JP4808234B2 - Method for producing porous anodized alumina film and porous anodized alumina film produced by the method - Google Patents

Method for producing porous anodized alumina film and porous anodized alumina film produced by the method Download PDF

Info

Publication number
JP4808234B2
JP4808234B2 JP2008172149A JP2008172149A JP4808234B2 JP 4808234 B2 JP4808234 B2 JP 4808234B2 JP 2008172149 A JP2008172149 A JP 2008172149A JP 2008172149 A JP2008172149 A JP 2008172149A JP 4808234 B2 JP4808234 B2 JP 4808234B2
Authority
JP
Japan
Prior art keywords
alumina film
anodized alumina
porous anodized
aluminum
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008172149A
Other languages
Japanese (ja)
Other versions
JP2008231580A (en
Inventor
秀樹 益田
良隆 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2008172149A priority Critical patent/JP4808234B2/en
Publication of JP2008231580A publication Critical patent/JP2008231580A/en
Application granted granted Critical
Publication of JP4808234B2 publication Critical patent/JP4808234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

本発明は、多孔性陽極酸化アルミナ膜の作製方法およびその方法により作製された多孔性陽極酸化アルミナ膜に関し、とくに細孔が所定の微小間隔で規則的に配列した多孔性陽極酸化アルミナ膜を容易にかつ安価に作製できる技術に関する。   The present invention relates to a method for producing a porous anodized alumina film and a porous anodized alumina film produced by the method, and more particularly to a porous anodized alumina film in which pores are regularly arranged at predetermined minute intervals. The present invention relates to a technique that can be manufactured at low cost.

均一な細孔径を有する多孔性材料として、従来から多孔性陽極酸化アルミナ膜が知られている。多孔性陽極酸化アルミナ膜は、アルミニウムを酸性電解液中で陽極酸化することによりアルミニウムの表面に形成される多孔性のアルミナ膜であり、膜面に垂直な細孔が自己規則化的に形成され、細孔径の均一性が比較的良好であるという特徴を有していることから、フィルターをはじめとする機能材料の他、種々のナノデバイス作製の出発構造としての利用が期待されている。多孔性陽極酸化アルミナ膜の作製方法として、平滑なアルミニウム表面に周期的に欠陥を形成し、該欠陥を陽極酸化の開始点として細孔を形成する方法が知られている。また、特許文献1には、上述した従来技術により作製された多孔性陽極酸化皮膜における細孔配列の規則性が低いという問題点を解消し、各細孔の間隔が一定で規則正しく配列した多孔性陽極酸化アルミナ膜の作製方法が開示されている。すなわち、上述の目的を達成するために、陽極酸化を行うアルミニウム板の平滑性を有する表面に、あらかじめ陽極酸化時に形成されるアルミナ膜の細孔の間隔および配列と同一の間隔および配列に複数の窪み(凹部)を形成した後、前記アルミニウム板を陽極酸化することにより、所定形状の細孔が前記複数の窪みの間隔および配列と同一の間隔および配列で規則的に配列した多孔性の陽極酸化アルミナ膜を作製するものである。この提案技術では、窪みに対応した複数の突起を表面に備えた基板(鋳型:モールド)を陽極酸化するアルミニウム板表面に押し付けることにより、アルミニウム板表面に陽極酸化時に形成されるアルミナ膜の細孔の間隔および配列と同一の間隔および配列の窪みを形成した後、上記アルミニウム板を陽極酸化することにより、細孔が所定の間隔で規則的に配列した多孔性陽極酸化アルミナ膜を作製するようにしている。すなわち、上述のような突起を備えた基板をアルミニウム板に印加することにより実施できる。
特開平10−121292号公報
As a porous material having a uniform pore diameter, a porous anodized alumina film has been conventionally known. A porous anodized alumina film is a porous alumina film that is formed on the surface of aluminum by anodizing aluminum in an acidic electrolyte, and pores perpendicular to the film surface are formed in a self-regulated manner. Since it has a feature that the uniformity of pore diameter is relatively good, it is expected to be used as a starting structure for producing various nanodevices in addition to functional materials such as filters. As a method for producing a porous anodized alumina film, a method is known in which defects are periodically formed on a smooth aluminum surface, and pores are formed using the defects as starting points for anodization. Patent Document 1 discloses a porous structure in which the regularity of the pore arrangement in the porous anodic oxide film produced by the above-described conventional technique is solved and the intervals between the pores are regularly arranged. A method for producing an anodized alumina film is disclosed. That is, in order to achieve the above-mentioned object, a plurality of the same interval and arrangement as the interval and arrangement of the pores of the alumina film previously formed at the time of anodizing are provided on the smooth surface of the anodized aluminum plate. Porous anodization in which pores of a predetermined shape are regularly arranged at the same interval and arrangement as the intervals and arrangement of the plurality of depressions by anodizing the aluminum plate after forming depressions (recesses) An alumina film is produced. In this proposed technology, the pores of the alumina film formed on the aluminum plate surface during anodization by pressing a substrate (mold: mold) having a plurality of protrusions corresponding to the depressions on the surface of the aluminum plate to be anodized After forming recesses having the same interval and arrangement as the intervals and arrangement, anodization is performed on the aluminum plate to produce a porous anodized alumina film in which pores are regularly arranged at predetermined intervals. ing. That is, it can be carried out by applying a substrate provided with a projection as described above to an aluminum plate.
JP-A-10-121292

しかしながら、上記特許文献1に記載の方法では、アルミニウム表面に窪みを形成するにあたり、微細突起構造を持つ鋳型(モールド)をアルミニウム表面に押し付ける、機械的なプレス等の方法を用いるため、使用するモールドに機械的な強度が要求される。そのため、モールドの素材に高価な高強度材料が要求されたり、モールドに大きな厚みが要求されることがある。   However, in the method described in Patent Document 1, since a method of pressing a mold (mold) having a fine projection structure against the aluminum surface is used to form a depression on the aluminum surface, a mold to be used is used. In addition, mechanical strength is required. For this reason, an expensive high-strength material may be required for the mold material, or a large thickness may be required for the mold.

また、上述のような規則的な窪み間隔を機械的に形成するために必要なモールドは、電子ビームリソグラフィー技術、フォトリソグラフィー技術などの微細加工技術を用いて作製されるため、モールドの作製に高価な設備を必要とする。また、作製できるモールドの大きさも、上述微細加工の速度が著しく遅いため、mmオーダー角以上の大きなものは作製が困難となっている。また、微細加工を行うための装置は非常に高価であるため、多孔性陽極酸化アルミナ膜の作製のためにこの装置を用いることは、経済的ではない。さらに、上述微細加工技術を用いても、その原理的な問題点から、数10nmよりサイズの小さな規則的な突起配列の形成は困難である。   In addition, the mold necessary for mechanically forming the regular recess intervals as described above is manufactured by using a fine processing technique such as an electron beam lithography technique or a photolithography technique. Equipment is required. Further, the size of the mold that can be manufactured is also difficult to manufacture if it is larger than the mm order angle because the speed of the fine processing is extremely slow. Also, since an apparatus for performing microfabrication is very expensive, it is not economical to use this apparatus for producing a porous anodized alumina film. Further, even if the above-described microfabrication technique is used, it is difficult to form a regular protrusion array having a size smaller than several tens of nm due to its fundamental problem.

そこで本発明の課題は、微小間隔でかつ規則的に配列された細孔を有する多孔性陽極酸化アルミナ膜を、容易にかつ安価に作製可能な技術を提供することにある。とくに、モールドを使用する方法で多孔性陽極酸化アルミナ膜を作製する場合にあっても、所望のモールドを容易にかつ安価に作製可能な技術を提供することにある。   Accordingly, an object of the present invention is to provide a technique capable of easily and inexpensively producing a porous anodized alumina film having pores regularly arranged at a minute interval. In particular, an object of the present invention is to provide a technique capable of easily and inexpensively producing a desired mold even when a porous anodized alumina film is produced by a method using a mold.

上記課題を解決するために、本発明に係る多孔性陽極酸化アルミナ膜の作製方法は、規則的に配列した表面凹凸構造をアルミニウム表面に転写する転写工程と、該転写工程により得られたアルミニウム表面の凹凸構造のうち、規則的に配列された複数の窪みを起点として所定形状の細孔を有する多孔性陽極酸化アルミナ膜を形成する陽極酸化工程とを有し、前記表面凹凸構造を、微粒子を規則的に配列することにより形成し、前記転写工程では、微粒子規則配列による表面凹凸構造を転写した鋳型を先ず作製し、該鋳型をアルミニウム表面に押し付けることにより、鋳型の表面凹凸構造をアルミニウム表面に転写することを特徴とする方法からなる。   In order to solve the above-mentioned problems, a method for producing a porous anodized alumina film according to the present invention includes a transfer step of transferring regularly arranged surface irregularities to an aluminum surface, and an aluminum surface obtained by the transfer step An anodic oxidation step of forming a porous anodic alumina film having pores of a predetermined shape starting from a plurality of regularly arranged depressions, and the surface concavo-convex structure is formed of fine particles. In the transfer step, a mold is first prepared by transferring the surface uneven structure by the fine particle ordered arrangement, and the mold is pressed against the aluminum surface so that the surface uneven structure of the mold is applied to the aluminum surface. It consists of a method characterized by transferring.

所定形状の細孔は、実質的に上記規則的に配列された窪みと同一の間隔および配列で形成される。つまり、微粒子が自己規則的に集合した場合に生ずる二次元規則配列を利用して、その表面凹凸構造のアルミニウム表面へ転写し、転写により生じたアルミニウム表面の凹凸構造の窪みの規則配列を利用して陽極酸化することにより細孔を形成する方法である。このような微粒子を用いた二次元の規則的な配列は自己規則的にその形状を形成し、電子ビームリソグラフィー装置等の高価な微細加工装置を必要とせず、経済的な方法となる。そして、上記転写工程では、微粒子規則配列による表面凹凸構造を転写した鋳型を先ず作製し、該鋳型をアルミニウム表面に押し付けることにより、鋳型の表面凹凸構造をアルミニウム表面に転写するのである。すなわち、多孔性陽極酸化アルミナの出発原料となるアルミニウムへの細孔形成開始点付与にあたり、従来のような機械的な開始点付与のための鋳型の作製へ応用するが、その場合にあっても、上述したように、電子ビーム描画装置等の高価な微細加工装置を必要としないこと、微細加工装置でも加工困難な微細な凹凸を形成することができるという利点がある。   The predetermined-shaped pores are formed with substantially the same spacing and arrangement as the regularly arranged depressions. In other words, using the two-dimensional regular arrangement that occurs when fine particles are assembled in a self-regular manner, the surface is transferred to the aluminum surface of the concavo-convex structure, and the concave arrangement of the concavo-convex structure on the aluminum surface generated by the transfer is used In this method, pores are formed by anodizing. Such a two-dimensional regular array using fine particles forms its shape in a self-regular manner, and does not require an expensive fine processing apparatus such as an electron beam lithography apparatus, which is an economical method. In the transfer step, a mold on which the surface uneven structure by the regular particle arrangement is transferred is first prepared, and the mold is pressed against the aluminum surface to transfer the surface uneven structure of the mold onto the aluminum surface. In other words, it is applied to the production of a mold for providing a mechanical starting point as in the prior art in providing a pore forming starting point to aluminum which is a starting material of porous anodized alumina. As described above, there is an advantage that an expensive fine processing apparatus such as an electron beam drawing apparatus is not required, and fine irregularities that are difficult to be processed by the micro processing apparatus can be formed.

また、上記方法では、規則的に配列する微粒子として様々な粒子を用いることができる。例えば、金属、高分子、金属もしくは非金属の酸化物、炭化物または窒化物のいずれかを原料として用いた微粒子を使用できる。高分子には、生体高分子、人工高分子または天然高分子等のあらゆる種類の高分子を用いることができる。微粒子のサイズは数100nmから数nmまで様々なものを用いることができる。とくに、金属、酸化物、炭化物、窒化物の微粒子は、50nm以下の粒径の微粒子を合成するのに効果的であり、かつ、自己規則的な配列を形成するのに効果的である。例えば、後述の実施例に示す如く、金属酸化物微粒子の中でも酸化鉄微粒子を用いた場合、生体高分子の中でもフェリチンを用いた場合に、優れた規則配列が得られる。このような大きさの規則構造は、電子ビームリソグラフィー装置等の微細加工技術を用いても形成が困難であり、前記課題を解決するために本発明に係る微粒子規則配列を用いることが効果的となる。また、高分子材料を用いた微粒子の規則配列を用いる場合も、従来の微細加工技術を利用する方法と比較して経済的な方法である。上記各種微粒子においては、後述の実施例に示す如く、金属酸化物微粒子の中でも酸化鉄微粒子を用いることが好ましい。   In the above method, various particles can be used as regularly arranged fine particles. For example, fine particles using any one of metal, polymer, metal or non-metal oxide, carbide or nitride as a raw material can be used. As the polymer, any kind of polymer such as a biopolymer, an artificial polymer, or a natural polymer can be used. Various sizes of fine particles can be used from several hundred nm to several nm. In particular, fine particles of metal, oxide, carbide and nitride are effective for synthesizing fine particles having a particle size of 50 nm or less, and are effective for forming a self-regular arrangement. For example, as shown in the examples described later, when iron oxide fine particles are used among metal oxide fine particles and when ferritin is used among biopolymers, an excellent ordered arrangement can be obtained. Such a regular structure is difficult to form even by using a microfabrication technique such as an electron beam lithography apparatus, and it is effective to use the regular particle arrangement according to the present invention in order to solve the above problems. Become. Also, when using a regular arrangement of fine particles using a polymer material, it is an economical method as compared with a method using a conventional fine processing technique. In the various fine particles, it is preferable to use iron oxide fine particles among the metal oxide fine particles, as shown in the examples described later.

微粒子の規則的な配列は、例えば所定の表面形態を有する基板上で行うことができる。微粒子を規則配列させる基板は、微粒子が周期的な規則配列を形成でき、上記微粒子の規則配列により得られる表面凹凸構造をアルミニウム表面に転写可能とすることができる表面形態を有するものであれば、あらゆる基板を用いることができる。すなわち、従来のモールドを用いた機械的プレスによる細孔開始点付与の方法では、モールドの面に対して平滑なアルミニウム基板が必要となるが、本発明では、微粒子が規則的に配列できさえすれば、基板表面の凹凸形状はそれほど問題にならない。このような微粒子規則配列を形成できる基板としては、例えば、シリコン、ガラス、カーボン、マイカなどを材料とするものを用いることができ、このような基板上で、微粒子が自己規則的に周期的構造を形成することができる。もちろん基板表面には微粒子規則配列向上のために、表面テクスチャリング、スパッター等の物理的処理、あるいは疎水化、表面修飾などの化学的な処理を用いた表面改質を行ってもかまわない。   The regular arrangement of the fine particles can be performed on a substrate having a predetermined surface form, for example. As long as the substrate on which the fine particles are regularly arranged has a surface form that allows the fine particles to form a periodic regular arrangement and the surface uneven structure obtained by the regular arrangement of the fine particles can be transferred to the aluminum surface, Any substrate can be used. In other words, the conventional method of imparting pore starting points by mechanical pressing using a mold requires a smooth aluminum substrate with respect to the mold surface, but in the present invention, fine particles can be evenly arranged regularly. For example, the uneven shape on the substrate surface is not so problematic. As a substrate capable of forming such a fine particle ordered array, for example, a material made of silicon, glass, carbon, mica, or the like can be used. On such a substrate, the fine particles have a self-regular periodic structure. Can be formed. Of course, the surface of the substrate may be subjected to surface modification using physical treatment such as surface texturing or sputtering, or chemical treatment such as hydrophobization or surface modification in order to improve the regular arrangement of fine particles.

本発明に係る方法においては、単に多孔性陽極酸化アルミナの出発原料となるアルミニウムへ機械的な開始点付与を行う方法とは異なり、前記転写工程において、微粒子規則配列による表面凹凸構造が表面に転写された鋳型を用い、その鋳型の表面凹凸構造をアルミニウムの表面に転写するので、単に規則的な突起構造を用いて機械的にアルミニウム表面に規則的な窪み方法を形成する方法と異なり、規則的な突起構造に機械的な強度が必要とされないという利点がある。とくに微粒子の規則配列を利用する方法なので、凹凸構造が規則的に配列する微粒子物質であればあらゆる物質を用いることができる。特に機械的強度の低いたんぱく質などの生体高分子微粒子の自己規則配列の表面凹凸構造の転写を行う工程を用いてアルミナの作製が可能となる。   In the method according to the present invention, unlike the method in which a mechanical starting point is given to aluminum which is a starting material for porous anodized alumina, in the transfer step, the surface uneven structure by the fine particle arrangement is transferred to the surface. Unlike the method of mechanically forming a regular depression method on an aluminum surface mechanically using a regular protrusion structure, the surface irregularity structure of the mold is transferred to the aluminum surface. There is an advantage that mechanical strength is not required for a simple protrusion structure. In particular, since the method uses a regular arrangement of fine particles, any substance can be used as long as it is a fine particle substance in which the uneven structure is regularly arranged. In particular, it is possible to produce alumina using a process of transferring a surface irregularity structure of self-ordered arrangement of biopolymer fine particles such as protein having low mechanical strength.

上述した微粒子規則配列を得るためには、例えば、ポリスチレン、シリカなどの球形をした微粒子、金属、酸化物などに両親媒性有機物の配位したコロイドなどの自己規則的に配列を形成する物質からなる微粒子で、その配列が、4方、6方などの周期的な繰り返し構造をとるものを用いることができる。この規則配列は広い範囲にわたり配列するものが望ましい。正六角形の頂点に粒子の中心が来るような、いわゆる6方細密充填構造の規則的な配列を形成する場合、規則的な配列を得るためには粒子の大きさのばらつき指標であるCV値が5%以下であることが望ましい。また、粒子は必ずしも球状をしていなくともよく、微粒子が規則的な配列を形成し、その規則構造表面にアルミニウムを析出させた際に、微粒子配列の表面の突起構造がアルミニウムに写し取られる高さがあればよい。   In order to obtain the above-mentioned regular arrangement of fine particles, for example, from a substance that forms a self-regular arrangement such as spherical fine particles such as polystyrene and silica, a colloid in which an amphiphilic organic substance is coordinated to a metal, an oxide or the like. Fine particles having a periodic repeating structure such as four-way or six-way can be used. This regular arrangement is preferably arranged over a wide range. In order to form a regular array of so-called hexagonal close packed structures in which the center of the particle comes to the apex of the regular hexagon, in order to obtain a regular array, the CV value, which is a variation index of the particle size, is used. It is desirable to be 5% or less. Also, the particles do not necessarily have to be spherical, and when the fine particles form a regular array and aluminum is deposited on the surface of the regular structure, the protrusion structure on the surface of the fine particle array is copied onto the aluminum. If there is,

陽極酸化によって自己規則化的に形成された多孔性陽極酸化アルミナ膜の細孔は、最終的には六方充填配列を形成する傾向がある。このときの細孔間隔は、陽極酸化電圧によって決まり、この間隔と同一の間隔で窪みを形成すると規則性が良好となる。陽極酸化により形成される細孔の間隔は、陽極酸化時の電圧に比例し、その比例定数は約2.5nm/Vであることが知られている。そこで本発明に係る多孔性陽極酸化アルミナ膜の作製方法においては、陽極酸化を行うアルミニウム板表面に複数の窪みを、各窪みの間隔を2.5nm/Vで除することによって得られるアノード酸化電圧で陽極酸化を行うことが好ましい。ここで陽極酸化に用いる電解液は、アルミニウムの酸化物に溶媒作用のあるものであればよく、例えばシュウ酸の他、硫酸、シュウ酸と硫酸の混合浴、リン酸などの酸性電解液を用いることができる。例えば、陽極酸化にシュウ酸浴を用いる場合には、前記陽極酸化工程では、シュウ酸浴中においてアノード酸化電圧が35乃至80Vの電圧範囲で前記アルミニウムを陽極酸化することにより、前記複数の窪みに対応した複数の細孔を形成することが好ましい。また、陽極酸化に硫酸浴を用いる場合には、前記陽極酸化工程では、硫酸浴中においてアノード酸化電圧が3乃至28Vの電圧範囲で前記アルミニウムを陽極酸化することにより、前記複数の窪みに対応した複数の細孔を形成することが好ましい。しかし、25nm未満の細孔周期の場合は各窪みの間隔を2.5nm/Vで除した数値より低めの電圧で陽極酸化を行うと規則性が良好な細孔が得られる傾向がある。つまり、規則的に配列した細孔の間隔が25nm未満の場合には、陽極酸化時に化成する電圧と細孔間隔との比例定数であ2.5nm/Vから計算された値より低い電圧で化成することが好ましい。なお、これらの混合浴を用いる場合には、上記の中間の電圧で良好な結果が得られる。また、化成電圧が10V以下の場合は、上記電圧より低めの、好ましくは0〜50%程度低めの電圧で化成すると良好な規則的な細孔配置が得られる。 The pores of the porous anodized alumina film formed in a self-ordering manner by anodization tend to form a hexagonal packing arrangement in the end. The pore interval at this time is determined by the anodic oxidation voltage, and regularity is improved by forming depressions at the same interval as this interval. It is known that the interval between the pores formed by anodization is proportional to the voltage at the time of anodization, and the proportionality constant is about 2.5 nm / V. Therefore, in the method for producing a porous anodized alumina film according to the present invention, an anodic oxidation voltage obtained by dividing a plurality of depressions on the surface of the aluminum plate to be anodized and the interval of each depression by 2.5 nm / V. It is preferable to perform anodization. The electrolytic solution used for the anodic oxidation is not particularly limited as long as it has a solvent action on the oxide of aluminum. For example, in addition to oxalic acid, an acidic electrolytic solution such as sulfuric acid, a mixed bath of oxalic acid and sulfuric acid, or phosphoric acid is used. be able to. For example, when an oxalic acid bath is used for anodization, in the anodic oxidation step, the aluminum is anodized in the voltage range of 35 to 80 V in the oxalic acid bath to form the plurality of depressions. It is preferable to form a corresponding plurality of pores. Further, when a sulfuric acid bath is used for anodization, in the anodizing step, the aluminum is anodized in the sulfuric acid bath in a voltage range of 3 to 28 V to cope with the plurality of depressions. It is preferable to form a plurality of pores. However, in the case of a pore cycle of less than 25 nm, pores with good regularity tend to be obtained when anodic oxidation is performed at a voltage lower than the value obtained by dividing the interval between the recesses by 2.5 nm / V. That is, when the distance between pores regularly arranged is less than 25nm is a voltage and proportional constant der Ru 2.5 nm / V lower voltage than the calculated value from the pore interval conversion during anodization It is preferable to form. When these mixed baths are used, good results can be obtained at the above intermediate voltage. Further, when the formation voltage is 10 V or less, good regular pore arrangement can be obtained by formation at a voltage lower than the above voltage, preferably about 0 to 50%.

上記のような本発明に係る多孔性陽極酸化アルミナ膜の作製方法により、とくに、細孔の間隔が30nm以下の多孔性陽極酸化アルミナ膜を容易にかつ安価に形成することができる。   By the method for producing a porous anodized alumina film according to the present invention as described above, in particular, a porous anodized alumina film having a pore interval of 30 nm or less can be easily and inexpensively formed.

本発明における多孔性陽極酸化アルミナ膜は、上記のような本発明に係る方法により作製されたものであり、とくに細孔の間隔が30nm以下のものとして形成できる。もっとも、細孔の間隔が30nmよりも大きいものも、本発明に係る方法により作製することができる。 Porous anodized alumina film definitive to the present invention has been produced by the method according to the present invention as described above, in particular spacing of the pores can be formed as a 30nm or less. Of course, pores having a pore interval larger than 30 nm can also be produced by the method according to the present invention.

本発明によれば次のような効果が得られる。
(1) 規則的に配列した表面凹凸構造をアルミニウム表面に転写することにより、その凹凸構造の周期に対応した高規則的な細孔構造をもつアルミナ膜を作製することができる。自己規則的に配列する陽極酸化ポーラスアルミナと比較して、広い範囲の周期で高規則性アルミナ膜を得ることができる。
(2) とくに微粒子の規則配列を利用する方法であるので、50ナノメートル以下の微粒子を用いることにより、リソグラフィー等では作製困難な小さな周期の高規則的な細孔の多孔性陽極酸化アルミナ膜を容易にかつ安価に作製することができる。
(3) また、自己規則的に配列する微粒子は広範囲にわたる規則配列を簡便に得ることができる。これにより、単なる微細加工では作製困難な広範囲にわたる規則構造を容易にかつ安価に得ることが可能となった。
According to the present invention, the following effects can be obtained.
(1) By transferring the regularly arranged surface uneven structure onto the aluminum surface, an alumina film having a highly regular pore structure corresponding to the period of the uneven structure can be produced. Compared with self-ordered anodized porous alumina, a highly ordered alumina film can be obtained in a wider range of periods.
(2) Since this method uses a regular arrangement of fine particles in particular, by using fine particles of 50 nanometers or less, it is possible to form a porous anodic alumina film with a small period and high regular pores that is difficult to produce by lithography or the like. It can be produced easily and inexpensively.
(3) Self-regularly arranged fine particles can easily obtain a wide range of regular arrangements. As a result, it has become possible to easily and inexpensively obtain a wide range of regular structures that are difficult to produce by simple microfabrication.

以下に、本発明に係る多孔性陽極酸化アルミナ膜の作製方法の実施の形態について、図面を参照して説明する。図1は、本発明の一実施形態において用いるアルミニウム板の平面図である。アルミニウム板10の表面にはあらかじめ微細な窪み11が形成されており、これらの窪みは陽極酸化によって形成される細孔の間隔および配列と一致している。なお、用いるアルミニウムは99.99%以上の純度を有することが望ましい。   Embodiments of a method for producing a porous anodized alumina film according to the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of an aluminum plate used in one embodiment of the present invention. Fine depressions 11 are formed on the surface of the aluminum plate 10 in advance, and these depressions coincide with the interval and arrangement of pores formed by anodization. Note that the aluminum used preferably has a purity of 99.99% or more.

図1に示したような微細な窪み11が形成されたアルミニウム板10は、例えば図2に示すような方法によって得られる。図2に示した断面図を参照して説明すると、まず、平滑な基板41上に微粒子42の規則配列を形成する(図2(a))。次に蒸着、スパッター等の物理的製膜手法あるいはめっきなどの化学的製膜手法により、金属で微粒子規則配列上に薄膜43を析出させる(図2(b))。次に微粒子規則配列上に析出した金属薄膜43を微粒子42から剥離することにより、微粒子突起配列転写された金属箔膜44が得られる(図2(c))。これに蒸着、スパッター等の物理的方法、あるいはめっきなどの化学的な方法により金属箔膜と同種あるいは異種の金属45を析出させることにより微粒子凹凸構造が転写された鋳型46が形成される(図2(d))。形成された鋳型46をアルミニウムの表面にプレス等の機械的な方法を用いることにより、図1に示したような規則的な窪み構造が転写されたアルミニウムを得ることができる。得られたアルミニウムを次のような方法により陽極酸化することにより規則的に細孔が配置した多孔性アルミナ膜が得られる。   The aluminum plate 10 in which the fine depressions 11 as shown in FIG. 1 are formed can be obtained by a method as shown in FIG. 2, for example. Referring to the cross-sectional view shown in FIG. 2, first, a regular array of fine particles 42 is formed on a smooth substrate 41 (FIG. 2 (a)). Next, a thin film 43 is deposited on the regular array of fine particles with a metal by a physical film forming method such as vapor deposition or sputtering, or a chemical film forming method such as plating (FIG. 2B). Next, the metal thin film 43 deposited on the regular array of fine particles is peeled off from the fine particles 42 to obtain a metal foil film 44 to which the fine particle protrusion array has been transferred (FIG. 2 (c)). By depositing a metal 45 of the same kind or different kind from the metal foil film by a physical method such as vapor deposition or sputtering, or a chemical method such as plating, a template 46 having the fine grain relief structure transferred thereon is formed (see FIG. 2 (d)). By using a mechanical method such as pressing the formed mold 46 on the surface of aluminum, it is possible to obtain aluminum in which a regular depression structure as shown in FIG. 1 is transferred. The obtained aluminum is anodized by the following method to obtain a porous alumina film in which pores are regularly arranged.

図1に示したようにアルミニウム板10の表面に窪み11を形成した後、これを酸性電解液中において陽極酸化し、多孔性陽極酸化アルミナ膜を形成する。そのプロセスは次のようなものである。微細な窪み11を形成したアルミニウム板10をシュウ酸等の酸性電解液中で陽極酸化すると、図3(a)に示すように、アルミニウム板10の表面に陽極酸化アルミナ膜30が形成される。このアルミナ膜30は、アルミニウムの素地に接した部分に形成される無孔質で誘電性のある薄いバリア層32と、これに接してそれぞれ中央に細孔31を有する多孔層33とからなっている。このとき、細孔31は、あらかじめ形成された窪み11の部分から形成される。さらに陽極酸化を続けると、図3(b)に示すように、陽極酸化アルミナ膜30の多孔層33は厚くなり、それにつれて陽極酸化アルミナ膜の細孔31も深くなる。その結果、アルミニウム板10表面に設けた窪み11に対応する位置に独立した垂直性および直進性の良い細孔が形成される。ここで、本発明において使用できる電解液は、アルミニウムの酸化物に溶媒作用のある電解液であればよく、具体的にはシュウ酸の他、硫酸、シュウ酸と硫酸の混合浴、リン酸などの酸性電解液が挙げられる。   As shown in FIG. 1, after forming the depression 11 on the surface of the aluminum plate 10, this is anodized in an acidic electrolytic solution to form a porous anodized alumina film. The process is as follows. When the aluminum plate 10 in which the fine depressions 11 are formed is anodized in an acidic electrolyte such as oxalic acid, an anodized alumina film 30 is formed on the surface of the aluminum plate 10 as shown in FIG. The alumina film 30 is composed of a nonporous, dielectric thin barrier layer 32 formed in a portion in contact with an aluminum substrate, and a porous layer 33 having a pore 31 at the center in contact therewith. Yes. At this time, the pore 31 is formed from a portion of the depression 11 formed in advance. When anodization is further continued, as shown in FIG. 3B, the porous layer 33 of the anodized alumina film 30 becomes thicker, and the pores 31 of the anodized alumina film become deeper along with this. As a result, independent vertical and straight pores are formed at positions corresponding to the depressions 11 provided on the surface of the aluminum plate 10. Here, the electrolytic solution that can be used in the present invention may be an electrolytic solution having a solvent action on aluminum oxide. Specifically, in addition to oxalic acid, sulfuric acid, a mixed bath of oxalic acid and sulfuric acid, phosphoric acid, etc. The acidic electrolyte solution is mentioned.

この多孔性陽極酸化アルミナ膜の細孔の間隔は、陽極酸化時の電圧、すなわち陽極酸化電圧(アノード酸化電圧)に比例し、その比例定数は約2.5nm/Vであることが知られている。したがって、本発明の多孔性陽極酸化アルミナ膜は、あらかじめ、陽極酸化時に形成される細孔の間隔および配列と同一の間隔および配列で、この間隔と同一の間隔で窪み11を形成すると規則性が良好となる。しかし、細孔周期が25nm以下である場合は、規則的な配列を得るための陽極酸化時の電圧は上記比例定数で求めた電圧より0〜3V低めで化成することが望ましい。また、細孔間隔の配列の規則性を向上できる陽極酸化の条件は、シュウ酸浴においては35〜80V、硫酸浴においては3〜28Vの電圧範囲、また、これらの混合浴を用いる場合には、上記の中間の電圧で良好な結果が得られる。したがって、良好な六方充填配列を形成するためには、上記電圧に対応する細孔間隔で窪みを形成することが望ましい。このような条件下では細孔間隔が0.01〜0.2μmの多孔性陽極酸化アルミナ膜が得られる。上述のようにして形成された細孔が等間隔に配列した多孔性陽極酸化アルミナ膜30の平面図を図4に示す。この多孔性陽極酸化アルミナ膜30において細孔31は、あらかじめアルミニウム板10上に等間隔で正六角形状に配列された窪みに対応して、良好な六方充填配列を形成している。   It is known that the pore interval of this porous anodized alumina film is proportional to the voltage during anodization, that is, the anodization voltage (anodization voltage), and the proportionality constant is about 2.5 nm / V. Yes. Therefore, the porous anodized alumina film of the present invention has regularity when the depressions 11 are formed in advance at the same interval and arrangement as the interval and arrangement of the pores formed at the time of anodization. It becomes good. However, when the pore period is 25 nm or less, it is desirable that the voltage at the time of anodizing for obtaining a regular arrangement is formed by 0 to 3 V lower than the voltage obtained by the above proportionality constant. The conditions of anodization that can improve the regularity of the arrangement of pore spacing are 35 to 80 V in the oxalic acid bath, 3 to 28 V in the sulfuric acid bath, and when these mixed baths are used. Good results are obtained with the above intermediate voltages. Therefore, in order to form a good hexagonal packing arrangement, it is desirable to form depressions at the pore interval corresponding to the voltage. Under such conditions, a porous anodized alumina film having a pore interval of 0.01 to 0.2 μm can be obtained. FIG. 4 shows a plan view of the porous anodized alumina film 30 in which the pores formed as described above are arranged at equal intervals. In the porous anodized alumina film 30, the pores 31 form a good hexagonal packing arrangement corresponding to the depressions arranged in the regular hexagonal shape on the aluminum plate 10 at equal intervals in advance.

図6に、本発明のさらに別の実施形態を示す。本発明では、上述のような微粒子の規則配列を利用せずに、多孔性陽極酸化アルミナ膜を作製することができる。すなわち、図6(a)に示すように、まず、規則的に配列した表面凹凸構造51を有するモールド52を準備する。この表面凹凸構造51は、例えば、電子ビームリソグラフィー、フォトリソグラフィーなどの微細加工法により形成可能である。モールド52の表面凹凸構造51上に、図6(b)に示すようにアルミニウム53を蒸着法によって析出させ、表面凹凸構造51をアルミニウム53の表面に転写する。転写後に、モールド52を除去すると、アルミニウム53の表面には、図6(c)に示すように、上記表面凹凸構造51に対応した表面凹凸構造が形成される。この転写工程により得られたアルミニウム表面の凹凸構造のうち、規則的に配列された複数の窪み54を起点とする陽極酸化を行うことにより、図6(d)に示すような、所定形状の細孔55を有する多孔性陽極酸化アルミナ膜56を形成することができる。   FIG. 6 shows still another embodiment of the present invention. In the present invention, a porous anodized alumina film can be produced without using the regular arrangement of fine particles as described above. That is, as shown in FIG. 6A, first, a mold 52 having a surface uneven structure 51 regularly arranged is prepared. The surface concavo-convex structure 51 can be formed by, for example, a fine processing method such as electron beam lithography or photolithography. As shown in FIG. 6B, aluminum 53 is deposited on the surface uneven structure 51 of the mold 52 by vapor deposition, and the surface uneven structure 51 is transferred to the surface of the aluminum 53. When the mold 52 is removed after the transfer, a surface uneven structure corresponding to the surface uneven structure 51 is formed on the surface of the aluminum 53 as shown in FIG. Of the concavo-convex structure on the aluminum surface obtained by this transfer process, anodization starting from a plurality of regularly arranged dents 54 is performed, so that a fine shape with a predetermined shape as shown in FIG. A porous anodized alumina film 56 having holes 55 can be formed.

次に、実施例を挙げ、本発明をさらに具体的に説明する。
<実施例1>
タンパク質(生体高分子)の一種であるフェリチンをグルコース溶液中に注入し、フェリチンが比重差により表面に浮き上がってきた後、グルコース溶液表面に二次元結晶膜を形成した。この膜を基板に転写し、表面に金属をスパッターすることにより、規則的な凹凸構造を有する金属薄膜を形成した。この表面にNiなどを電析により析出させることにより、微粒子配列が転写された凹凸構造を持つ鋳型を作製した。この鋳型をプレスにより研磨加工したアルミニウム表面に押し付けることにより、表面に規則的な凹凸構造を持つアルミニウムを形成した。このアルミニウムを陽極酸化することにより、正六角形状に周囲の細孔が等間隔に配列した多孔性陽極酸化アルミナ膜を得た。
Next, an Example is given and this invention is demonstrated further more concretely.
<Example 1>
Ferritin, a kind of protein (biopolymer), was injected into the glucose solution, and after the ferritin floated on the surface due to the difference in specific gravity, a two-dimensional crystal film was formed on the glucose solution surface. This film was transferred to a substrate, and metal was sputtered on the surface to form a metal thin film having a regular uneven structure. By depositing Ni or the like on this surface by electrodeposition, a mold having a concavo-convex structure to which the fine particle array was transferred was produced. By pressing the mold against the aluminum surface polished by pressing, aluminum having a regular uneven structure was formed on the surface. By anodizing this aluminum, a porous anodized alumina film having a regular hexagonal shape and surrounding pores arranged at equal intervals was obtained.

本発明の一実施形態で用いた正六角形状に配列した窪みを有するアルミニウム板の平面図である。It is a top view of the aluminum plate which has the hollow arranged in the regular hexagon shape used by one Embodiment of this invention. 微粒子規則配列からアルミニウム表面への規則構造形成のための鋳型を作製する手順を説明する概略断面図である。It is a schematic sectional drawing explaining the procedure which produces the casting_mold | template for regular structure formation to the aluminum surface from a fine particle regular arrangement | sequence. 本発明の一実施形態において陽極酸化によって多孔性陽極酸化アルミナ膜が形成される様子を説明する概略断面図である。It is a schematic sectional drawing explaining a mode that a porous anodic oxidation alumina film | membrane is formed by anodic oxidation in one Embodiment of this invention. 本発明の一実施形態において形成された陽極酸化アルミナ膜の平面図である。It is a top view of the anodized alumina film | membrane formed in one Embodiment of this invention.

符号の説明Explanation of symbols

10 アルミニウム板
11 窪み(凹部)
30 陽極酸化アルミナ膜
31 細孔
32 バリア層(無孔層)
33 多孔層
41 基板
42 微粒子
43 金属薄膜
44 金属箔膜
45 金属箔膜と同種あるいは異種の金属
46 鋳型
10 Aluminum plate 11 Dimple (concave)
30 Anodized alumina film 31 Pore 32 Barrier layer (non-porous layer)
33 Porous layer 41 Substrate 42 Fine particles 43 Metal thin film 44 Metal foil film 45 Metal of the same kind or different from metal foil film 46 Mold

Claims (9)

規則的に配列した表面凹凸構造をアルミニウム表面に転写する転写工程と、該転写工程により得られたアルミニウム表面の凹凸構造のうち、規則的に配列された複数の窪みを起点として所定形状の細孔を有する多孔性陽極酸化アルミナ膜を形成する陽極酸化工程とを有し、前記表面凹凸構造を、微粒子を規則的に配列することにより形成し、前記転写工程では、微粒子規則配列による表面凹凸構造を転写した鋳型を先ず作製し、該鋳型をアルミニウム表面に押し付けることにより、鋳型の表面凹凸構造をアルミニウム表面に転写することを特徴とする多孔性陽極酸化アルミナ膜の作製方法。   A transfer step of transferring the regularly arranged surface uneven structure to the aluminum surface, and pores having a predetermined shape starting from a plurality of regularly arranged depressions of the uneven surface structure of the aluminum surface obtained by the transfer step An anodizing step of forming a porous anodized alumina film having a surface, and the surface uneven structure is formed by regularly arranging fine particles, and in the transfer step, the surface uneven structure by the fine particle ordered arrangement is formed. A method for producing a porous anodized alumina film, wherein a transferred mold is first prepared, and the mold is pressed against an aluminum surface to transfer the surface uneven structure of the mold onto the aluminum surface. 前記規則的に配列する微粒子は、金属、高分子、金属もしくは非金属の酸化物、炭化物または窒化物のいずれかを原料として用いた微粒子からなる、請求項1に記載の多孔性陽極酸化アルミナ膜の作製方法。   2. The porous anodized alumina film according to claim 1, wherein the regularly arranged fine particles include fine particles using any one of a metal, a polymer, a metal or non-metal oxide, a carbide, or a nitride as a raw material. Manufacturing method. 50nm以下の粒径を有する微粒子を用いる、請求項2に記載の多孔性陽極酸化アルミナ膜の作製方法。   The method for producing a porous anodized alumina film according to claim 2, wherein fine particles having a particle size of 50 nm or less are used. 前記表面凹凸構造を、基板上に微粒子を規則的に配列することにより形成するとともに、該基板として、前記表面凹凸構造をアルミニウム表面に転写可能な程度に所定の粗な表面形態を有する基板を用いる、請求項1〜3のいずれかに記載の多孔性陽極酸化アルミナ膜の作製方法。 The surface concavo-convex structure is formed by regularly arranging fine particles on the substrate, and a substrate having a predetermined rough surface form to the extent that the surface concavo-convex structure can be transferred to the aluminum surface is used as the substrate. The manufacturing method of the porous anodized alumina film | membrane in any one of Claims 1-3. 前記基板が、シリコン、ガラス、カーボン、マイカなどを材料とするものからなる、請求項4の多孔性陽極酸化アルミナ膜の作製方法。   The method for producing a porous anodized alumina film according to claim 4, wherein the substrate is made of silicon, glass, carbon, mica, or the like. 前記陽極酸化工程では、シュウ酸浴中においてアノード酸化電圧が35乃至80Vの電圧範囲で前記アルミニウムを陽極酸化することにより、前記複数の窪みに対応した複数の細孔を形成する、請求項1〜5のいずれかに記載の多孔性陽極酸化アルミナ膜の作製方法。   In the anodizing step, a plurality of pores corresponding to the plurality of depressions are formed by anodizing the aluminum in an oxalic acid bath within a voltage range of an anodic oxidation voltage of 35 to 80 V. 6. A method for producing a porous anodized alumina film according to any one of 5 above. 前記陽極酸化工程では、硫酸浴中においてアノード酸化電圧が3乃至28Vの電圧範囲で前記アルミニウムを陽極酸化することにより、前記複数の窪みに対応した複数の細孔を形成する、請求項1〜5のいずれかに記載の多孔性陽極酸化アルミナ膜の作製方法。   In the anodizing step, a plurality of pores corresponding to the plurality of depressions are formed by anodizing the aluminum in a voltage range of an anodic oxidation voltage of 3 to 28 V in a sulfuric acid bath. A method for producing a porous anodized alumina film according to any one of the above. 規則的に配列した細孔の間隔が25nm未満の場合には、陽極酸化時に化成する電圧と細孔間隔との比例定数であ2.5nm/Vから計算された値より低い電圧で化成する、請求項7の多孔性陽極酸化アルミナ膜の作製方法。 If the interval of the pores regularly arranged is less than 25nm, the chemical conversion at a lower voltage than the calculated value from the proportional constant Der Ru 2.5 nm / V in the pore interval conversion during anodization A method for producing a porous anodized alumina film according to claim 7. 細孔の間隔が30nm以下の多孔性陽極酸化アルミナ膜を形成する、請求項1〜8のいずれかに記載の多孔性陽極酸化アルミナ膜の作製方法。   The method for producing a porous anodized alumina film according to any one of claims 1 to 8, wherein a porous anodized alumina film having a pore interval of 30 nm or less is formed.
JP2008172149A 2008-07-01 2008-07-01 Method for producing porous anodized alumina film and porous anodized alumina film produced by the method Expired - Fee Related JP4808234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172149A JP4808234B2 (en) 2008-07-01 2008-07-01 Method for producing porous anodized alumina film and porous anodized alumina film produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172149A JP4808234B2 (en) 2008-07-01 2008-07-01 Method for producing porous anodized alumina film and porous anodized alumina film produced by the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003311362A Division JP4178087B2 (en) 2003-09-03 2003-09-03 Method for producing porous anodized alumina film and porous anodized alumina film produced by the method

Publications (2)

Publication Number Publication Date
JP2008231580A JP2008231580A (en) 2008-10-02
JP4808234B2 true JP4808234B2 (en) 2011-11-02

Family

ID=39904725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172149A Expired - Fee Related JP4808234B2 (en) 2008-07-01 2008-07-01 Method for producing porous anodized alumina film and porous anodized alumina film produced by the method

Country Status (1)

Country Link
JP (1) JP4808234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668381B (en) * 2012-09-04 2016-03-09 中国科学院宁波材料技术与工程研究所 The preparation method of original position multiaperture pellumina on a kind of insulating substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725069B2 (en) * 1990-04-20 1995-03-22 加川 清二 Perforating apparatus and perforating method for resin film
JP3408354B2 (en) * 1995-03-30 2003-05-19 ワシ興産株式会社 Solar cell manufacturing method
JP3714507B2 (en) * 1996-08-26 2005-11-09 日本電信電話株式会社 Method for producing porous anodized alumina film
JP2000071290A (en) * 1998-08-28 2000-03-07 Teijin Ltd Manufacture of antireflection article
JP3387897B2 (en) * 1999-08-30 2003-03-17 キヤノン株式会社 Structure manufacturing method, structure manufactured by the manufacturing method, and structure device using the structure
JP4647812B2 (en) * 2001-03-23 2011-03-09 財団法人神奈川科学技術アカデミー Method for producing anodized porous alumina
JP3817471B2 (en) * 2001-12-11 2006-09-06 富士写真フイルム株式会社 Porous structure and structure, and production method thereof

Also Published As

Publication number Publication date
JP2008231580A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP3714507B2 (en) Method for producing porous anodized alumina film
Stępniowski et al. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features
KR100309367B1 (en) Method of manufacturing porous anodized alumina film
Kondo et al. Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process
JP5276830B2 (en) Method for producing imprint mold
KR100987987B1 (en) Stamp for superhydrophobic micro/nano hybrid surface based on anodic aluminum oxide, method of manufacturing the same, and product manufactured with the same
WO2007023960A1 (en) Porous polymer membrane, method for producing same, and method for manufacturing stamper used for production of same
Mínguez-Bacho et al. Ordered nanopore arrays with large interpore distances via one-step anodization
KR101165396B1 (en) Forming method of nano structure using the metal nano ring pattern
JP4808234B2 (en) Method for producing porous anodized alumina film and porous anodized alumina film produced by the method
KR101010336B1 (en) A method of manufacturing nanoporous alumina with modulated pore structure and applications thereof
JP4641442B2 (en) Method for producing porous body
JP4178087B2 (en) Method for producing porous anodized alumina film and porous anodized alumina film produced by the method
JP2010047454A (en) Carbon material having regular unevenness pattern on its surface, and manufacturing method thereof
JP4315717B2 (en) Metal mold and manufacturing method thereof, anodized porous alumina and manufacturing method thereof
JP4445766B2 (en) Method for producing anodized porous alumina
KR20160021047A (en) Fabrication of positive molds, membranes fabricated using the molds, and their fabrication methods
JP2005272886A (en) Anodically oxidized porous alumina and manufacturing method therefor
JP5642362B2 (en) Anodized porous alumina and method for producing the same
JP4576352B2 (en) Method for producing nanohole structure
Boominatha Sellarajan et al. Synthesis of highly ordered nanoporous anodic aluminium oxide templates and template-based nanomaterials
JP5739107B2 (en) Method for producing porous structural material
JP4125151B2 (en) Manufacturing method of structure
JP2004292904A (en) Production method of anodization alumina membrane
JP5642861B2 (en) Anodized porous alumina and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4808234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees