JP2988765B2 - Cool storage material - Google Patents

Cool storage material

Info

Publication number
JP2988765B2
JP2988765B2 JP3311746A JP31174691A JP2988765B2 JP 2988765 B2 JP2988765 B2 JP 2988765B2 JP 3311746 A JP3311746 A JP 3311746A JP 31174691 A JP31174691 A JP 31174691A JP 2988765 B2 JP2988765 B2 JP 2988765B2
Authority
JP
Japan
Prior art keywords
phase change
heat
compound
storage material
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3311746A
Other languages
Japanese (ja)
Other versions
JPH05117642A (en
Inventor
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP3311746A priority Critical patent/JP2988765B2/en
Publication of JPH05117642A publication Critical patent/JPH05117642A/en
Application granted granted Critical
Publication of JP2988765B2 publication Critical patent/JP2988765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は物質を冷やすために用い
られる蓄冷材に関するものであり、さらに詳しくは、低
温でも良好な流動性を有し、高密度の潜熱を保持し得る
水性液状の蓄冷材に関する。本発明による蓄冷材は空調
用の冷媒、あるいは各種包材や容器で保持させることに
より携帯用保冷材や生鮮食料品等の鮮度保持材として利
用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerator material used for cooling a substance, and more particularly, to an aqueous liquid regenerator having good fluidity even at a low temperature and capable of maintaining a high density latent heat. About materials. The cold storage material according to the present invention can be used as a portable cold insulation material or a freshness holding material such as fresh food by holding it in a refrigerant for air conditioning, or various packaging materials or containers.

【0002】[0002]

【従来の技術】日常、最も一般に用いられている蓄冷材
は氷であり、水が氷に相変化する際に約80kcal/
kg の冷潜熱を貯えることが可能であり、日常の生活
の中では例えば生鮮食料品類の鮮度保持、氷枕への利用
等多方面に用いられ生活に不可欠で最も安価な蓄冷材と
言える。
2. Description of the Related Art Ice is the most commonly used regenerative material in daily life, and when water undergoes a phase change to ice, about 80 kcal / cm.
It can store cold latent heat of kg and can be said to be the most inexpensive and inexpensive cold storage material that is used in various fields in daily life such as maintaining freshness of fresh foods and using it for ice pillows.

【0003】一般に、物質の相変化に伴う潜熱を利用し
て蓄熱を行なう方法は、相変化を伴わない顕熱のみを利
用した方法に比べ融点を含む狭い温度範囲に大量の熱エ
ネルギーを高密度に貯蔵できるため、蓄熱材容量の縮小
化が為されるだけでなく、蓄熱量が大きい割りには大き
な温度差が生じないため熱損失を少量に抑えられる利点
を有する。
In general, a method of storing heat using latent heat due to a phase change of a substance has a large amount of heat energy in a narrow temperature range including a melting point compared to a method using only sensible heat without a phase change. In this case, the heat storage material capacity can be reduced, and the heat loss can be suppressed to a small amount because a large temperature difference does not occur when the heat storage amount is large.

【0004】相変化、とりわけ液体と固体間の相変化に
伴う潜熱利用型の蓄熱材として、従来より次のようなも
のが知られている。 (1)塩化カルシウム・6水塩、硫酸ナトリウム・10水
塩、リン酸水素ナトリウム・12水塩 チオ硫酸ナトリウ
ム・5水塩、硝酸ニッケル・6水塩、等の多量の結晶水
を含む無機水和物 (2)石油パラフィン、ワックス類等の炭化水素化合
物、カプリル酸、ラウリン酸、ステアリン酸等の脂肪酸
[0004] The following materials have conventionally been known as latent heat utilizing heat storage materials accompanying a phase change, particularly a phase change between a liquid and a solid. (1) Inorganic water containing a large amount of water of crystallization such as calcium chloride hexahydrate, sodium sulfate decahydrate, sodium hydrogen phosphate decahydrate, sodium thiosulfate pentahydrate, nickel nitrate hexahydrate, etc. Japanese (2) Hydrocarbon compounds such as petroleum paraffins and waxes, fatty acids such as caprylic acid, lauric acid and stearic acid

【0005】これら各種蓄熱材の熱交換効率を高めるた
めに上記蓄熱材をマイクロカプセル化する手段が提案さ
れている(例えば特開昭62−1452号公報、同62
−45680号公報、同62−149334号公報、同
62−225241号公報、同63−115718号公
報、同63−217196号公報、特開平2−2580
52号公報)。
[0005] In order to enhance the heat exchange efficiency of these various heat storage materials, means for microencapsulating the heat storage materials has been proposed (for example, JP-A-62-1452 and JP-A-62-1452).
Nos. 45680, 62-149334, 62-225241, 63-115718, 63-217196, and JP-A-2-2580.
No. 52).

【0006】上記公報中に示されているマイクロカプセ
ル化手法の中で、一般に界面重合法と称されるマイクロ
カプセル化法は、水性物質あるいは水と非混和性の物質
のいずれもがカプセル化可能であるが、芯物質として水
や(1)の無機水和物を用いる場合には(例えば特開昭
61−192785号公報)、カプセルの分散媒は水に
非混和性の有機溶媒(例えば、シクロヘキサン、トルエ
ン、四塩化炭素、クロロホルム、フタル酸ブチル等の各
種可塑材等)が通常用いられるため、油中水滴型のマイ
クロカプセル分散液しか得られ、水性の蓄冷材を得る
ためには何らかの脱溶媒工程が必要となる。
[0006] Among the microencapsulation methods disclosed in the above publication, the microencapsulation method generally called an interfacial polymerization method is capable of encapsulating both an aqueous substance and a substance immiscible with water. However, when water or an inorganic hydrate of (1) is used as the core substance (for example, JP-A-61-192785), the dispersion medium of the capsule is a water-immiscible organic solvent (for example, cyclohexane, toluene, four for carbon tetrachloride, chloroform, various plastic materials, such as butyl phthalate) is usually used, obtained only water-in-microcapsule dispersion oil, in order to obtain a cold accumulating material of aqueous some A desolvation step is required.

【0007】また、一般に液中乾燥法と称される手法で
は、水溶性物質を含むマイクロカプセルが水分散系で直
接得られる利点を有するが、膜材となる高分子化合物の
溶媒となる低沸点の有機溶剤(例えば、ベンゼン、エー
テル、クロロホルム等)の除去工程が必要であり、さら
にマイクロカプセル皮膜の安定性についても改良を要す
る点が多い。
[0007] In addition, a technique generally called a submerged drying method has an advantage that microcapsules containing a water-soluble substance can be directly obtained in an aqueous dispersion system, but has a low boiling point, which is a solvent for a polymer compound to be a film material. Of removing the organic solvent (for example, benzene, ether, chloroform, etc.), and the stability of the microcapsule coating often needs to be improved.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、蓄熱
を目的としたカプセル化手法における前記問題点を解決
し、次の様な効果を有する蓄冷材を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the encapsulation method for storing heat and to obtain a regenerative material having the following effects.

【0009】第1に、水性の不凍液や各種無機塩類とも
自由に混合可能であり、尚且つ長期使用においても壊れ
ることのない丈夫なマイクロカプセルを主成分とする水
性の蓄冷材を得ることである。これは前記界面重合法に
よる水性物質のマイクロカプセルや液中乾燥法では製造
が困難なものであった。
First, there is a need to obtain an aqueous regenerative material mainly composed of durable microcapsules which can be freely mixed with an aqueous antifreeze or various inorganic salts and which will not break even after long-term use. . This is difficult to produce by the microcapsules of an aqueous substance by the interfacial polymerization method or the in-liquid drying method.

【0010】第2に、蓄冷材が、マイクロカプセルに内
包されている相変化を伴う化合物の融点以下に冷却され
ても、マイクロカプセル分散媒の融点以上の温度であれ
ば蓄冷材そのものの流動性には何ら変化を及ぼすことの
ない、常に液状を呈する蓄冷材を得ることにある。これ
は前記無機系、有機系蓄熱材単独では得られない特性で
あった。
Secondly, even if the regenerator material is cooled to a temperature lower than the melting point of the compound with phase change contained in the microcapsules, if the temperature is higher than the melting point of the dispersion medium of the microcapsules, the fluidity of the regenerator material itself is reduced. An object of the present invention is to obtain a cold storage material which does not change at all and which is always in a liquid state. This is a characteristic that cannot be obtained with the inorganic and organic heat storage materials alone.

【0011】[0011]

【課題を解決するための手段】本発明者は上記目的を達
成すべく検討を行なった結果、融点が0〜15℃の水と
非混和性の相変化を伴う化合物をアミノプラスト樹脂皮
膜で被覆したマイクロカプセルを蓄冷材の主成分とする
ことより、上記課題を達成し得る蓄冷材を得ることが可
能となった。次にその詳細について説明する。
Means for Solving the Problems The present inventor studied to achieve the above object, and found that a compound having a phase change immiscible with water having a melting point of 0 to 15 ° C. was coated with an aminoplast resin film. By using the microcapsules thus obtained as a main component of the cold storage material, it has become possible to obtain a cold storage material that can achieve the above object. Next, the details will be described.

【0012】一般に、蓄冷材の効果が実感として感じら
れる温度域としては、外気の気温、蓄冷材の形態、量に
よっても感触が異なるが、約20℃以下が必要と判断さ
れ、さらに顕著にその効果を実感するには約15℃以下
が好ましい温度と判断される。また、生鮮食料品等の鮮
度維持及び凍結防止、適度の皮膚感触などを勘案すれ
ば、0〜15℃を保冷対象温度とすることが最も効果的
であると判断される。
In general, the temperature range in which the effect of the cold storage material is felt as real is different depending on the temperature of the outside air and the form and amount of the cold storage material, but it is determined that a temperature of about 20 ° C. or less is necessary. In order to realize the effect, it is judged that about 15 ° C. or less is preferable. In addition, in consideration of maintaining freshness of fresh foods and the like, preventing freezing, appropriate skin feel, and the like, it is determined that setting the temperature to be cooled to 0 to 15 ° C. is most effective.

【0013】この温度域に融点を有する、水に非混和性
の相変化を伴う化合物としては、テトラデカン、p-クロ
ロトルエン、1-エトキシナフタレン、o-アニシジン、1-
ヨードナフタレン、 o-ジブロモベンゼン、シクロヘキ
サン、ベンゼン、o-ブロモフェノール、d-フェンコン、
炭酸ジメチル、セバシン酸ジブチル、ケイヒ酸ジエチ
ル、オレイン酸、3,3-ジメチルビフェニル、ジブロモエ
タン、等が使用できるが、とりわけテトラデカンは純度
98%以上のものであれば約50kcal/kgの融解
熱を有し相変化を伴う化合物としては最も好ましいもの
として挙げられる。これら相変化を伴う化合物は、単独
もしくは2種以上を組合せて用いることもでき、必要で
あれば金属粉、各種顔料を添加して熱伝導性、及び比重
を調整することも可能である。
Compounds having a melting point in this temperature range and having a phase change immiscible with water include tetradecane, p-chlorotoluene, 1-ethoxynaphthalene, o-anisidine,
Iodonaphthalene, o-dibromobenzene, cyclohexane, benzene, o-bromophenol, d-fencon,
Dimethyl carbonate, dibutyl sebacate, diethyl cinnamate, oleic acid, 3,3-dimethylbiphenyl, dibromoethane, and the like can be used. Especially, tetradecane having a purity of 98% or more has a heat of fusion of about 50 kcal / kg. The compound having a phase change is the most preferable. These compounds with a phase change can be used alone or in combination of two or more kinds. If necessary, metal powder and various pigments are added to the compound for heat conductivity and specific gravity.
Can also be adjusted .

【0014】本発明において用いられる相変化を伴う化
合物は適当なマイクロカプセル化法を用いてカプセル化
される。水と非混和性の液体のマイクロカプセル化法と
しては、ゼラチンとアニオン性高分子を用いたコアセル
ベーション法、界面重合法、in−situ法、酵母菌
を用いた手法(特開昭63−88033号公報等)等を
用いることが可能であるが、蓄冷材として長期に使用し
得るためには、より堅牢性の高いマイクロカプセルが要
求され、そのためにはin−situ法によるアミノプ
ラスト樹脂を皮膜とするマイクロカプセルを使用するこ
とが最も望ましい。
The compound with a phase change used in the present invention is encapsulated using a suitable microencapsulation method. Microencapsulation of a liquid immiscible with water includes a coacervation method using gelatin and an anionic polymer, an interfacial polymerization method, an in-situ method, and a method using yeast (Japanese Patent Application Laid-Open No. 63-163). 88033) can be used, but in order to be able to be used as a cold storage material for a long period of time, a more robust microcapsule is required. For that purpose, an aminoplast resin obtained by an in-situ method is used. It is most desirable to use microcapsules as a film.

【0015】本発明で用いられるアミノプラスト樹脂と
は、アミノ化合物とホルムアルデヒドとの重合反応によ
り得られる樹脂のことをいい、具体的には、尿素−ホル
マリン樹脂、メラミン−ホルマリン樹脂、ベンゾグアナ
ミン−ホルマリン樹脂、等が挙げられるが、メラミン−
ホルマリン樹脂が最も好ましいアミノプラスト樹脂とし
て挙げられる。これらアミノプラスト樹脂によるマイク
ロカプセル化は一般に次の手順により得られる。 1.アミノプラスト樹脂初期縮合物を調製する工程。 2.相変化を伴う化合物を分散剤水溶液中に乳化分散す
る工程。 3.1.の初期縮合物を2.の乳化分散液中に添加した後、
加熱攪拌を施し相変化を伴う化合物粒子の周囲に皮膜を
形成する工程。
The aminoplast resin used in the present invention refers to a resin obtained by a polymerization reaction between an amino compound and formaldehyde, and specifically, a urea-formalin resin, a melamine-formalin resin, a benzoguanamine-formalin resin. Melamine-
Formalin resin is mentioned as the most preferred aminoplast resin. Microencapsulation with these aminoplast resins is generally obtained by the following procedure. 1. A step of preparing an aminoplast resin precondensate. 2. A step of emulsifying and dispersing a compound with a phase change in an aqueous dispersant solution. After adding the initial condensate of 3.1 to the emulsified dispersion of 2.
A step of forming a film around compound particles accompanied by a phase change by heating and stirring.

【0016】1.のアミノプラスト樹脂初期縮合物の製
法としては、メラミン樹脂の場合の具体例を示せば、メ
ラミン粉末とホルマリン(37%ホルムアルデヒド水溶
液)をモル比で1:1〜1:4の比率で混合し、弱アル
カリ性で約60℃以上に加熱することにより水溶性のメ
ラミン−ホルマリン初期縮合物が得られる。
1. As a method for producing the aminoplast resin precondensate, a specific example in the case of a melamine resin is as follows. Melamine powder and formalin (37% aqueous formaldehyde solution) are mixed at a molar ratio of 1: 1 to 1: 4, By heating to a temperature of about 60 ° C. or more in a weak alkali, a water-soluble melamine-formalin precondensate can be obtained.

【0017】アミノプラスト樹脂の添加量は、相変化を
伴う化合物の重量に対し、約1〜30(wt/wt) %好まし
くは5〜20%の範囲で添加される。これ以下の添加量
であるとマイクロカプセルとしての強度が不十分であ
り、逆にこの範囲以上であると蓄冷材中に占める膜材量
の割合が高くなり蓄冷効率が低下し好ましくない。
The aminoplast resin is added in an amount of about 1 to 30 (wt / wt)%, preferably 5 to 20%, based on the weight of the compound having a phase change. If the amount is less than this, the strength as a microcapsule is insufficient, and if it is more than this range, the proportion of the film material in the regenerator material increases, and the regenerative efficiency decreases, which is not preferable.

【0018】2.の分散剤の具体例としては、アクリル
酸共重合体、エチレン−無水マレイン酸共重合体、メチ
ルビニルエーテル−無水マレイン酸共重合体、スチレン
−無水マレイン酸共重合体、ブタジエン−無水マレイン
酸共重合体、酢酸ビニル−無水マレイン酸共重合体、及
びこれらのナトリウム塩が使用される。これらの分散剤
は分散剤水溶液中に対し1.0〜20.0(wt/wt) %の
範囲で添加される。
2. Specific examples of the dispersant include acrylic acid copolymer, ethylene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, styrene-maleic anhydride copolymer, butadiene-maleic anhydride copolymer. Copolymers, vinyl acetate-maleic anhydride copolymers, and their sodium salts are used. These dispersants are added in the range of 1.0 to 20.0 (wt / wt)% based on the aqueous solution of the dispersant.

【0019】分散剤水溶液のpHは、アミノプラスト樹
脂の皮膜形成反応が最も効率的に進行するpHに設定さ
れるが、一般にはpH2〜7の酸性側、好ましくはpH
3〜6の範囲に調整される。
The pH of the aqueous solution of the dispersant is set to a value at which the film-forming reaction of the aminoplast resin proceeds most efficiently.
It is adjusted in the range of 3 to 6.

【0020】相変化を伴う化合物の乳化工程は、分散剤
水溶液中に相変化を伴う化合物を添加し市販の乳化、分
散装置等を用いて乳化粒径が約1〜50μmになるまで
攪拌を施すことにより行なわれる。
In the step of emulsifying a compound with a phase change, the compound with a phase change is added to an aqueous solution of a dispersant, and the mixture is stirred using a commercially available emulsifying and dispersing apparatus until the emulsified particle size becomes about 1 to 50 μm. It is done by doing.

【0021】次いで、先に調製したアミノプラスト樹脂
初期縮合物と、相変化を伴う化合物の乳化液を混合し、
加熱、攪拌を施して乳化粒子の周囲に初期縮合物を重合
させることにより水不溶性樹脂を形成し相変化を伴う化
合物を内包するマイクロカプセルを得る。カプセル化時
の加熱温度は、40〜100℃、好ましくは60〜80
℃の範囲の温度で30分から4時間の範囲で攪拌が施さ
れる。
Next, the aminoplast resin precondensate previously prepared is mixed with an emulsion of a compound which undergoes a phase change.
By heating and stirring to polymerize the initial condensate around the emulsified particles, a water-insoluble resin is formed to obtain microcapsules containing a compound with a phase change. The heating temperature during encapsulation is 40 to 100 ° C, preferably 60 to 80 ° C.
Stirring is performed at a temperature in the range of 30 ° C. for a period of 30 minutes to 4 hours.

【0022】かくして得られた相変化を伴う化合物を内
包するマイクロカプセル分散液はそのままでも本発明の
目的を達し得るものであるが、必要であれば、エチレン
グリコール、プロピレングリコール、各種無機塩類、防
腐剤、各種劣化防止剤、増粘剤、着色剤、分散補助剤、
比重調節材、湿潤材等が添加され目的とする水性液状の
蓄冷材を得る。
The microcapsule dispersion containing the compound with a phase change thus obtained can achieve the object of the present invention as it is. However, if necessary, ethylene glycol, propylene glycol, various inorganic salts, preservatives, etc. Agents, various deterioration inhibitors, thickeners, coloring agents, dispersing aids,
An aqueous liquid cold storage material is obtained by adding a specific gravity adjusting material, a wetting material and the like.

【0023】蓄冷材中のマイクロカプセルの占める割合
は高いほど潜熱量が増し好ましいが、良好な流動性を維
持するには20〜70(wt/wt) %、好ましくは40〜6
0(wt/wt) %の範囲に設定するのが好ましい。この範囲
以上の含有率であると蓄冷材の粘度上昇が伴い流動性に
乏しくなり、またこの範囲以下の含有率であると蓄冷効
果に乏しいものとなり好ましくない。
The higher the proportion of the microcapsules in the regenerator material, the higher the latent heat quantity, which is preferable. However, in order to maintain good fluidity, 20 to 70 (wt / wt)%, preferably 40 to 6%.
It is preferably set in the range of 0 (wt / wt)%. If the content is above this range, the viscosity of the cold storage material will increase, resulting in poor fluidity. If the content is below this range, the cold storage effect will be poor, which is not preferable.

【0024】[0024]

【実施例】以下に、本発明を実施例により詳細に説明す
る。尚、本発明は実施例に限定されるものでない。
The present invention will be described below in detail with reference to examples. Note that the present invention is not limited to the embodiments.

【0025】実施例1 [初期縮合物の調製]メラミン粉末5gに37%ホルム
アルデヒド水溶液6.5gと水10gを加え、pHを8
に調製した後、約70℃まで加熱しメラミン−ホルムア
ルデヒド初期縮合物水溶液を得た。
Example 1 Preparation of Initial Condensate 6.5 g of 37% aqueous formaldehyde solution and 10 g of water were added to 5 g of melamine powder, and the pH was adjusted to 8
After heating to about 70 ° C., an aqueous melamine-formaldehyde precondensate solution was obtained.

【0026】[乳化工程]pHを4.5に調整した5%
のスチレン−無水マレイン酸共重合体のナトリウム塩水
溶液100g中に、相変化を伴う化合物としてn-テトラ
デカン(融点約5℃、融解熱50.8kcal/kg)
80gを激しく攪拌しながら添加し、粒子径が10μm
になるまで乳化を行なった。
[Emulsification step] 5% of which pH was adjusted to 4.5
N-tetradecane (melting point: about 5 ° C., heat of fusion: 50.8 kcal / kg) as a compound with a phase change in 100 g of a sodium salt aqueous solution of styrene-maleic anhydride copolymer
80 g was added with vigorous stirring, and the particle size was 10 μm
The emulsification was carried out until.

【0027】[カプセル化工程]上記乳化液に上記メラ
ミン−ホルムアルデヒド初期縮合物水溶液全量を添加し
70℃で2時間攪拌を施した後、pHを9に調整してカ
プセル化を終了した。
[Encapsulation Step] The whole amount of the melamine-formaldehyde precondensate aqueous solution was added to the above emulsion and stirred at 70 ° C. for 2 hours, and then the pH was adjusted to 9 to complete the encapsulation.

【0028】[蓄冷材の調製]得られたマイクロカプセ
ル分散液100部とエチレングリコール30部との混合
液を硬質ポリエチレン袋に充填し、携帯用の蓄冷材を得
た。この蓄冷材を家庭用の冷凍庫内で約1時間放置した
ところ、蓄冷材は凝固する事無く、尚且つ長時間蓄冷効
果が持続するものであった。
[Preparation of Cold Storage Material] A mixture of 100 parts of the obtained microcapsule dispersion liquid and 30 parts of ethylene glycol was filled in a hard polyethylene bag to obtain a portable cold storage material. When this cold storage material was left in a home freezer for about 1 hour, the cold storage material did not solidify and the cold storage effect was maintained for a long time.

【0029】[融解熱の測定]この蓄冷材の融解熱を示
差走査熱量計(米国パーキンエルマー社製、DSC7
型)を用いて行なったところ、n-テトラデカンの融点を
挟む範囲に18kcal/kgの融解熱が観察された。
また、本蓄冷材の融解熱測定を行なった−20〜30℃
の範囲では、常に良好な流動性を維持するものであっ
た。
[Measurement of heat of fusion] The heat of fusion of this cold storage material was measured by a differential scanning calorimeter (DSC7, manufactured by PerkinElmer, USA).
As a result, a heat of fusion of 18 kcal / kg was observed in a range sandwiching the melting point of n-tetradecane.
The heat of fusion of the cold storage material was measured at -20 to 30 ° C.
In this range, good fluidity was always maintained.

【0030】実施例2 [初期縮合物の調製]メラミン粉末10gに37%ホル
ムアルデヒド水溶液12.9gと水10gを加え、pH
を8に調製した後、約70℃まで加熱しメラミン−ホル
ムアルデヒド初期縮合物水溶液を得た。
Example 2 [Preparation of Initial Condensate] To 10 g of melamine powder, 12.9 g of a 37% aqueous formaldehyde solution and 10 g of water were added.
Was adjusted to 8, and then heated to about 70 ° C. to obtain an aqueous solution of a melamine-formaldehyde precondensate.

【0031】[乳化工程]pHを3.5に調整した5%
のエチレン−無水マレイン酸共重合体のナトリウム塩水
溶液100g中に、相変化を伴う化合物としてn-ペンタ
デカン(融点約10℃、融解熱40kcal/kg)8
0gを激しく攪拌しながら添加し、粒子径が5μmにな
るまで乳化を行なった。
[Emulsification step] 5% of which pH was adjusted to 3.5
N-pentadecane (melting point: about 10 ° C., heat of fusion: 40 kcal / kg) as a compound accompanied by a phase change in 100 g of an aqueous solution of a sodium salt of an ethylene-maleic anhydride copolymer
0 g was added with vigorous stirring, and emulsification was performed until the particle diameter became 5 μm.

【0032】以下、実施例1と同様にして上記初期縮合
物と乳化液を混合しカプセル化を行ない、さらに得られ
たマイクロカプセル分散液100部にエチレングリコー
ル30部を添加して蓄冷材を得た。
Then, the initial condensate and the emulsion were mixed and encapsulated in the same manner as in Example 1, and 30 parts of ethylene glycol was added to 100 parts of the obtained microcapsule dispersion to obtain a regenerator material. Was.

【0033】[融解熱の測定]この蓄冷材の融解熱を実
施例1と同型の示差走査熱量計を用いて行なったとこ
ろ、n-ペンタデカンの融点を挟む範囲に14kcal/
kgの融解熱が観察された。また、本蓄冷材の融解熱測
定を行なった−20〜30℃の範囲では、常に良好な流
動性を維持するものであった。
[Measurement of heat of fusion] The heat of fusion of this regenerator material was measured using a differential scanning calorimeter of the same type as in Example 1. The heat of fusion was 14 kcal / m2 within the range sandwiching the melting point of n-pentadecane.
A heat of fusion of kg was observed. Also, in the range of -20 to 30 ° C. where the heat of fusion of the cold storage material was measured, good fluidity was always maintained.

【0034】[0034]

【発明の効果】実施例で明らかな様に、本発明による蓄
冷材は相変化を伴う化合物の凝固点を挟む範囲に多量の
冷熱を蓄積することが可能であり、また、相変化を伴う
化合物の融点以下の温度でも流動性に富む水性液状の蓄
冷材を得ることが可能となり、蓄冷材として有用なもの
である。
As is clear from the examples, the regenerator material according to the present invention is capable of accumulating a large amount of cold heat in a range sandwiching the freezing point of a compound with a phase change, It is possible to obtain an aqueous liquid regenerator material having a high fluidity even at a temperature lower than the melting point, and it is useful as a regenerator material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 相変化を伴う化合物を内包するマイクロ
カプセルを主成分として成る蓄冷材において、相変化を
伴う化合物が、水と非混和性で融点が0〜15℃の範囲
にある化合物であり、マイクロカプセルの皮膜がアミノ
プラスト樹脂から成ることを特徴とする蓄冷材。
1. A regenerative material mainly comprising microcapsules containing a compound with a phase change, wherein the compound with a phase change is a compound that is immiscible with water and has a melting point in the range of 0 to 15 ° C. A regenerator material, wherein the coating of the microcapsules is made of aminoplast resin.
【請求項2】 相変化を伴う化合物がテトラデカンであ
ることを特徴とする請求項1記載の蓄冷材。
2. The regenerative material according to claim 1, wherein the compound with a phase change is tetradecane.
JP3311746A 1991-10-29 1991-10-29 Cool storage material Expired - Fee Related JP2988765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311746A JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311746A JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Publications (2)

Publication Number Publication Date
JPH05117642A JPH05117642A (en) 1993-05-14
JP2988765B2 true JP2988765B2 (en) 1999-12-13

Family

ID=18020984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311746A Expired - Fee Related JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Country Status (1)

Country Link
JP (1) JP2988765B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176623A (en) * 1995-12-22 1997-07-08 Mitsubishi Paper Mills Ltd Microcapsule dispersion for cold transfer
KR20020078220A (en) * 2001-04-06 2002-10-18 케이엔디산업(주) Method for preparing microcapsules containing phase change materials and articles including microcapsules prepared therefrom
GB0116005D0 (en) * 2001-06-29 2001-08-22 Thermotic Dev Ltd Packaging material
KR100569883B1 (en) * 2003-07-15 2006-04-11 한국에너지기술연구원 Circulating Coolant for Thermo Electric Cooler Used for Manufacturing Process of Semiconductor
JP5064647B2 (en) * 2004-03-09 2012-10-31 住友ゴム工業株式会社 Cold and heat insulating material using gel, and pillow, foot warmer and face mask using the same
JP2005314539A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Cutting oil for machining, and cooling/temperature uniformity improving method in machining by using the same
BRPI0607595A2 (en) * 2005-02-09 2010-04-27 Reactor Spirits Norway Ltd appliance
JP2007137992A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage microcapsule solid material
JP2007137991A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP4808476B2 (en) * 2005-11-25 2011-11-02 三菱製紙株式会社 Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid
EP1950265A4 (en) * 2005-11-17 2011-08-03 Mitsubishi Paper Mills Ltd Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solidified product
JP5505919B2 (en) * 2006-10-26 2014-05-28 日産自動車株式会社 Manufacturing method of heat storage material microcapsule and heat storage material microcapsule
KR101386547B1 (en) * 2013-06-18 2014-04-17 김형만 Phase change compound and manufacturing method thereof
CN114152013B (en) * 2021-11-09 2023-08-11 大连理工大学 Working method of movable hydrate phase-change microcapsule cold accumulation system

Also Published As

Publication number Publication date
JPH05117642A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JP3751028B2 (en) Microcapsules for heat storage materials
JP2988765B2 (en) Cool storage material
KR970008262B1 (en) Global shaped capsule of thermal energy storage material & process
Alehosseini et al. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry
Liang et al. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system
CN102311720A (en) Phase-change energy storage capsule and preparation method thereof
CN105219352B (en) A kind of phase-change accumulation energy composite micro-capsule and preparation method
Pasarkar et al. A review on the micro-encapsulation of phase change materials: classification, study of synthesis technique and their applications
CN104629690A (en) Organic-inorganic substance compounded phase change energy storage microcapsule and preparation method thereof
CA2210095A1 (en) Heat-transfer concentrate, method of manufacturing it and its use, as well as a latent-heat accumulator making use of the concentrate
JPH07133479A (en) Heat-storing material
HU213958B (en) Mixtures of salts for storing thermal energy, as phase transition heat method for producing same, method for storing waste heat produced by motor vehicles and apparatus for storing thermal energy
CN106957635A (en) The microcapsule phase-change particle and preparation method of composite Nano copper and nano-graphene piece
Li et al. Preparation and characterization of Na2HPO4· 12H2O@ polymethyl methacrylate nanocapsule for efficient thermal energy storage
KR100481283B1 (en) Microencapsulation Method of Phase Change Materials(PCM) using Emulsion
US20090291309A1 (en) Material Containing Microcapsules, In Particular Phase-Changing Materials
CN111518517A (en) Organic phase change microcapsule, organic phase change microcapsule composite heat dissipation material and preparation method thereof
Yadav et al. A review on microencapsulation, thermal energy storage applications, thermal conductivity and modification of polymeric phase change material for thermal energy storage applications
Yin et al. Fabrication and performance of polyurethane/polyurea microencapsulated phase change materials with isophorone diisocyanate via interfacial polymerization
JPH08259932A (en) Heat-storing material microcapsule
Liu et al. Microencapsulation of biobased phase change material by interfacial polycondensation for thermal energy storage applications
Fang et al. Experimental investigation of performances of microcapsule phase change material for thermal energy storage
Xia et al. Research on microcapsules of phase change materials
JPH11152466A (en) Heat storage microcapsule
CN108676549A (en) The temperature controllable damping microcapsules and preparation method of containing water-soluble and oil-soluble phase-change material simultaneously

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees