JP4804659B2 - Method for producing porous carbon material for protein adsorption - Google Patents

Method for producing porous carbon material for protein adsorption Download PDF

Info

Publication number
JP4804659B2
JP4804659B2 JP2001210816A JP2001210816A JP4804659B2 JP 4804659 B2 JP4804659 B2 JP 4804659B2 JP 2001210816 A JP2001210816 A JP 2001210816A JP 2001210816 A JP2001210816 A JP 2001210816A JP 4804659 B2 JP4804659 B2 JP 4804659B2
Authority
JP
Japan
Prior art keywords
carbonization
protein
carbon material
adsorption
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001210816A
Other languages
Japanese (ja)
Other versions
JP2003026408A (en
Inventor
聡 林
加奈子 平井
仁士 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshoku Corp
Original Assignee
Nisshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshoku Corp filed Critical Nisshoku Corp
Priority to JP2001210816A priority Critical patent/JP4804659B2/en
Publication of JP2003026408A publication Critical patent/JP2003026408A/en
Application granted granted Critical
Publication of JP4804659B2 publication Critical patent/JP4804659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、タンパク質を吸着するのに用いられるタンパク質吸着用多孔質炭素材料の製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
タンパク質の吸着材としてはハイドロキシアパタイトやイオン交換樹脂が用いられており、吸着材として最も汎用性の高い活性炭はタンパク質の吸着性に劣り使用されていない。これは活性炭の細孔が小さく巨大分子(分子量が10,000以上)であるタンパク質を吸着できないためである。
【0003】
すなわち、前記活性炭は10nm以下のマイクロ孔が発達し、低分子量の有機物の吸着には優れているが、高分子量の物質はほとんど吸着できない。タンパク質は分子量が10,000以上ある高分子物質であるため活性炭による吸着量は極めて少ない。一方、ハイドロキシアパタイトはイオン間相互作用を利用して吸着させるもので液体クロマトグラフィーに利用されているが、タンパク質吸着材としての吸着量は少ない。また、イオン交換樹脂は吸着能が高く、陰イオン交換樹脂、陽イオン交換樹脂により塩基性、酸性のタンパク質を吸着することができ、その吸着量も多い。
【0004】
そして、従来のタンパク質吸着材はタンパクの吸着分離に使用され、吸着のみではなく脱着能も必要とされる。そのため高いレベルでの性能が要求されており、かつ、高価である。
【0005】
本発明は上述の事柄に留意してなされたもので、その目的は、食品、医薬品における除タンパクが必要とされる工程、例えば醤油や清酒を製造する際の除タンパク用として使用することができる安価なタンパク質吸着材としてのタンパク質吸着用多孔質炭素材料の製造方法を提供するものである。また、塩基性タンパク質の吸着に優れたタンパク質吸着用多孔質炭素材料の製造方法を提供するものである。
【0006】
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、植物性多孔質材料を水酸化カルシウムの溶液または水酸化カルシウムの懸濁液に浸漬させた後に炭化することを特徴とするタンパク質吸着用多孔質炭素材料の製造方法を提供する。
【0008】
本発明で用いる植物性多孔質材料としては、例えば木材や竹のチップ、木毛、オガクズ、ヤシやシュロなどの繊維を挙げることができる。大きさ(長さ)は、10mm以下が好ましく、5mm以下がより好ましい。10mmより長ければ、Caが十分に内部まで浸透できないからである。
【0009】
前記植物性多孔質材料は、水酸化カルシウムの溶液または水酸化カルシウムの懸濁液に浸漬されることにより、炭化前にCaが導入される。水酸化カルシウムの溶液または水酸化カルシウムの懸濁液の濃度は、0.2%以上が好ましいが、水酸化カルシウム懸濁液濃度は、木材チップ量と懸濁液量の関係により変化する。つまり、木材チップなどに導入される水酸化カルシウムは木材チップの乾物重量に対し、4〜5%であるため、浸漬した木材に吸収される水酸化カルシウム量を差し引いても水酸化カルシウム溶液または水酸化カルシウム懸濁液中の水酸化カルシウム量は飽和水酸化カルシウム溶液の濃度0.17%以上になることが望ましい。また、浸漬時間は、木材チップ量、濃度などに応じて適宜設定される。
【0010】
Caが導入された前記植物性多孔質材料は炭化に付される。この炭化は、単窯、ロータリーキルンなどで行える。ところで、木炭は通常蒸し焼きにして得られるものであるが、蒸し焼き工程のみであることからタンパク質が吸着可能な大きさの細孔は発達していないのに対し、本発明では、炭化後の細孔径分布が10〜100nmにピークが存在するように炭化温度を700〜1100℃とし、かつ炭化時間を調整することを特徴とするタンパク質吸着用多孔質炭素材料(以下、Ca導入炭という)の製造方法を提供するものである。
【0011】
すなわち、炭化後の前記細孔径分布のピーク値が10〜100nmになるよう炭化温度、炭化時間、炭化時に送り込む空気の量の調整を行う。
【0012】
また、炭化時に、賦活を施すことによっても前記規定の細孔径分布を得ることができる。この賦活工程とは、高温で空気や水蒸気などのガスを送り込む操作である。これにより、炭化後の前記細孔径分布のみならず、炭化後の比表面積を500〜800m2 /gにできる。
【0013】
そして、賦活工程の有無にかかわらず、前記炭化温度は、700〜1100℃が好ましく、800〜900℃がより好ましい。炭化温度700℃以下では炭化時間を長くしても必要とする細孔が発達せず、また、1100℃以上ではミクロ孔が発達してしまうからである。また、前記炭化時間は10時間以上が好ましい。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
まず、Ca導入炭の製造方法について説明する。
【0015】
10mm以下の木材チップ、好ましくは針葉樹5mm以下を、濃度0.2%以上の水酸化カルシウム懸濁液(または水酸化カルシウムの溶液)中に1時間以上浸漬させた後、水洗し、乾燥した後、温度700〜1100℃、好ましくは温度800〜900℃で炭化させる。炭化は、単窯、ロータリーキルンなどで10時間程度の時間をかけて行い、Ca導入炭を得ることができる。このCa導入炭として、比表面積が、500〜800m2 /g、細孔径分布が10〜100nmの多孔質炭素材料が得られた。このような所定の構造を持つ多孔質炭素材料をより確実に得る方法として、必要に応じて、空気、水蒸気などのガスを送り込み、賦活する方法がある。この賦活工程を加えることにより、炭化時間の短縮とか、比表面積、細孔径分布などがより正確に所定の範囲に含まれた多孔質炭素材料とすることができる。以上の工程で得られた炭素材料は、水洗して乾燥する。
【0016】
炭化した前記Ca導入炭中のCaは、粒径数十nmの微細な炭酸カルシウムとして存在し、このことが特に塩基性タンパク質の吸着率を高めている。例えば、Caを導入していない炭素材料(以下、Ca未導入炭という)を使用して、塩基性タンパク質を吸着させてみると、吸着量はCa導入炭の1/3以下である。このCa未導入炭に軽質炭酸カルシウムを共存させても、塩基性タンパク質の吸着量はほとんど増加しない。このことは、前記炭素材料中に微細なCaCO3 と必要とする細孔がバランス良く存在している構造を持つ前記Ca導入炭の方が高い吸着性を備えていることを示すものである。すなわち、前記塩基性タンパク質は前記微細なCaCO3 の表面に吸着されるもので、前記Ca導入炭は塩基性タンパク質の吸着に優れている。
【0017】
炭化温度700℃以下では炭化時間を長くしても必要とする細孔が発達せず、また、1100℃以上ではミクロ孔が発達してしまう。そのため、700〜1100℃の温度が好ましく、炭化時間は前記Ca導入炭の前記細孔径分布のピーク値が10〜100nmとなるよう調整するが、10時間以上の炭化時間が必要である。また、前記Ca導入炭の比表面積は活性炭よりも低い500〜800m2 /g程度で前記Ca導入炭の細孔径分布のピーク値が10〜100nmになるよう700℃から1100℃の炭化温度で炭化時間の調整を行うことが必要である。
【0018】
次に、前記Ca導入炭によるタンパク質の吸着量について説明する。
【0019】
炭化温度800℃で10時間炭化してなるCa導入炭(収率20%、CaCO3 :22%)と、炭化温度900℃で10時間炭化してなるCa導入炭(収率20%、CaCO3 :22%)とをそれぞれ吸着材サンプルA,Bとして用いた。そして、これらサンプルA,B100mgをそれぞれバイアル瓶に入れた。一方、濃度が3mg/mlのアルブミンの溶液、濃度が3mg/mlのミオグロビンの溶液、濃度が3mg/mlのリゾチームの溶液、濃度が3mg/mlのチトクロムCの溶液の四つのタンパク質の溶液をそれぞれ用意し、10mlずつを吸着材サンプルA,Bが入っている各バイアル瓶に加え、温度15℃で20時間振とうしたのち、濾別し、分光光度計により180nm付近のピークから吸光度を測定し、タンパク質の吸着量を求めた。
また、比較例として、前記Ca未導入炭、活性炭A(比表面積1200m2 /g)、活性炭B(比表面積1000m2 /g)、イオン交換樹脂、液体クロマトグラフィー用ハイドロキシアパタイトを用いて同様な実験を行った。
【0020】
そして、実験の結果、下記表1に示すような結果を得た。
【0021】
【表1】

Figure 0004804659
【0022】
ここで、例えばタンパク質の溶液10ml中に30mgのタンパク質があり、それら全てが100mgのサンプルに吸着されれば、各タンパク質溶液に対するサンプルの吸着量(mg/g)は、
30mg÷100mg=300mg/gとなる。
逆に、例えば、吸着量が72mg/gであれば、100mgのサンプルが7.2mgのタンパク質を吸着し、そのタンパク質溶液中には22.8mgのタンパク質が残っていることになる。
【0023】
上記表1より、本発明による前記Ca導入炭、すなわち、カルシウム含有多孔質炭素材料がタンパク質の吸着においてきわめて優れていることが明らかである。
【0024】
【発明の効果】
上述したように、この発明により、安価なタンパク質吸着材として、食品、医薬品における除タンパクが必要とされる工程で使用することができるとともに、塩基性タンパク質の吸着に優れたタンパク質吸着用多孔質炭素材料の製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous manufacturing method of a carbon materials for protein adsorption used to adsorb proteins.
[0002]
[Background Art and Problems to be Solved by the Invention]
Hydroxyapatite or ion exchange resin is used as the protein adsorbent, and the most versatile activated carbon as the adsorbent is inferior in protein adsorption and is not used. This is because the activated carbon has small pores and cannot adsorb proteins that are macromolecules (molecular weight of 10,000 or more).
[0003]
That is, the activated carbon has micropores of 10 nm or less and is excellent in the adsorption of low molecular weight organic substances, but can hardly adsorb high molecular weight substances. Since protein is a polymer substance having a molecular weight of 10,000 or more, the amount of adsorption by activated carbon is very small. On the other hand, hydroxyapatite is adsorbed by utilizing interaction between ions and is used in liquid chromatography, but the amount of adsorption as a protein adsorbent is small. In addition, the ion exchange resin has a high adsorption capacity, and it can adsorb basic and acidic proteins with an anion exchange resin and a cation exchange resin, and has a large amount of adsorption.
[0004]
The conventional protein adsorbent is used for protein adsorption separation and requires not only adsorption but also desorption ability. Therefore, a high level of performance is required and it is expensive.
[0005]
The present invention has been made in consideration of the above-mentioned matters, and its purpose can be used for deproteinization in the process of requiring deproteinization in foods and pharmaceuticals, for example, soy sauce and sake. there is provided a manufacturing method of an inexpensive protein adsorption as protein adsorbent porous carbon materials. Further, there is provided a manufacturing method excellent protein adsorption for porous carbon materials for the adsorption of basic proteins.
[0006]
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a porous carbon material for protein adsorption, characterized in that the plant porous material is carbonized after being immersed in a calcium hydroxide solution or a calcium hydroxide suspension. A manufacturing method is provided.
[0008]
Examples of the plant porous material used in the present invention include fibers such as wood and bamboo chips, wood wool, sawdust, palm and palm. The size (length) is preferably 10 mm or less, and more preferably 5 mm or less. This is because if it is longer than 10 mm, Ca cannot sufficiently penetrate into the inside.
[0009]
The plant porous material is immersed in a calcium hydroxide solution or a calcium hydroxide suspension so that Ca is introduced before carbonization. The concentration of the calcium hydroxide solution or calcium hydroxide suspension is preferably 0.2% or more, but the calcium hydroxide suspension concentration varies depending on the relationship between the amount of wood chips and the amount of suspension. That is, calcium hydroxide introduced into wood chips and the like is 4 to 5% with respect to the dry weight of the wood chips. Therefore, even if the amount of calcium hydroxide absorbed by the immersed wood is subtracted, the calcium hydroxide solution or water The amount of calcium hydroxide in the calcium oxide suspension is desirably 0.17% or more of the saturated calcium hydroxide solution. Further, the immersion time is appropriately set according to the amount of wood chips, concentration, and the like.
[0010]
The plant porous material introduced with Ca is subjected to carbonization. This carbonization can be performed in a single kiln or a rotary kiln. By the way, charcoal is usually obtained by steaming, but since it is only a steaming process, pores of a size capable of adsorbing proteins have not developed, whereas in the present invention, the pore diameter after carbonization is not developed. A method for producing a protein-adsorbing porous carbon material (hereinafter referred to as Ca-introduced charcoal), characterized in that the carbonization temperature is set to 700 to 1100 ° C. so that the distribution has a peak at 10 to 100 nm and the carbonization time is adjusted. Is to provide.
[0011]
That is, the carbonization temperature, the carbonization time, and the amount of air fed during carbonization are adjusted so that the peak value of the pore size distribution after carbonization becomes 10 to 100 nm.
[0012]
The prescribed pore size distribution can also be obtained by applying activation during carbonization. This activation process is an operation of sending a gas such as air or water vapor at a high temperature. Thereby, not only the said pore diameter distribution after carbonization but the specific surface area after carbonization can be 500-800 m < 2 > / g.
[0013]
And regardless of the presence or absence of an activation process, 700-1100 degreeC is preferable and the said carbonization temperature has more preferable 800-900 degreeC. This is because, when the carbonization temperature is 700 ° C. or less, the necessary pores do not develop even when the carbonization time is lengthened, and when the temperature is 1100 ° C. or more, micropores develop. The carbonization time is preferably 10 hours or longer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
First, a method for producing Ca-introduced coal will be described.
[0015]
After immersing a wood chip of 10 mm or less, preferably 5 mm or less of softwood in a calcium hydroxide suspension (or calcium hydroxide solution) having a concentration of 0.2% or more for 1 hour or more, washing with water and drying. The carbonization is performed at a temperature of 700 to 1100 ° C, preferably at a temperature of 800 to 900 ° C. Carbonization can be performed in a single kiln, rotary kiln, etc. over about 10 hours to obtain Ca-introduced charcoal. As the Ca-introduced charcoal, a porous carbon material having a specific surface area of 500 to 800 m 2 / g and a pore size distribution of 10 to 100 nm was obtained. As a method for more reliably obtaining a porous carbon material having such a predetermined structure, there is a method in which a gas such as air or water vapor is fed and activated as necessary. By adding this activation step, it is possible to obtain a porous carbon material in which the carbonization time is shortened, the specific surface area, the pore diameter distribution and the like are more accurately included in a predetermined range. The carbon material obtained through the above steps is washed with water and dried.
[0016]
Ca in the carbonized Ca-introduced coal exists as fine calcium carbonate having a particle size of several tens of nanometers, and this particularly increases the adsorption rate of basic proteins. For example, when a basic material is adsorbed using a carbon material into which Ca is not introduced (hereinafter referred to as “Ca non-introduced charcoal”), the adsorption amount is 1/3 or less of that of Ca-introduced charcoal. Even if light calcium carbonate is allowed to coexist with this Ca non-introduced charcoal, the amount of basic protein adsorbed hardly increases. This indicates that the Ca-introduced coal having a structure in which fine CaCO 3 and necessary pores are present in a well-balanced manner in the carbon material has higher adsorptivity. That is, the basic protein is adsorbed on the surface of the fine CaCO 3 , and the Ca-introduced charcoal is excellent in adsorbing the basic protein.
[0017]
If the carbonization temperature is 700 ° C. or less, the necessary pores do not develop even if the carbonization time is prolonged, and if it is 1100 ° C. or more, micropores develop. Therefore, a temperature of 700 to 1100 ° C. is preferable, and the carbonization time is adjusted so that the peak value of the pore size distribution of the Ca-introduced coal is 10 to 100 nm, but the carbonization time of 10 hours or more is necessary. Further, the specific surface area of the Ca-introduced coal is about 500 to 800 m 2 / g lower than that of the activated carbon, and carbonization is performed at a carbonization temperature of 700 ° C. to 1100 ° C. so that the peak value of the pore diameter distribution of the Ca-introduced coal is 10 to 100 nm. It is necessary to adjust the time.
[0018]
Next, the amount of protein adsorbed by the Ca-introduced charcoal will be described.
[0019]
Ca-introduced carbon carbonized for 10 hours at a carbonization temperature of 800 ° C. (yield 20%, CaCO 3 : 22%) and Ca-introduced carbon carbonized for 10 hours at a carbonization temperature of 900 ° C. (yield 20%, CaCO 3 : 22%) were used as adsorbent samples A and B, respectively. And 100 mg of these samples A and B were put into vials, respectively. Meanwhile, an albumin solution with a concentration of 3 mg / ml, a myoglobin solution with a concentration of 3 mg / ml, a lysozyme solution with a concentration of 3 mg / ml, and a cytochrome C solution with a concentration of 3 mg / ml, respectively. Prepare, add 10 ml each to each vial containing adsorbent samples A and B, shake at a temperature of 15 ° C. for 20 hours, filter, and measure the absorbance from a peak near 180 nm with a spectrophotometer. The amount of protein adsorbed was determined.
Further, as a comparative example, the same experiment was conducted using the above-mentioned Ca non-introduced charcoal, activated carbon A (specific surface area 1200 m 2 / g), activated carbon B (specific surface area 1000 m 2 / g), ion exchange resin, and hydroxyapatite for liquid chromatography. Went.
[0020]
As a result of the experiment, the results shown in Table 1 below were obtained.
[0021]
[Table 1]
Figure 0004804659
[0022]
Here, for example, if there is 30 mg of protein in 10 ml of protein solution, and all of them are adsorbed to 100 mg of sample, the amount of adsorption of the sample to each protein solution (mg / g) is
30 mg / 100 mg = 300 mg / g.
On the other hand, for example, if the adsorption amount is 72 mg / g, the 100 mg sample adsorbs 7.2 mg of protein, and 22.8 mg of protein remains in the protein solution.
[0023]
From Table 1 above, it is clear that the Ca-introduced charcoal according to the present invention, that is, the calcium-containing porous carbon material, is extremely excellent in protein adsorption.
[0024]
【The invention's effect】
As described above, according to the present invention, the protein adsorbing porous charcoal can be used as an inexpensive protein adsorbing material in a process that requires deproteinization in foods and pharmaceuticals and has excellent basic protein adsorption. it is possible to provide a manufacturing method of the material fee.

Claims (2)

植物性多孔質材料を水酸化カルシウムの溶液または水酸化カルシウムの懸濁液に浸漬させた後に炭化することを特徴とするタンパク質吸着用多孔質炭素材料の製造方法。  A method for producing a porous carbon material for protein adsorption, characterized in that the plant porous material is carbonized after being immersed in a calcium hydroxide solution or a calcium hydroxide suspension. 炭化後の細孔径分布が10〜100nmにピークが存在するように炭化温度を700〜1100℃とし、かつ炭化時間を調整することを特徴とする請求項に記載のタンパク質吸着用多孔質炭素材料の製造方法。Pore size distribution and 700 to 1100 ° C. The carbonization temperature so that there is a peak in 10~100nm after carbonization, and a porous carbon material for protein adsorption according to claim 1, characterized in that adjusting the carbonization time Manufacturing method.
JP2001210816A 2001-07-11 2001-07-11 Method for producing porous carbon material for protein adsorption Expired - Lifetime JP4804659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210816A JP4804659B2 (en) 2001-07-11 2001-07-11 Method for producing porous carbon material for protein adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210816A JP4804659B2 (en) 2001-07-11 2001-07-11 Method for producing porous carbon material for protein adsorption

Publications (2)

Publication Number Publication Date
JP2003026408A JP2003026408A (en) 2003-01-29
JP4804659B2 true JP4804659B2 (en) 2011-11-02

Family

ID=19046227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210816A Expired - Lifetime JP4804659B2 (en) 2001-07-11 2001-07-11 Method for producing porous carbon material for protein adsorption

Country Status (1)

Country Link
JP (1) JP4804659B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070123420A1 (en) 2003-12-05 2007-05-31 Satoshi Hayashi Anion adsorbing carbon material, as well as manufacturing method and manufacturing facilities for same
JP2006001805A (en) * 2004-06-18 2006-01-05 Takasago Ind Co Ltd Method for producing carbonized material
JP4785174B2 (en) * 2004-12-10 2011-10-05 株式会社豊田中央研究所 Membrane protein composite material and method for producing the same
US11465902B2 (en) 2017-09-08 2022-10-11 Osamu Sugiyama Method for producing hydrogen gas
CN110467175B (en) * 2019-09-19 2021-01-08 深圳烯创先进材料研究院有限公司 Preparation method of graphene-reinforced biomass porous carbon electromagnetic wave-absorbing material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8723447D0 (en) * 1987-10-06 1987-11-11 Johnson & Johnson Ltd Wound dressing
JP2828268B2 (en) * 1989-06-15 1998-11-25 武田薬品工業株式会社 Activated carbon for advanced treatment of purified water
JP2902032B2 (en) * 1990-02-16 1999-06-07 忠一 平山 Spherical porous carbon particles and method for producing the same
JPH0954456A (en) * 1995-06-09 1997-02-25 Frontier:Kk Bone black material, apatite material and method for extracting apatite from bone ash
JP3566884B2 (en) * 1999-05-07 2004-09-15 日本植生株式会社 Calcium-containing porous carbon material
JP3468725B2 (en) * 1999-08-11 2003-11-17 日本植生株式会社 Water purification material

Also Published As

Publication number Publication date
JP2003026408A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
de Falco et al. Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons
Kaźmierczak et al. Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation
CN105188910B (en) Nitrogenous acticarbon and use its method
Nevskaia et al. Effects of the surface chemistry of carbon materials on the adsorption of phenol–aniline mixtures from water
El-Sayed et al. A study of acetaldehyde adsorption on activated carbons
JPH05168916A (en) Oxygen and carbon dioxide selective composite drting agent, preparation thereof, and method for adsorptive separation of nitrogen from oxygen
Wan et al. TiO2‐modified macroporous silica foams for advanced enrichment of multi‐phosphorylated peptides
Nowicki et al. Nitrogen-enriched activated carbons prepared by the activation of coniferous tree sawdust and their application in the removal of nitrogen dioxide
Chen et al. Fabricating efficient porous sorbents to capture organophosphorus pesticide in solution
JP4804659B2 (en) Method for producing porous carbon material for protein adsorption
Jerabek et al. Solvent impregnated resins: relation between impregnation process and polymer support morphology I. Di-(2-ethylhexyl) dithiophosphoric acid
Bagreev et al. Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants
Miao et al. Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air
KR102069492B1 (en) Method for producing metal impregnated activated carbon for concentration of low concentration ammonia
JP4887493B2 (en) Method for producing hydrophobic zeolite
Buszewski et al. Isolation and determination of sugars in Nicotiana tabacum on aminopropyl chemically bonded phase using SPE and HPLC
CN1256645A (en) Use of aerogels as adsorption agents
CN113209941A (en) Hydrophobic dual-ligand metal organic framework material, preparation method and application in VOCs adsorption
CN114749164A (en) Preparation method of sulfur dioxide and hydrogen sulfide gas adsorbent
JPH0824636A (en) Production of adsorbent and water purifying apparatus using the same
JP7004611B2 (en) Carbon dioxide adsorbent and its manufacturing method
KR102176439B1 (en) Amine adsorbent for co2 capture process
RU2493906C1 (en) Absorber, method of its production (versions) and method of carbon dioxide removal from gas mixes
JPH01288336A (en) Adsorbent for aldehydes
JP2007223826A (en) Heat-resistant activated carbon and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term