイクルを短縮することができるという効果を奏する。   According to the present invention, the sprue bushing can be easily disassembled during maintenance, rust and scale (scale) can be easily removed, heat exchange can be performed with high efficiency, and the sprue temperature can be adjusted, thereby shortening the molding cycle. There is an effect that can be.

以下、図面を参照して本発明における実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における射出成形装置のスプルーブッシュを示す(a)は断面図、(b)はA−A’の平面図である。また、図2はスプルーブッシュの概略構成を示す(a)は下部スプルーブッシュ側、(b)は上部スプルーブッシュ側から見た斜視図、(c)は内流路部品の流路を形成する溝と壁を説明する図である。
(Embodiment 1)
1A shows a sprue bushing of an injection molding apparatus according to Embodiment 1 of the present invention. FIG. 1A is a cross-sectional view, and FIG. 1B is a plan view taken along line AA ′. 2A and 2B show a schematic configuration of the sprue bush. FIG. 2A is a lower sprue bush side, FIG. 2B is a perspective view seen from the upper sprue bush side, and FIG. It is a figure explaining a wall.

本実施の形態1のスプルーブッシュに温度調節通路を設けた射出成形装置について、図1,図2を参照しながら説明する。図1,図2に示すように、スプルーブッシュを上部スプルーブッシュ11、下部スプルーブッシュ12に分割し、その分割面にスプルー軸方向に蛇行する流路4を持つ内流路部品13を各々に挟み込む。この内流路部品13は上部,下部スプルーブッシュ11,12のスプルーと連続したスプルーを持ち、かつ流路4を形成する特定の幅を持つ溝14を外周に沿って八等分に配列している。   An injection molding apparatus in which a temperature control passage is provided in the sprue bushing according to the first embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 2, the sprue bush is divided into an upper sprue bush 11 and a lower sprue bush 12, and an inner flow passage component 13 having a flow passage 4 meandering in the sprue axial direction is sandwiched between the sprue bushes. . The inner flow path component 13 has sprues that are continuous with the sprues of the upper and lower sprue bushes 11 and 12, and grooves 14 having a specific width forming the flow path 4 are arranged in eight equal parts along the outer periphery. Yes.

この溝14の幅と深さに関しては、溝14の分割数を多くすればするだけ温調媒体の流動長は長く取れるが、溝14の幅が狭くなるため、圧力損失による流量低下が避けられない。それを避けるため溝14の断面積を確保するため溝14の深さをさらに深くしなければならないが、内流路部品13の溶融樹脂を供給する射出成形機側でスプルー径の狭い方の面にあるシール材挿入溝15との干渉が避けられなくなるので、基本的に溝14の分割数は八分割とする。   With regard to the width and depth of the groove 14, the flow length of the temperature control medium can be increased as much as the number of divisions of the groove 14 is increased. However, since the width of the groove 14 is reduced, a decrease in flow rate due to pressure loss is avoided. Absent. In order to avoid this, the depth of the groove 14 must be further increased in order to ensure the cross-sectional area of the groove 14, but the surface of the inner flow path component 13 with the smaller sprue diameter on the side of the injection molding machine that supplies the molten resin. Therefore, the number of divisions of the groove 14 is basically eight.

また、その溝14は内流路部品13のスプルー軸方向に貫通せず、内流路部品13の溶融樹脂を射出するキャビティー側でスプルー径の広い方の面である底面より、8mmを残して手前で止っている。8mmの内5mmは下部スプルーブッシュ12(ゲート側)への嵌合台である。残り3mmは、上下分割された上部スプルーブッシュ11(成形機ノズル側)へ内流路部品13を組み込んだ際、分割面より成形機ノズル側方向に位置するよう設定されている。   Further, the groove 14 does not penetrate in the sprue axis direction of the inner flow path component 13, and leaves 8 mm from the bottom surface which is the wider side of the sprue diameter on the cavity side where the molten resin of the inner flow path component 13 is injected. It stops at this side. Of the 8 mm, 5 mm is a fitting base to the lower sprue bush 12 (gate side). The remaining 3 mm is set so as to be positioned in the direction of the molding machine nozzle side from the divided surface when the inner flow path component 13 is assembled into the upper sprue bush 11 (molding machine nozzle side) divided in the vertical direction.

次に、内流路部品13の溝14と壁14bにより形成する流路4について、図2(c)に示すように、隣り合う溝14aの2本の間の壁14b(i)を基軸に、90度振った位置にある壁14b(計4ヵ所:i〜iv)の高さは、内流路部品13のスプルー径が狭い方の面と同じ高さとし、それ以外の隣り合う溝14aの両側にある壁14b(v,viii)および90度振った位置にある壁14b(vi,vii)については、溝14の幅と同じ寸法だけ下げ開放部14cを形成する。   Next, with respect to the flow path 4 formed by the groove 14 and the wall 14b of the inner flow path component 13, as shown in FIG. 2C, the wall 14b (i) between the two adjacent grooves 14a is used as a base axis. The height of the wall 14b (total of four locations: i to iv) at the position swung by 90 degrees is the same as the surface of the inner flow path component 13 where the sprue diameter is narrower, and the other adjacent grooves 14a About the wall 14b (v, viii) on both sides and the wall 14b (vi, vii) at a position swung by 90 degrees, a lowered open portion 14c is formed by the same dimension as the width of the groove 14.

また、壁14b(v〜viii)は、内流路部品13のスプルー径が広い方の面側で周方向の壁14dに接続されている。そして、この周方向の壁14dと溝14の幅と同じ寸法を開けて壁14b(計3ヵ所:ii〜iv)が配置される。この壁14b(i〜viii)と溝14により隣り合う溝14aを出入口として、一連の蛇行する流路4が構成される。   Further, the wall 14b (v to viii) is connected to the circumferential wall 14d on the surface side of the inner flow path component 13 having the larger sprue diameter. And the wall 14b (a total of three places: ii-iv) is arrange | positioned by opening the same dimension as the width of this circumferential wall 14d and the groove | channel 14. A series of meandering flow paths 4 is formed with the adjacent grooves 14a as the entrances and exits by the walls 14b (i to viii) and the grooves 14.

この内流路部品13を上部,下部スプルーブッシュ11,12により挟み込み、温度調節通路2として構成するため、上部スプルーブッシュ11側(成形機ノズル側)の外周面より、内流路部品13の2本の隣り合う溝14aに目掛けて連通穴6を開ける。図1の場合は2本の連通穴6角度は45度である。また、この連通穴6に管用平行メネジ16を立て、取付け板10の外からパイプ17を挿入して管用平行メネジ16に組み込むことで、最終的にスプルー温度調節可能な回路が構成される。   Since the inner flow path component 13 is sandwiched between the upper and lower sprue bushes 11 and 12 and configured as the temperature control passage 2, the inner flow path component 13 2 is formed from the outer peripheral surface on the upper sprue bush 11 side (molding machine nozzle side). The communication hole 6 is opened by facing the adjacent groove 14a of the book. In the case of FIG. 1, the angle of the two communication holes 6 is 45 degrees. Further, a pipe parallel female thread 16 is erected in the communication hole 6 and a pipe 17 is inserted from the outside of the mounting plate 10 and incorporated into the pipe parallel female thread 16, so that a circuit capable of finally adjusting the sprue temperature is formed.

なお、上部,下部スプルーブッシュ11,12に内流路部品13を組み込み、液密するために、内流路部品13においてはスプルー径の狭い方の面に1ヵ所、下部スプルーブッシュ12(ゲート側)の上下分割面に1ヵ所および内流路部品13が挟み込まれる面側に1ヵ所の都合3ヵ所にシール材挿入溝15を設ける。シール材をこのように配置することによって、内流路部品13の嵌合する面にないため、スプルーブッシュに組み込む際に、シール材をスプルーブッシュの嵌合穴のエッジにより裂損することなく組み込みが可能となり、確実に液密性が保持できる。最終的には上部,下部スプルーブッシュ11,12に内流路部品13を挟み込み、上部スプルーブッシュ11(成形機ノズル側)よりボルト18で締結する。   In order to incorporate the inner flow path component 13 into the upper and lower sprue bushes 11 and 12 and make them liquid-tight, the inner flow path component 13 has one lower sprue bush 12 (gate side) on the narrower side of the sprue diameter. The seal material insertion grooves 15 are provided at one convenient place and three places on the side where the inner flow path component 13 is sandwiched between the upper and lower divided surfaces. By disposing the sealing material in this way, it is not on the surface where the inner flow path component 13 is fitted. Therefore, when the sealing material is assembled into the sprue bushing, the sealing material can be assembled without being broken by the edge of the fitting hole of the sprue bushing. It becomes possible, and liquid tightness can be surely maintained. Finally, the inner flow path component 13 is sandwiched between the upper and lower sprue bushings 11 and 12 and fastened with bolts 18 from the upper sprue bushing 11 (molding machine nozzle side).

係る構成によれば、メンテナンス時の分解作業において、錆,スケール(水垢)は嵌合面全面に発生しないため、内流路部品13の分解は容易となり錆,スケール(水垢)の除去も容易となる。また、流路4がスプルー軸方向に蛇行しているため流動長が長く取れることで高効率の熱交換が可能であり、流路4の断面積も内流路部品13の外形を大きくすることで拡大できるため、安定した流量が確保できるので温調効果も劣化しない。さらにシール材はスプルー軸方向から圧縮される向きにあるため、容易にかつ確実な液密性が保持できる。   According to such a configuration, rust and scale (scale) are not generated on the entire fitting surface in the disassembly work during maintenance, so that the inner flow path component 13 can be easily disassembled and rust and scale (scale) can be easily removed. Become. Further, since the flow path 4 meanders in the sprue axis direction, a long flow length can be taken to enable highly efficient heat exchange, and the cross-sectional area of the flow path 4 also increases the outer shape of the inner flow path component 13. Since it can be expanded with a stable flow rate, the temperature control effect does not deteriorate. Furthermore, since the sealing material is in a direction compressed from the sprue shaft direction, the liquid tightness can be easily and reliably maintained.

なお、本実施の形態1において、内流路部品13の一部と上部スプルーブッシュ11により、流路4を形成した例を説明したが、図1に示す上部スプルーブッシュ11と下部スプルーブッシュ12において、スプルー軸方向の上下長さを逆にし、また内流路部品13の溝14の配置も上下逆とした構成とし、内流路部品13の一部と下部スプルーブッシュ12により流路4を形成するようにしても良い。   In the first embodiment, the example in which the flow path 4 is formed by a part of the inner flow path component 13 and the upper sprue bush 11 has been described. However, in the upper sprue bush 11 and the lower sprue bush 12 shown in FIG. The up and down length in the sprue axial direction is reversed, and the arrangement of the grooves 14 in the inner flow path component 13 is also reversed up and down, and the flow path 4 is formed by a part of the inner flow path component 13 and the lower sprue bush 12. You may make it do.

(実施の形態2)
本実施の形態2は、前述した実施の形態1で示した内流路部品13の材質の熱伝導率をA、分割した上部,下部スプルーブッシュ11,12の材質の熱伝導率をそれぞれB,Cとしたとき、熱伝導率を「A>B」,「A>C」となる材質にする。例として内流路部品13の材質を銅(20℃における熱伝導率は372W/mk)、分割した上部,下部スプルーブッシュ11,12の材質を炭素鋼(20℃における熱伝導率は53W/mk)とすると約7倍の冷却効果が得られる。このように、熱伝導率の関係を有する材質を選択した係る構成とすることにより、高効率の熱交換により成形サイクルが著しく短縮される。
(Embodiment 2)
In the second embodiment, the thermal conductivity of the material of the inner flow path component 13 shown in the first embodiment is A, the thermal conductivity of the material of the divided upper and lower sprue bushes 11 and 12 is B, respectively. When C, the material having thermal conductivity “A> B” and “A> C” is used. As an example, the material of the inner flow path component 13 is copper (thermal conductivity at 20 ° C. is 372 W / mk), and the material of the divided upper and lower sprue bushes 11 and 12 is carbon steel (thermal conductivity at 20 ° C. is 53 W / mk). ), A cooling effect of about 7 times can be obtained. In this way, by adopting such a configuration in which a material having a thermal conductivity relationship is selected, the molding cycle is remarkably shortened by high-efficiency heat exchange.

ここで、前述の実施の形態1で示した上部,下部スプルーブッシュ11,12と内流路部品13からなる構成に代えて、その応用例として図3に示すように上部スプルーブッシュ11(成形機ノズル側)と内流路部品13を一体にした構造のスプルーブッシュとした場合、内流路部品13が上部スプルーブッシュ11より大きい熱伝導率を有する金属材質であれば、ロウ付けや拡散接合により一体化させることにより、高効率の熱交換が期待できるが、図3に示すような構成とし、組み立て性の向上を図ることができても、非金属では一体化することは不可能である。   Here, instead of the configuration comprising the upper and lower sprue bushes 11 and 12 and the inner flow passage component 13 shown in the first embodiment, as an application example thereof, as shown in FIG. In the case of a sprue bush having a structure in which the nozzle side) and the inner flow path component 13 are integrated, if the inner flow path component 13 is a metal material having a thermal conductivity higher than that of the upper sprue bush 11, brazing or diffusion bonding is used. By integrating, high-efficiency heat exchange can be expected. However, even if the structure shown in FIG. 3 is used to improve the assemblability, it is impossible to integrate with non-metals.

これに対して、前述の実施形態1における、内流路部品13を上部,下部スプルーブッシュ11,12で挟み込む構成において、さらに、本実施の形態2のように、内流路部品13、上部,下部スプルーブッシュ11,12の材質において熱伝導率を考慮した材質を適宜選択することによって内流路部品13に非金属を採用することが可能となり、さらに、高効率の熱交換が可能となり成形サイクルの短縮を著しく向上させることができる。   On the other hand, in the configuration in which the inner flow path component 13 is sandwiched between the upper and lower sprue bushes 11 and 12 in the first embodiment, the inner flow path component 13, the upper, By appropriately selecting a material that takes heat conductivity into consideration for the material of the lower sprue bushes 11 and 12, it is possible to adopt a non-metal for the inner flow path component 13, and furthermore, a highly efficient heat exchange becomes possible and a molding cycle. Can be significantly improved.

(実施の形態3)
図4(a)〜(c)は本発明の実施の形態3における射出成形装置のスプルーブッシュを示す断面図であり、図5はスプルーブッシュの概略構成を示す(a)は下部スプルーブッシュ側、(b)は上部スプルーブッシュ側から見た斜視図である。
(Embodiment 3)
4 (a) to 4 (c) are cross-sectional views showing a sprue bushing of an injection molding apparatus according to Embodiment 3 of the present invention, and FIG. 5 (a) shows a schematic configuration of the sprue bushing. (B) is the perspective view seen from the upper sprue bush side.

本実施の形態3は前述した実施の形態1,2における内流路部品13の外形輪郭の断面形状が異なる図4(a)〜(c)に示す3つのパターンを有しており、各パターンについて説明する。   The third embodiment has three patterns shown in FIGS. 4A to 4C in which the cross-sectional shape of the outer contour of the inner flow path component 13 in the first and second embodiments is different. Will be described.

まず、図4(a)に示すように、実施の形態1,2における内流路部品13では外形輪郭の断面形状がスプルー軸方向に対して四角形(長方形)であるのに対して、本実施の形態3では内流路部品13aのスプルー軸方向の上下に外形輪郭の断面形状が小さい四角形(長方形)となる突出部をそれぞれ追加している。   First, as shown in FIG. 4A, in the inner flow path component 13 in the first and second embodiments, the cross-sectional shape of the outer contour is a quadrangle (rectangular) with respect to the sprue axis direction. In the third aspect, protrusions that are quadrangular (rectangular) having a small cross-sectional shape of the outer contour are respectively added above and below the inner flow path component 13a in the sprue axis direction.

さらに、成形機ノズル方向に対して液密とするために、内流路部品13aのスプルー径の狭い方の面に設けたシール材挿入溝15の内径より片側で最小2mm内側に入った立ち壁19を設け、上部スプルーブッシュ11(成形機ノズル側)との嵌合公差は、片側10〜20μmのすきまばめとする。また立ち壁19の高さは、ノズルタッチ面8より手前の成形機ノズルタッチによる座屈強度を考慮した所定位置として最小5mmまでを限度とする。   Furthermore, in order to be liquid-tight with respect to the nozzle direction of the molding machine, a standing wall that enters at least 2 mm inside one side of the inner diameter of the sealing material insertion groove 15 provided on the narrower surface of the inner flow path component 13a. 19 and the fitting tolerance with the upper sprue bush 11 (on the molding machine nozzle side) is a clearance fit of 10 to 20 μm on one side. Further, the height of the standing wall 19 is limited to a minimum of 5 mm as a predetermined position in consideration of the buckling strength due to the nozzle touch of the molding machine before the nozzle touch surface 8.

これとは逆にスプルー径の広い方の面に対しては、前記と同じように実施の形態1,2記載の下部スプルーブッシュ12(ゲート側)の内流路部品13aが挟み込まれる底面に設けたシール材挿入溝15の内径より片側で最小2mm内側に入った立ち壁20を設け、下部スプルーブッシュ12(ゲート側)との嵌合公差は、片側0〜5μmのすきまばめとする。また立ち壁20の高さは下部スプルーブッシュ12(ゲート側)の底面に達した同一の位置とする。   On the other hand, the surface with the larger sprue diameter is provided on the bottom surface where the inner flow path component 13a of the lower sprue bush 12 (gate side) described in the first and second embodiments is sandwiched as described above. Further, a standing wall 20 is provided at least 2 mm inside on one side of the inner diameter of the sealing material insertion groove 15, and the fitting tolerance with the lower sprue bush 12 (gate side) is a clearance fit of 0 to 5 μm on one side. The height of the standing wall 20 is the same position that reaches the bottom surface of the lower sprue bush 12 (gate side).

図4(b)は、前述した図1における成形機ノズル方向側でスプルー軸方向に対して外形輪郭の断面形状が小さい四角形(長方形)となる突出部を追加し、内流路部品13bとしたものであり、図4(c)は前述の図1におけるスプルー径の広い面側でスプルー軸方向に対して外形輪郭の断面形状が小さい四角形(長方形)となる突出部を追加し、内流路部品13cとしたものである。   FIG. 4B shows an inner flow path component 13b by adding a projecting portion that is a rectangle (rectangular shape) having a small cross-sectional shape of the outer contour on the molding machine nozzle direction side in FIG. FIG. 4 (c) is a plan view in which a protrusion having a rectangular (rectangular) shape with a small cross-sectional shape of the outer contour with respect to the sprue axial direction is added on the surface side with the large sprue diameter in FIG. The component 13c is used.

係る構成によれば、内流路部品13a〜13cはスプルー軸方向に対して長く形成され、かつ蛇行する流路4を有しており、スプルーに対し近い位置で温調することができる。このように内流路部品13a〜13cでは包含するスプルー長さを拡大することになり、スプルー温調範囲が拡大でき、特に最も蓄熱するスプルー根元や成形機ノズルタッチ面付近も温調が可能となる。これにより成形サイクルの短縮が著しく向上する。   According to such a configuration, the inner flow path components 13a to 13c are long in the sprue axial direction and have the meandering flow path 4, and can be temperature-controlled at a position close to the sprue. In this way, the sprue length included in the inner flow path components 13a to 13c is expanded, the sprue temperature adjustment range can be expanded, and in particular, the temperature can be adjusted even in the vicinity of the sprue root where the heat is stored most and the molding machine nozzle touch surface. Become. This significantly improves the shortening of the molding cycle.

本発明に係る射出成形装置は、スプルーブッシュのメンテナンス時の分解が容易で、錆,スケール(水垢)を簡単に除去でき、さらに高効率の熱交換ができスプルー温度調整が可能となり、成形サイクルを短縮することができ、スプルーを構成するスプルーブッシュと温度調節通路を設けた射出成形装置に有用である。   The injection molding device according to the present invention can be easily disassembled during maintenance of the sprue bushing, can easily remove rust and scale (scale), can perform high-efficiency heat exchange, and can adjust the sprue temperature, thereby reducing the molding cycle. It can be shortened, and is useful for an injection molding apparatus provided with a sprue bushing and a temperature control passage constituting the sprue.

本発明の実施の形態1における射出成形装置のスプルーブッシュを示す(a)は断面図、(b)はA−A’の平面図(A) which shows the sprue bush of the injection molding apparatus in Embodiment 1 of this invention is sectional drawing, (b) is a top view of A-A '. スプルーブッシュの概略構成を示す(a)は下部スプルーブッシュ側、(b)は上部スプルーブッシュ側から見た斜視図、(c)は内流路部品の流路を形成する溝と壁を説明する図(A) which shows schematic structure of a sprue bush, (b) is the perspective view seen from the upper sprue bush side, (c) demonstrates the groove | channel and wall which form the flow path of an internal flow-path component. Figure 上部スプルーブッシュと内流路部品を一体形成したスプルーブッシュを示す断面図Sectional view showing the sprue bushing with the upper sprue bushing and the inner flow path parts formed integrally 本発明の実施の形態3におけるスプルーブッシュの内流路部品(a)〜(c)3つの構成例を示す断面図Sectional drawing which shows three structural examples of inner flow-path components (a)-(c) of the sprue bush in Embodiment 3 of this invention. スプルーブッシュの概略構成を示す(a)は下部スプルーブッシュ側、(b)は上部スプルーブッシュ側から見た斜視図(A) shows a schematic configuration of a sprue bush, (b) is a perspective view seen from the upper sprue bush side 従来のスプルーブッシュと温度調節通路を設けた概略図Schematic with conventional sprue bushing and temperature control passage 従来のスプルーブッシュと外筒体で構成の温度調節通路を設けた(a)は概略図、(b)は断面図(A) is a schematic view, and (b) is a cross-sectional view provided with a temperature control passage composed of a conventional sprue bush and an outer cylinder. 従来のスプルーブッシュと外筒体で別の構成の温度調節通路を設けた(a)は概略図、(b)は断面図(A) is a schematic view, and (b) is a cross-sectional view in which a temperature control passage having a different configuration is provided by a conventional sprue bushing and an outer cylinder

符号の説明Explanation of symbols

1 スプルーブッシュ
2 温度調節通路
3 挿入側スプルーブッシュ
4 流路
5 嵌合側スプルーブッシュ
6 連通穴
7 外筒体
8 ノズルタッチ面
10 取付け板
11,11a 上部スプルーブッシュ
12,12a 下部スプルーブッシュ
13,13a,13b,13c 内流路部品
14 溝
14a 隣り合う溝
14b 壁
14c 開放部
14d 周方向の壁
15 シール材挿入溝
16 管用平行メネジ
17 パイプ
18 ボルト
19,20 立ち壁
DESCRIPTION OF SYMBOLS 1 Sprue bush 2 Temperature control path 3 Insertion side sprue bushing 4 Flow path 5 Fitting side sprue bushing 6 Communication hole 7 Outer cylindrical body 8 Nozzle touch surface 10 Mounting plate 11, 11a Upper sprue bushing 12, 12a Lower sprue bushing 13, 13a , 13b, 13c Inner flow path component 14 Groove 14a Adjacent groove 14b Wall 14c Opening portion 14d Circumferential wall 15 Sealing material insertion groove 16 Pipe parallel female thread 17 Pipe 18 Bolts 19, 20 Standing wall

Claims (4)

キャビティー内に射出成形機より射出された溶融樹脂を供給するスプルーを構成するスプルーブッシュと、前記スプルーブッシュの温度を調節する温度調節通路とを設けた射出成形装置において、
前記スプルーの外周に配置した温度調節通路の一部を構成する内流路部品と、
前記内流路部品の前記溶融樹脂を供給する射出成形機側の端部と嵌合する上部スプルーブッシュと、
前記内流路部品の前記溶融樹脂を射出するキャビティー側の端部と嵌合する下部スプルーブッシュと、
前記上部スプルーブッシュあるいは前記下部スプルーブッシュのいずれかに設けた前記温度調節通路の一部に繋がる連通穴とを備え、前記内流路部品を前記上部スプルーブッシュおよび前記下部スプルーブッシュにより覆い前記スプルーブッシュを構成するとともに、前記温度調節通路を前記内流路部品の一部と、前記上部スプルーブッシュの前記内流路部品が接触する内周面とにより構成したことを特徴とする射出成形装置。
In an injection molding apparatus provided with a sprue bush that constitutes a sprue that supplies molten resin injected from an injection molding machine into a cavity, and a temperature adjustment passage that adjusts the temperature of the sprue bush,
An inner flow path component constituting a part of the temperature control passage disposed on the outer periphery of the sprue;
An upper sprue bush fitted to an end of the inner flow path component on the injection molding machine side for supplying the molten resin;
A lower sprue bush fitted to an end of the inner flow path part on the cavity side for injecting the molten resin;
A communication hole connected to a part of the temperature control passage provided in either the upper sprue bush or the lower sprue bush, and the inner flow path component is covered by the upper sprue bush and the lower sprue bush. And the temperature control passage is configured by a part of the inner flow path component and an inner peripheral surface of the upper sprue bush which is in contact with the inner flow path component .
前記温度調節通路は、内流路部品でスプルー軸方向に蛇行した流路を形成する複数の溝部および壁部と、前記壁部と接触する前記内流路部品と嵌合する上部スプルーブッシュまたは下部スプルーブッシュの内周面とからなり、前記スプルーブッシュと嵌合する側で前記内流路部品の端部における周方向の壁部は上部スプルーブッシュまたは下部スプルーブッシュの前記内流路部品と接触する接触面であることを特徴とする請求項1記載の射出成形装置。 The temperature control passage includes a plurality of grooves and walls that form a flow path meandering in the sprue axis direction with an inner flow path component, and an upper sprue bush or lower portion that fits with the inner flow path component that contacts the wall section. The inner circumferential surface of the sprue bushing, and the circumferential wall portion at the end of the inner flow passage component on the side mating with the sprue bushing is in contact with the inner flow passage component of the upper sprue bush or the lower sprue bushing. The injection molding apparatus according to claim 1 , wherein the injection molding apparatus is a contact surface. 前記内流路部品の材質の熱伝導率をAとし、前記上部スプルーブッシュの材質の熱伝導率をBとし、前記下部スプルーブッシュの材質の熱伝導率をCとしたとき、次の条件
「A>BあるいはA>C」
を満足することを特徴とする請求項1または2に記載の射出成形装置。
When the thermal conductivity of the material of the inner flow path component is A, the thermal conductivity of the material of the upper sprue bush is B, and the thermal conductivity of the material of the lower sprue bush is C, the following condition “A > B or A> C "
The injection molding apparatus according to claim 1 or 2 , wherein:
前記内流路部品の溶融樹脂を射出するキャビティー側の端面が、前記下部スプルーブッシュの底面と同一位置に達していることを特徴とする請求項1〜3のいずれか1項に記載の射出成形装置。 The injection according to any one of claims 1 to 3 , wherein an end surface on a cavity side for injecting molten resin of the inner flow path component reaches the same position as a bottom surface of the lower sprue bush. Molding equipment.
JP2006306198A 2006-11-13 2006-11-13 Injection molding equipment Expired - Fee Related JP4808594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306198A JP4808594B2 (en) 2006-11-13 2006-11-13 Injection molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306198A JP4808594B2 (en) 2006-11-13 2006-11-13 Injection molding equipment

Publications (2)

Publication Number Publication Date
JP2008119938A JP2008119938A (en) 2008-05-29
JP4808594B2 true JP4808594B2 (en) 2011-11-02

Family

ID=39505232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306198A Expired - Fee Related JP4808594B2 (en) 2006-11-13 2006-11-13 Injection molding equipment

Country Status (1)

Country Link
JP (1) JP4808594B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195328B2 (en) * 2008-11-12 2013-05-08 トヨタ自動車株式会社 Mold, molding method using mold, and mold manufacturing method
JP5576732B2 (en) * 2010-07-15 2014-08-20 日本碍子株式会社 Sprue bushing and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196121U (en) * 1982-06-23 1983-12-27 キ−パ−株式会社 injection molding equipment
JPS59164109A (en) * 1983-03-09 1984-09-17 Matsushita Electric Ind Co Ltd Cooling circuit device of metallic die
JP4608793B2 (en) * 2001-03-19 2011-01-12 株式会社村田製作所 Injection molding machine
JP3702463B2 (en) * 2002-01-29 2005-10-05 三菱マテリアル株式会社 Mold equipment for molding

Also Published As

Publication number Publication date
JP2008119938A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
EP2458633B1 (en) Power semiconductor
KR101920157B1 (en) Injection Mold Apparatus having 3D-type Cooling Core
US6698496B2 (en) Cooling arrangement for die-casting metal mold
JP4625488B2 (en) Mold platen, mold clamping device, injection molding machine
US20130126137A1 (en) Stacked plate heat exchanger
US20140110091A1 (en) Method for producing a heat exchanger for a motor vehicle and a heat exchanger for a motor vehicle
US20170023314A1 (en) Heat Exchanger, Heat Exchanger Tank, and Method of Making the Same
JP4808594B2 (en) Injection molding equipment
KR102093892B1 (en) Heat exchanger for an internal combustion engine
US20150107807A1 (en) Heat exchanger
JP6400054B2 (en) Liquid supply member and method for manufacturing liquid supply member
JP6462373B2 (en) Mold cooling structure
JP2006183945A (en) Oil cooler
KR101581940B1 (en) a hot-stamping mold with improved cooling perfomance
JP5498135B2 (en) heatsink
US20200238363A1 (en) Hot press machine
JP4836131B2 (en) Mold capable of rapid heating and cooling
JP2008221801A (en) Mold component member and its manufacturing method
JP4759759B2 (en) Spool bush for die casting machine
KR101157511B1 (en) Forming mold and molding system having the same
JP2004511745A (en) Cooling elements for vertical furnaces
JP6464967B2 (en) Heat exchanger
JP4939949B2 (en) Injection mold
JP6277399B2 (en) Water jacket spacer manufacturing method
JP6745520B2 (en) Spacer manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees