JP4807709B1 - Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material - Google Patents

Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material Download PDF

Info

Publication number
JP4807709B1
JP4807709B1 JP2010280440A JP2010280440A JP4807709B1 JP 4807709 B1 JP4807709 B1 JP 4807709B1 JP 2010280440 A JP2010280440 A JP 2010280440A JP 2010280440 A JP2010280440 A JP 2010280440A JP 4807709 B1 JP4807709 B1 JP 4807709B1
Authority
JP
Japan
Prior art keywords
hexavalent chromium
molasses
aqueous solution
soil
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010280440A
Other languages
Japanese (ja)
Other versions
JP2012126843A (en
Inventor
友康 杉山
直樹 初野
孝行 小林
Original Assignee
初野建材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 初野建材工業株式会社 filed Critical 初野建材工業株式会社
Priority to JP2010280440A priority Critical patent/JP4807709B1/en
Application granted granted Critical
Publication of JP4807709B1 publication Critical patent/JP4807709B1/en
Publication of JP2012126843A publication Critical patent/JP2012126843A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】建設産業廃棄物であるコンクリート塊の破砕物、土壌、メッキ廃液などの六価クロム含有物の六価クロムを浄化する際に用いられる、環境に優しく、取り扱いが簡単で、安価で、しかも浄化作用に優れた六価クロム浄化剤を提供する。
【解決手段】粗糖の製造あるいは精製糖の製造の際に副産物として得られる廃糖蜜を六価クロム浄化剤として用いる。廃糖蜜は、必要に応じ水により希釈され、コンクリート塊の破砕物、土壌などに噴霧されるあるいは廃糖蜜水溶液中に浸漬される、あるいは土壌に注入される、あるいは廃液などに添加される。これにより、建設産業廃棄物であるコンクリート塊の破砕物、土壌、廃液の六価クロム浄化が行われ、路盤材・埋め戻し材等に安全に利用可能なコンクリート再生材料や、安全な土壌、無公害廃液を形成することが可能となる。
【選択図】なし
[PROBLEMS] To reduce hexavalent chromium contained in a hexagonal chromium-containing material such as crushed concrete lump, soil, plating waste liquid, etc., which is environmentally friendly, easy to handle, and inexpensive. In addition, the present invention provides a hexavalent chromium purifier having an excellent purifying action.
The molasses obtained as a by-product in the production of crude sugar or purified sugar is used as a hexavalent chromium purification agent. The molasses is diluted with water as necessary and sprayed onto a crushed concrete lump, soil or the like, immersed in an aqueous solution of molasses, poured into the soil, or added to waste liquid or the like. As a result, crushed concrete lump, soil, and waste liquid, which are construction industry waste, are purified, and recycled concrete that can be safely used for roadbed materials, backfill materials, etc. It becomes possible to form pollution waste liquid.
[Selection figure] None

Description

本発明は、六価クロムを含む土壌やコンクリート砕石、地下水、表層水などの被汚染体(六価クロム含有物)を浄化するための浄化剤、及びこれを用いた六価クロム含有物の六価クロム浄化方法に関する。より詳細には、環境に優しく、取り扱いも簡単で、浄化効果の優れた六価クロムの浄化剤及び浄化方法に関する。   The present invention relates to a purifying agent for purifying contaminated materials (hexavalent chromium-containing materials) such as soil, concrete crushed stone, ground water, surface water, etc. containing hexavalent chromium, and hexavalent chromium-containing materials using the same. The present invention relates to a method for purifying chromium. More specifically, the present invention relates to a hexavalent chromium purifier and a purification method that are environmentally friendly, easy to handle, and excellent in purification effect.

近年、環境問題が重視され、土木・建築分野においても、環境問題の観点から、土木、建築に使用される材料、あるいは土壌から、重金属、ダイオキシン、トリクロロエチレンなどの除去を行う方法、浄化剤が種々提案されている。例えば、六価クロムにより汚染された土壌や地下水を復元する技術としては、掘削除去、固形化・不溶化、封じ込めが一般的に行われている方法である。   In recent years, environmental issues have been emphasized, and in the field of civil engineering and architecture, there are various methods and purifiers for removing heavy metals, dioxins, trichlorethylene, etc. from civil engineering, construction materials, or soil from the viewpoint of environmental issues. Proposed. For example, as a technique for restoring soil and groundwater contaminated with hexavalent chromium, excavation and removal, solidification / insolubilization, and containment are generally performed.

例えば、有害重金属などを無害化する技術として、汚染された土壌などに過マンガン酸塩、オゾン、次亜塩素酸、過酸化水素などの酸化剤を注入する方法、土壌をクエン酸または酒石酸水溶液により処理して有害重金属を除去する方法、植物に重金属を吸収・蓄積して土壌から汚染物を除去するファイトレメディエーションと呼ばれる方法などが提案され、実施もされている。   For example, as a technology for detoxifying harmful heavy metals, a method of injecting an oxidizing agent such as permanganate, ozone, hypochlorous acid, hydrogen peroxide into contaminated soil, etc., soil with citric acid or tartaric acid aqueous solution A method for removing harmful heavy metals by treatment, a method called phytoremediation for absorbing and accumulating heavy metals in plants to remove contaminants from soil, and the like have been proposed and implemented.

六価クロムに着目した場合、六価クロムを還元して水に不溶な三価クロムとして浄化する技術が種々提案されている。このような方法としては、例えば、第一鉄塩等の還元剤を用いる方法(特許文献1参照)、鉄(0)または第一鉄塩と糖類などの微生物活性剤からなる浄化剤を用い、微生物活性剤により増殖・活性化された土着の六価クロム還元微生物による生物的還元作用を利用するとともに、添加した鉄の還元力を長期にわたり持続させる方法(特許文献2参照)、グルコース、ガラクトース、マンノース、フルクトース、リボースなど還元性末端基を有する単糖類、マルトースやラクトースなど還元性末端基を有する二糖類・少糖類、上白糖などのショ糖分解物、還元性末端基を多く有するデキストリンなどの還元性を備えた糖類である還元糖を用いる方法(特許文献3参照)などが提案されている。   When attention is paid to hexavalent chromium, various techniques for reducing hexavalent chromium and purifying it as trivalent chromium insoluble in water have been proposed. As such a method, for example, a method using a reducing agent such as ferrous salt (see Patent Document 1), a purifier comprising a microbial activator such as iron (0) or a ferrous salt and a saccharide, Utilizing the biological reduction action of native hexavalent chromium-reducing microorganisms grown and activated by microbial activators, and maintaining the reducing power of added iron over a long period of time (see Patent Document 2), glucose, galactose, Monosaccharides with reducing end groups such as mannose, fructose, ribose, disaccharides / oligosaccharides with reducing end groups such as maltose and lactose, sucrose degradation products such as sucrose, dextrins with many reducing end groups, etc. A method using a reducing sugar that is a saccharide having reducing properties (see Patent Document 3) has been proposed.

一方、建設産業廃棄物であるコンクリート塊は、そのほとんどは中間処理破砕され、路盤材・埋め戻し材等の砕石として再利用されている。また、このとき生成するズリや砂も再利用されている。しかし、これらのコンクリート塊から得られる再生材料の多くに、有害な可溶性六価クロムが混入している場合があることが問題となっている。その場合は、可溶性六価クロムを土壌環境基準値0.05mg/Lを超えて溶出しないようにする対策が必要である(平成3年8月23日環境庁告示第46号「土壌の汚染に係る環境基準について」参照)。このような対策として、六価クロムを含有する物質を工作物中に密閉処理する方法、溶出している六価クロムを捕捉材により吸着し保持する方法、雨水等が浸透しないように遮水するか、コンクリート再生材料から浸透水が外部に漏れないように遮水するなどの方法が採られている。しかし、これらの方法は六価クロムを除去するものでなく、根本的な問題解決となるものではない。   On the other hand, most of the concrete lump, which is construction industry waste, is crushed by intermediate treatment and reused as crushed stone for roadbed materials and backfill materials. Also, the sand and sand generated at this time are reused. However, there is a problem that many of the recycled materials obtained from these concrete blocks may contain harmful soluble hexavalent chromium. In that case, it is necessary to take measures to prevent soluble hexavalent chromium from eluting above the soil environmental standard value of 0.05 mg / L (August 23, 1991, Environment Agency Notification No. 46 “Soil Contamination”). Refer to “Environmental standards concerned”) As countermeasures such as this, a method of sealing a hexavalent chromium-containing substance in the workpiece, a method of adsorbing and retaining the eluted hexavalent chromium with a trapping material, and shielding water from permeating rainwater, etc. Alternatively, a method of shielding water so that permeated water does not leak outside from the recycled concrete material is adopted. However, these methods do not remove hexavalent chromium and do not fundamentally solve the problem.

これに対し、コンクリート塊を破砕することにより得られるズリ、砕石、砂などに含まれる六価クロムに対しても、上記土壌や地下水の処理と同様三価クロムに還元して無害化することが提案されている。例えば、コンクリート塊中の六価クロムを処理水によって溶出させ、溶出した六価クロムを、還元剤として硫酸化第1鉄を使用し還元処理する方法(特許文献4参照)、還元剤として亜硫酸カルシウムを使用し、亜硫酸カルシウムを粉の状態でコンクリート塊の粉砕物に配合し、被着・混合させることにより、コンクリート塊の粉砕物が水分と接触した場合に溶出する六価クロムを還元し、六価クロムの溶出を防止する方法(特許文献5参照)、還元剤として亜硫酸ナトリウムを添加し可溶性六価クロムを無害化する方法(特許文献6参照)などが挙げられる。   On the other hand, hexavalent chromium contained in scraps, crushed stones, sand, etc. obtained by crushing concrete blocks can also be rendered harmless by reducing to trivalent chromium in the same manner as the above soil and groundwater treatment. Proposed. For example, hexavalent chromium in a concrete block is eluted with treated water, and the eluted hexavalent chromium is reduced using ferrous sulfate as a reducing agent (see Patent Document 4), and calcium sulfite as a reducing agent. By mixing calcium sulfite in a powdered concrete lump and adhering and mixing it, the hexavalent chromium eluted when the concrete lump is in contact with moisture is reduced. Examples include a method for preventing elution of valent chromium (see Patent Document 5) and a method for detoxifying soluble hexavalent chromium by adding sodium sulfite as a reducing agent (see Patent Document 6).

特開2000−86322号公報JP 2000-86322 A 特開2006−204963号公報JP 2006-204963 A 特開2008−229540号公報JP 2008-229540 A 特開2001−121109号公報JP 2001-121109 A 特開2007−014881号公報JP 2007-014881 A 特開2010−201333号公報JP 2010-201333 A

前記したように、六価クロムを三価クロムに還元して土壌、コンクリート廃材の砕石材などに含まれる六価クロムを無害化する技術は種々提案されているが、例えば、特許文献4の方法においては、処理水を使用することから、そのための設備が必要となり、また処理工程も多くなることから、コスト的な問題がある。また、特許文献5の方法では、還元作用の即効性はなく、また亜硫酸カルシウムは水に溶けにくいので、コンクリート塊の破砕物を骨材として利用する場合、コンクリートとの混練時間が長くなる。さらに、特許文献6の方法では、還元剤と破砕物をミキサーに投入し、これに所定量の亜硫酸ナトリウム水溶液を添加しミキシングすればよく、工程的にも簡単であるが、亜硫酸ナトリウム水溶液を放置すると硫酸ナトリウムに変質するし、酸、熱などで分解し二酸化硫黄ガスを発生する。また、亜硫酸ナトリウムは安価であるといっても、化学物質であるのでその製造にはそれなりのコストはかかる。したがって、より安価で、環境に優しく、しかも効果も良好で、かつ取り扱いも簡単な六価クロムの浄化剤が求められている。   As described above, various techniques for reducing hexavalent chromium into trivalent chromium and detoxifying hexavalent chromium contained in soil, crushed stone of concrete, and the like have been proposed. In this case, since treated water is used, equipment for that purpose is required, and the number of treatment steps is increased, which causes a cost problem. Further, in the method of Patent Document 5, there is no immediate effect of the reducing action, and calcium sulfite is hardly soluble in water. Therefore, when a crushed concrete lump is used as an aggregate, the mixing time with concrete becomes long. Furthermore, in the method of Patent Document 6, the reducing agent and the crushed material are put into a mixer, and a predetermined amount of sodium sulfite aqueous solution may be added to the mixer for mixing. Then, it changes to sodium sulfate and decomposes with acid, heat, etc. to generate sulfur dioxide gas. Moreover, even though sodium sulfite is inexpensive, it is a chemical substance, so its production costs moderate. Accordingly, there is a need for a hexavalent chromium purifying agent that is less expensive, environmentally friendly, effective, and easy to handle.

本発明は、上記のごとき問題が解消された、環境に優しく、pH、熱などの条件により影響を受けず、したがって取り扱いが簡単であり、浄化効果も良好で、安価な六価クロム浄化剤を提供することを目的とするものである   The present invention eliminates the above problems, is environmentally friendly, is not affected by conditions such as pH and heat, and therefore is easy to handle, has a good purification effect, and is an inexpensive hexavalent chromium purifier. It is intended to provide

また、本発明は、上記六価クロム浄化剤を用いた六価クロム含有物の六価クロム浄化方法を提供することを目的とするものである。   Another object of the present invention is to provide a hexavalent chromium purification method for hexavalent chromium-containing materials using the above hexavalent chromium purification agent.

本発明者は、上記課題を解決するために鋭意検討を行ったところ、砂糖を精製する際に精糖残渣として得られる糖蜜(廃糖蜜)が、六価クロムの還元性に優れていることを見出し、この知見に基づいて本発明を成したものである。   The present inventor has intensively studied to solve the above problems, and found that molasses (waste molasses) obtained as a refined sugar residue when purifying sugar is excellent in reducing hexavalent chromium. The present invention has been made based on this finding.

すなわち、本発明は、以下に示す六価クロム浄化剤及び六価クロム浄化方法に関する。   That is, this invention relates to the hexavalent chromium purification agent and hexavalent chromium purification method which are shown below.

(1)廃糖蜜を含有することを特徴とするコンクリート廃材の砕石材用六価クロム浄化剤。
(1) A hexavalent chromium purifying agent for crushed stone of concrete waste, characterized by containing molasses.

(2)前記六価クロム浄化剤にさらに水が含まれることを特徴とする上記(1)に記載のコンクリート廃材の砕石材用六価クロム浄化剤。
(2) The hexavalent chromium purifier for a crushed stone material of a concrete waste material according to the above (1), wherein the hexavalent chromium cleaner further contains water.

)前記コンクリート廃材の砕石材が再生砂であることを特徴とする上記(1)または(2)に記載のコンクリート廃材の砕石材用六価クロム浄化剤。
( 3 ) The hexavalent chromium purifier for a crushed stone of a concrete waste material according to the above (1) or (2) , wherein the crushed stone material of the concrete waste material is recycled sand.

)上記(1)または(2)記載の六価クロム浄化剤を用いて六価クロム含有物であるコンクリート廃材の砕石材を処理することを特徴とする六価クロム含有物の六価クロム浄化方法。
( 4 ) Hexavalent chromium containing hexavalent chromium, characterized by treating a crushed stone of concrete waste that is hexavalent chromium containing using the hexavalent chromium purifying agent according to (1) or (2) above. Purification method.

)前記六価クロム含有物であるコンクリート廃材の砕石材に前記六価クロム浄化剤を噴霧することを特徴とする上記()に記載の六価クロム含有物の六価クロム浄化方法。
( 5 ) The method for purifying hexavalent chromium in a hexavalent chromium-containing material as described in ( 4 ) above , wherein the hexavalent chromium-cleaning agent is sprayed on a crushed stone material of concrete waste that is the hexavalent chromium-containing material.

)前記六価クロム含有物であるコンクリート廃材の砕石材を前記六価クロム浄化剤に浸漬することを特徴とする上記()に記載の六価クロム含有物の六価クロム浄化方法。
( 6 ) The method for purifying hexavalent chromium of a hexavalent chromium-containing material as described in ( 4 ) above , wherein a crushed stone material of concrete waste that is the hexavalent chromium-containing material is immersed in the hexavalent chromium purifying agent.

本発明の六価クロム浄化剤として用いられる廃糖蜜は、精製糖を製造する際に副次的に得られる材料であることから、非常に安価であり、したがって六価クロム浄化を安価に行うことができる。また、廃糖蜜は天然由来の材料であることから安全で、環境に優しく、取り扱いも簡単であり、しかも六価クロム浄化作用に優れていることから、従来六価クロムを浄化する際に用いられている材料と同等あるいはそれ以上の効果を上げることができる。   The molasses used as the hexavalent chromium purifying agent of the present invention is a material that is obtained as a secondary material when producing purified sugar, and is therefore very inexpensive, and therefore the hexavalent chromium purification can be performed at low cost. Can do. In addition, molasses is a naturally derived material that is safe, environmentally friendly, easy to handle, and excels in hexavalent chromium purification, so it has been used to purify hexavalent chromium. It is possible to increase the effect equivalent to or better than the existing material.

本発明においては、六価クロム処理剤として廃糖蜜が用いられる。上記したように、廃糖蜜は砂糖を原料であるサトウキビあるいは甜菜から製造する際に精糖残渣として得られものである。廃糖蜜としては、原料としてサトウキビが用いられる場合、サトウキビを精糖する際に得られる廃糖蜜や、さらにサトウキビの精糖により得られた原料糖(粗糖)をさらに精糖し、三温糖を製造したした後の、糖分を結晶させられなかった残りである精製糖廃糖蜜がある。前記廃糖蜜は、糖分などを6割前後含んでおり、そのまま甘味料として、またうま味調味料(グルタミン酸の生成)やアルコール(工業用だけでなくラム酒なども)などの発酵工業の原料として用いられている。一方、甜菜からの廃糖蜜は、糖分はほぼ取り尽くされている。本発明においては、廃糖蜜であればよく、前記したものの何れのものをも使用することができるし、それらの任意の混合物であってもよい。なお、精製糖廃糖蜜は、使用用途も限られていることから安価であり、このため精製糖廃糖蜜がコストの面から好ましいものである。また、後述するように、砂糖(蔗糖)自体六価クロムの還元能力は極めて低く、このことから廃糖蜜の六価クロム浄化作用は、廃糖蜜に含まれる蔗糖以外の成分によって奏されているものであると考えられる。   In the present invention, molasses is used as the hexavalent chromium treating agent. As described above, molasses is obtained as a sugar residue when sugar is produced from sugar cane or sugar beet. As the molasses, when sugarcane was used as a raw material, the molasses obtained when refining sugarcane and the raw sugar (crude sugar) obtained from the sugarcane refined sugar were further refined to produce tri-warm sugar There is a refined molasses molasses that is the remainder that was not allowed to crystallize the sugar. The waste molasses contains about 60% of sugar and is used as a sweetener as it is, and as a raw material for the fermentation industry such as umami seasonings (formation of glutamic acid) and alcohol (not only industrial but also rum). It has been. On the other hand, the molasses from sugar beet is almost exhausted. In the present invention, any molasses may be used as long as it is waste molasses, and any of those described above may be used, or any mixture thereof. Purified molasses molasses is inexpensive because its use is limited, and therefore, refined molasses molasses is preferable from the viewpoint of cost. Moreover, as described later, sugar (sucrose) itself has a very low reducing ability of hexavalent chromium, and therefore, the hexavalent chromium purification action of molasses is achieved by components other than sucrose contained in the molasses. It is thought that.

本発明の六価クロム浄化剤は、種々の六価クロムを含む浄化対象物に適用することができ、また適用方法も適用対象物により適宜変更できる。代表的な浄化対象物としては、コンクリート廃材であるコンクリート塊を破砕して得られた砕石材である、再生ズリ、再生砕石、再生砂や、六価クロムを含む土壌、廃液、例えばメッキ廃液などが挙げられる。適用方法としては、噴霧、混合、浸漬、圧入、添加などの方法が適宜採用され、必要であれば複数の方法が組み合わされてもよい。例えば、前記砕石材に対しては、噴霧、混合、浸漬方法が、土壌に対しては噴霧、混合、圧入方法が、廃液に対しては、添加方法が好ましく用いられる。   The hexavalent chromium purification agent of the present invention can be applied to a purification object containing various hexavalent chromium, and the application method can be appropriately changed depending on the application object. Typical purification objects include crushed stones obtained by crushing concrete lump, which is concrete waste, recycled sludge, recycled crushed stone, recycled sand, soil containing hexavalent chromium, waste liquid, such as plating waste liquid, etc. Is mentioned. As an application method, methods such as spraying, mixing, dipping, press-fitting, and addition are appropriately employed, and a plurality of methods may be combined if necessary. For example, spraying, mixing, and dipping methods are preferably used for the crushed stone material, spraying, mixing, and press-in methods are used for soil, and addition methods are used for waste liquid.

廃糖蜜は粘度が高い。このため、例えば噴霧などで適用される場合には、そのままでは噴霧することが非常に難しい。また、噴霧できたとしても、砕石材の表面全体に行きわたるように適用するためには、希釈したものに比べより多くの処理剤が必要となる。このため噴霧で用いられる場合には、通常、水などにより、噴霧に適した粘度、あるいは処理に適した濃度となるよう調整される。このとき、必要であれば、廃糖蜜の溶解性を促進するため、水とともにアルコールなどの水親和性の溶媒がさらに用いられてもよい。水は廃糖蜜を希釈できるものであればよく、特に限定されるものではなく、例えば、水道水、蒸留水、イオン交換水など入手し得る何れの水であってもよい。   Waste molasses is highly viscous. For this reason, for example, when applied by spraying, it is very difficult to spray as it is. Moreover, even if it can spray, in order to apply so that it may reach the whole surface of a crushed stone material, more processing agents are needed compared with what was diluted. For this reason, when used in spraying, it is usually adjusted with water or the like to have a viscosity suitable for spraying or a concentration suitable for processing. At this time, if necessary, an aqueous solvent such as alcohol may be further used together with water in order to promote the solubility of the molasses. The water is not particularly limited as long as it can dilute molasses, and may be any available water such as tap water, distilled water, ion-exchanged water, and the like.

本発明の六価クロム浄化剤を用いて、六価クロムを浄化する方法を、コンクリート構造物を解体した際に排出されたコンクリート塊を粉砕することにより得られた、再生ズリ、再生砕石、再生砂などに適用し、六価クロムの浄化を行う場合を例に挙げて、さらに詳しく説明する。   A method for purifying hexavalent chromium using the hexavalent chromium purifying agent of the present invention is obtained by crushing a concrete block discharged when demolishing a concrete structure. Recycled sludge, regenerated crushed stone, regenerated This will be described in more detail by taking as an example the case where it is applied to sand and purifying hexavalent chromium.

コンクリート構造物を解体した際に排出された廃材であるコンクリート塊は、通常次のような方法により再生ズリ、再生砕石、再生砂などとして製品化される。コンクリート構造物を解体した際に排出されたコンクリート塊は、再生プラント工場に集積される。これをまず始めに、パワーショベル等を利用しクラッシャー機に投入し一次破砕を行い、廃材に含まれる鉄クズやその他のごみを取り除く。その後二次破砕、必要に応じ三次破砕を行い、各製品規格に合った篩を通し、粒度を調整した後ベルトコンベアーにて所定の区画に堆積される。この過程で含水比の調整および防塵目的により、製品に水が噴霧される。なお、通常、再生ズリは二次破砕前のもの、再生砕石は粒径が40mm程度以下とされたもの、再生砂は10mm程度以下とされたものである。   A concrete lump, which is a waste material discharged when a concrete structure is demolished, is usually commercialized as recycled sludge, reclaimed crushed stone, reclaimed sand, and the like by the following method. The concrete block discharged when the concrete structure is demolished is accumulated in the regeneration plant factory. First of all, using a power shovel or the like, it is put into a crusher machine and primary crushing is performed to remove iron scraps and other waste contained in the waste material. After that, secondary crushing is performed, and tertiary crushing is performed as necessary. After passing through a sieve suitable for each product standard, the particle size is adjusted, and then deposited on a predetermined section by a belt conveyor. During this process, water is sprayed on the product for the purpose of adjusting the moisture content and preventing dust. In general, regenerated slurries are those before secondary crushing, regenerated crushed stones have a particle size of about 40 mm or less, and regenerated sands are about 10 mm or less.

こうして製品化された再生ズリ、再生砕石、再生砂などに、本発明の六価クロム浄化剤が適用される。再生砂に関しては、前記環境庁告示第46号により、可溶性六価クロムを土壌環境基準値0.05mg/Lを超えて溶出しないようすることが規定されていることから、再生砂について説明すると、上記基準値を超えて六価クロムが溶出しないような量、濃度の廃糖蜜水溶液を再生砂に噴霧する。その後、必要に応じ、噴霧処理された砂を適宜の手段で攪拌あるいは混ぜ合わせ、噴霧された廃糖蜜水溶液が再生砂の表面全体に行きわたるようにされることが好ましい。再生砂はコンクリート塊を破砕した際、再生ズリ、再生砕石と篩分けされて分別され、ベルトコンベアーなどで集積場所に搬送され、ベルトコンベアーから落下、山積みされるが、このとき、砂に適度の水分を含ませるため、および埃の発生を防止するため、従来落下時に水が噴霧されている。このことから、この噴霧される水として廃糖蜜を溶解した水を用いることが好ましい。この方法によれば、従来のコンクリート破砕装置、分別装置、搬送装置、噴霧装置をそのまま用い、噴霧装置の水供給装置に六価クロム浄化剤を添加する装置を付加するのみで、再生砂の浄化を行うことができる。本発明の浄化剤である廃糖蜜が溶解された水溶液が噴霧された再生砂には、例えばビニールシートを被せるなどして、六価クロムの三価クロムへの還元処理が終了するまで水分が蒸発しないようにし、しばらく静置されることが好ましい。   The hexavalent chromium purification agent of the present invention is applied to the reclaimed waste, reclaimed crushed stone, reclaimed sand and the like thus produced. Regarding the reclaimed sand, the Environment Agency Notification No. 46 stipulates that soluble hexavalent chromium should not be eluted above the soil environmental standard value of 0.05 mg / L. Spray the reclaimed sand with an aqueous solution of molasses in an amount and concentration that prevents the hexavalent chromium from eluting above the reference value. Thereafter, if necessary, the sprayed sand is preferably stirred or mixed by an appropriate means so that the sprayed molasses aqueous solution reaches the entire surface of the regenerated sand. When the reclaimed sand is crushed, it is separated from reclaimed sand and reclaimed crushed stones, separated and transported to a collecting place by a belt conveyor, etc., dropped from the belt conveyor, and piled up. Conventionally, water is sprayed at the time of dropping in order to include moisture and to prevent generation of dust. For this reason, it is preferable to use water in which waste molasses is dissolved as the water to be sprayed. According to this method, the conventional concrete crushing device, the sorting device, the conveying device, and the spraying device are used as they are, and only the device for adding the hexavalent chromium purifying agent is added to the water supply device of the spraying device. It can be performed. The recycled sand sprayed with an aqueous solution in which the molasses, which is the purifying agent of the present invention, is sprayed, is covered with a vinyl sheet, for example, to evaporate water until the reduction of hexavalent chromium to trivalent chromium is completed. It is preferable not to leave it for a while.

また、再生ズリ、再生砕石などの処理に当たっては、破砕から分別集積までの間の適宜の箇所、例えば篩分けされた後に、廃糖蜜水溶液をその表面に均一に行きわたるように噴霧してやればよい。さらに、噴霧に代えて、再生ズリ、再生砕石、再生砂などを例えばロッグウォッシャー(ミキサー)に投入し、本発明の浄化剤である廃糖蜜溶液を添加し、ミキシング後しばらく放置しておくなどの方法でもよい。また、再生ズリ、再生砕石、再生砂などを、廃糖蜜水溶液中に投入、浸漬させてもよい。このとき、浸漬状態で出荷まで保存されてもよいし、浸漬後適宜の時間が経過した後、廃糖蜜水溶液を適宜の手段で分離してもよい。   In the treatment of reclaimed waste, reclaimed crushed stone, etc., an appropriate portion from crushing to fractional accumulation, for example, after sieving, the waste molasses aqueous solution may be sprayed so as to uniformly reach the surface. Furthermore, instead of spraying, reclaimed waste, reclaimed crushed stone, reclaimed sand, etc. are put into a log washer (mixer), for example, the waste molasses solution that is the purifying agent of the present invention is added and left for a while after mixing, etc. The method may be used. In addition, recycled sludge, reclaimed crushed stone, reclaimed sand and the like may be charged and immersed in the waste molasses aqueous solution. At this time, it may be stored in a soaked state until shipment, or after a suitable time has passed after soaking, the waste molasses aqueous solution may be separated by a suitable means.

一方、土壌に適用する場合、土壌を掘り起こし、これに適宜の濃度の廃糖蜜水溶液を適宜の量噴霧した後、適宜の攪拌手段を用いて土壌を攪拌混合し、静置する方法や、土壌に適宜の濃度の廃糖蜜水溶液を圧入する方法が好ましい方法として挙げられる。また、メッキ廃液などの六価クロム含有廃液に本発明の六価クロム浄化剤を適用する場合、六価クロム含有廃液に廃糖蜜水溶液を加えてもよいし、溶解性の問題が無ければ、廃糖蜜を廃液中に直接添加し、廃液中で溶解して所定の濃度とし、還元、浄化処理が行われてもよい。   On the other hand, when applied to soil, after digging up the soil and spraying an appropriate amount of waste molasses aqueous solution in an appropriate amount thereto, the soil is stirred and mixed using an appropriate stirring means, and left to stand in the soil. A preferable method is a method in which a waste molasses aqueous solution having an appropriate concentration is injected. In addition, when applying the hexavalent chromium purification agent of the present invention to a hexavalent chromium-containing waste liquid such as a plating waste liquid, a waste molasses aqueous solution may be added to the hexavalent chromium-containing waste liquid. Molasses may be directly added to the waste liquid and dissolved in the waste liquid to a predetermined concentration, and reduction and purification treatment may be performed.

本発明の六価クロム浄化剤の廃糖蜜の濃度、および六価クロム浄化剤の量は、六価クロムに汚染された処理物の汚染程度に合わせ、適宜の濃度、量とされればよく、特に限定されるものではない。例えば、再生砂に噴霧する場合、噴霧される廃糖蜜の粘度は、噴霧装置で噴霧できる粘度となる濃度とされる。噴霧装置との関係もあるが、廃糖蜜1重量部に対し、通常0.5重量部以上の水が用いられればよい。一般的には、廃糖蜜1重量部に対し1重量部程度の量で用いられる。廃糖蜜濃度が薄くなればなるほど、同量の廃糖蜜を再生砂に供給するために、より多くの量の廃糖蜜水溶液を噴霧することが必要とされる。また、廃糖蜜水溶液の濃度が低くなれば、浄化処理に、より長時間を要することとなる。再生砂を例に挙げて適用される廃糖蜜水溶液の濃度を例示したが、前記の通り、廃糖蜜水溶液の濃度は処理対象物、適用方法により、最適の濃度とされ、使用されればよい。   The concentration of the molasses of the hexavalent chromium purifying agent of the present invention and the amount of the hexavalent chromium purifying agent may be set to an appropriate concentration and amount according to the degree of contamination of the treated product contaminated with hexavalent chromium, It is not particularly limited. For example, when spraying on the reclaimed sand, the viscosity of the molasses to be sprayed is set to a concentration at which it can be sprayed with a spraying device. Although there is a relationship with a spraying device, water of 0.5 parts by weight or more is usually used for 1 part by weight of molasses. Generally, it is used in an amount of about 1 part by weight per 1 part by weight of molasses. The thinner the molasses concentration is, the more the amount of molasses solution needs to be sprayed in order to supply the same amount of molasses to the reclaimed sand. Moreover, if the concentration of the waste molasses aqueous solution is low, the purification process will require a longer time. The concentration of the molasses aqueous solution to be applied is exemplified by using the reclaimed sand, but as described above, the concentration of the molasses aqueous solution may be set to an optimum concentration depending on the object to be treated and the application method.

六価クロムで汚染された被処理対象物に対する六価クロム浄化剤中の廃糖蜜の量は、被処理対象物における処理されなければならない六価クロム量によって異なり、特に限定されるものではない。すなわち、砕石材の大きさ、六価クロム汚染の程度などにより六価クロム溶出量が異なり、この溶出量に応じて浄化剤の量が適宜決定されることとなる。処理されなければならない六価クロムの量に対し、必要以上の量廃糖蜜を用いても、処理剤が無駄となるし、一方、処理されなければならない六価クロムの量に対し、必要量の廃糖蜜が用いられない場合、六価クロムが三価に還元されないで残留することになる。後記実施例に示されるように、被処理対象物が再生砂であり、六価クロム溶出量が0.06mg/Lである場合、再生砂の重量に対し0.05重量%程度用いれば、平成3年8月23日環境庁告示第46号「土壌の汚染に係る環境基準について」の溶出基準0.05mg/Lをクリヤーすることができるし、六価クロム溶出量が0.18mg/Lであれば、1重量%程度用いればよい。このようなことを勘案すると、本発明の六価クロム処理剤の使用量は、被処理物の六価クロム溶出量を予め測定し、この測定量に応じ使用量を決定することが好ましい。しかし、一般的には、再生砂の六価クロム溶出量は前記環境庁告示第46号で規定された量を幾分超える程度のものが多いことからすると、通常被処理再生砂の重量に対し、廃糖蜜の量で0.05重量%程度以上とすることが好ましく、より好ましくは0.1重量%、更に好ましくは0.2重量%以上である。なお、再生砕石、再生ズリの場合、再生砂に比べ単位重量当たりの表面積は小さいことから、上記再生砂に対する量に比べより少量でも効果を得ることができる。土壌などの浄化処理を行う場合には、六価クロム浄化剤の量は、再生砂の処理の場合に比べより多量に用いることが一般的には必要となる。六価クロム含有廃液の場合には、廃液に含まれる六価クロムの量を勘案して、六価クロムが少なくとも全て還元される量以上用いることが好ましい。   The amount of molasses in the hexavalent chromium purification agent with respect to the object to be treated contaminated with hexavalent chromium varies depending on the amount of hexavalent chromium to be treated in the object to be treated, and is not particularly limited. That is, the amount of elution of hexavalent chromium differs depending on the size of the crushed stone material, the degree of contamination with hexavalent chromium, etc., and the amount of the purifier is appropriately determined according to the amount of elution. Even if more molasses of molasses is used than the amount of hexavalent chromium that has to be treated, the treatment agent is wasted, whereas the amount of hexavalent chromium that has to be treated If molasses is not used, hexavalent chromium will remain without being reduced to trivalent. As shown in the examples described later, when the object to be treated is reclaimed sand and the elution amount of hexavalent chromium is 0.06 mg / L, if about 0.05% by weight is used with respect to the weight of reclaimed sand, It is possible to clear the elution standard 0.05mg / L of the Environmental Agency Notification No. 46 “Environmental Standards Concerning Soil Contamination” on August 23, 3rd, and the elution amount of hexavalent chromium is 0.18mg / L If it exists, about 1% by weight may be used. In consideration of the above, it is preferable that the amount of the hexavalent chromium treating agent of the present invention is determined in advance by measuring the amount of hexavalent chromium eluted from the object to be treated, and determining the amount to be used according to this measured amount. However, in general, the amount of elution of hexavalent chromium in reclaimed sand is somewhat higher than the amount specified in the Environmental Agency Notification No. 46, so that The amount of molasses is preferably about 0.05% by weight or more, more preferably 0.1% by weight, and still more preferably 0.2% by weight or more. In the case of reclaimed crushed stone and reclaimed sand, since the surface area per unit weight is smaller than that of reclaimed sand, the effect can be obtained even in a smaller amount than the amount of reclaimed sand. When purifying soil or the like, it is generally necessary to use a larger amount of the hexavalent chromium purifier than when treating the reclaimed sand. In the case of a hexavalent chromium-containing waste liquid, it is preferable to use at least the amount by which hexavalent chromium is reduced at least in consideration of the amount of hexavalent chromium contained in the waste liquid.

本発明で用いられる廃糖蜜は、後記実施例、比較例の記載から明らかなように、従来六価クロムを含む重金属などの浄化剤として提案されているグルコース、ガラクトース、マンノース、フルクトース、リボースなど還元性末端基を有する単糖類、マルトースやラクトースなど還元性末端基を有する二糖類・少糖類、上白糖などの蔗糖分解物、還元性末端基を多く有するデキストリンなどの還元性を備えた糖類に比べ極めて六価クロムの還元性に優れている。また、比較例に蔗糖の還元性を示したが、蔗糖には、六価クロムを還元する能力はほとんどない。このことから、本発明の六価クロム浄化剤である廃糖蜜の効果は、廃糖蜜に含まれる蔗糖によるものでないことは明らかである。   As is apparent from the description of Examples and Comparative Examples below, the molasses used in the present invention is a reduction agent such as glucose, galactose, mannose, fructose, and ribose that has been conventionally proposed as a cleaning agent for heavy metals including hexavalent chromium. Compared to monosaccharides having a reducing end group, disaccharides / oligosaccharides having a reducing end group such as maltose and lactose, sucrose degradation products such as sucrose, and reducing sugars such as dextrin having many reducing end groups It is extremely excellent in reducing hexavalent chromium. Moreover, although the reducing property of sucrose was shown in the comparative example, sucrose has almost no ability to reduce hexavalent chromium. From this, it is clear that the effect of the molasses which is the hexavalent chromium purifier of the present invention is not due to sucrose contained in the molasses.

本発明の六価クロムの浄化剤および六価クロム含有物の六価クロム浄化方法は、必要であれば、従来公知の六価クロム浄化剤あるいは六価クロム浄化方法と組み合わせて用いられてもよい。   The hexavalent chromium purification agent and hexavalent chromium purification method of the hexavalent chromium-containing material of the present invention may be used in combination with a conventionally known hexavalent chromium purification agent or hexavalent chromium purification method, if necessary. .

以下、実施例、比較例をあげて、本発明をさらに具体的に説明する。なお、以下の例中において、「部」、「%」は、特に断りが無い限り「重量部」、「重量%」を表す。また、以下の例で用いられた精製糖廃糖蜜は、原料糖(粗糖)を精製して精製糖を製造した際に白下から分蜜して得られたものであり、BX(Brix)は81.6°、糖度(Z°)は29.6°、還元糖は23.1%、総糖分は68.6%、純糖率は36.3%、灰分は8.29%、pHは5.8であった。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the following examples, “parts” and “%” represent “parts by weight” and “% by weight” unless otherwise specified. Moreover, the refined molasses molasses used in the following examples is obtained by purifying raw sugar (crude sugar) to produce refined sugar, and obtained by mashing from the bottom of white, and BX (Brix) is 81.6 °, sugar content (Z °) 29.6 °, reducing sugar 23.1%, total sugar content 68.6%, pure sugar rate 36.3%, ash content 8.29%, pH is 5.8.

(実施例1)
水80部に対し、20部の精製糖廃糖蜜を溶解して、20%精製糖廃糖蜜水溶液を調製し、これを121℃で15分間加熱し、無菌状態にした。その後、121℃で15分間加熱して無菌状態とされた水と前記20%精製糖廃糖蜜水溶液を混ぜて、0.1%精製糖廃糖蜜水溶液を調製した。前記0.1%精製糖廃糖蜜水溶液に、CrO3を121℃で15分間加熱した滅菌水に溶解した1.9mM六価クロム水溶液を添加して、0.80ppmの六価クロム濃度にした。これを常温で静置して、経時的に六価クロム濃度を測定した。溶液中の六価クロム濃度の測定は、ジフェニルカルバジド吸光光度法により行った。結果を表1に示す。
(Example 1)
20 parts of the refined molasses molasses was dissolved in 80 parts of water to prepare a 20% purified molasses molasses aqueous solution, which was heated at 121 ° C. for 15 minutes to be aseptic. Thereafter, the 20% purified molasses molasses aqueous solution and the 20% purified molasses molasses aqueous solution heated at 121 ° C. for 15 minutes were mixed to prepare a 0.1% purified molasses molasses aqueous solution. A 1.9 mM hexavalent chromium aqueous solution in which CrO 3 was dissolved in sterilized water heated at 121 ° C. for 15 minutes was added to the 0.1% purified molasses molasses aqueous solution to obtain a hexavalent chromium concentration of 0.80 ppm. This was allowed to stand at room temperature, and the hexavalent chromium concentration was measured over time. The hexavalent chromium concentration in the solution was measured by diphenyl carbazide absorptiometry. The results are shown in Table 1.

なお、ジフェニルカルバジド吸光光度法による測定は以下のとおりの方法で行った。
4.85mgの1,5−ジフェニルカルボノヒドラジドを2mlのアセトンに溶解し、10mM濃度のジフェニルカルボノヒドラジドアセトン溶液を調製した。10mMジフェニルカルボノヒドラジドアセトン溶液1容量とH2SO4(H2SO4(1+9) JIS K8956に規定する硫酸)水溶液9容量を混合して、1mMジフェニルカルボノヒドラジド水溶液を調製した。検体の試料と1mMジフェニルカルボノヒドラジド水溶液を容量比1:1で混合して、室温で10分間静置した。六価クロムが存在すると色を呈するので、この呈色を分光光度計を用いて540nmの吸光度として測定した。種々の濃度の六価クロムを含有する標準物質からの測定結果を基準にして、検体試料中の六価クロム濃度を算出した。
The measurement by diphenylcarbazide absorptiometry was performed by the following method.
4.85 mg of 1,5-diphenylcarbonohydrazide was dissolved in 2 ml of acetone to prepare a 10 mM diphenylcarbonohydrazide acetone solution. One volume of 10 mM diphenylcarbonohydrazide acetone solution and 9 volumes of H 2 SO 4 (H 2 SO 4 (1 + 9) sulfuric acid specified in JIS K8956) aqueous solution were mixed to prepare a 1 mM diphenyl carbonohydrazide aqueous solution. A sample of the specimen and a 1 mM diphenylcarbonohydrazide aqueous solution were mixed at a volume ratio of 1: 1 and allowed to stand at room temperature for 10 minutes. When hexavalent chromium is present, it exhibits a color, and this coloration was measured as absorbance at 540 nm using a spectrophotometer. The hexavalent chromium concentration in the specimen sample was calculated based on the measurement results from the standard substances containing various concentrations of hexavalent chromium.

(実施例2)
0.1%精製糖廃糖蜜水溶液に代えて0.5%精製糖廃糖蜜水溶液を用いることを除き実施例1と同様にして、0.80ppmの六価クロム濃度の0.5%精製糖廃糖蜜水溶液を調製し、溶液中の六価クロム濃度を実施例1と同様の方法で経時的に測定した。結果を表1に示す。
(Example 2)
0.5% purified molasses with a hexavalent chromium concentration of 0.80 ppm in the same manner as in Example 1 except that a 0.5% purified molasses molasses aqueous solution is used instead of the 0.1% purified molasses molasses aqueous solution. A molasses aqueous solution was prepared, and the hexavalent chromium concentration in the solution was measured over time by the same method as in Example 1. The results are shown in Table 1.

(比較例1)
0.1%精製糖廃糖蜜水溶液に代えて、121℃で15分間加熱し無菌状態とされた水を用いることを除き実施例1と同様にして、0.8ppm六価クロム水溶液を調製し、溶液中の六価クロム濃度を実施例1と同様の方法で経時的に測定した。結果を表1に示す。
(Comparative Example 1)
In place of the 0.1% purified molasses molasses aqueous solution, a 0.8 ppm hexavalent chromium aqueous solution was prepared in the same manner as in Example 1 except that water which was heated at 121 ° C. for 15 minutes and made sterile was used. The hexavalent chromium concentration in the solution was measured over time by the same method as in Example 1. The results are shown in Table 1.

Figure 0004807709
Figure 0004807709

表1から、精製糖廃糖蜜を含まない比較例1においては六価クロム濃度の変化が無かったのに対し、精製糖廃糖蜜を含有する実施例1及び実施例2においては、六価クロムの浄化がなされ、また精製糖廃糖蜜濃度が高い実施例2においては、実施例1に比べより高い浄化が行われることが分かる。   From Table 1, in Comparative Example 1 that does not contain purified molasses molasses, there was no change in the concentration of hexavalent chromium, whereas in Examples 1 and 2 containing purified molasses molasses, In Example 2 where the purification is performed and the concentration of the refined molasses molasses is high, it can be seen that a higher purification is performed than in Example 1.

(実施例3)
水80部に対し、20部の精製糖廃糖蜜を溶解して、20%精製糖廃糖蜜水溶液を調製し、この精製糖廃糖蜜水溶液を121℃で15分間加熱し、無菌状態にした。その後、121℃で15分間加熱して無菌状態とされた水と前記20%精製糖廃糖蜜水溶液を混ぜて、0.4%精製糖廃糖蜜水溶液を調製した。前記0.4%精製糖廃糖蜜水溶液に、六価クロム水溶液を添加して、0.53ppmの六価クロム濃度にした。これを常温で静置して、経時的に六価クロム濃度を測定した。溶液中の六価クロム濃度の測定は、実施例1と同様の方法で行った。結果を表2に示す。
(Example 3)
20 parts of purified molasses molasses was dissolved in 80 parts of water to prepare a 20% purified molasses molasses aqueous solution, and this purified molasses molasses aqueous solution was heated at 121 ° C. for 15 minutes to be aseptic. Thereafter, the 20% purified molasses molasses aqueous solution was mixed with water that had been sterilized by heating at 121 ° C. for 15 minutes to prepare a 0.4% purified molasses molasses aqueous solution. A hexavalent chromium aqueous solution was added to the 0.4% purified molasses molasses aqueous solution to obtain a hexavalent chromium concentration of 0.53 ppm. This was allowed to stand at room temperature, and the hexavalent chromium concentration was measured over time. The hexavalent chromium concentration in the solution was measured by the same method as in Example 1. The results are shown in Table 2.

(比較例2)
水60部に対し、40部のグルコースを溶解して、40%グルコース水溶液を調製し、これを121℃で15分間加熱し、無菌状態にした。その後、121℃で15分間加熱して無菌状態とされた水と前記40%グルコース水溶液を混ぜて、0.4%グルコース水溶液を調製した。前記0.4%グルコース水溶液に、六価クロム水溶液を添加して、0.53ppmの六価クロム濃度にした。これを常温で静置して、経時的に六価クロム濃度を測定した。溶液中の六価クロム濃度の測定は、実施例1と同様の方法で行った。結果を表2に示す。
(Comparative Example 2)
40 parts of glucose was dissolved in 60 parts of water to prepare a 40% glucose aqueous solution, which was heated at 121 ° C. for 15 minutes to be aseptic. Thereafter, water that had been sterilized by heating at 121 ° C. for 15 minutes and the 40% glucose aqueous solution were mixed to prepare a 0.4% glucose aqueous solution. A hexavalent chromium aqueous solution was added to the 0.4% glucose aqueous solution to obtain a hexavalent chromium concentration of 0.53 ppm. This was allowed to stand at room temperature, and the hexavalent chromium concentration was measured over time. The hexavalent chromium concentration in the solution was measured by the same method as in Example 1. The results are shown in Table 2.

(比較例3)
0.4%グルコース水溶液に代えて、121℃で15分間加熱し無菌状態とされた水を用いることを除き実施例3と同様にして、0.53ppm六価クロム水溶液を調製し、溶液中の六価クロム濃度を実施例1と同様の方法で経時的に測定した。結果を表2に示す。
(Comparative Example 3)
A 0.53 ppm hexavalent chromium aqueous solution was prepared in the same manner as in Example 3 except that water that had been sterilized by heating at 121 ° C. for 15 minutes was used instead of the 0.4% glucose aqueous solution. The hexavalent chromium concentration was measured over time by the same method as in Example 1. The results are shown in Table 2.

Figure 0004807709
Figure 0004807709

表2から、精製糖廃糖蜜を用いた実施例3においては時間の経過とともに六価クロム濃度が減少し、六価クロム浄化が行われたものの、グルコースを用いた比較例2および何も添加しなかった比較例3では、ともに時間が経過しても六価クロム濃度はほとんど変化せず、またグルコース添加による効果は六価クロム浄化剤無添加の比較例3と同じであることから、グルコースには六価クロム浄化作用はほとんどないと考えられる。   From Table 2, in Example 3 using refined molasses molasses, the hexavalent chromium concentration decreased with the passage of time and purification of hexavalent chromium was performed, but Comparative Example 2 using glucose and nothing was added. In Comparative Example 3 that did not, the hexavalent chromium concentration hardly changed over time in both cases, and the effect of addition of glucose was the same as that of Comparative Example 3 without addition of the hexavalent chromium purifier. Is considered to have little hexavalent chromium purification effect.

(比較例4)
水を121℃で15分間加熱して、無菌状態の水を調製した。10%蔗糖水溶液をフィルター滅菌し、これに前記無菌状態の水を加え0.4%蔗糖水溶液を調製した。こうして調製された蔗糖水溶液100部に対し10mM六価クロム水溶液0.2部を添加して、実施例1と同様な方法により経時的に六価クロム濃度を測定した。結果を表3に示す。
(Comparative Example 4)
Water was heated at 121 ° C. for 15 minutes to prepare sterile water. A 10% sucrose aqueous solution was sterilized by filtration, and aseptic water was added thereto to prepare a 0.4% sucrose aqueous solution. To 100 parts of the sucrose aqueous solution thus prepared, 0.2 part of 10 mM hexavalent chromium aqueous solution was added, and the hexavalent chromium concentration was measured over time by the same method as in Example 1. The results are shown in Table 3.

(比較例5)
蔗糖水溶液を用いないことを除き比較例4と同様にして六価クロム含有水溶液を調製し、比較例4と同様にして経時的に六価クロム濃度を測定した。結果を表3に示す。
(Comparative Example 5)
A hexavalent chromium-containing aqueous solution was prepared in the same manner as in Comparative Example 4 except that the sucrose aqueous solution was not used, and the hexavalent chromium concentration was measured over time in the same manner as in Comparative Example 4. The results are shown in Table 3.

Figure 0004807709
Figure 0004807709

表3から、蔗糖を添加した比較例4の水溶液は、六価クロム濃度が低減しなかった。比較例5の無添加のものも同様に六価クロム濃度の低減を示さなかった。したがって、蔗糖には六価クロム浄化作用はないものと考えられる。   From Table 3, the aqueous solution of Comparative Example 4 to which sucrose was added did not reduce the hexavalent chromium concentration. Similarly, the additive-free sample of Comparative Example 5 did not show a reduction in the hexavalent chromium concentration. Therefore, it is considered that sucrose has no hexavalent chromium purification action.

表1〜3の結果から、精製糖廃糖蜜の六価クロムに対する還元力が極めて優れていることが分かる。また、従来六価クロム浄化剤として提案された還元糖の中で好ましいものとして挙げられたグルコースによっては、六価クロム浄化効果(還元力)はないこと、さらに廃糖蜜に含まれる蔗糖にも六価クロムの浄化作用(還元力)が無く、このため精製糖廃糖蜜の六価クロム還元力は少なくとも蔗糖、グルコース還元糖などによるものでないことが分かる。   From the results of Tables 1 to 3, it can be seen that the reducing power of purified molasses molasses to hexavalent chromium is extremely excellent. In addition, depending on the glucose that has been cited as a preferred reducing sugar proposed as a hexavalent chromium purification agent, there is no hexavalent chromium purification effect (reducing power), and sucrose contained in waste molasses also has six. It can be seen that there is no purifying action (reducing power) of valent chromium, and therefore the hexavalent chromium reducing power of the refined molasses molasses is not due to at least sucrose, glucose reducing sugar, etc.

(実施例4〜7、比較例6)
コンクリート塊を破砕した際に得られた粒径10mm以下の再生砂(野外に山積みされていた再生砂)を浄化対象物として用いた。一方、六価クロム浄化剤として、精製糖廃糖蜜100部に対し水を100部用いて希釈した水溶液、すなわち水で2倍(重量ベース)に希釈した精製糖廃糖蜜水溶液を用いた。まず、再生砂300gをボール状の容器に入れ、これに前記精製糖廃糖蜜水溶液を、噴霧器で0.30g(精製糖廃糖蜜の量で0.15g;再生砂に対し0.05%:実施例4)、0.60g(精製糖廃糖蜜の量で0.30g;再生砂に対し0.10%:実施例5)、1.2g(精製糖廃糖蜜の量で0.60g;再生砂に対し0.20%:実施例6)、3.0g(精製糖廃糖蜜の量で1.5g;再生砂に対し1.00%:実施例7)各々噴霧した後、ボール状の容器の中で攪拌し、ビニール袋に入れ静置した。こうして得られた精製糖廃糖蜜水溶液処理された再生砂について、六価クロム溶出量をJIS K 0102−65.2.1に準拠して2週間後に測定した。なお、比較のため、水0.30gを噴霧した再生砂(比較例6)の六価クロム溶出量も同様に測定した。結果を表4に示す。
(Examples 4-7, Comparative Example 6)
Recycled sand having a particle size of 10 mm or less (recycled sand piled up outdoors) obtained when crushing a concrete lump was used as a purification target. On the other hand, as the hexavalent chromium purifier, an aqueous solution diluted with 100 parts of water with respect to 100 parts of purified molasses molasses, that is, an aqueous solution of purified molasses molasses diluted twice (by weight) with water. First, 300 g of reclaimed sand is placed in a ball-shaped container, and 0.30 g of the refined molasses molasses aqueous solution is added to this with a sprayer (0.15 g of the amount of refined molasses molasses; 0.05% with respect to the reclaimed sand: implemented) Example 4), 0.60 g (0.30 g in the amount of refined molasses molasses; 0.10% with respect to regenerated sand: Example 5), 1.2 g (0.60 g in the amount of refined molasses molasses; regenerated sand 0.20% for Example 6), 3.0 g (1.5 g in the amount of refined molasses molasses; 1.00% for the regenerated sand: Example 7) After spraying each, The mixture was stirred inside and placed in a plastic bag. About the regenerated sand treated with the purified molasses molasses aqueous solution thus obtained, the elution amount of hexavalent chromium was measured after 2 weeks in accordance with JIS K 0102-65.2.1. For comparison, the hexavalent chromium elution amount of regenerated sand sprayed with 0.30 g of water (Comparative Example 6) was also measured. The results are shown in Table 4.

Figure 0004807709
Figure 0004807709

(実施例8〜11、比較例7)
被処理再生砂を121℃で15分加熱して無菌化することを除き実施例4〜7及び比較例6と同様に処理し、実施例4〜7、比較例6と同様の方法で、2週間後に六価クロム溶出量を測定した。結果を表5に示す。
(Examples 8 to 11 and Comparative Example 7)
The treated reclaimed sand was treated in the same manner as in Examples 4-7 and Comparative Example 6 except that it was sterilized by heating at 121 ° C. for 15 minutes. The elution amount of hexavalent chromium was measured after a week. The results are shown in Table 5.

Figure 0004807709
Figure 0004807709

表4および表5から、六価クロム処理剤として精製糖廃糖蜜水溶液を用いることにより、2週間後六価クロムの溶出量が減少し、その減少は使用量が多くなるに従って少なくなることが分かる。また、無菌化した再生砂と無菌化していない再生砂において同じ結果が得られたことから、本発明の精製糖廃糖蜜を用いた六価クロム浄化処理は、再生砂に存在する微生物の効果によるものではなく、また本発明の浄化処理は微生物の影響を受けるものでないことも分かる。   From Table 4 and Table 5, it can be seen that by using purified molasses molasses aqueous solution as a hexavalent chromium treatment agent, the elution amount of hexavalent chromium decreases after 2 weeks, and the decrease decreases as the amount of use increases. . Moreover, since the same result was obtained in the sterilized regenerated sand and the non-sterilized reclaimed sand, the hexavalent chromium purification treatment using the refined molasses molasses of the present invention depends on the effect of microorganisms present in the regenerated sand. It is also understood that the purification treatment of the present invention is not affected by microorganisms.

なお、実施例4〜11において、振とう前の処理された再生砂のpH値をJIS K 0102−12.1に準拠して測定したところ、10.3〜10.6であり、振とう後6時間後の処理された再生砂のpH値はこれより0.4〜0.5pH値が上がり、10.8〜11.0となっていた。未処理の再生砂の振とう前のpH値は、10.3であり、振とう後6時間後のpH値は10.9であった。   In Examples 4 to 11, when the pH value of the treated recycled sand before shaking was measured in accordance with JIS K 0102-12.1, it was 10.3 to 10.6, and after shaking. The pH value of the treated recycled sand after 6 hours was 0.4 to 0.5 higher than this, and was 10.8 to 11.0. The untreated reclaimed sand had a pH value of 10.3 before shaking, and a pH value of 10.9 after 6 hours of shaking.

(実施例12〜16、比較例8)
粒径10mm以下の被処理再生砂として、実施例4〜7、比較例6で用いたものとは異なる再生砂を用い、噴霧量を、300gの再生砂に対し、0.30g(精製糖廃糖蜜の量で0.15g;再生砂に対し0.05%:実施例12)、0.60g(精製糖廃糖蜜の量で0.30g;再生砂に対し0.10%:実施例13)、1.2g(精製糖廃糖蜜の量で0.60g;再生砂に対し0.20%:実施例14)、3.0g(精製糖廃糖蜜の量で1.5g;再生砂に対し1.00%:実施例15)、6.0g(精製糖廃糖蜜の量で3.0g;再生砂に対し1.00%:実施例16)とすることを除き、実施例4〜7、比較例6と同様にして処理を行い、3日後、4日後、5日後、7日後の六価クロム溶出量をJIS K 0102−65.2.1に準拠して測定した。結果を表6に示す。
(Examples 12 to 16, Comparative Example 8)
As treated sand having a particle size of 10 mm or less, recycled sand different from those used in Examples 4 to 7 and Comparative Example 6 was used, and the amount of spray was 0.30 g (refined sugar waste) with respect to 300 g of recycled sand. 0.15 g of molasses; 0.05% based on recycled sand: Example 12), 0.60 g (0.30 g based on the amount of purified molasses molasses; 0.10% based on recycled sand: Example 13) 1.2 g (0.60 g in the amount of refined molasses molasses; 0.20% with respect to the regenerated sand: Example 14), 3.0 g (1.5 g in the amount of refined molasses molasses; 1 with respect to the regenerated sand) 0.004: Example 15), 6.0 g (3.0 g in the amount of refined molasses molasses; 1.00% based on recycled sand: Example 16) The treatment was performed in the same manner as in Example 6, and the elution amount of hexavalent chromium after 3 days, 4 days, 5 days, and 7 days was changed to JIS K 0102-65.2.1. Compliant and was measured. The results are shown in Table 6.

Figure 0004807709
Figure 0004807709

表6から、3日後の値と7日後の値がほとんど同じであることから、精製糖廃糖蜜による六価クロム処理の大部分は3日目までに終了したものと考えられる。また、六価クロムの減少量は、ほぼ精製糖廃糖蜜の量に比例することが伺え、使用された精製糖廃糖蜜による還元力が使い果たされた後には、さらなる還元は起こらなかったと考えられる。   From Table 6, since the value after 3 days and the value after 7 days are almost the same, most of the hexavalent chromium treatment with the refined molasses molasses is considered to be completed by the 3rd day. The decrease in hexavalent chromium was almost proportional to the amount of purified molasses molasses, and no further reduction occurred after the reducing power of the used molasses molasses was exhausted. It is done.

(実施例17)
粒径10mm以下の再生砂5gに100mM六価クロム水溶液15μLを添加し、これを被処理試料として用いた。なお、水はイオン交換水を用いた。この被処理試料に対し1%精製糖廃糖蜜水溶液10mLを混合した。所定時間静置した後試料中の六価クロム量をジフェニルカルバジド吸光光度法により測定した。結果を表7に示す。
(Example 17)
15 μL of a 100 mM hexavalent chromium aqueous solution was added to 5 g of recycled sand having a particle size of 10 mm or less, and this was used as a sample to be treated. In addition, ion-exchange water was used for water. This treated sample was mixed with 10 mL of 1% purified molasses molasses aqueous solution. After standing for a predetermined time, the amount of hexavalent chromium in the sample was measured by diphenylcarbazide absorptiometry. The results are shown in Table 7.

(比較例9)
精製糖廃糖蜜水溶液を加えないことを除き実施例17と同様にして被処理試料を調製し、実施例17同様試料中の六価クロム量を測定した。結果を表7に示す。
(Comparative Example 9)
A sample to be treated was prepared in the same manner as in Example 17 except that the purified molasses molasses aqueous solution was not added, and the amount of hexavalent chromium in the sample was measured as in Example 17. The results are shown in Table 7.

Figure 0004807709
Figure 0004807709

以上詳細に述べたように、本発明の六価クロム浄化剤を用いることにより、安全、簡便、環境に優しく、安価に、建設産業廃棄物であるコンクリート塊の破砕物、土壌、廃液など六価クロム含有物の六価クロム浄化が行われ、路盤材・埋め戻し材等に安全に利用可能なコンクリート再生材料の製造、安全な土壌の形成、廃液の無公害化を行うことが可能となる。   As described above in detail, by using the hexavalent chromium purifying agent of the present invention, it is safe, simple, environmentally friendly and inexpensive, such as concrete block crushed material, soil, waste liquid, etc. Hexavalent chromium purification of chromium-containing materials is performed, and it becomes possible to produce concrete recycled materials that can be safely used for roadbed materials, backfill materials, etc., to form safe soil, and to make waste liquids pollution-free.

Claims (6)

廃糖蜜を含有することを特徴とするコンクリート廃材の砕石材用六価クロム浄化剤。 A hexavalent chromium purifying agent for crushed stone of concrete waste, characterized by containing molasses. 前記六価クロム浄化剤にさらに水が含まれることを特徴とする請求項1記載のコンクリート廃材の砕石材用六価クロム浄化剤。 The hexavalent chromium purification agent for a crushed stone material of a concrete waste material according to claim 1, wherein the hexavalent chromium purification agent further contains water. 前記コンクリート廃材の砕石材が再生砂であることを特徴とする請求項1または2に記載のコンクリート廃材の砕石材用六価クロム浄化剤。 The hexavalent chromium purifying agent for crushed stone of concrete waste according to claim 1 or 2, wherein the crushed stone of the concrete scrap is recycled sand. 請求項1または2記載の六価クロム浄化剤を用いて六価クロム含有物であるコンクリート廃材の砕石材を処理することを特徴とする六価クロム含有物の六価クロム浄化方法。 A hexavalent chromium purification method for hexavalent chromium-containing materials, comprising treating a crushed stone material of concrete waste that is hexavalent chromium-containing materials using the hexavalent chromium purification agent according to claim 1 or 2. 前記六価クロム含有物であるコンクリート廃材の砕石材に前記六価クロム浄化剤を噴霧することを特徴とする請求項記載の六価クロム含有物の六価クロム浄化方法。 The method for purifying hexavalent chromium in a hexavalent chromium-containing material according to claim 4 , wherein the hexavalent chromium-cleaning agent is sprayed onto a crushed stone material of concrete waste that is the hexavalent chromium-containing material. 前記六価クロム含有物であるコンクリート廃材の砕石材を前記六価クロム浄化剤に浸漬することを特徴とする請求項記載の六価クロム含有物の六価クロム浄化方法。 The method for purifying hexavalent chromium in a hexavalent chromium-containing material according to claim 4 , wherein the crushed stone of concrete waste material that is the hexavalent chromium-containing material is immersed in the hexavalent chromium purifying agent.
JP2010280440A 2010-12-16 2010-12-16 Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material Active JP4807709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280440A JP4807709B1 (en) 2010-12-16 2010-12-16 Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280440A JP4807709B1 (en) 2010-12-16 2010-12-16 Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material

Publications (2)

Publication Number Publication Date
JP4807709B1 true JP4807709B1 (en) 2011-11-02
JP2012126843A JP2012126843A (en) 2012-07-05

Family

ID=45044140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280440A Active JP4807709B1 (en) 2010-12-16 2010-12-16 Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material

Country Status (1)

Country Link
JP (1) JP4807709B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741369A (en) * 2015-04-03 2015-07-01 北京建工环境修复股份有限公司 Application of molasses in chromium-polluted soil remediation and remediation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189594A (en) * 2013-03-26 2014-10-06 Hiroo Ninagawa Hexavalent chromium reducing agent and fixing agent, and hexavalent chromium treatment method using the agents
CN104973926A (en) * 2015-05-05 2015-10-14 马鞍山科邦生态肥有限公司 Biomass-charcoal-enveloped microbial fertilizer and preparation method thereof
CN105461463A (en) * 2016-01-13 2016-04-06 于景成 Environment-friendly biochar-based organic fertilizer and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741369A (en) * 2015-04-03 2015-07-01 北京建工环境修复股份有限公司 Application of molasses in chromium-polluted soil remediation and remediation method

Also Published As

Publication number Publication date
JP2012126843A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
CN103881727B (en) The stabilizing and curing agent of remediating heavy metal and toxic organic compound combined contamination soil and using method thereof
CN106001104A (en) Method for restoration of petroleum-polluted soil by aboriginal bacteria
JP4807709B1 (en) Hexavalent chromium purification agent and hexavalent chromium purification method for hexavalent chromium-containing material
Huang et al. Pilot-scale demonstration of the hybrid zero-valent iron process for treating flue-gas-desulfurization wastewater: Part I
CN107159701B (en) Method for simultaneously removing arsenic and antimony in soil
CN1103628A (en) Drinking water purifying technique with compound permanganate medicament
KR20100066540A (en) Method for the bioremediation of soil and/or water contaminated by organic and/or inorganic compounds
CN108672482A (en) One heavy metal species fixative and heavy-metal contaminated soil curing
JP2006204963A (en) Cleaning agent and cleaning method for soil, ground water and bottom sediment contaminated by hexavalent chromium
CN109652079A (en) A kind of flyash modified method and application for mercury pollution original position soil reparation
CN105948275A (en) Sewage treatment agent and preparation method thereof
CN107055726B (en) A kind of composite flocculation agent and its preparation method and application
CN102002367A (en) Eluent for soil polluted by organochlorine pesticides and repair method by using same
CN105016591A (en) Novel heavy metal repair agent for sludge
KR101146785B1 (en) Method for ex-situ restoration of contaminated soil
CN107282626A (en) A kind of lead-contaminated soil stabilizes restorative procedure
CN109504389B (en) Soil remediation agent capable of treating heavy metal pollution and preparation method thereof
CN110407266A (en) Slow-release medicament for in-situ remediation of underground water polluted by hydrochloric ether in deep mine
CN105540637A (en) Leaching method of river channel sediment polluted by heavy metals
KR101196987B1 (en) Method for Ex-situ Restoration of Contaminated Soil
CN107973505A (en) A kind of Treatment of Sludge additive and preparation method thereof
Daud et al. Ammoniacal nitrogen removal using flamboyant pods (Delonix regia) adsorbent for natural rubber wastewater treatment
CN106927537A (en) A kind of river course concave convex rod purification of water quality bag and preparation method
GB2613099A (en) Micro-mechanical augmented bioremediation method for treatment of oil contaminated soil
RU2326823C1 (en) Sorption drinking water treatment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4807709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250