JP4808476B2 - Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid - Google Patents

Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid Download PDF

Info

Publication number
JP4808476B2
JP4808476B2 JP2005340275A JP2005340275A JP4808476B2 JP 4808476 B2 JP4808476 B2 JP 4808476B2 JP 2005340275 A JP2005340275 A JP 2005340275A JP 2005340275 A JP2005340275 A JP 2005340275A JP 4808476 B2 JP4808476 B2 JP 4808476B2
Authority
JP
Japan
Prior art keywords
storage material
heat storage
heat
mixture
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005340275A
Other languages
Japanese (ja)
Other versions
JP2007145942A5 (en
JP2007145942A (en
Inventor
幸史郎 池上
信吉 毛利
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2005340275A priority Critical patent/JP4808476B2/en
Priority to US12/085,187 priority patent/US20090169893A1/en
Priority to PCT/JP2006/315554 priority patent/WO2007058003A1/en
Priority to EP06768425A priority patent/EP1950265A4/en
Publication of JP2007145942A publication Critical patent/JP2007145942A/en
Publication of JP2007145942A5 publication Critical patent/JP2007145942A5/ja
Application granted granted Critical
Publication of JP4808476B2 publication Critical patent/JP4808476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は蓄熱材を内包したマイクロカプセルに関するものであり、具体的には蓄熱材の融解温度及び/又は凝固温度付近で極めて温度緩衝性に優れるマイクロカプセルに関するものである。   The present invention relates to a microcapsule encapsulating a heat storage material, and specifically relates to a microcapsule having excellent temperature buffering properties near the melting temperature and / or solidification temperature of the heat storage material.

蓄熱材とは、文字通り熱を蓄えうる材料のことであり、低温度域から高温度域に至るまで、様々な分野で用いられている。蓄熱材として最も一般的なものとして、水、氷が挙げられる。水は、低分子量の割には比熱が極めて大きく、安全で安価な蓄熱材であり、保冷用途または保温用途の何れの蓄熱材としても使用可能である。また、水を0℃以下に冷やして得られる氷は、融解熱量が約320kJ/kgであり、他の化合物と比較して突出して大きい融解熱量を有している。そのため、最も身近な保冷材として利用されている。   A heat storage material is a material that can literally store heat, and is used in various fields from a low temperature range to a high temperature range. The most common heat storage materials are water and ice. Water has a very large specific heat for its low molecular weight, is a safe and inexpensive heat storage material, and can be used as a heat storage material for either cold insulation or heat insulation. In addition, ice obtained by cooling water to 0 ° C. or less has a heat of fusion of about 320 kJ / kg, and has a large amount of heat of fusion that is prominent compared to other compounds. Therefore, it is used as the most familiar cold insulation material.

ところで、蓄熱材マイクロカプセルは、被服材料や寝具などの繊維加工物、マイクロ波照射により加熱及び蓄熱する保温材、燃料電池や焼却炉などの廃熱利用設備、電子部品やガス吸着剤などの過熱抑制材及び/または過冷抑制材に加え、建築材料、建築物の躯体蓄熱・空間充填式空調、床暖房用、空調用途、道路や橋梁などの土木用材料、産業用及び農業用保温材料、家庭用品、健康用品、医療用材料等の様々な分野で利用されている。蓄熱材の相変化の温度、つまり、融点と凝固点は、利用分野によって、低温域(10℃以下)、中温域(10〜40℃)、高温域(40℃以上)に大別される。蓄熱材としては、無機系化合物、糖類、有機系化合物である脂肪族炭化水素化合物等が利用されている。このうち、脂肪族炭化水素化合物は蓄熱マイクロカプセルによく使用される(特許文献1〜5)。   By the way, heat storage material microcapsules are made of textile materials such as clothing materials and bedding, heat insulation materials that heat and store heat by microwave irradiation, waste heat utilization equipment such as fuel cells and incinerators, overheating of electronic components and gas adsorbents, etc. In addition to suppression materials and / or overcooling suppression materials, building materials, building heat storage and space filling air conditioning, floor heating, air conditioning applications, civil engineering materials such as roads and bridges, industrial and agricultural thermal insulation materials, It is used in various fields such as household goods, health goods, and medical materials. The phase change temperature of the heat storage material, that is, the melting point and the freezing point, are roughly classified into a low temperature range (10 ° C. or lower), a middle temperature range (10 to 40 ° C.), and a high temperature range (40 ° C. or higher). As the heat storage material, inorganic compounds, saccharides, aliphatic hydrocarbon compounds that are organic compounds, and the like are used. Of these, aliphatic hydrocarbon compounds are often used for thermal storage microcapsules (Patent Documents 1 to 5).

中温域に融点を有する脂肪族炭化水素化合物は、工業的に多量に生産されているため、比較的安価であり、マイクロカプセル化も容易である。ところが、高温域に融点を有する脂肪族炭化水素化合物を天然物から単離することは、量的にもコスト的にも困難である。通常は、炭素数20以上の脂肪族炭化水素は、パラフィンワックスという混合物で市販されている。パラフィンワックスは、離型剤、光沢剤、撥水剤等として用いられているが、蓄熱材としても利用可能である。しかしながら、脂肪族炭化水素化合物の単一化合物品と比べると、構成化合物数が多いパラフィンワックスの融解熱量は低いという欠点がある。また、相変化時の相変化応答性が悪く、凝固状態のパラフィンワックスに加熱を続けた場合、融け始めてから融け終わるまでの温度範囲が広くなるという挙動が見られる。このため、狭い温度変動範囲にて熱を蓄積したり取り出したりする場合には、化合物が本来持つ融解/凝固熱量の一部分しか利用できなくなることがあり、蓄熱材質量当たりの有効利用熱量が小さくなることがあった。 Since aliphatic hydrocarbon compounds having a melting point in the middle temperature range are produced in large quantities industrially, they are relatively inexpensive and easy to encapsulate. However, be isolated from natural product of an aliphatic hydrocarbon compound having a melting point in the Atsushi Ko region, it is difficult to quantitatively in cost also. Usually, aliphatic hydrocarbons having 20 or more carbon atoms are commercially available in a mixture called paraffin wax. Paraffin wax is used as a release agent, brightener, water repellent, and the like, but can also be used as a heat storage material. However, as compared with a single compound product of an aliphatic hydrocarbon compound, there is a drawback that the heat of fusion of a paraffin wax having a large number of constituent compounds is low. Moreover, the phase change responsiveness at the time of phase change is poor, and when heating is performed on the paraffin wax in a solid state, the temperature range from the start of melting to the end of melting can be seen. For this reason, when heat is stored or taken out in a narrow temperature fluctuation range, only a part of the heat of fusion / solidification inherent in the compound can be used, and the effective heat usage per mass of the heat storage material is reduced. There was a thing.

また、0〜30℃付近の中低温域に融点を持つ蓄熱材として用いられる炭素数10〜20程度の脂肪族炭化水素化合物も、混合物の方が入手しやすい。しかし、この場合にも、融点40℃以上の脂肪族炭化水素化合物と同様に、融解熱量が低く、また、相変化応答性も悪い。このため、化合物が本来持つ融解/凝固熱量のうちの一部分しか利用できなかったり、蓄熱材質量当たりの有効利用熱量は小さくなることがあった。   In addition, a mixture of an aliphatic hydrocarbon compound having about 10 to 20 carbon atoms, which is used as a heat storage material having a melting point in the middle to low temperature range near 0 to 30 ° C., is more easily available. However, in this case as well as the aliphatic hydrocarbon compound having a melting point of 40 ° C. or higher, the heat of fusion is low, and the phase change responsiveness is poor. For this reason, only a part of the heat of fusion / solidification inherent in the compound can be used, or the effective heat of use per mass of the heat storage material may be reduced.

融点が40℃以上で、融解熱量が80kJ/kg以上と高く、相変化応答性に優れる化合物として、高級アルコール類、高級脂肪酸類、エステル化合物を蓄熱材として用いることが提案されている(特許文献6)。これらは、高純度の化合物として製品化されており、融け始めから融け終わりまでの温度範囲が比較的狭く、狭い温度変動範囲にて熱を蓄積したり取り出したりする場合においても、化合物が本来持つ融解/凝固熱量の大部分を利用することができ、蓄熱材質量当たりの有効利用熱量は大きいものとなる。また、価格も比較的安価である。しかしながら、これらの化合物をバルク状態で使用する場合には障害なく使用できるものの、乳化分散を施してマイクロカプセル化する場合には種々の問題点があった。   It has been proposed to use higher alcohols, higher fatty acids, and ester compounds as heat storage materials as compounds having a melting point of 40 ° C. or higher, a high heat of fusion of 80 kJ / kg or higher, and excellent phase change responsiveness (Patent Literature). 6). These are commercialized as high-purity compounds, and the temperature range from the beginning of melting to the end of melting is relatively narrow. Even when heat is accumulated or taken out in a narrow temperature fluctuation range, these compounds have inherent properties. Most of the heat of fusion / solidification can be utilized, and the effective heat utilization per mass of the heat storage material is large. Also, the price is relatively low. However, when these compounds are used in a bulk state, they can be used without hindrance, but there are various problems when emulsifying and dispersing into microcapsules.

すなわち、高級アルコール類、高級脂肪酸類をマイクロカプセル化すると、化合物の結晶化速度が速いために、乳化分散性が悪くなり、良好なマイクロカプセル皮膜が形成されにくく、カプセル化率が低くなるという問題があった。また、炭素数によっては特有の臭気の問題もあり、特に乳化分散工程において、異臭を発するために、蓄熱材マイクロカプセル用の蓄熱材としては不向きであった。 That is, when a higher alcohol or higher fatty acid is microencapsulated, the crystallization rate of the compound is high, so that the emulsification dispersibility is poor, a good microcapsule film is hardly formed, and the encapsulation rate is low. was there. In addition, there is a problem of a specific odor depending on the number of carbon atoms. In particular, in the emulsification and dispersion process, since a strange odor is generated, it is not suitable as a heat storage material for a heat storage material microcapsule.

一方、エステル化合物においては、容易に入手可能なエステル化合物の多くは、メチルエステル、エチルエステル、ブチルエステルが主であり、これらアルコール残基の炭素数が4以下であるエステル化合物は、脂肪酸残基の炭素数が10以上の高級なものであっても、親水性が高いために、マイクロカプセル化工程において、次のような問題があった。例えば、水等の分散媒体に蓄熱材を乳化分散して蓄熱材マイクロカプセルが作製される際、高級脂肪酸と炭素数4以下の低級アルコールとの反応により得られるエステル化合物を蓄熱材として用いた場合には、分散媒体にエステル化合物の一部が溶け込むため、カプセル化されずにロスしてしまい、有効にカプセル化できる割合(カプセル化率)が低くなるという問題がある。さらに、分散媒体に溶解したエステル化合物が乳化分散性を悪化させたり、カプセル化反応を阻害したり、蓄熱材マイクロカプセル分散液の分散安定性を悪化させたりするなどの現象を引き起こすことが多かった。   On the other hand, in the ester compounds, most of the readily available ester compounds are mainly methyl esters, ethyl esters, and butyl esters, and ester compounds in which these alcohol residues have 4 or less carbon atoms are fatty acid residues. Even if it is a high-grade product having 10 or more carbon atoms, it has high hydrophilicity, and therefore has the following problems in the microencapsulation process. For example, when a heat storage material microcapsule is prepared by emulsifying and dispersing a heat storage material in a dispersion medium such as water, an ester compound obtained by a reaction between a higher fatty acid and a lower alcohol having 4 or less carbon atoms is used as the heat storage material. However, since a part of the ester compound is dissolved in the dispersion medium, it is lost without being encapsulated, and there is a problem that the ratio (encapsulation ratio) that can be effectively encapsulated is lowered. Furthermore, the ester compound dissolved in the dispersion medium often causes phenomena such as deterioration of the emulsification dispersibility, inhibition of the encapsulation reaction, and deterioration of the dispersion stability of the heat storage material microcapsule dispersion. .

さらに、高級脂肪酸と炭素数4以下の低級アルコールとの反応により得られるエステル化合物は、その脂肪酸残基の炭素数とアルコール残基の炭素数を合わせた総炭素数が20程度になると融点は室温付近になる。融点を見ると、蓄熱材として利用可能な範囲となるが、このエステル化合物は加水分解しやすく、加熱冷却を繰り返す用途に長期間使用すると、徐々に分解が起こり、融解熱量の低下と融点の目的温度からの逸脱が生じるといった問題があった。   Further, the ester compound obtained by the reaction of a higher fatty acid and a lower alcohol having 4 or less carbon atoms has a melting point of room temperature when the total number of carbons of the fatty acid residue and the alcohol residue is about 20 Be near. Looking at the melting point, it is in the range that can be used as a heat storage material, but this ester compound is easily hydrolyzed, and when used for repeated heating and cooling for a long period of time, it gradually decomposes, lowering the heat of fusion and the purpose of the melting point There was a problem that a deviation from the temperature occurred.

また、エステル化合物以外のケトン化合物、エーテル化合物、アマイド化合物、アミン化合物などにおいても、連結基を中心として見た場合の少なくとも一方の炭化水素基の炭素数が4以下である場合には、上記エステル化合物と同様の問題点があった。   Also, in the case of ketone compounds other than ester compounds, ether compounds, amide compounds, amine compounds, etc., when the carbon number of at least one hydrocarbon group as viewed from the linking group is 4 or less, the above ester There were the same problems as the compound.

ところで、蓄熱材の目的融解温度(又は凝固温度)は、その化合物の融点(又は凝固点)で決まる。しかし、目的融解温度(又は凝固温度)に適した化合物が存在しないか、特殊品であり工業的に必要な量が得られないことがある。この場合、2種以上の化合物を混合して所望の融解温度(又は凝固温度)を得ようとすることがあるが、脂肪族炭化水素化合物では、2種以上を混合すると、上述のように混合物の融解熱量(又は凝固熱量)が混合前のそれぞれの単独化合物の融解熱量(又は凝固熱量)よりも大きく低下してしまうことが多い。また、融点の大きく異なる2種類以上の脂肪族炭化水素化合物を混合すると、混合した化合物に由来する2つ以上の融解温度がそのまま現れて、その中間の温度に融解温度を示さない場合が多い。したがって、脂肪族炭化水素化合物では、化合物の融点以外の温度で蓄熱することが困難である。
特開平5−25471号公報 特開2000−178545号公報 特開2000−38577号公報 特開2001−081447号公報 特開2001−288458号公報 特許第2847267号公報
By the way, the target melting temperature (or solidification temperature) of the heat storage material is determined by the melting point (or freezing point) of the compound. However, a compound suitable for the target melting temperature (or solidification temperature) does not exist, or it is a special product and an industrially necessary amount may not be obtained. In this case, two or more kinds of compounds may be mixed to obtain a desired melting temperature (or solidification temperature). However, when two or more kinds of aliphatic hydrocarbon compounds are mixed, the mixture is mixed as described above. In many cases, the heat of fusion (or the amount of heat of solidification) of the material is much lower than the heat of fusion (or the amount of heat of solidification) of each single compound before mixing. Moreover, when two or more types of aliphatic hydrocarbon compounds having greatly different melting points are mixed, two or more melting temperatures derived from the mixed compounds appear as they are, and the melting temperature is often not shown at an intermediate temperature. Therefore, it is difficult for an aliphatic hydrocarbon compound to store heat at a temperature other than the melting point of the compound.
JP-A-5-25471 JP 2000-178545 A JP 2000-38577 A JP 2001-081447 A JP 2001-288458 A Japanese Patent No. 2847267

本発明の課題は、容易に加水分解されることなく、経時安定性や相変化繰り返し耐久性に優れ、目的とする温度域で融解又は凝固が起こり、かつ高熱量及び相変化熱応答性に優れる蓄熱材を提供することにある。   The problem of the present invention is that it is not easily hydrolyzed, has excellent stability over time and phase change repetition durability, melts or solidifies in a target temperature range, and is excellent in high heat quantity and phase change thermal response. It is to provide a heat storage material.

本発明者らは鋭意検討した結果、次の発明を見出した。
(1)総炭素数が20〜28である下記一般式(I)で表される化合物で、総炭素数の差が4以内である化合物を少なくとも2種以上混合した蓄熱材混合物が内包されていることを特徴とする蓄熱材マイクロカプセル、
As a result of intensive studies, the present inventors have found the following invention.
(1) compound represented by the following general formula the total number of carbon atoms is 20 to 28 (I), the heat storage material mixture the difference of the total number of carbon atoms is mixed for at least two or more compounds is within 4 is included Thermal storage material microcapsule, characterized by

Figure 0004808476
Figure 0004808476

〔式中、R1、R2はそれぞれ独立の炭素数6以上の炭化水素基を表す。Xは、下記一般式で表されるヘテロ原子を含む2価の連結基を表す。〕

Figure 0004808476
[Wherein, R 1 and R 2 each independently represent a hydrocarbon group having 6 or more carbon atoms. X represents a divalent linking group containing a hetero atom represented by the following general formula . ]
Figure 0004808476

Figure 0004808476
Figure 0004808476

〔式中、R3はn価の炭化水素基を表す。R4はそれぞれ独立の炭素数6以上の炭化水素基を表す。Yはヘテロ原子を含む2価の連結基を表す。〕 [Wherein R3 represents an n-valent hydrocarbon group. R4 represents an independent hydrocarbon group having 6 or more carbon atoms. Y represents a divalent linking group containing a hetero atom. ]

Figure 0004808476
Figure 0004808476

〔式中、Aはm価の原子または原子団または連結基を表す。R5はそれぞれ独立の炭素数6以上の炭化水素基を表す。Zはヘテロ原子を含む2価の連結基または直接結合を表す。〕
(2)蓄熱材混合物中の最多含有化合物の含有率が20〜95質量%である上記(1)記載の蓄熱材マイクロカプセル、
(3)蓄熱材の純度が75%以上である上記(1)記載の蓄熱材マイクロカプセル、
(4)蓄熱材の酸価が8以下であり、水酸基価が20以下である上記(1)記載の蓄熱材マイクロカプセル、
(5)上記(1)〜(4)のいずれか1項に記載の蓄熱材マイクロカプセルを分散媒体に分散させた蓄熱材マイクロカプセル分散液、
(6)上記(1)〜(4)のいずれか1項に記載の蓄熱材マイクロカプセルを単独または複数個固着せしめてなる蓄熱材マイクロカプセル固形物。
[Wherein, A represents an m-valent atom, atomic group or linking group. R5 represents an independent hydrocarbon group having 6 or more carbon atoms. Z represents a divalent linking group containing a hetero atom or a direct bond. ]
(2) The heat storage material microcapsule according to (1), wherein the content of the most abundant compound in the heat storage material mixture is 20 to 95% by mass,
(3) The heat storage material microcapsule according to (1), wherein the heat storage material has a purity of 75% or more ,
(4) The heat storage material microcapsule according to (1) , wherein the acid value of the heat storage material is 8 or less and the hydroxyl value is 20 or less ,
(5) A heat storage material microcapsule dispersion in which the heat storage material microcapsules according to any one of (1) to (4) are dispersed in a dispersion medium,
(6) A heat storage material microcapsule solid obtained by fixing one or more heat storage material microcapsules according to any one of (1) to (4) above.

本発明の蓄熱材マイクロカプセルは、蓄熱材として一般式(I)で表される化合物を少なくとも2種以上用いるが、各化合物が有する炭化水素基は炭素数が6以上であるため、水などの分散媒体に溶解しにくく、水分量やpHが変化しやすい環境でも、加水分解しにくいという特徴がある。ゆえに、加熱冷却を繰り返す用途に長期間使用しても安定な熱物性が得られ、高融解熱量を維持することができる。また、マイクロカプセル化工程において、蓄熱材化合物の大部分が油滴となって、有効にカプセル化され、カプセル化率を高くすることができる。さらに、得られる蓄熱材マイクロカプセル分散液は分散安定性が良好なものとなる。 The heat storage material microcapsule of the present invention uses at least two kinds of compounds represented by the general formula (I ) as the heat storage material, but the hydrocarbon group of each compound has 6 or more carbon atoms. It is difficult to dissolve in a dispersion medium and is difficult to hydrolyze even in an environment where the amount of water and pH are likely to change. Therefore, a stable thermophysical property can be obtained and a high heat of fusion can be maintained even if it is used for a long period of time in applications where heating and cooling are repeated. Further, in the microencapsulation step, most of the heat storage material compound becomes oil droplets, which are effectively encapsulated and the encapsulation rate can be increased. Furthermore, the obtained heat storage material microcapsule dispersion has good dispersion stability.

本発明の蓄熱材マイクロカプセルは、一般式(I)で表される化合物のうち、総炭素数の差が4以内である化合物同士を少なくとも2種以上混合した混合物をマイクロカプセルに内包する蓄熱材として用いることで、脂肪族炭化水素化合物では得られなかった温度特性を得ることができた。すなわち、任意の目的融解温度(又は凝固温度)を設定することが必要となったとき、融解熱量(又は凝固熱量)の低下を起こすことなく、かつ、融解温度域(又は凝固温度域)が2つ以上に分かれることなく、1つの融解温度(又は凝固温度)を示すという温度特性を得ることができた。 The heat storage material microcapsule of the present invention is a heat storage material in which a mixture obtained by mixing at least two kinds of compounds having a total carbon number difference of 4 or less among the compounds represented by the general formula (I 1 ) is included in the microcapsule. As a result, it was possible to obtain temperature characteristics that could not be obtained with aliphatic hydrocarbon compounds. That is, when it becomes necessary to set an arbitrary target melting temperature (or solidification temperature), the melting heat range (or solidification temperature range) is 2 without causing a decrease in the heat of fusion (or heat of solidification). A temperature characteristic of showing one melting temperature (or solidification temperature) could be obtained without dividing into two or more.

本発明に係わる蓄熱材は、一般式(I)で表される化合物から選択される。 The heat storage material according to the present invention is selected from compounds represented by the general formula (I ) .

一般式(I)において、R1とR2は、互いに同じであっても、異なっていてもよい、炭素数6以上の炭化水素基である。具体例としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、ヘンエイコシル、ドコシル、トリコシル、テトラコシル、ペンタコシル、ヘキサコシル、ヘプタコシル、オクタコシル、ノナコシル、トリアコンチル、ヘントリアコンチル、ドトリアコンチル、トリトリアコンチル、テトラトリアコンチル、ペンタトリアコンチル、ヘキサトリアコンチル、ヘプタトリアコンチル、オクタトリアコンチル、ノナトリアコンチル、テトラコンチル、ヘンテトラコンチル、ドテトラコンチル、トリテトラコンチル、テトラテトラコンチル、ペンタテトラコンチル、ヘキサテトラコンチル、ヘプタテトラコンチル、オクタテトラコンチル、ノナテトラコンチル、ペンタコンチルなどの直鎖状の炭化水素基、または2−エチルヘキシル、2−エチルオクチル、イソドデシル、イソオクタデシルなどの分岐を有する炭化水素基、またはヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、エイコセニル、ヘンエイコセニル、ドコセニル、トリコセニル、テトラコセニル、ペンタコセニル、ヘキサコセニル、ヘプタコセニル、オクタコセニル、ノナコセニル、トリアコンテニル、ヘントリアコンテニル、ドトリアコンテニル、トリトリアコンテニル、テトラトリアコンテニル、ペンタトリアコンテニル、ヘキサトリアコンテニル、ヘプタトリアコンテニル、オクタトリアコンテニル、ノナトリアコンテニル、テトラコンテニル、ヘンテトラコンテニル、ドテトラコンテニル、トリテトラコンテニル、テトラテトラコンテニル、ペンタテトラコンテニル、ヘキサテトラコンテニル、ヘプタテトラコンテニル、オクタテトラコンテニル、ノナテトラコンテニル、ペンタコンテニルなどの不飽和結合を有する炭化水素基、などを挙げることができる。R1とR2において、より好ましくは、炭素数が8〜60であり、さらに好ましくは、10〜40である。炭素数が8未満であると、加水分解に対する安定性が低下したり、必要な熱量が不足したりすることがある。一方、炭素数が60を越えると、原料が天然に存在する量が極めて少なく、高価になることがある。   In the general formula (I), R1 and R2 are hydrocarbon groups having 6 or more carbon atoms, which may be the same or different from each other. Specific examples include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, hetacosyl, , Nonacosyl, triacontyl, hentriacontyl, dotriacontyl, tritriacontyl, tetratriacontyl, pentatriacontyl, hexatriacontyl, heptatriacontyl, octatriacontyl, nonatriacontyl, tetracontyl, hentetracontyl , Dotetracontyl, tritetracontyl, tetratetracontyl, pentatetracontyl, hexatetracontyl, heptatetra Linear hydrocarbon groups such as n-til, octatetracontyl, nonatetracontyl, pentacontyl, etc., or branched hydrocarbon groups such as 2-ethylhexyl, 2-ethyloctyl, isododecyl, isooctadecyl, or hexenyl, heptenyl , Octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosenyl, dococenyl, tricocenyl, tetracocenyl, pentacocenyl, pentacocenyl, pentacocenyl, pentacocenyl, pentacocenyl, pentacocenyl, hexacocenyl, pentacocenyl, pentacocenyl Triacontenyl, dotriacontenyl, tritriacontenyl, tetratriacontenyl, pentatriaco Tenenyl, hexatriacontenyl, heptatriacontenyl, octatriacontenyl, nonatriacontenyl, tetracontenyl, hentetracontenyl, detetracontenyl, tritetracontenyl, tetratetracontenyl, pentatetracontenyl, And hydrocarbon groups having an unsaturated bond such as hexatetracontenyl, heptatetracontenyl, octatetracontenyl, nonatetracontenyl, and pentacontenyl. In R1 and R2, the carbon number is more preferably 8 to 60, and still more preferably 10 to 40. If the number of carbon atoms is less than 8, the stability to hydrolysis may be reduced, or the necessary amount of heat may be insufficient. On the other hand, when the number of carbon atoms exceeds 60, the amount of the raw material existing in nature may be extremely small and expensive.

一般式(I)において、Xは、ヘテロ原子を含む2価の連結基であり、具体例としては、   In general formula (I), X is a divalent linking group containing a hetero atom.

Figure 0004808476
Figure 0004808476

などを挙げることができるが、本発明におけるXは、下記一般式で表されるヘテロ原子を含む2価の連結基である

Figure 0004808476
X in the present invention is a divalent linking group containing a hetero atom represented by the following general formula .
Figure 0004808476

一般式(II)において、R3は、n価の炭化水素基であり、飽和炭化水素基、不飽和炭化水素基、芳香環含有炭化水素基、シクロパラフィン環含有炭化水素基などを挙げることができる。また、nは2〜60の整数を表す。ここで、n価とはYと結合する部分がn個あることを表す。   In the general formula (II), R3 is an n-valent hydrocarbon group, and examples thereof include a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic ring-containing hydrocarbon group, and a cycloparaffin ring-containing hydrocarbon group. . N represents an integer of 2 to 60. Here, the n valence means that there are n parts bonded to Y.

一般式(II)において、R4は、互いに同じであっても異なっていてもよい、炭素数6以上の炭化水素基あり、具体例としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、ヘンエイコシル、ドコシル、トリコシル、テトラコシル、ペンタコシル、ヘキサコシル、ヘプタコシル、オクタコシル、ノナコシル、トリアコンチル、ヘントリアコンチル、ドトリアコンチル、トリトリアコンチル、テトラトリアコンチル、ペンタトリアコンチル、ヘキサトリアコンチル、ヘプタトリアコンチル、オクタトリアコンチル、ノナトリアコンチル、テトラコンチル、ヘンテトラコンチル、ドテトラコンチル、トリテトラコンチル、テトラテトラコンチル、ペンタテトラコンチル、ヘキサテトラコンチル、ヘプタテトラコンチル、オクタテトラコンチル、ノナテトラコンチル、ペンタコンチルなどの直鎖状の炭化水素基、または2−エチルヘキシル、2−エチルオクチル、イソドデシル、イソオクタデシルなどの分岐を有する炭化水素基、またはヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、エイコセニル、ヘンエイコセニル、ドコセニル、トリコセニル、テトラコセニル、ペンタコセニル、ヘキサコセニル、ヘプタコセニル、オクタコセニル、ノナコセニル、トリアコンテニル、ヘントリアコンテニル、ドトリアコンテニル、トリトリアコンテニル、テトラトリアコンテニル、ペンタトリアコンテニル、ヘキサトリアコンテニル、ヘプタトリアコンテニル、オクタトリアコンテニル、ノナトリアコンテニル、テトラコンテニル、ヘンテトラコンテニル、ドテトラコンテニル、トリテトラコンテニル、テトラテトラコンテニル、ペンタテトラコンテニル、ヘキサテトラコンテニル、ヘプタテトラコンテニル、オクタテトラコンテニル、ノナテトラコンテニル、ペンタコンテニルなどの不飽和結合を有する炭化水素基、などを挙げることができる。R4において、より好ましくは、炭素数が8〜60であり、さらに好ましくは、10〜40である。炭素数が8未満であると、加水分解に対する安定性が低下したり、必要な熱量が不足したりすることがある。一方、炭素数が60を越えると、原料が天然に存在する量が極めて少なく、高価になることがある。   In the general formula (II), R4 is a hydrocarbon group having 6 or more carbon atoms, which may be the same or different from each other. Specific examples include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. , Tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triaconyl, hentriacontyl, dotriacontyl, tritriacontyl, tetratriaconyl Chill, pentatriacontyl, hexatriacontyl, heptatriacontyl, octatriacontyl, nonatriacontyl, tetracontyl, hentetracontyl, dotetracontyl Linear hydrocarbon group such as tritetracontyl, tetratetracontyl, pentatetracontyl, hexatetracontyl, heptatetracontyl, octatetracontyl, nonatetracontyl, pentacontyl, or 2-ethylhexyl , 2-ethyloctyl, isododecyl, isooctadecyl, etc., branched hydrocarbon groups, or hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, nonadecenyl, nonadecenyl, Henecocenyl, dococenyl, tricocenyl, tetracocenyl, pentacocenyl, hexacocenyl, heptacocenyl, octacocenyl, nonacosenyl, triaconenyl, hen Triacontenyl, detriacontenyl, tritriacontenyl, tetratriacontenyl, pentatriacontenyl, hexatriacontenyl, heptatriacontenyl, octatriacontenyl, nonatriacontenyl, tetracontenyl, hentetracontenyl , Carbon atoms with unsaturated bonds such as detetracontenyl, tritetracontenyl, tetratetracontenyl, pentatetracontenyl, hexatetracontenyl, heptatetracontenyl, octatetracontenyl, nonatetracontenyl, pentacontenyl And a hydrogen group. In R4, the number of carbon atoms is more preferably 8 to 60, and still more preferably 10 to 40. If the number of carbon atoms is less than 8, the stability to hydrolysis may be reduced, or the necessary amount of heat may be insufficient. On the other hand, when the number of carbon atoms exceeds 60, the amount of the raw material existing in nature may be extremely small and expensive.

一般式(II)において、Yは、ヘテロ原子を含む2価の連結基であり、具体例としては、   In the general formula (II), Y is a divalent linking group containing a hetero atom.

Figure 0004808476
Figure 0004808476

などを挙げることができる。 And so on.

一般式(III)において、R5は、互いに同じであっても異なっていてもよい、炭素数6以上の炭化水素基あり、具体例としては、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、エイコシル、ヘンエイコシル、ドコシル、トリコシル、テトラコシル、ペンタコシル、ヘキサコシル、ヘプタコシル、オクタコシル、ノナコシル、トリアコンチル、ヘントリアコンチル、ドトリアコンチル、トリトリアコンチル、テトラトリアコンチル、ペンタトリアコンチル、ヘキサトリアコンチル、ヘプタトリアコンチル、オクタトリアコンチル、ノナトリアコンチル、テトラコンチル、ヘンテトラコンチル、ドテトラコンチル、トリテトラコンチル、テトラテトラコンチル、ペンタテトラコンチル、ヘキサテトラコンチル、ヘプタテトラコンチル、オクタテトラコンチル、ノナテトラコンチル、ペンタコンチルなどの直鎖状の炭化水素基、または2−エチルヘキシル、2−エチルオクチル、イソドデシル、イソオクタデシルなどの分岐を有する炭化水素基、またはヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル、ヘキサデセニル、ヘプタデセニル、オクタデセニル、ノナデセニル、エイコセニル、ヘンエイコセニル、ドコセニル、トリコセニル、テトラコセニル、ペンタコセニル、ヘキサコセニル、ヘプタコセニル、オクタコセニル、ノナコセニル、トリアコンテニル、ヘントリアコンテニル、ドトリアコンテニル、トリトリアコンテニル、テトラトリアコンテニル、ペンタトリアコンテニル、ヘキサトリアコンテニル、ヘプタトリアコンテニル、オクタトリアコンテニル、ノナトリアコンテニル、テトラコンテニル、ヘンテトラコンテニル、ドテトラコンテニル、トリテトラコンテニル、テトラテトラコンテニル、ペンタテトラコンテニル、ヘキサテトラコンテニル、ヘプタテトラコンテニル、オクタテトラコンテニル、ノナテトラコンテニル、ペンタコンテニルなどの不飽和結合を有する炭化水素基、などを挙げることができる。R5において、より好ましくは、炭素数が8〜60であり、さらに好ましくは、10〜40である。炭素数が8未満であると、加水分解に対する安定性が低下したり、必要な熱量が不足したりすることがある。一方、炭素数が60を越えると、原料が天然に存在する量が極めて少なく、高価になることがある。   In general formula (III), R5 is a hydrocarbon group having 6 or more carbon atoms, which may be the same or different from each other. Specific examples include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl. , Tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, pentacosyl, hexacosyl, heptacosyl, octacosyl, nonacosyl, triaconyl, hentriacontyl, dotriacontyl, tritriacontyl, tetratriaconyl Chill, pentatriacontyl, hexatriacontyl, heptatriacontyl, octatriacontyl, nonatriacontyl, tetracontyl, hentetracontyl, dotetracontyl Linear hydrocarbon group such as tritetracontyl, tetratetracontyl, pentatetracontyl, hexatetracontyl, heptatetracontyl, octatetracontyl, nonatetracontyl, pentacontyl, or 2-ethylhexyl , 2-ethyloctyl, isododecyl, isooctadecyl, etc., branched hydrocarbon groups, or hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, nonadecenyl, nonadecenyl, Henecocenyl, dococenyl, tricocenyl, tetracocenyl, pentacocenyl, hexacocenyl, heptacocenyl, octacocenyl, nonacosenyl, triaconenyl, Triacontenyl, detriacontenyl, tritriacontenyl, tetratriacontenyl, pentatriacontenyl, hexatriacontenyl, heptatriacontenyl, octatriacontenyl, nonatriacontenyl, tetracontenyl, hentetracontenyl , Carbon atoms with unsaturated bonds such as detetracontenyl, tritetracontenyl, tetratetracontenyl, pentatetracontenyl, hexatetracontenyl, heptatetracontenyl, octatetracontenyl, nonatetracontenyl, pentacontenyl And a hydrogen group. In R5, the carbon number is more preferably 8 to 60, and still more preferably 10 to 40. If the number of carbon atoms is less than 8, the stability to hydrolysis may be reduced, or the necessary amount of heat may be insufficient. On the other hand, when the number of carbon atoms exceeds 60, the amount of the raw material existing in nature may be extremely small and expensive.

一般式(III)において、Zはヘテロ原子を含む2価の連結基または直接結合である。ヘテロ原子を含む2価の連結基の具体例としては、上記Yで例示した基を挙げることができる。   In general formula (III), Z is a divalent linking group containing a hetero atom or a direct bond. Specific examples of the divalent linking group containing a hetero atom include the groups exemplified above for Y.

一般式(III)において、Aはm価の原子または原子団または連結基であり、具体例としては、窒素原子、イオウ原子、酸素原子、ケイ素原子、リン原子、複素環、ヘテロ原子含有炭化水素基などを挙げることができる。また、mは2〜60の整数を表す。ここで、m価とはZと結合する部分がm個あることを表す。   In the general formula (III), A is an m-valent atom, an atomic group or a linking group. Specific examples include a nitrogen atom, a sulfur atom, an oxygen atom, a silicon atom, a phosphorus atom, a heterocyclic ring, and a heteroatom-containing hydrocarbon. Examples include groups. Moreover, m represents the integer of 2-60. Here, the m value represents that there are m parts bonded to Z.

本発明に係わる蓄熱材の融点は、特に制限を受けるわけではなく、融点が100℃以上の化合物の場合でも、高圧釜での乳化・反応を行うことにより、水媒体を用いたマイクロカプセル化が可能である。一般的なマイクロカプセル化設備が使えるという点では、蓄熱材の融点は、約−50〜100℃の範囲、好ましくは−20〜90℃の範囲に設定されることが好ましい。さらに、R1、R2、R4、R5で示されるそれぞれ独立の炭素数6以上の炭化水素基は、融解熱量や有害性の点から直鎖状の飽和炭化水素基であることが好ましい。   The melting point of the heat storage material according to the present invention is not particularly limited. Even in the case of a compound having a melting point of 100 ° C. or higher, microencapsulation using an aqueous medium can be performed by emulsification and reaction in a high-pressure kettle. Is possible. In view of using general microencapsulation equipment, the melting point of the heat storage material is preferably set in the range of about −50 to 100 ° C., preferably in the range of −20 to 90 ° C. Furthermore, each independently a hydrocarbon group having 6 or more carbon atoms represented by R1, R2, R4 and R5 is preferably a linear saturated hydrocarbon group from the viewpoint of heat of fusion and harmfulness.

本発明に係わる蓄熱材としては、特に、脂肪酸と一価アルコールとの脂肪酸エステル化合物、二塩基酸と一価アルコールとのジエステル化合物、多価アルコールと脂肪酸とのエステル化合物、N−置換脂肪酸アミド化合物、ケトン化合物が好ましい。さらにとりわけ脂肪酸エステル化合物が、原料の入手のしやすさや合成のしやすさの点などから好適に用いることができる。つまり、一般式(I)において、Xが−COO−結合であり、R1が炭素数6以上の炭化水素基、R2が炭素数6以上の炭化水素基であるエステル化合物である。R1とR2の炭素数は同じであっても異なっていても良い。R1とR2の炭化水素基の炭素数は、それぞれ8〜60の範囲のものがより好ましく、さらにそれぞれ10〜40の範囲のものが好ましい。R1とR2は、直鎖状の飽和炭化水素基が最も好ましい。   As the heat storage material according to the present invention, in particular, fatty acid ester compound of fatty acid and monohydric alcohol, diester compound of dibasic acid and monohydric alcohol, ester compound of polyhydric alcohol and fatty acid, N-substituted fatty acid amide compound A ketone compound is preferred. In particular, fatty acid ester compounds can be suitably used from the viewpoint of easy availability of raw materials and ease of synthesis. That is, in the general formula (I), an ester compound in which X is a —COO— bond, R 1 is a hydrocarbon group having 6 or more carbon atoms, and R 2 is a hydrocarbon group having 6 or more carbon atoms. R1 and R2 may have the same or different carbon numbers. The number of carbon atoms in the hydrocarbon group of R1 and R2 is more preferably in the range of 8 to 60, and further preferably in the range of 10 to 40. R1 and R2 are most preferably a linear saturated hydrocarbon group.

本発明の蓄熱材マイクロカプセルは、蓄熱材の総炭素数の差が4以内である蓄熱材を少なくとも2種以上混合した混合物をマイクロカプセルに内包する。総炭素数の差が4以内であるとは、例えば、一般式(I)において、Xが−COO−結合である時に、R1が炭素数13のトリデシル基、R2が炭素数12のドデシル基であるエステル化合物(総炭素数=26)とR1が炭素数11のウンデシル基、R2が炭素数12のドデシル基であるエステル化合物(総炭素数=24)とを用いるような場合を指す(総炭素数の差=2)。蓄熱材の総炭素数の差が4以内である蓄熱材を少なくとも2種以上混合した混合物をマイクロカプセルに内包することにより、目的融解温度(又は凝固温度)を設定することが必要となったときでも、融解熱量(又は凝固熱量)の低下を起こすことなく、かつ、融解温度温度域(又は凝固温度域)が2つ以上に分かれることなく、1つの融解温度(又は凝固温度)を示すという温度特性を得ることが可能となる。   The heat storage material microcapsule of the present invention encapsulates a mixture obtained by mixing at least two kinds of heat storage materials in which the difference in total carbon number of the heat storage material is 4 or less. The difference in total carbon number within 4 means that, for example, in general formula (I), when X is a —COO— bond, R 1 is a tridecyl group having 13 carbon atoms, and R 2 is a dodecyl group having 12 carbon atoms. This refers to the case of using an ester compound (total carbon number = 26) and an ester compound (total carbon number = 24) in which R1 is an undecyl group having 11 carbon atoms and R2 is a dodecyl group having 12 carbon atoms (total carbon number). Number difference = 2). When it is necessary to set the target melting temperature (or solidification temperature) by encapsulating a mixture of at least two types of heat storage materials with a total carbon number difference of 4 or less in the heat storage materials in a microcapsule However, a temperature that shows one melting temperature (or solidification temperature) without causing a decrease in the heat of fusion (or solidification heat) and without dividing the melting temperature range (or solidification temperature range) into two or more. It becomes possible to obtain characteristics.

一方、本発明外となる、蓄熱材の総炭素数の差が5以上である蓄熱材を少なくとも2種以上混合した混合物を用いると、脂肪族炭化水素化合物を2種類以上混合したときと同様の現象が起こる場合がある。すなわち、混合後の混合物の融解熱量(又は凝固熱量)が混合前のそれぞれ単独物の融解熱量(又は凝固熱量)よりも大きく低下してしまったり、融解温度すなわち吸熱を示す温度域(又は凝固温度すなわち放熱を示す温度域)が2つ以上に分かれてしまう場合がある。   On the other hand, when a mixture obtained by mixing at least two kinds of heat storage materials having a total carbon number difference of 5 or more, which is outside the present invention, is used, it is the same as when two or more types of aliphatic hydrocarbon compounds are mixed. A phenomenon may occur. That is, the heat of fusion (or the heat of solidification) of the mixture after mixing is much lower than the heat of fusion (or the heat of solidification) of each single product before mixing, or the temperature range (or the solidification temperature) showing the melting temperature or endotherm. That is, the temperature range showing heat dissipation may be divided into two or more.

本発明における蓄熱材混合物中の最多含有化合物の含有率は20〜95質量%であることが好ましく、25〜90質量%であることがより好ましく、30〜85質量%であることが更に好ましい。最多含有化合物の含有率が20質量%よりも小さくなると、少なくとも5種類を超える蓄熱材を混合することになり、構成化合物数が多くなることで、融解熱量(又は凝固熱量)が低くなったり、相変化時の相変化応答性が悪く、即ち、融け始めから融け終わりまでの温度範囲(又は固まり始めから固まり終わりまでの温度範囲)が広くなったりすることがある。また、最多含有化合物の含有率が95質量%を超えると、マイクロカプセルに内包する前の段階における蓄熱材混合物の融解温度と凝固温度との差が大きくなる、すなわち過冷却現象が大きくなる場合がある。この過冷却現象が大きい蓄熱材混合物をマイクロカプセルに内包にした場合、過冷却防止剤として作用する添加剤を加えたとしても、蓄熱材マイクロカプセルの融解温度と凝固温度との差は、マイクロカプセルに内包する前の蓄熱材混合物の状態における融解温度と凝固温度との差よりも小さくなることはない。つまり、蓄熱材マイクロカプセルでも過冷却現象が起こってしまい、融解温度と凝固温度との差を小さくすること(例えば温度差が約5℃以内)が要求される用途においては支障となる場合がある。
The content of the most abundant compound in the heat storage material mixture in the present invention is preferably 20 to 95% by mass, more preferably 25 to 90% by mass, and still more preferably 30 to 85% by mass. When the content of the most contained compound is smaller than 20% by mass, at least five kinds of heat storage materials are mixed, and the number of constituent compounds is increased, so that the heat of fusion (or the heat of solidification) is reduced, Phase change responsiveness at the time of phase change is poor, that is, the temperature range from the start of melting to the end of melting (or the temperature range from the start of setting to the end of setting) may be widened. In addition, when the content of the most abundant compound exceeds 95% by mass, the difference between the melting temperature and the solidification temperature of the heat storage material mixture in the stage before encapsulating in the microcapsule increases, that is, the supercooling phenomenon may increase. is there. When the heat storage material mixture having a large supercooling phenomenon is encapsulated in a microcapsule, even if an additive acting as a supercooling inhibitor is added, the difference between the melting temperature and the solidification temperature of the heat storage material microcapsule It does not become smaller than the difference between the melting temperature and the solidification temperature in the state of the heat storage material mixture before being encapsulated. In other words, the supercooling phenomenon occurs even in the heat storage material microcapsule, which may hinder the use in which the difference between the melting temperature and the solidification temperature is required to be small (for example, the temperature difference is within about 5 ° C.). .

本発明に係わる蓄熱材の純度は75%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましい。蓄熱材の純度が75%未満であると、不純物による凝固促進作用や不純物自身の凝固・析出・発核作用により、マイクロカプセル中に内包された状態の蓄熱材が所望の温度域以外で融解や凝固を起こすことがあり、所望の温度域での融解熱量や凝固熱量が低くなることがある。ここでいう蓄熱材の純度とは、混合前のそれぞれ蓄熱材単独の状態での蓄熱材全体中に含まれる主成分の含有率を示す。本発明に係わる蓄熱材の純度は、ガスクロマトグラフィー法や液体クロマトグラフィー法などで測定することができる。ガスクロマトグラフィー法についてはJIS K0114に従って測定し、面積百分率法または補正面積百分率法が好適に適用できる。液体クロマトグラフィー法についてはJIS K0124に従って測定する。   The purity of the heat storage material according to the present invention is preferably 75% or more, more preferably 80% or more, and still more preferably 85% or more. If the purity of the heat storage material is less than 75%, the heat storage material contained in the microcapsule is melted or melted outside the desired temperature range due to the solidification promoting action by impurities and the solidification / precipitation / nucleation action of the impurities themselves. Solidification may occur, and the heat of fusion and heat of solidification in a desired temperature range may be low. The purity of the heat storage material here refers to the content of the main component contained in the entire heat storage material in the state of each heat storage material before mixing. The purity of the heat storage material according to the present invention can be measured by a gas chromatography method, a liquid chromatography method, or the like. The gas chromatography method is measured according to JIS K0114, and the area percentage method or the corrected area percentage method can be suitably applied. The liquid chromatography method is measured according to JIS K0124.

本発明に係わる蓄熱材の酸価は8以下であることが好ましく、5以下であることがより好ましく、3以下であることが更に好ましい。また、本発明に係わる蓄熱材の水酸基価は20以下であることが好ましく、10以下であることがより好ましく、5以下であることが更に好ましい。蓄熱材の酸価が8を超えたり、水酸基価が20を超えた場合には、蓄熱材に不純物や未反応物として混入しているカルボン酸化合物やアルコール化合物等によって、カプセル皮膜形成反応の進行が部分的に阻害されることがあり、相変化の繰り返しを伴う長期間にわたる使用にも十分耐えうる皮膜強度を確保できない場合がある。なお、酸価と水酸基価のうち、特に酸価の方が皮膜強度に及ぼす影響が大きい。本発明に係わる酸価および水酸基価とは、JIS K0070に従って測定されるものであり、酸価・水酸基価ともに単位はmgKOH/gである。   The acid value of the heat storage material according to the present invention is preferably 8 or less, more preferably 5 or less, and still more preferably 3 or less. The hydroxyl value of the heat storage material according to the present invention is preferably 20 or less, more preferably 10 or less, and still more preferably 5 or less. When the acid value of the heat storage material exceeds 8 or the hydroxyl value exceeds 20, the progress of the capsule film formation reaction due to carboxylic acid compounds or alcohol compounds mixed as impurities or unreacted materials in the heat storage material May be partially inhibited, and it may not be possible to secure a film strength that can withstand long-term use with repeated phase changes. Of the acid value and hydroxyl value, the acid value has a greater influence on the film strength. The acid value and the hydroxyl value according to the present invention are measured in accordance with JIS K0070, and both the acid value and the hydroxyl value are expressed in mgKOH / g.

本発明に係わる蓄熱材は、必要に応じ過冷却防止剤、比重調節剤、劣化防止剤等を添加することが出来る。   The heat storage material according to the present invention may contain a supercooling inhibitor, a specific gravity adjusting agent, a deterioration preventing agent and the like as required.

本発明に係わる蓄熱材は、融解時に漏れ出さないよう丈夫で熱安定性の良い容器や包材に充填して保温材としたり、親油性のゲル化剤と混合して固形化して用いる、あるいは水中に懸濁させて分散液として使用することも可能であるが、本発明の如くマイクロカプセル化して用いることにより、種々の目的に使いやすい形態に加工することができる。   The heat storage material according to the present invention is used as a heat insulating material by filling a container and packaging material that is strong and has good heat stability so as not to leak at the time of melting, or is mixed with an oleophilic gelling agent and solidified, or It can be suspended in water and used as a dispersion. However, it can be processed into a form that is easy to use for various purposes by being microencapsulated as in the present invention.

本発明において、マイクロカプセルの製法として物理的方法と化学的方法が知られているが、特に潜熱蓄熱材をマイクロカプセル化する方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等に記載されている方法が用いられる。   In the present invention, a physical method and a chemical method are known as a method for producing a microcapsule. In particular, as a method for microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (Japanese Patent Laid-Open No. Sho 62-1452). No.), a method of spraying a thermoplastic resin on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-45680), and a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (Japanese Patent Laid-Open No. Sho 62- 149334), a method of polymerizing and coating the monomer on the surface of the heat storage material particles (Japanese Patent Laid-Open No. 62-225241), a method for producing a polyamide-coated microcapsule by interfacial polycondensation reaction (Japanese Patent Laid-Open No. 2-258052), etc. Is used.

マイクロカプセルの膜材としては、界面重合法、インサイチュー(in−situ)法、ラジカル重合法等の手法で得られるポリスチレン、ポリアクリロニトリル、ポリ(メタ)アクリレート、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またはゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられる。本発明においては、メラミンホルマリン樹脂、尿素ホルマリン樹脂、ポリアミド、ポリウレア、ポリウレタンウレアが好ましく、さらに物理的、化学的に安定なインサイチュー法によるメラミンホルマリン樹脂皮膜、尿素ホルマリン樹脂皮膜、または界面重合法によるポリウレア皮膜、ポリウレタンウレア皮膜を用いたマイクロカプセルを使用することが特に好ましい。   As the membrane material of the microcapsule, polystyrene, polyacrylonitrile, poly (meth) acrylate, polyamide, polyacrylamide, ethyl cellulose, polyurethane, which are obtained by a method such as an interfacial polymerization method, an in-situ method, a radical polymerization method, An aminoplast resin, or a synthetic or natural resin using a coacervation method of gelatin and carboxymethyl cellulose or gum arabic is used. In the present invention, melamine formalin resin, urea formalin resin, polyamide, polyurea, and polyurethane urea are preferable, and further, physically and chemically stable in situ melamine formalin resin film, urea formalin resin film, or interfacial polymerization method. It is particularly preferable to use a microcapsule using a polyurea film or a polyurethaneurea film.

本発明の蓄熱材マイクロカプセルの体積平均粒子径は0.5〜50μmの範囲にすることが好ましく、さらに好ましくは1〜20μmの範囲にすることが好ましい。50μmより大きい粒子径では機械的剪断力に極めて弱くなることがあり、0.5μmより小さい粒子径では破壊は抑えられるものの、膜厚が薄くなり耐熱性に乏しくなることがある。本発明で述べる体積平均粒子径とはマイクロカプセル粒子の体積換算値の平均粒子径を表わすものであり、原理的には一定体積の粒子を小さいものから順に篩分けし、その50%体積に当たる粒子が分別された時点での粒子径を意味する。体積平均粒子径の測定は顕微鏡観察による実測でも測定可能であるが、市販の電気的、光学的粒子径測定装置を用いることにより自動的に測定可能であり、本発明における体積平均粒子径は米国コールター社製粒度測定装置マルチサイザーII型を用いて測定を行なった。   The volume average particle diameter of the heat storage material microcapsules of the present invention is preferably in the range of 0.5 to 50 μm, more preferably in the range of 1 to 20 μm. When the particle diameter is larger than 50 μm, the mechanical shearing force may be extremely weak, and when the particle diameter is smaller than 0.5 μm, the fracture may be suppressed, but the film thickness may be reduced and the heat resistance may be poor. The volume average particle diameter described in the present invention represents the average particle diameter of the microcapsule particles in terms of volume, and in principle, particles having a fixed volume are sieved in order from the smallest, and the particles corresponding to 50% of the volume. Means the particle size at the time of separation. The volume average particle size can be measured by microscopic observation, but can be automatically measured by using a commercially available electrical or optical particle size measuring device. Measurement was performed using a particle size measuring device Multisizer type II manufactured by Coulter.

本発明の蓄熱材マイクロカプセルは、通常水分散液の状態で作製されるが、この分散液(スラリー)状態のまま使用することができる他、スプレードライヤー、ドラムドライヤー、フリーズドライヤー、フィルタープレスなどの各種乾燥装置・脱水装置を用いて、媒体の水を蒸発・脱水・乾燥させて粉体や固形体の形態にして使用することもできる。さらに、粉体や固形体に必要に応じてバインダー等を加えて、押出し造粒、転動造粒、撹拌造粒など各種造粒法を用いて造粒することで粒径を大きくし、扱いやすくした造粒体の形態にして使用することもできる。本発明ではこれら粉体や固形体および造粒体の総称として固形物と呼ぶことにする。なお、固形物の形状としては球状、楕円形、立方体、直方体、円柱状、円錐状、円盤状、俵状、桿状、正多面体、星形、筒型等如何なる形状でも良い。   The heat storage material microcapsules of the present invention are usually produced in the state of an aqueous dispersion, but can be used in the state of this dispersion (slurry), as well as spray dryers, drum dryers, freeze dryers, filter presses, etc. The water of the medium can be evaporated, dehydrated and dried by using various drying and dehydrating apparatuses to be used in the form of powder or solid. Furthermore, by adding a binder or the like to the powder or solid as necessary, the particle size is increased by granulation using various granulation methods such as extrusion granulation, rolling granulation, stirring granulation, etc. It can also be used in the form of a simplified granulated body. In the present invention, these powders, solid bodies, and granulated bodies are collectively referred to as solid bodies. The shape of the solid material may be any shape such as a sphere, an ellipse, a cube, a rectangular parallelepiped, a cylinder, a cone, a disk, a bowl, a bowl, a regular polyhedron, a star, a cylinder.

(実施例)
以下、実施例によって本発明を更に詳しく説明する。実施例中の部数や百分率は特にことわりがない限り質量基準である。なお、実施例中の蓄熱材マイクロカプセルの融解温度及び凝固温度、融解熱量とは、得られた蓄熱材マイクロカプセルを示差走査熱量計(米国パーキンエルマー社製DSC−7型)を用いて、サンプル量2±0.2mg、昇温速度10℃/分および降温速度10℃/分にて測定した際の、昇温時におけるマイクロカプセルに内包された状態の蓄熱材の融解挙動に起因する、熱容量曲線の吸熱ピークの立ち上がりのオンセット(ベースラインと吸熱曲線の接線との交点)温度を融解温度とし、降温時におけるマイクロカプセルに内包された状態の蓄熱材の凝固挙動に起因する、熱容量曲線の放熱ピークの立ち上がりのオンセット(ベースラインと放熱曲線の接線との交点)温度を凝固温度とし、昇温時における熱容量曲線の吸熱ピークとベースラインとの差の積分値を融解熱量としている。また、マイクロカプセルに内包する前の蓄熱材についても上記と同様の条件にて融解温度と凝固温度とを測定し、融解温度と凝固温度との差を求めた。
(Example)
Hereinafter, the present invention will be described in more detail by way of examples. The parts and percentages in the examples are based on mass unless otherwise specified. In addition, the melting temperature and solidification temperature of the heat storage material microcapsules in the examples, and the heat of fusion are samples obtained by using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer, USA) for the obtained heat storage material microcapsules. Heat capacity resulting from the melting behavior of the heat storage material encapsulated in microcapsules at the time of temperature rise when measured at an amount of 2 ± 0.2 mg, a temperature rise rate of 10 ° C./min and a temperature drop rate of 10 ° C./min The onset (intersection of the base line and the tangent of the endothermic curve) at the rise of the endothermic peak of the curve is the melting temperature, and the heat capacity curve of the heat capacity curve due to the solidification behavior of the heat storage material encapsulated in the microcapsule during the temperature drop The onset (intersection of the base line and the tangent to the heat release curve) temperature at the rise of the heat release peak is the solidification temperature, and the heat absorption peak and base of the heat capacity curve at the time of temperature rise The integral value of the difference between the ins and the heat of fusion. Moreover, also about the heat storage material before encapsulating in a microcapsule, the melting temperature and the solidification temperature were measured on the same conditions as the above, and the difference between the melting temperature and the solidification temperature was determined.

実施例中の熱履歴耐久性とは、得られた蓄熱材マイクロカプセルの分散液を5g採取して100℃で2時間加熱することで媒体の水を蒸発させて得られた乾固物を、温度制御が可能な恒温槽中に入れ、相変化温度を挟む温度域として−10℃から60℃までを温度変化させ、300回の温度変化を与えた後の蓄熱量を測定し、温度変化を与える前の蓄熱量との比を熱履歴耐久性とした。温度変化は、昇温に1時間、60℃で30分保持、降温に1時間、−10℃で30分保持のサイクルを1回とする。数値が大きいほど温度変化を与えた後での蓄熱量の保持性に優れていることを示す。なお、蓄熱量については示差走査熱量計で測定される融解熱量により決定した。   The heat history durability in the examples refers to the dried product obtained by evaporating the water of the medium by collecting 5 g of the obtained dispersion liquid of the heat storage material microcapsule and heating it at 100 ° C. for 2 hours. Put it in a thermostatic chamber where temperature control is possible, change the temperature from -10 ° C to 60 ° C as the temperature range sandwiching the phase change temperature, measure the amount of heat storage after giving 300 temperature changes, and change the temperature The ratio with the heat storage amount before giving was defined as the heat history durability. The temperature change is 1 cycle for temperature increase, 30 minutes at 60 ° C., 1 hour for temperature decrease, and 30 minutes at −10 ° C. for one cycle. It shows that it is excellent in the retention of the heat storage amount after giving a temperature change, so that a numerical value is large. The heat storage amount was determined by the heat of fusion measured with a differential scanning calorimeter.

蓄熱材として、純度88%、酸価2.6、水酸基価4.8であるミリスチン酸ドデシル〔総炭素数=26〕70部と純度87%、酸価2.7、水酸基価4.3であるラウリン酸ドデシル〔総炭素数=24〕30部とを均一に混合し、蓄熱材の混合物Aを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.7℃であった。   As a heat storage material, 70 parts of dodecyl myristate [total carbon number = 26] having a purity of 88%, an acid value of 2.6 and a hydroxyl value of 4.8 and a purity of 87%, an acid value of 2.7 and a hydroxyl value of 4.3 A certain amount of dodecyl laurate [total carbon number = 24] 30 parts was uniformly mixed to prepare a mixture A of heat storage materials. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 0.7 ° C.

pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液125部の中に、上記混合物A100部を激しく撹拌しながら添加し、平均粒子径が12.0μmになるまで乳化を行なった。次にメラミン10部と37%ホルムアルデヒド水溶液14部及び水25部を混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し、70℃で2時間加熱撹拌を施してカプセル化反応を行なった。次いで、この分散液のpHを9に調整してカプセル化を終了した。低粘度で、分散安定性が良好なメラミン−ホルマリン樹脂皮膜の蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は12.3μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は28.4℃、凝固温度は24.8℃、融解温度と凝固温度との差は3.6℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は167J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は93%であった。   100 parts of the above mixture A is added to 125 parts of an aqueous sodium salt solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5 with vigorous stirring, and the average particle size becomes 12.0 μm. Emulsification was carried out. Next, 10 parts of melamine, 14 parts of a 37% aqueous formaldehyde solution and 25 parts of water were mixed, adjusted to pH 8, and an aqueous melamine-formalin condensate solution was prepared at about 80 ° C. The entire amount was added to the emulsion, and the mixture was heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Next, the pH of this dispersion was adjusted to 9 to complete the encapsulation. A dispersion of heat storage material microcapsules with a melamine-formalin resin film having a low viscosity and good dispersion stability was obtained. The obtained heat storage material microcapsule had a volume average particle diameter of 12.3 μm. The heat storage material microcapsules thus obtained had a melting temperature of 28.4 ° C., a solidification temperature of 24.8 ° C., a difference between the melting temperature and the solidification temperature of 3.6 ° C., and the heat of fusion per solid content of the heat storage material microcapsules. Was 167 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 93%.

蓄熱材として、純度92%、酸価1.4、水酸基価3.2であるラウリン酸ドデシル〔総炭素数=24〕80部と純度91%、酸価1.6、水酸基価3.5であるラウリン酸デシル〔総炭素数=22〕20部とを均一に混合し、蓄熱材の混合物Bを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.1℃であった。   As a heat storage material, the purity is 92%, the acid value is 1.4, and the hydroxyl value is 3.2. Dodecyl laurate [total carbon number = 24] is 80 parts, the purity is 91%, the acid value is 1.6, and the hydroxyl value is 3.5. A certain amount of decyl laurate [total carbon number = 22] 20 parts was uniformly mixed to prepare a mixture B of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.1 ° C.

pHを4.5に調整した5%のスチレン−無水マレイン酸共重合体のナトリウム塩水溶液125部の中に、上記混合物Bに過冷却防止剤としてのN−ステアリルパルミチン酸アミド1部を加えた物を激しく撹拌しながら添加し、平均粒子径が2.0μmになるまで乳化を行なった。次にメラミン10部と37%ホルムアルデヒド水溶液14部及び水25部を混合し、これをpH8に調整し、約80℃でメラミン−ホルマリン初期縮合物水溶液を調製した。この全量を上記乳化液に添加し、70℃で2時間加熱撹拌を施してカプセル化反応を行なった後、この分散液のpHを9に調整してカプセル化を終了した。低粘度で、分散安定性が良好なメラミンホルマリン樹脂皮膜の蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は2.1μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は21.4℃、凝固温度は19.1℃、融解温度と凝固温度との差は2.3℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は159J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   1 part of N-stearyl palmitic acid amide as a supercooling inhibitor was added to 125 parts of an aqueous sodium salt solution of 5% styrene-maleic anhydride copolymer adjusted to pH 4.5. The product was added with vigorous stirring and emulsified until the average particle size was 2.0 μm. Next, 10 parts of melamine, 14 parts of a 37% aqueous formaldehyde solution and 25 parts of water were mixed, adjusted to pH 8, and an aqueous melamine-formalin condensate solution was prepared at about 80 ° C. The whole amount was added to the emulsion, and the mixture was heated and stirred at 70 ° C. for 2 hours to carry out an encapsulation reaction. Then, the pH of the dispersion was adjusted to 9 to complete the encapsulation. A dispersion of microcapsules of heat storage material with a low viscosity and good dispersion stability and a melamine formalin resin film was obtained. The obtained heat storage material microcapsule had a volume average particle diameter of 2.1 μm. The heat storage material microcapsules obtained had a melting temperature of 21.4 ° C., a solidification temperature of 19.1 ° C., a difference between the melting temperature and the solidification temperature of 2.3 ° C., and the heat of fusion per solid content of the heat storage material microcapsules. Was 159 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル97部と実施例2で用いた物と同じラウリン酸デシル3部とを均一に混合し、蓄熱材の混合物Cを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は3.8℃であった。   As a heat storage material, 97 parts of the same dodecyl laurate as used in Example 2 and 3 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture C of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 3.8 ° C.

混合物Bに換えて混合物Cを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は27.4℃、凝固温度は21.8℃、融解温度と凝固温度との差は5.6℃となり、融解温度と凝固温度との差が若干大きくなった。蓄熱材マイクロカプセル固形分当たりの融解熱量は169J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture C was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsule had a melting temperature of 27.4 ° C., a solidification temperature of 21.8 ° C., and the difference between the melting temperature and the solidification temperature was 5.6 ° C., indicating that the difference between the melting temperature and the solidification temperature was slightly larger. became. The heat of fusion per heat storage material microcapsule solid was 169 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル95部と実施例2で用いた物と同じラウリン酸デシル5部とを均一に混合し、蓄熱材の混合物Dを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は3.6℃であった。   As a heat storage material, 95 parts of the same dodecyl laurate as used in Example 2 and 5 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture D of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 3.6 ° C.

混合物Bに換えて混合物Dを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は27.2℃、凝固温度は22.3℃、融解温度と凝固温度との差は4.9℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は167J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture D was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules thus obtained had a melting temperature of 27.2 ° C., a solidification temperature of 22.3 ° C., a difference between the melting temperature and the solidification temperature of 4.9 ° C., and the heat of fusion per heat storage material microcapsule solid content was 167 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル90部と実施例2で用いた物と同じラウリン酸デシル10部とを均一に混合し、蓄熱材の混合物Eを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は2.6℃であった。   As a heat storage material, 90 parts of the same dodecyl laurate as used in Example 2 and 10 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture E of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 2.6 ° C.

混合物Bに換えて混合物Eを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は24.8℃、凝固温度は21.0℃、融解温度と凝固温度との差は3.8℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は167J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Encapsulation was performed in the same manner as in Example 2 except that the mixture E was used in place of the mixture B to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsule thus obtained had a melting temperature of 24.8 ° C., a solidification temperature of 21.0 ° C., a difference between the melting temperature and the solidification temperature of 3.8 ° C., and the heat of fusion per heat storage material microcapsule solid content was 167 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル85部と実施例2で用いた物と同じラウリン酸デシル15部とを均一に混合し、蓄熱材の混合物Fを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は1.4℃であった。   As a heat storage material, 85 parts of the same dodecyl laurate as used in Example 2 and 15 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture F of heat storage materials. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 1.4 ° C.

混合物Bに換えて混合物Fを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は23.1℃、凝固温度は20.2℃、融解温度と凝固温度との差は2.9℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は165J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture F was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsule thus obtained had a melting temperature of 23.1 ° C., a solidification temperature of 20.2 ° C., a difference between the melting temperature and the solidification temperature of 2.9 ° C., and the heat of fusion per heat storage material microcapsule solid content was 165 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル50部と実施例2で用いた物と同じラウリン酸デシル50部とを均一に混合し、蓄熱材の混合物Gを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.5℃であった。   As the heat storage material, 50 parts of the same dodecyl laurate as used in Example 2 and 50 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture G of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.5 ° C.

混合物Bに換えて混合物Gを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は18.1℃、凝固温度は15.6℃、融解温度と凝固温度との差は2.5℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は152J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture G was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 18.1 ° C., a solidification temperature of 15.6 ° C., a difference between the melting temperature and the solidification temperature of 2.5 ° C., and a heat of fusion per solid content of the heat storage material microcapsules of 152 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル15部と実施例2で用いた物と同じラウリン酸デシル85部とを均一に混合し、蓄熱材の混合物Hを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は2.9℃であった。   As a heat storage material, 15 parts of the same dodecyl laurate as used in Example 2 and 85 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a heat storage material mixture H. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 2.9 ° C.

混合物Bに換えて混合物Hを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は17.8℃、凝固温度は14.0℃、融解温度と凝固温度との差は3.8℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は156J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture H was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules thus obtained had a melting temperature of 17.8 ° C., a solidification temperature of 14.0 ° C., a difference between the melting temperature and the solidification temperature of 3.8 ° C., and the heat of fusion per heat storage material microcapsule solid content was 156 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル10部と実施例2で用いた物と同じラウリン酸デシル90部とを均一に混合し、蓄熱材の混合物Iを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は3.1℃であった。   As a heat storage material, 10 parts of the same dodecyl laurate as used in Example 2 and 90 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture I of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 3.1 ° C.

混合物Bに換えて混合物Iを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は18.2℃、凝固温度は13.9℃、融解温度と凝固温度との差は4.3℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は157J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture I was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 18.2 ° C., a solidification temperature of 13.9 ° C., a difference between the melting temperature and the solidification temperature of 4.3 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 157 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル5部と実施例2で用いた物と同じラウリン酸デシル95部とを均一に混合し、蓄熱材の混合物Jを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は3.0℃であった。   As a heat storage material, 5 parts of the same dodecyl laurate as used in Example 2 and 95 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture J of heat storage materials. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 3.0 ° C.

混合物Bに換えて混合物Jを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は18.7℃、凝固温度は13.8℃、融解温度と凝固温度との差は4.9℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は159J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture J was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsule thus obtained had a melting temperature of 18.7 ° C., a solidification temperature of 13.8 ° C., a difference between the melting temperature and the solidification temperature of 4.9 ° C., and the heat of fusion per solid heat storage material microcapsule was 159 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル3部と実施例2で用いた物と同じラウリン酸デシル97部とを均一に混合し、蓄熱材の混合物Kを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は3.7℃であった。   As a heat storage material, 3 parts of the same dodecyl laurate as used in Example 2 and 97 parts of the same decyl laurate as used in Example 2 were uniformly mixed to prepare a mixture K of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 3.7 ° C.

混合物Bに換えて混合物Kを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は19.1℃、凝固温度は13.3℃、融解温度と凝固温度との差は5.8℃となり、融解温度と凝固温度との差が若干大きくなった。蓄熱材マイクロカプセル固形分当たりの融解熱量は160J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture K was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 19.1 ° C., a solidification temperature of 13.3 ° C., and the difference between the melting temperature and the solidification temperature was 5.8 ° C., and the difference between the melting temperature and the solidification temperature was slightly large. became. The heat of fusion per heat storage material microcapsule solid was 160 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、純度90%、酸価1.8、水酸基価3.8であるミリスチン酸ドデシル〔総炭素数=26〕50部と実施例2で用いた物と同じラウリン酸デシル〔総炭素数=22〕50部とを均一に混合し、蓄熱材の混合物Lを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 50 parts of dodecyl myristate [total carbon number = 26] having a purity of 90%, an acid value of 1.8, and a hydroxyl value of 3.8 and the same decyl laurate [total carbon number] used in Example 2 = 22] 50 parts was uniformly mixed to prepare a mixture L of heat storage materials. The difference between the melting temperature and the solidification temperature before the encapsulation of the mixture in the microcapsule was 0.2 ° C.

混合物Bに換えて混合物Lを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は16.5℃、凝固温度は14.4℃、融解温度と凝固温度との差は2.1℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は144J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture L was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules thus obtained had a melting temperature of 16.5 ° C., a solidification temperature of 14.4 ° C., a difference between the melting temperature and the solidification temperature of 2.1 ° C., and the heat of fusion per solid heat storage material microcapsule was 144 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、純度93%、酸価1.5、水酸基価3.1であるミリスチン酸テトラデシル〔総炭素数=28〕70部と実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕30部とを均一に混合し、蓄熱材の混合物Mを得た。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は1.1℃であった。   As a heat storage material, 70 parts of tetradecyl myristate [total carbon number = 28] having a purity of 93%, an acid value of 1.5, and a hydroxyl value of 3.1 and the same dodecyl myristate as used in Example 12 [total carbon number] = 26] 30 parts of the mixture were uniformly mixed to obtain a heat storage material mixture M. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 1.1 ° C.

尿素7.5部とレゾルシン0.6部を溶解し、pHを3.0に調整した5%のエチレン−無水マレイン酸共重合体のナトリウム塩水溶液125部中に、上記混合物M100部に過冷却防止剤としてのN−ステアリルパルミチン酸アミド1部を加えた物を激しく撹拌しながら添加し、平均粒子径が5μmになるまで乳化を行なった。次に、この乳化液に37%ホルムアルデヒド水溶液19部と水25部を添加し、60℃で2時間加熱撹拌を施してカプセル化反応を行なった。次いで、この分散液のpHを9に調整してカプセル化を終了した。低粘度で、分散安定性が良好な尿素ホルマリン樹脂皮膜の蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は5.2μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は35.0℃、凝固温度は33.4℃、融解温度と凝固温度との差は1.6℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は172J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は95%であった。   Supercooled to 100 parts of the above mixture M in 125 parts of a 5% ethylene-maleic anhydride copolymer sodium salt solution in which 7.5 parts of urea and 0.6 parts of resorcin were dissolved and the pH was adjusted to 3.0. A product added with 1 part of N-stearyl palmitic acid amide as an inhibitor was added with vigorous stirring, and emulsification was performed until the average particle size became 5 μm. Next, 19 parts of a 37% formaldehyde aqueous solution and 25 parts of water were added to this emulsion, followed by heating and stirring at 60 ° C. for 2 hours to carry out an encapsulation reaction. Next, the pH of this dispersion was adjusted to 9 to complete the encapsulation. A dispersion liquid of a heat storage material microcapsule with a urea formalin film having a low viscosity and good dispersion stability was obtained. The obtained heat storage material microcapsules had a volume average particle size of 5.2 μm. Moreover, the melting temperature of the obtained heat storage material microcapsule is 35.0 ° C., the solidification temperature is 33.4 ° C., the difference between the melting temperature and the solidification temperature is 1.6 ° C., and the heat of fusion per solid content of the heat storage material microcapsule. Was 172 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 95%.

蓄熱材として、実施例2で用いた物と同じラウリン酸デシル〔総炭素数=22〕85部と純度92%、酸価1.9、水酸基価3.3であるデカン酸デシル〔総炭素数=20〕15部とを均一に混合し、蓄熱材の混合物Nを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は2.0℃であった。   As a heat storage material, 85 parts of decyl laurate [total carbon number = 22] same as that used in Example 2, 92% purity, acid value 1.9, hydroxyl value 3.3 decyl decanoate [total carbon number = 20] 15 parts of the mixture were uniformly mixed to prepare a heat storage material mixture N. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 2.0 ° C.

上記混合物N100部に、過冷却防止剤としてN−ステアリルパルミチン酸アミド1部を加え、多価イソシアネートとしてポリメリックジフェニルメタンジイソシアネート(住化バイエルウレタン(株)製、芳香族イソシアネート、商品名44V20)11部を溶解した物を、5%ポリビニルアルコール((株)クラレ製、商品名ポバール117)水溶液125部中に添加し、体積平均粒子径が3μmになるまで室温で撹拌乳化を施した。次に、この乳化液に3%ジエチレントリアミン水溶液69部を添加した後、60℃で加熱と撹拌を1時間施した。低粘度で、分散安定性が良好なポリウレア皮膜を有する蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は3.2μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は15.6℃、凝固温度は11.5℃、融解温度と凝固温度との差は4.1℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は154J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は94%であった。   1 part of N-stearyl palmitic acid amide as a supercooling inhibitor is added to 100 parts of the above mixture, and 11 parts of polymeric diphenylmethane diisocyanate (manufactured by Sumika Bayer Urethane Co., Ltd., aromatic isocyanate, trade name 44V20) as a polyvalent isocyanate. The dissolved product was added to 125 parts of an aqueous solution of 5% polyvinyl alcohol (product name: POVAL 117, manufactured by Kuraray Co., Ltd.), and stirred and emulsified at room temperature until the volume average particle size became 3 μm. Next, 69 parts of a 3% diethylenetriamine aqueous solution was added to the emulsion, followed by heating and stirring at 60 ° C. for 1 hour. A dispersion liquid of a heat storage material microcapsule having a polyurea film having low viscosity and good dispersion stability was obtained. The obtained heat storage material microcapsule had a volume average particle diameter of 3.2 μm. The heat storage material microcapsules obtained had a melting temperature of 15.6 ° C., a solidification temperature of 11.5 ° C., a difference between the melting temperature and the solidification temperature of 4.1 ° C., and the heat of fusion per solid content of the heat storage material microcapsules. Was 154 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 94%.

蓄熱材として、実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕40部と実施例12で用いた物と同じラウリン酸デシル〔総炭素数=22〕60部とを均一混合し、蓄熱材の混合物Oを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は1.9℃であった。   As the heat storage material, 40 parts of the same dodecyl laurate [total carbon number = 24] as used in Example 2 and 60 parts of the same decyl laurate [total carbon number = 22] as used in Example 12 were uniformly used. Mixing was performed to prepare a mixture O of a heat storage material. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 1.9 ° C.

上記混合物O100部に、過冷却防止剤としてN−ステアリルパルミチン酸アミド1部を加え、多価イソシアネートとして、ジシクロヘキシルメタン4,4−ジイソシアネート(住化バイエルウレタン(株)製、脂肪族イソシアネート、商品名デスモジュールW)16部を溶解した物を、5%ポリビニルアルコール((株)クラレ製、商品名ポバール117)水溶液125部中に添加し、平均粒径が4μmになるまで室温で撹拌乳化を行った。次に、この乳化液に3%ポリエーテル水溶液(旭電化工業(株)製、ポリエーテル、商品名アデカポリエーテルEDP−450)69部を添加した後、60℃で加熱と撹拌を施した。低粘度で、分散安定性が良好なポリウレタンウレア皮膜を有する蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は4.2μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は17.8℃、凝固温度は14.2℃、融解温度と凝固温度との差は3.6℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は150J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は95%であった。   1 part of N-stearyl palmitic acid amide is added to 100 parts of the mixture O as a supercooling inhibitor, and dicyclohexylmethane 4,4-diisocyanate (manufactured by Sumika Bayer Urethane Co., Ltd., aliphatic isocyanate, trade name) as the polyvalent isocyanate. Desmodur W) 16 parts dissolved is added to 125 parts of 5% polyvinyl alcohol (Kuraray Co., Ltd., trade name POVAL 117) aqueous solution, and stirred and emulsified at room temperature until the average particle size becomes 4 μm. It was. Next, 69 parts of a 3% aqueous polyether solution (manufactured by Asahi Denka Kogyo Co., Ltd., polyether, trade name Adeka Polyether EDP-450) was added to the emulsion, and then heated and stirred at 60 ° C. A dispersion liquid of a heat storage material microcapsule having a polyurethane urea film having low viscosity and good dispersion stability was obtained. The obtained heat storage material microcapsule had a volume average particle diameter of 4.2 μm. The heat storage material microcapsules obtained had a melting temperature of 17.8 ° C., a solidification temperature of 14.2 ° C., a difference between the melting temperature and the solidification temperature of 3.6 ° C., and the heat of fusion per solid content of the heat storage material microcapsules. Was 150 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 95%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕50部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕50部とを均一混合し、蓄熱材の混合物Pを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0℃であった。   As a heat storage material, 50 parts of dodecyl myristate [total carbon number = 26] same as that used in Example 12 and 50 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 were uniformly used. Mixing was performed to prepare a heat storage material mixture P. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0 ° C.

上記混合物P100部に、過冷却防止剤としてN−ステアリルパルミチン酸アミド1部を加え、さらにモノマーとしてメタクリル酸メチル11.9部とエチレングリコールジメタクリレート0.6部を溶解させ、これを75℃の1%ポリビニルアルコール水溶液375部に入れ、強撹拌により乳化を行った。次にこの乳化液の入った重合容器内を75℃に保ちながら窒素雰囲気にした後、イオン交換水19部に溶解させた2,2′−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}ジハイドロクロライド0.5部を添加した。7時間後に重合を終了し、重合容器内を室温にまで冷却し、カプセル化を終了した。低粘度で、分散安定性が良好なラジカル重合法によるポリメタクリル酸メチル皮膜を有する蓄熱材マイクロカプセルの分散液が得られた。得られた蓄熱材マイクロカプセルの体積平均粒子径は5.3μmであった。また、得られた蓄熱材マイクロカプセルの融解温度は26.9℃、凝固温度は23.5℃、融解温度と凝固温度との差は3.4℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は166J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は92%であった。   To 100 parts of the mixture P, 1 part of N-stearyl palmitic acid amide is added as a supercooling inhibitor, and further 11.9 parts of methyl methacrylate and 0.6 part of ethylene glycol dimethacrylate are dissolved as monomers. It put into 375 parts of 1% polyvinyl alcohol aqueous solution, and emulsified by strong stirring. Next, the inside of the polymerization vessel containing the emulsified liquid was kept in a nitrogen atmosphere while maintaining at 75 ° C., and then 2,2′-azobis {2- [1- (2-hydroxyethyl) dissolved in 19 parts of ion-exchanged water. 2-Imidazolin-2-yl] propane} dihydrochloride 0.5 part was added. After 7 hours, the polymerization was completed, the inside of the polymerization vessel was cooled to room temperature, and the encapsulation was completed. A dispersion liquid of a heat storage material microcapsule having a polymethyl methacrylate film by a radical polymerization method having low viscosity and good dispersion stability was obtained. The obtained heat storage material microcapsules had a volume average particle size of 5.3 μm. The heat storage material microcapsules obtained had a melting temperature of 26.9 ° C., a solidification temperature of 23.5 ° C., a difference between the melting temperature and the solidification temperature of 3.4 ° C., and the heat of fusion per solid content of the heat storage material microcapsules. Was 166 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 92%.

蓄熱材として、実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕20部と実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕70部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕10部とを均一に混合し、蓄熱材の混合物Qを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は1.3℃であった。   20 parts of tetradecyl myristate [total carbon number = 28] same as that used in Example 13 and 70 parts of dodecyl myristate [total carbon number = 26] same as those used in Example 12 as heat storage materials 10 parts of the same dodecyl laurate [total carbon number = 24] used in 2 was mixed to prepare a heat storage material mixture Q. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 1.3 ° C.

混合物Bに換えて混合物Qを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は36.4℃、凝固温度は34.4℃、融解温度と凝固温度との差は2.0℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は170J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture Q was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules thus obtained had a melting temperature of 36.4 ° C., a solidification temperature of 34.4 ° C., a difference between the melting temperature and the solidification temperature of 2.0 ° C., and the heat of fusion per solid heat storage material microcapsule was 170 J. / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕50部と純度91%、酸価1.7、水酸基価3.4であるラウリン酸テトラデシル〔総炭素数=26〕50部とを均一に混合し、蓄熱材の混合物Rを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.7℃であった。   As a heat storage material, 50 parts of dodecyl myristate [total carbon number = 26] same as the one used in Example 12, purity 91%, acid value 1.7, hydroxyl value 3.4, tetradecyl laurate [total carbon number = 26] 50 parts was uniformly mixed to prepare a mixture R of heat storage materials. The difference between the melting temperature and the solidification temperature before the encapsulation of the mixture in microcapsules was 0.7 ° C.

混合物Bに換えて混合物Rを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は35.1℃、凝固温度は32.9℃、融解温度と凝固温度との差は2.2℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は169J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture R was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 35.1 ° C., a solidification temperature of 32.9 ° C., a difference between the melting temperature and the solidification temperature of 2.2 ° C., and a heat of fusion per solid content of the heat storage material microcapsules of 169 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕40部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕30部と実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕30部とを均一に混合し、蓄熱材の混合物Sを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.6℃であった。   As heat storage material, 40 parts of dodecyl myristate [total carbon number = 26] same as that used in Example 12 and 30 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 and Example 13 parts of the same tetradecyl myristate [total carbon number = 28] as used in 13 was uniformly mixed to prepare a mixture S of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.6 ° C.

混合物Bに換えて混合物Sを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は35.5℃、凝固温度は33.2℃、融解温度と凝固温度との差は2.3℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は165J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture S was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The resulting heat storage material microcapsule had a melting temperature of 35.5 ° C., a solidification temperature of 33.2 ° C., a difference between the melting temperature and the solidification temperature of 2.3 ° C., and the heat of fusion per solid content of the heat storage material microcapsule was 165 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕30部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕25部と実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕25部と実施例18で用いた物と同じラウリン酸テトラデシル〔総炭素数=26〕20部とを均一に混合し、蓄熱材の混合物Tを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.5℃であった。   30 parts of dodecyl myristate [total carbon number = 26] same as those used in Example 12 and 25 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 as heat storage materials 25 parts of tetradecyl myristate [total carbon number = 28] same as that used in No. 13 and 20 parts of tetradecyl laurate [total carbon number = 26] same as those used in Example 18 were uniformly mixed to obtain a heat storage material. A mixture T was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.5 ° C.

混合物Bに換えて混合物Tを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は34.3℃、凝固温度は32.3℃、融解温度と凝固温度との差は2.0℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は162J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は97%であった。   Except that the mixture T was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 34.3 ° C., a solidification temperature of 32.3 ° C., a difference between the melting temperature and the solidification temperature of 2.0 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 162 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 97%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕25部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕25部と実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕25部と実施例18で用いた物と同じラウリン酸テトラデシル〔総炭素数=26〕25部とを均一に混合し、蓄熱材の混合物Uを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.3℃であった。   As the heat storage material, 25 parts of dodecyl myristate [total carbon number = 26] same as that used in Example 12 and 25 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 and Example 25 parts of tetradecyl myristate [total carbon number = 28] same as that used in No. 13 and 25 parts of tetradecyl laurate [total carbon number = 26] same as those used in Example 18 were uniformly mixed to obtain a heat storage material. A mixture U was prepared. The difference between the melting temperature and the solidification temperature before the encapsulation of the mixture in the microcapsule was 0.3 ° C.

混合物Bに換えて混合物Uを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は34.1℃、凝固温度は32.3℃、融解温度と凝固温度との差は1.8℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は152J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は97%であった。   Except that the mixture U was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 34.1 ° C., a solidification temperature of 32.3 ° C., a difference between the melting temperature and the solidification temperature of 1.8 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 152 J. / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 97%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕20部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕20部と実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕20部と実施例18で用いた物と同じラウリン酸テトラデシル〔総炭素数=26〕20部と純度91%、酸価1.6、水酸基価3.9であるパルミチン酸ドデシル〔総炭素数=28〕20部とを均一に混合し、蓄熱材の混合物Vを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.1℃であった。   As heat storage material, 20 parts of dodecyl myristate [total carbon number = 26] same as that used in Example 12 and 20 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 and Example 20 parts of tetradecyl myristate [total carbon number = 28] same as those used in Example 13 and 20 parts of tetradecyl laurate [total carbon number = 26] same as those used in Example 18, purity 91%, acid value 1. 6 and 20 parts of dodecyl palmitate [total carbon number = 28] having a hydroxyl value of 3.9 were uniformly mixed to prepare a heat storage material mixture V. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.1 ° C.

混合物Bに換えて混合物Vを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は35.2℃、凝固温度は33.8℃、融解温度と凝固温度との差は1.4℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は141J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は97%であった。   Except that the mixture V was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 35.2 ° C., a solidification temperature of 33.8 ° C., a difference between the melting temperature and the solidification temperature of 1.4 ° C., and a heat of fusion per solid content of the heat storage material microcapsules of 141 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 97%.

蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕17部と実施例2で用いた物と同じラウリン酸ドデシル〔総炭素数=24〕17部と実施例13で用いた物と同じミリスチン酸テトラデシル〔総炭素数=28〕17部と実施例18で用いた物と同じラウリン酸テトラデシル〔総炭素数=26〕17部と実施例22で用いた物と同じパルミチン酸ドデシル〔総炭素数=28〕16部と純度90%、酸価1.9、水酸基価3.5であるラウリン酸ヘキサデシル〔総炭素数=28〕16部とを均一に混合し、蓄熱材の混合物Wを調製した。この混合物のマイクロカプセルに内包する前の段階の融解温度と凝固温度との差は0.1℃であった。   17 parts of dodecyl myristate [total carbon number = 26] same as those used in Example 12 and 17 parts of dodecyl laurate [total carbon number = 24] same as those used in Example 2 as heat storage materials and examples 17 parts of tetradecyl myristate [total carbon number = 28] same as those used in 13 and 17 parts of tetradecyl laurate [total carbon number = 26] same as those used in Example 18 and those used in Example 22 16 parts of the same dodecyl palmitate [total carbon number = 28] and 16 parts of hexadecyl laurate [total carbon number = 28] having a purity of 90%, an acid value of 1.9 and a hydroxyl value of 3.5 are uniformly mixed, A mixture W of heat storage materials was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.1 ° C.

混合物Bに換えて混合物Wを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は35.8℃、凝固温度は34.5℃、融解温度と凝固温度との差は1.3℃であった。また、蓄熱材マイクロカプセル固形分当たりの融解熱量は136J/gとなり、熱量がやや低めとなった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は97%であった。   Except that the mixture W was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules obtained had a melting temperature of 35.8 ° C., a solidification temperature of 34.5 ° C., and a difference between the melting temperature and the solidification temperature of 1.3 ° C. Moreover, the heat of fusion per solid content of the heat storage material microcapsule was 136 J / g, and the heat amount was slightly low. In addition, the heat history durability of the obtained heat storage material microcapsule was 97%.

蓄熱材として、純度87%、酸価2.6、水酸基価4.5であるラウリン酸ドデシル80部と純度86%、酸価2.8、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物aを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.1℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 2.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 86%, an acid value of 2.8, and a hydroxyl value of 4.7, and Were mixed uniformly to prepare a heat storage material mixture a. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.1 ° C.

混合物Bに換えて混合物aを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.7℃、凝固温度は19.7℃、融解温度と凝固温度との差は2.0℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は153J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は97%であった。   Except that the mixture a was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsule obtained had a melting temperature of 21.7 ° C., a solidification temperature of 19.7 ° C., a difference between the melting temperature and the solidification temperature of 2.0 ° C., and the heat of fusion per solid heat storage material microcapsule was 153 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 97%.

蓄熱材として、純度81%、酸価2.6、水酸基価4.5であるラウリン酸ドデシル80部と純度82%、酸価2.8、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物bを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 81%, an acid value of 2.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 82%, an acid value of 2.8, and a hydroxyl value of 4.7, and Were mixed uniformly to prepare a heat storage material mixture b. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物bを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.5℃、凝固温度は19.7℃、融解温度と凝固温度との差は1.8℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は150J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は94%であった。   Except that the mixture b was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 21.5 ° C., a solidification temperature of 19.7 ° C., a difference between the melting temperature and the solidification temperature of 1.8 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 150 J. / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 94%.

蓄熱材として、純度76%、酸価2.6、水酸基価4.5であるラウリン酸ドデシル80部と純度77%、酸価2.8、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物cを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.3℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 76%, an acid value of 2.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 77%, an acid value of 2.8, and a hydroxyl value of 4.7, and Were mixed uniformly to prepare a heat storage material mixture c. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.3 ° C.

混合物Bに換えて混合物cを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.3℃、凝固温度は19.6℃、融解温度と凝固温度との差は1.7℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は147J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は90%であった。   Except that the mixture c was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The heat storage material microcapsules thus obtained had a melting temperature of 21.3 ° C., a solidification temperature of 19.6 ° C., a difference between the melting temperature and the solidification temperature of 1.7 ° C., and the heat of fusion per solid heat storage material microcapsule was 147 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 90%.

蓄熱材として、純度71%、酸価2.6、水酸基価4.5であるラウリン酸ドデシル80部と純度72%、酸価2.8、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物dを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.3℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 71%, an acid value of 2.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 72%, an acid value of 2.8, and a hydroxyl value of 4.7, and Were mixed uniformly to prepare a mixture d of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.3 ° C.

混合物Bに換えて混合物dを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.2℃、凝固温度は19.6℃、融解温度と凝固温度との差は1.6℃であった。また、蓄熱材マイクロカプセル固形分当たりの融解熱量は139J/gとなり、蓄熱材の純度が本発明の好適な範囲よりも低いと、熱量がやや低めになるという結果となった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は87%であった。   Except that the mixture d was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 21.2 ° C., a solidification temperature of 19.6 ° C., and a difference between the melting temperature and the solidification temperature of 1.6 ° C. Moreover, the heat of fusion per heat storage material microcapsule solid content was 139 J / g, and when the purity of the heat storage material was lower than the preferred range of the present invention, the result was that the amount of heat was slightly lower. In addition, the heat history durability of the obtained heat storage material microcapsule was 87%.

蓄熱材として、純度87%、酸価4.4、水酸基価4.5であるラウリン酸ドデシル80部と純度86%、酸価4.5、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物eを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 4.4 and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 86%, an acid value of 4.5 and a hydroxyl value of 4.7, and Were uniformly mixed to prepare a mixture e of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物eを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.6℃、凝固温度は20.0℃、融解温度と凝固温度との差は1.6℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は151J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は91%であった。   Except that the mixture e was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 21.6 ° C., a solidification temperature of 20.0 ° C., a difference between the melting temperature and the solidification temperature of 1.6 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 151 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 91%.

蓄熱材として、純度87%、酸価7.6、水酸基価4.5であるラウリン酸ドデシル80部と純度86%、酸価7.3、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物fを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 7.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 86%, an acid value of 7.3, and a hydroxyl value of 4.7, and Were uniformly mixed to prepare a heat storage material mixture f. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物fを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.4℃、凝固温度は20.1℃、融解温度と凝固温度との差は1.3℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は148J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は85%となり、蓄熱材の酸価が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性が若干劣るという結果となった。   Except that the mixture f was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 21.4 ° C., a solidification temperature of 20.1 ° C., a difference between the melting temperature and the solidification temperature of 1.3 ° C., and a heat of fusion per solid content of the heat storage material microcapsules of 148 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule is 85%, and when the acid value of the heat storage material is close to the upper limit of the preferred range of the present invention, the phase change repeated durability of the heat storage material microcapsule is slightly inferior. It became the result.

蓄熱材として、純度87%、酸価9.5、水酸基価4.5であるラウリン酸ドデシル80部と純度86%、酸価9.4、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物gを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 9.5 and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 86%, an acid value of 9.4 and a hydroxyl value of 4.7, Were mixed uniformly to prepare a heat storage material mixture g. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物gを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.2℃、凝固温度は20.0℃、融解温度と凝固温度との差は1.2℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は143J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は77%となり、蓄熱材の酸価が本発明の好適な範囲よりも高いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性がやや劣るという結果となった。   Except that the mixture g was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The resulting heat storage material microcapsule has a melting temperature of 21.2 ° C., a solidification temperature of 20.0 ° C., a difference between the melting temperature and the solidification temperature of 1.2 ° C., and the heat of fusion per solid content of the heat storage material microcapsule is 143 J / G. The heat history durability of the obtained heat storage material microcapsule is 77%, and if the acid value of the heat storage material is higher than the preferred range of the present invention, the phase change repetition durability of the heat storage material microcapsule is slightly inferior. As a result.

蓄熱材として、純度87%、酸価2.6、水酸基価8であるラウリン酸ドデシル80部と純度86%、酸価2.8、水酸基価9であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物hを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 2.6, and a hydroxyl value of 8 and 20 parts of decyl laurate having a purity of 86%, an acid value of 2.8, and a hydroxyl value of 9 are uniformly mixed. Then, a mixture h of heat storage materials was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物hを用いた以外は、実施例2と同様の操作でカプセル化を行い、低粘度で分散安定性が良好な、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.5℃、凝固温度は19.8℃、融解温度と凝固温度との差は1.7℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は150J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は93%であった。   Except that the mixture h was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a low viscosity and good dispersion stability. The obtained heat storage material microcapsules had a melting temperature of 21.5 ° C., a solidification temperature of 19.8 ° C., a difference between the melting temperature and the solidification temperature of 1.7 ° C., and the heat of fusion per solid content of the heat storage material microcapsules was 150 J. / G. In addition, the heat history durability of the obtained heat storage material microcapsule was 93%.

蓄熱材として、純度87%、酸価2.6、水酸基価19であるラウリン酸ドデシル80部と純度86%、酸価2.8、水酸基価18であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物iを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, acid value 2.6 and hydroxyl value 19 and 20 parts of decyl laurate having a purity of 86%, acid value 2.8 and hydroxyl value 18 are uniformly mixed. Then, a mixture i of heat storage materials was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物iを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.4℃、凝固温度は20.0℃、融解温度と凝固温度との差は1.4℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は146J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は87%となり、蓄熱材の水酸基価が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性が若干劣るという結果となった。   Except that the mixture i was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The heat storage material microcapsule thus obtained had a melting temperature of 21.4 ° C., a solidification temperature of 20.0 ° C., a difference between the melting temperature and the solidification temperature of 1.4 ° C., and the heat of fusion per solid heat storage material microcapsule was 146 J / G. The thermal history durability of the obtained heat storage material microcapsule is 87%, and when the hydroxyl value of the heat storage material is close to the upper limit of the preferred range of the present invention, the phase change repeated durability of the heat storage material microcapsule is slightly inferior. It became the result.

蓄熱材として、純度87%、酸価2.6、水酸基価24であるラウリン酸ドデシル80部と純度86%、酸価2.8、水酸基価25であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物jを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 2.6, and a hydroxyl value of 24 are mixed uniformly with 20 parts of decyl laurate having a purity of 86%, an acid value of 2.8, and a hydroxyl value of 25. Then, a mixture j of heat storage materials was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物jを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.3℃、凝固温度は19.9℃、融解温度と凝固温度との差は1.4℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は142J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は79%となり、蓄熱材の水酸基価が本発明の好適な範囲よりも高いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性がやや劣るという結果となった。   Except that the mixture j was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The heat storage material microcapsule obtained had a melting temperature of 21.3 ° C., a solidification temperature of 19.9 ° C., a difference between the melting temperature and the solidification temperature of 1.4 ° C., and a heat of fusion per solid content of the heat storage material microcapsule of 142 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule is 79%, and if the hydroxyl value of the heat storage material is higher than the preferred range of the present invention, the phase change repetition durability of the heat storage material microcapsule is slightly inferior. As a result.

蓄熱材として、純度76%、酸価2.6、水酸基価19であるラウリン酸ドデシル80部と純度77%、酸価2.8、水酸基価18であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物kを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.3℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 76%, an acid value of 2.6 and a hydroxyl value of 19 and 20 parts of decyl laurate having a purity of 77%, an acid value of 2.8 and a hydroxyl value of 18 are uniformly mixed. Then, a mixture k of the heat storage material was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.3 ° C.

混合物Bに換えて混合物kを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.4℃、凝固温度は20.1℃、融解温度と凝固温度との差は1.3℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は148J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は84%となり、蓄熱材の水酸基価が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性が若干劣るという結果となった。   Except that the mixture k was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 21.4 ° C., a solidification temperature of 20.1 ° C., a difference between the melting temperature and the solidification temperature of 1.3 ° C., and a heat of fusion per solid content of the heat storage material microcapsules of 148 J / G. In addition, the thermal history durability of the obtained heat storage material microcapsule is 84%, and when the hydroxyl value of the heat storage material is close to the upper limit of the preferred range of the present invention, the phase change repeated durability of the heat storage material microcapsule is slightly inferior. It became the result.

蓄熱材として、純度76%、酸価4.4、水酸基価19であるラウリン酸ドデシル80部と純度77%、酸価4.5、水酸基価18であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物mを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.3℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 76%, an acid value of 4.4 and a hydroxyl value of 19 and 20 parts of decyl laurate having a purity of 77%, an acid value of 4.5 and a hydroxyl value of 18 are uniformly mixed. Then, a mixture m of heat storage materials was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.3 ° C.

混合物Bに換えて混合物mを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.3℃、凝固温度は20.2℃、融解温度と凝固温度との差は1.1℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は147J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は80%となり、蓄熱材の水酸基価が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性が若干劣るという結果となった。   Except that the mixture m was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The melting temperature of the obtained heat storage material microcapsule was 21.3 ° C., the solidification temperature was 20.2 ° C., the difference between the melting temperature and the solidification temperature was 1.1 ° C., and the heat of fusion per solid content of the heat storage material microcapsule was 147 J / G. In addition, the heat history durability of the obtained heat storage material microcapsule is 80%, and when the hydroxyl value of the heat storage material is close to the upper limit of the preferred range of the present invention, the phase change repeated durability of the heat storage material microcapsule is slightly inferior. It became the result.

蓄熱材として、純度76%、酸価7.6、水酸基価4.5であるラウリン酸ドデシル80部と純度77%、酸価7.3、水酸基価4.7であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物nを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 76%, an acid value of 7.6, and a hydroxyl value of 4.5, and 20 parts of decyl laurate having a purity of 77%, an acid value of 7.3, and a hydroxyl value of 4.7, and Were mixed uniformly to prepare a mixture n of heat storage materials. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物nを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.5℃、凝固温度は20.5℃、融解温度と凝固温度との差は1.0℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は146J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は79%となり、蓄熱材の純度が本発明の好適な範囲の下限に近く、かつ蓄熱材の酸価が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性がやや劣るという結果となった。   Except that the mixture n was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 21.5 ° C., a solidification temperature of 20.5 ° C., a difference between the melting temperature and the solidification temperature of 1.0 ° C., and the heat of fusion per solid heat storage material microcapsule was 146 J / G. The heat history durability of the obtained heat storage material microcapsule is 79%, the purity of the heat storage material is close to the lower limit of the preferred range of the present invention, and the acid value of the heat storage material is the upper limit of the preferred range of the present invention. As a result, the durability of the heat storage material microcapsule was slightly inferior in phase change.

蓄熱材として、純度87%、酸価7.6、水酸基価19であるラウリン酸ドデシル80部と純度86%、酸価7.3、水酸基価18であるラウリン酸デシル20部とを均一に混合し、蓄熱材の混合物pを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.2℃であった。   As a heat storage material, 80 parts of dodecyl laurate having a purity of 87%, an acid value of 7.6, and a hydroxyl value of 19 and 20 parts of decyl laurate having a purity of 86%, an acid value of 7.3, and a hydroxyl value of 18 are uniformly mixed. Then, a mixture p of the heat storage material was prepared. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 0.2 ° C.

混合物Bに換えて混合物pを用いた以外は、実施例2と同様の操作でカプセル化を行い、若干増粘して分散安定性もやや劣る、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は21.3℃、凝固温度は20.3℃、融解温度と凝固温度との差は1.0℃、蓄熱材マイクロカプセル固形分当たりの融解熱量は147J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は78%となり、蓄熱材の酸価と水酸基価の両方が本発明の好適な範囲の上限に近いと、蓄熱材マイクロカプセルの相変化繰り返し耐久性がやや劣るという結果となった。   Except that the mixture p was used in place of the mixture B, encapsulation was carried out in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules having a slightly increased viscosity and slightly poor dispersion stability. The resulting heat storage material microcapsules had a melting temperature of 21.3 ° C., a solidification temperature of 20.3 ° C., a difference between the melting temperature and the solidification temperature of 1.0 ° C., and a heat of fusion per solid content of the heat storage material microcapsule of 147 J / G. The heat storage durability of the obtained heat storage material microcapsule is 78%, and when both the acid value and the hydroxyl value of the heat storage material are close to the upper limit of the preferred range of the present invention, the phase change of the heat storage material microcapsule is repeated. As a result, the durability was slightly inferior.

(比較例1)
混合物Aに換えて、実施例1で用いた物と同じミリスチン酸ドデシル(マイクロカプセルに内包する前の融解温度と凝固温度との差2.7℃)のみを用いた以外は実施例1と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は36.7℃、凝固温度は28.5℃、融解温度と凝固温度との差は8.2℃となり、融解温度と凝固温度との差がやや大きくなった。蓄熱材マイクロカプセル固形分当たりの融解熱量は172J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は93%であった。
(Comparative Example 1)
Similar to Example 1 except that instead of Mixture A, only the same dodecyl myristate as used in Example 1 (the difference between the melting temperature and the solidification temperature before encapsulating in the microcapsules was 2.7 ° C.) was used. The capsule was encapsulated by the above operation to obtain a dispersion liquid of heat storage material microcapsules. The resulting heat storage material microcapsules had a melting temperature of 36.7 ° C., a solidification temperature of 28.5 ° C., a difference between the melting temperature and the solidification temperature of 8.2 ° C., and the difference between the melting temperature and the solidification temperature was slightly large. became. The heat of fusion per heat storage material microcapsule solid was 172 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 93%.

(比較例2)
混合物Bに換えて、実施例2で用いた物と同じラウリン酸ドデシル(マイクロカプセルに内包する前の融解温度と凝固温度との差3.9℃)のみを用いた以外は実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は27.9℃、凝固温度は21.1℃、融解温度と凝固温度との差は6.8℃となり、融解温度と凝固温度との差がやや大きくなった。蓄熱材マイクロカプセル固形分当たりの融解熱量は179J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。
(Comparative Example 2)
Similar to Example 2 except that only the same dodecyl laurate (difference between the melting temperature and the solidification temperature before inclusion in the microcapsule 3.9 ° C.) as used in Example 2 was used instead of the mixture B. The capsule was encapsulated by the above operation to obtain a dispersion liquid of heat storage material microcapsules. The obtained heat storage material microcapsule had a melting temperature of 27.9 ° C., a solidification temperature of 21.1 ° C., and the difference between the melting temperature and the solidification temperature was 6.8 ° C., indicating that the difference between the melting temperature and the solidification temperature was slightly large. became. The heat of fusion per heat storage material microcapsule solid was 179 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

(比較例3)
混合物Bに換えて、実施例2で用いた物と同じラウリン酸デシル(マイクロカプセルに内包する前の融解温度と凝固温度との差2.9℃)のみを用いた以外は、実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は19.6℃、凝固温度は12.1℃、融解温度と凝固温度との差は7.5℃となり、融解温度と凝固温度との差がやや大きくなった。蓄熱材マイクロカプセル固形分当たりの融解熱量は163J/gであった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。
(Comparative Example 3)
Example 2 is the same as Example 2 except that the same decyl laurate as used in Example 2 (the difference between the melting temperature and the solidification temperature before encapsulating in the microcapsule is 2.9 ° C.) was used instead of the mixture B. Encapsulation was performed by the same operation to obtain a dispersion liquid of heat storage material microcapsules. The resulting heat storage material microcapsules had a melting temperature of 19.6 ° C., a solidification temperature of 12.1 ° C., a difference between the melting temperature and the solidification temperature of 7.5 ° C., and the difference between the melting temperature and the solidification temperature was slightly large. became. The heat of fusion per heat storage material microcapsule solid was 163 J / g. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

(比較例4)
蓄熱材として、実施例12で用いた物と同じミリスチン酸ドデシル〔総炭素数=26〕50部と実施例14で用いた物と同じデカン酸デシル〔総炭素数=20〕50部とを均一に混合し、蓄熱材の混合物qを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は0.4℃であった。
(Comparative Example 4)
As a heat storage material, 50 parts of the same dodecyl myristate [total carbon number = 26] as used in Example 12 and 50 parts of the same decyl decanoate [total carbon number = 20] as used in Example 14 were uniformly used. To prepare a heat storage material mixture q. The difference between the melting temperature and the solidification temperature before encapsulating the mixture in microcapsules was 0.4 ° C.

混合物Bに換えて混合物qを用いた以外は、実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解温度は4.0℃、凝固温度は1.6℃、融解温度と凝固温度との差は2.4℃であった。また、蓄熱材マイクロカプセル固形分当たりの融解熱量は127J/gとなり、低い融解熱量となった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture q was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules. The heat storage material microcapsules obtained had a melting temperature of 4.0 ° C., a solidification temperature of 1.6 ° C., and a difference between the melting temperature and the solidification temperature of 2.4 ° C. Moreover, the heat of fusion per heat storage material microcapsule solid content was 127 J / g, which was a low heat of fusion. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

(比較例5)
蓄熱材として、脂肪族炭化水素化合物であるn−オクタデカン〔総炭素数=18〕50部とn−ヘキサデカン〔総炭素数=16〕50部とを均一に混合し、蓄熱材の混合物rを調製した。この混合物のマイクロカプセルに内包する前の融解温度と凝固温度との差は1.8℃であった。
(Comparative Example 5)
As a heat storage material, 50 parts of n-octadecane [total carbon number = 18] which is an aliphatic hydrocarbon compound and 50 parts of n-hexadecane [total carbon number = 16] are uniformly mixed to prepare a mixture r of heat storage materials. did. The difference between the melting temperature and the solidification temperature of the mixture before encapsulating in the microcapsules was 1.8 ° C.

混合物Bに換えて混合物rを用いた以外は、実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解/凝固挙動を評価したところ、融解温度は14.3℃であったが融解ピークは非常にブロードになり、凝固温度は11.2℃であったが凝固ピークも非常にブロードになってしまった。融解温度と凝固温度との差は3.1℃であった。また、蓄熱材マイクロカプセル固形分当たりの融解熱量も119J/gとなり、低い融解熱量となってしまった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture r was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules. When the melting / solidification behavior of the obtained heat storage material microcapsules was evaluated, the melting temperature was 14.3 ° C., but the melting peak was very broad, and the solidification temperature was 11.2 ° C. Even got very broad. The difference between the melting temperature and the solidification temperature was 3.1 ° C. Moreover, the heat of fusion per heat storage material microcapsule solid content was also 119 J / g, resulting in a low heat of fusion. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

(比較例6)
蓄熱材として、脂肪族炭化水素化合物であるn−オクタデカン〔総炭素数=18〕50部とn−テトラデカン〔総炭素数=14〕50部とを均一に混合し、蓄熱材の混合物sを調製した。この混合物のマイクロカプセルに内包する前の高温側に現れる融解温度と凝固温度との差は2.5℃であった。
(Comparative Example 6)
As a heat storage material, 50 parts of n-octadecane [total carbon number = 18] which is an aliphatic hydrocarbon compound and 50 parts of n-tetradecane [total carbon number = 14] are uniformly mixed to prepare a mixture s of heat storage materials. did. The difference between the melting temperature and the solidification temperature appearing on the high temperature side before encapsulating the mixture in microcapsules was 2.5 ° C.

混合物Bに換えて混合物sを用いた以外は、実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解/凝固挙動を評価したところ、融解ピークは4℃と27℃の2つのピークに分かれてしまい、凝固ピークも2つのブロードなピークに分かれてしまい、ある特定の温度域のみで融解(蓄熱)と凝固(放熱)を起こすという性能を得られるものではなかった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture s was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules. When the melting / solidification behavior of the obtained heat storage material microcapsule was evaluated, the melting peak was divided into two peaks of 4 ° C. and 27 ° C., and the solidification peak was also divided into two broad peaks. The performance of causing melting (heat storage) and solidification (heat dissipation) only in the temperature range was not obtained. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

(比較例7)
蓄熱材として、実脂肪族炭化水素化合物であるn−オクタデカン〔総炭素数=18〕50部とn−ドデカン〔総炭素数=12〕50部とを均一に混合し、蓄熱材の混合物tを調製した。この混合物のマイクロカプセルに内包する前の高温側に現れる融解温度と凝固温度との差は1.3℃であった。
(Comparative Example 7)
As a heat storage material, 50 parts of n-octadecane [total carbon number = 18] which is a real aliphatic hydrocarbon compound and 50 parts of n-dodecane [total carbon number = 12] are uniformly mixed, and a mixture t of heat storage materials is obtained. Prepared. The difference between the melting temperature and the solidification temperature appearing on the high temperature side before being encapsulated in the microcapsules of this mixture was 1.3 ° C.

混合物Bに換えて混合物tを用いた以外は、実施例2と同様の操作でカプセル化を行い、蓄熱材マイクロカプセルの分散液を得た。得られた蓄熱材マイクロカプセルの融解/凝固挙動を評価したところ、融解ピークは−10℃と28℃の2つのピークに分かれてしまい、凝固ピークも2つのブロードなピークに分かれてしまい、ある特定の温度域のみで融解(蓄熱)と凝固(放熱)を起こすという性能を得られるものではなかった。なお、得られた蓄熱材マイクロカプセルの熱履歴耐久性は98%であった。   Except that the mixture t was used in place of the mixture B, encapsulation was performed in the same manner as in Example 2 to obtain a dispersion liquid of heat storage material microcapsules. When the melting / solidification behavior of the obtained heat storage material microcapsule was evaluated, the melting peak was divided into two peaks of −10 ° C. and 28 ° C., and the solidification peak was also divided into two broad peaks. The performance of causing melting (heat storage) and solidification (heat dissipation) only in the temperature range of was not obtained. In addition, the heat history durability of the obtained heat storage material microcapsule was 98%.

実施例1で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、平均粒径80μm、含水分2%の蓄熱材マイクロカプセルの粉体を得た。得られた蓄熱材マイクロカプセル粉体は、流動性が良好で、臭気も感じられなかった。   The heat storage material microcapsule dispersion obtained in Example 1 was spray-dried by spray drying to obtain a heat storage material microcapsule powder having an average particle size of 80 μm and a moisture content of 2%. The obtained heat storage material microcapsule powder had good fluidity and no odor was felt.

実施例2で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、平均粒径100μm、含水分3%の蓄熱材マイクロカプセルの粉体を得た。得られた蓄熱材マイクロカプセル粉体は、流動性が良好で、臭気も感じられなかった。   The heat storage material microcapsule dispersion obtained in Example 2 was spray-dried by spray drying to obtain a heat storage material microcapsule powder having an average particle size of 100 μm and a moisture content of 3%. The obtained heat storage material microcapsule powder had good fluidity and no odor was felt.

実施例1で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、平均粒径120μmの蓄熱材マイクロカプセルの粉体を得た。得られた粉体は、流動性が良好で、臭気も感じられなかった。さらに、得られた蓄熱材マイクロカプセル粉体100部に、結着剤としての30%ポリビニルアルコール水溶液30部と適当量の水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径1mm、長径3mmの円柱形状の蓄熱材マイクロカプセルの造粒体を得た。得られた蓄熱材マイクロカプセル造粒体は、蓄熱材の染み出し等は見られず、臭気も感じられなかった。   The heat storage material microcapsule dispersion obtained in Example 1 was spray-dried by spray drying to obtain a heat storage material microcapsule powder having an average particle size of 120 μm. The obtained powder had good fluidity and no odor was felt. Furthermore, after adding and mixing 30 parts of 30% polyvinyl alcohol aqueous solution as a binder and an appropriate amount of water to 100 parts of the obtained heat storage material microcapsule powder, extrusion molding is performed by an extrusion granulator, Drying was performed at 100 ° C. to obtain a granulated body of a cylindrical heat storage material microcapsule having a minor axis of 1 mm and a major axis of 3 mm. In the obtained heat storage material microcapsule granule, no seepage of the heat storage material was observed, and no odor was felt.

実施例2で得られた蓄熱材マイクロカプセル分散液をスプレードライにより噴霧乾燥し、平均粒径120μmの蓄熱材マイクロカプセルの粉体を得た。得られた粉体は、流動性が良好で、臭気も感じられなかった。さらに、得られた蓄熱材マイクロカプセル粉体100部に、結着剤としての30%ポリビニルアルコール水溶液30部と適当量の添加水を加えて混合した後、押出式造粒装置により押出成型を行い、100℃で乾燥させて、短径2mm、長径4mmの円柱形状の蓄熱材マイクロカプセルの造粒体を得た。得られた蓄熱材マイクロカプセル造粒体は、蓄熱材の染み出し等は見られず、臭気も感じられなかった。   The heat storage material microcapsule dispersion obtained in Example 2 was spray-dried by spray drying to obtain a heat storage material microcapsule powder having an average particle size of 120 μm. The obtained powder had good fluidity and no odor was felt. Furthermore, to 100 parts of the obtained heat storage material microcapsule powder, 30 parts of 30% polyvinyl alcohol aqueous solution as a binder and an appropriate amount of added water were added and mixed, and then extrusion molding was performed using an extrusion granulator. And dried at 100 ° C. to obtain a granulated body of a cylindrical heat storage material microcapsule having a minor axis of 2 mm and a major axis of 4 mm. In the obtained heat storage material microcapsule granule, no seepage of the heat storage material was observed, and no odor was felt.

本発明による蓄熱材マイクロカプセルは、被服材料や寝具などの繊維加工物、マイクロ波照射により加熱及び蓄熱する保温材、燃料電池や焼却炉などの廃熱利用設備、電子部品やガス吸着剤などの過熱抑制材及び/または過冷抑制材に加え、建築材料、建築物の躯体蓄熱・空間充填式空調、床暖房用、空調用途、道路や橋梁などの土木用材料、産業用及び農業用保温材料、家庭用品、健康用品、医療用材料など様々な利用分野に応用できる。   The heat storage material microcapsule according to the present invention is a textile processed material such as clothing material or bedding, a heat insulating material heated and stored by microwave irradiation, a waste heat utilization facility such as a fuel cell or an incinerator, an electronic component, a gas adsorbent, etc. In addition to overheat suppression materials and / or overcooling suppression materials, building materials, building heat storage and space filling air conditioning, floor heating, air conditioning applications, civil engineering materials such as roads and bridges, industrial and agricultural thermal insulation materials It can be applied to various fields such as household goods, health goods, and medical materials.

Claims (6)

総炭素数が20〜28である下記一般式(I)で表される化合物で、総炭素数の差が4以内である化合物を少なくとも2種以上混合した蓄熱材混合物が内包されていることを特徴とする蓄熱材マイクロカプセル。
Figure 0004808476
〔式中、R1、R2はそれぞれ独立の炭素数6以上の炭化水素基を表す。Xは、下記一般式で表されるヘテロ原子を含む2価の連結基を表す。〕
Figure 0004808476
It is a compound represented by the following general formula (I ) having a total carbon number of 20 to 28 and containing a heat storage material mixture in which at least two kinds of compounds having a total carbon number difference of 4 or less are mixed. A heat storage material microcapsule.
Figure 0004808476
[Wherein, R 1 and R 2 each independently represent a hydrocarbon group having 6 or more carbon atoms. X represents a divalent linking group containing a hetero atom represented by the following general formula . ]
Figure 0004808476
蓄熱材混合物中の最多含有化合物の含有率が20〜95質量%である請求項1記載の蓄熱材マイクロカプセル。   The heat storage material microcapsule according to claim 1, wherein the content of the most abundant compound in the heat storage material mixture is 20 to 95 mass%. 蓄熱材の純度が75%以上である請求項1記載の蓄熱材マイクロカプセル。 The heat storage material microcapsule according to claim 1, wherein the heat storage material has a purity of 75% or more . 蓄熱材の酸価が8以下であり、水酸基価が20以下である請求項1記載の蓄熱材マイクロカプセル。 The heat storage material microcapsule according to claim 1, wherein the heat storage material has an acid value of 8 or less and a hydroxyl value of 20 or less . 請求項1〜4のいずれか1項に記載の蓄熱材マイクロカプセルを分散媒体に分散させた蓄熱材マイクロカプセル分散液。   The thermal storage material microcapsule dispersion liquid which disperse | distributed the thermal storage material microcapsule of any one of Claims 1-4 to the dispersion medium. 請求項1〜4のいずれか1項に記載の蓄熱材マイクロカプセルを単独または複数個固着せしめてなる蓄熱材マイクロカプセル固形物。   The heat storage material microcapsule solid substance which fixes the heat storage material microcapsule of any one of Claims 1-4 individually or in multiple numbers.
JP2005340275A 2005-11-17 2005-11-25 Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid Expired - Fee Related JP4808476B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005340275A JP4808476B2 (en) 2005-11-25 2005-11-25 Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
US12/085,187 US20090169893A1 (en) 2005-11-17 2006-07-31 Thermal Storage Material Microcapsules, Thermal Storage Material Microcapsule Dispersion and Thermal Storage Material Microcapsule Solid
PCT/JP2006/315554 WO2007058003A1 (en) 2005-11-17 2006-07-31 Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solidified product
EP06768425A EP1950265A4 (en) 2005-11-17 2006-07-31 Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solidified product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340275A JP4808476B2 (en) 2005-11-25 2005-11-25 Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid

Publications (3)

Publication Number Publication Date
JP2007145942A JP2007145942A (en) 2007-06-14
JP2007145942A5 JP2007145942A5 (en) 2008-05-15
JP4808476B2 true JP4808476B2 (en) 2011-11-02

Family

ID=38207745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340275A Expired - Fee Related JP4808476B2 (en) 2005-11-17 2005-11-25 Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid

Country Status (1)

Country Link
JP (1) JP4808476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069392A (en) * 2014-09-26 2016-05-09 株式会社デンソー Heat storage material, catalyst unit, and heat storage system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2988765B2 (en) * 1991-10-29 1999-12-13 三菱製紙株式会社 Cool storage material
JPH07157750A (en) * 1993-12-07 1995-06-20 Mitsubishi Cable Ind Ltd Heat-accumulating composition and heat accumulating material
JP2003003158A (en) * 2001-06-26 2003-01-08 Mitsubishi Paper Mills Ltd Thermal storage medium microcapsule and building materials or fabrics using the same
JP2003090124A (en) * 2001-09-18 2003-03-28 Mitsubishi Paper Mills Ltd Heat storage material for floor heating
JP2003328298A (en) * 2002-05-09 2003-11-19 Mitsubishi Paper Mills Ltd Sheet having heat storage property and thread using the same and fabric using the same
JP2005320527A (en) * 2004-04-07 2005-11-17 Mitsubishi Paper Mills Ltd Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same

Also Published As

Publication number Publication date
JP2007145942A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
Wu et al. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
US7892644B2 (en) Microscapsule powder
JP5730295B2 (en) Microcapsules with hyperbranched polymers as crosslinking agents
Prajapati et al. Biodegradable polymeric solid framework-based organic phase-change materials for thermal energy storage
Sarier et al. Organic phase change materials and their textile applications: an overview
JP2008507605A (en) Microcapsule manufacturing method using latent heat storage material
WO2017105352A1 (en) Synthesis of inorganic sio2 microcapsules containing phase change materials and applications therein
Li et al. Incorporation technology of bio-based phase change materials for building envelope: A review
US20150158003A1 (en) Microcapsules having acrylic polymeric shells and methods of making same
JP2005320527A (en) Microcapsule of heat accumulating material, dispersion of microcapsule of heat accumulating material, solid material of microcapsule of heat accumulating material and method of utilizing the same
US20090169893A1 (en) Thermal Storage Material Microcapsules, Thermal Storage Material Microcapsule Dispersion and Thermal Storage Material Microcapsule Solid
JP2007145943A (en) Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solid matter
JP4808476B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
JP5139763B2 (en) Manufacturing method of heat storage material microcapsule
Yadav et al. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications
JP4845576B2 (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
JP2013538251A (en) Polyamide molded article containing microencapsulated latent heat accumulator material
KR20030018155A (en) Microencapsulation Method of Phase Change Materials(PCM) using Emulsion
JP2006063328A (en) Microencapsulated heat-accumulating solid material
JP2006263681A (en) Microcapsule granule and its usage
JP2007137991A (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2006097000A (en) Heat storage material-microencapsulated solid material
JP5443675B2 (en) Thermal storage material microcapsule
JP2002310582A (en) Heat accumulating method
Pawar et al. Microencapsulation of Paraffin Wax in Melamine-Formaldehyde for use in Thermal Management Study

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees