JP3566884B2 - Calcium-containing porous carbon material - Google Patents

Calcium-containing porous carbon material Download PDF

Info

Publication number
JP3566884B2
JP3566884B2 JP12725099A JP12725099A JP3566884B2 JP 3566884 B2 JP3566884 B2 JP 3566884B2 JP 12725099 A JP12725099 A JP 12725099A JP 12725099 A JP12725099 A JP 12725099A JP 3566884 B2 JP3566884 B2 JP 3566884B2
Authority
JP
Japan
Prior art keywords
calcium
carbon material
porous carbon
porous
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12725099A
Other languages
Japanese (ja)
Other versions
JP2000319011A (en
Inventor
聡 林
加奈子 平井
博之 岡
仁士 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshoku Corp
Original Assignee
Nisshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshoku Corp filed Critical Nisshoku Corp
Priority to JP12725099A priority Critical patent/JP3566884B2/en
Publication of JP2000319011A publication Critical patent/JP2000319011A/en
Application granted granted Critical
Publication of JP3566884B2 publication Critical patent/JP3566884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば排ガス中の塩素系ガスの除去などに用いて好適なカルシウム含有の多孔質炭素材料に関する。
【0002】
【従来の技術】
例えば、多孔質炭素材料の代表である活性炭は、空気浄化、用材回収、上下水道処理、排水処理などに広く応用され、また木炭も、調湿材や河川浄化、土壌改良材として広く普及しており、例えば排ガス中の塩素系ガスや硫黄酸化物などの除去にも利用されているが、これらは多孔質炭素材料の内部の微細な細孔による吸着特性だけを利用しているに過ぎないのであった。
【0003】
或いは、これらの活性炭を単独で利用するだけでなく、触媒活性を発現させるように、細孔表面に金属や塩化物を担持させた触媒担持の活性炭も、各種の反応に利用されており、この他に、活性炭の炭化前後に有機物と金属元とを混合させて、金属成分を微細に高分散させ、新たな触媒作用を発現させることも試みられているが、この技術では、炭素元に高価な樹脂を用い、金属元としてCo, Ni,Cu,Pt,Mo,Fe等の触媒作用の知られているものを用いており、何れも機能的には、担持した金属の触媒作用を狙いにしたもので高価であった。
【0004】
【発明が解決しようとする課題】
これらに代わる安価な塩素系ガスの除去技術として、活性炭と消石灰の粉末とを混合したものを、例えば焼却炉の煙道中に吹き込んで、焼却炉から排出される排ガス中の塩素系ガスを除去する技術が知られており、これは、消石灰と塩化水素ガスとの反応性と、活性炭のダイオキシン類などの他の塩素系物質の吸着性を利用したものであるが、消石灰の反応は粒子表面のみで起こるため反応性が低く、また、活性炭の吸着も十分、効率的に行われていないのが現状である。
【0005】
本発明は、かゝる実情に鑑みて成されたものであって、例えば塩素系ガスや硫黄酸化物等との反応性を極めて高くしたカルシウム含有の多孔質炭素材料を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明によるカルシウム含有の多孔質炭素材料は、炭化させる前の植物性多孔質材料を水酸化カルシウムの溶液または懸濁液に浸漬させてその植物組織内にカルシウム系化合物を取り込んだ後に炭化させて、植物性多孔質材料中の炭化組織内に、CaCO 3 が主体であるカルシウム系化合物を微細に高分散させた点に特徴がある。
【0007】
即ち、植物性多孔質材料、例えば導管や仮導管を有する一般の木材や、ヤシ繊維やジュート、麻、ビンロウジュ等の連続気孔を有する植物繊維、その他、藁や籾殻、竹などは、これらを炭化させると、例えば木材では導管を作っている組織の微細な孔が多孔質化し、ヤシ繊維などの植物繊維では連続気孔を形成している組織が多孔質化し、更に、藁や籾殻、竹などについても繊維組織が多孔質化して、膨大な表面積を有する多孔質の炭素材料と化す。
【0008】
一方、これらの植物性多孔質材料を炭化させる前に、これを水酸化カルシウムの溶液または懸濁液に浸漬させると、具体的には、ヤシ繊維やジュート、麻、ビンロウジュ等の連続気孔を有する植物繊維や藁、籾殻などの植物性多孔質材料については、これをそのまま用いて、水酸化カルシウムの溶液または懸濁液に浸漬させると、その植物組織内にカルシウム系化合物を取り込むことができる。
【0009】
また、木材についても、これをチップ化したり木毛に加工したりして、或いは、おが屑を利用したりして、これを水酸化カルシウムの溶液または懸濁液に浸漬させると、導管や仮導管を作っている組織内の微細な孔にカルシウム系化合物を取り込むことができるのであり、また、竹についても同様であって、これらカルシウム系化合物を取り込んだ植物性多孔質材料を炭化させることで、植物性多孔質材料中の炭化組織内に、CaCO 3 が主体であるカルシウム系化合物を微細に高分散させることができるのである。
【0010】
従って、本発明によるカルシウム含有の多孔質炭素材料を、例えば排ガス中の塩素系ガスの除去に用いると、多孔質炭素材料のガス吸着特性と微細なカルシウム化合物の高い反応性とによって、塩素系ガスを高効率で除去できるのであり、これに加えて、植物性多孔質材料の炭化組織における細孔径を計測したところ、この孔径が1〜2nm付近に分布していることと、代表的なダイオキシンの厚みが約0.3nmであって、ダイオキシン類の吸着は、1〜2nmの細孔を有する活性炭が有効であるとされていることから、本発明のカルシウム含有の多孔質炭素材料によれば、ダイオキシン類の吸着も高効率で達成されるのである。
【0011】
また、本発明によるカルシウム含有の多孔質炭素材料を燃焼時に使用すれば、ガス吸着特性と高い反応性とによって、排ガス中の硫黄酸化物を硫酸カルシウムとして高効率で除去できるのであり、このように除去率が高いことは即ち、従来の活性炭と消石灰の粉末との混合物の使用量に比較して、本発明による多孔質炭素材料の使用量を大幅に削減できるのであって、その分、使用済の炭素材料の例えば埋め立て処理等が軽減されることになる。
【0012】
更に、カルシウム含有の多孔質炭素材料を水質浄化のプロセスに用いると、カルシウムを含有することで、トリハロメタン等の有機塩素系化合物の反応吸着性が高まり、高効率での水質浄化も達成されるのであって、植物性多孔質材料として、ヤシ繊維やジュート、麻などをコスト的に安価に入手できる上に、処理に苦慮している間伐材や倒木材料、籾殻なども利用できることから、本発明によるカルシウム含有の多孔質炭素材料によれば、ガス浄化や水質浄化にとって好適な材料がコスト的に安価に提供されるのである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は例えば焼却炉1の煙道に接続された排ガス処理設備の一部を示し、後述するカルシウム含有の多孔質炭素材料2の投入手段3と、この多孔質炭素材料2を捕捉するためのバグフィルター4とを備えている。
【0014】
カルシウム含有の多孔質炭素材料2は、セルロースを主成分とする植物性多孔質材料を水酸化カルシウムの溶液または懸濁液に浸漬させてその植物組織内にカルシウム系化合物 を取り込んだ後に炭化させたものであって、この炭化によって、植物性多孔質材料中の炭化組織内に、CaCO 3 が主体であるカルシウム系化合物が微細に高分散されることになる。
【0015】
詳しくは、植物性多孔質材料として、例えばヤシ繊維やジュート、麻、ビンロウジュ、更には、竹や木材(間伐材、伐採木、廃木材など)、中でも好ましくは吸水性の高い針葉樹を、チップ化したものや木毛に加工したもの、更には、おが屑、藁、籾殻などを選択して、これを石灰水(水酸化カルシウムの溶液)または浸漬後表面に石灰が付着しない程度の薄い石灰乳(水酸化カルシウムの懸濁液)に3時間以上浸し、これを取り出して後に乾燥し、一般的な炭化炉を用いて炭化させるのであり、この際、石灰が表面に付着しない程度に植物性多孔質材料を石灰乳に浸すのは、石灰が大きな粒子になって、反応性が低下することが判明しているからである。
【0016】
炭化の温度範囲は、400〜1300℃とし、好ましくは、600〜1000℃とするが、これは、400℃付近の温度以下では、Ca(OH)2 が分解せずに、冷却後そのままCa(OH)2 が残ってしまったり、炭化が十分に進まなかったりするからである。
【0017】
また、1300℃付近の温度以上で炭化させてもよいのであるが、これでは耐火物やエネルギーコストが極めて高くなることから、1300℃以下としているのであり、実験結果では、600〜1000℃の温度範囲で、Ca(OH)2 の分解が確実に起こり、かつ、炭素材料の表面積も確実に大きくなることが判明していることから、好適には、600〜1000℃の温度範囲で炭化させるものとしているのであって、この温度範囲で炭化させた炭素材料中のカルシウム化合物は、主にCaCO3 が主体となっており、反応性を高める上で、Caとして1%以上を含ませることが必要であると考える。
【0018】
具体的に、赤松のチップ(厚さ1mmで5mm角)100gを10リットルの石灰水に3時間浸漬させ、110℃で半日乾燥させた後、900℃で炭化させたところ、原料中のCa(OH)2 は主としてCaCO3 が主体となっており、炭素材料中にはCaとして約6%を含有していた。
【0019】
更に、ヤシ繊維についても、同様にして石灰水に浸漬後、炭化させたところ、Caとして約7%を含有する炭素材料を得たのであり、このCaの含有量が多い理由は、ヤシ繊維は吸水性が高いことに加えて、顕微鏡写真を図面化した図2に照らして明らかなように、ヤシ繊維aは、その表面に、歪で複雑な形状の筋状の凹溝bを多数有する上に、複雑な形状の大小様々な窪みcを有し、更に、図示はしないが、大小様々な連続細孔を中空状に有して、炭化組織全体の表面積が膨大であることから、その炭化組織内にCaCO3 (カルシウム系化合物)dが微細に高分散されることとなり、これによって、赤松のチップに比べてCaの含有量が多なっているのである。
【0020】
これらの炭化物0.5gを石英ガラス管中に置き、HCl600ppmのガスを200℃で1時間通過させた時のHCl吸収量を測定した。比較として焼却炉用の活性炭30%入り消石灰においても同様な試験を行った。
【0021】
その結果、HCl吸収量は、本発明品であるカルシウム含有の多孔質炭素材料2は、赤松のチップで54%、ヤシ繊維で83%を吸収したのに対して、活性炭入り消石灰では52%であった。
【0022】
この実験結果から明らかなように、ヤシ繊維aによるカルシウム含有の多孔質炭素材料2を、例えば排ガス中の塩素系ガスの除去に用いると、多孔質炭素材料2のガス吸着特性と微細なカルシウム化合物の高い反応性とによって、排ガス中の塩素系ガスを高効率で除去することができる。
【0023】
或いは、ヤシ繊維aによるカルシウム含有の多孔質炭素材料2を例えば焼却炉に投入して、燃焼時に使用すれば、ガス吸着特性と高い反応性とによって、排ガス中の硫黄酸化物を硫酸カルシウムとして高効率で除去できるのであり、更に、水質浄化のプロセスに用いると、多孔質炭素材料2がカルシウムを含有することで、トリハロメタン等の有機塩素系化合物の反応吸着性が高まり、高効率での水質浄化も達成されるのである。
【0024】
一方、赤松のチップによるカルシウム含有の多孔質炭素材料2については、活性炭入り消石灰と同じ程度のHClを吸収することから、この赤松のチップによるカルシウム含有の多孔質炭素材料2は、活性炭入り消石灰の代替え品として好適に用いることができるのであり、勿論、この多孔質炭素材料2は、排ガス中の脱硫や水質浄化にも大きな効果をもたらすことに変わりはない。
【0025】
加えて、従来の活性炭入り消石灰では、バグフィルター4への付着が多くて集塵能力が低下し易いのに比較して、本発明によるカルシウム含有の多孔質炭素材料2は、バグフィルター4への付着が大幅に低減されるのであって、集塵能力の低下が抑止される上に、多孔質炭素材料2の回収が容易である点でも機能的に優れる。
【0026】
【発明の効果】
以上説明したように本発明によれば、炭化させる前の植物性多孔質材料を水酸化カルシウムの溶液または懸濁液に浸漬させてその植物組織内にカルシウム系化合物を取り込んだ後に炭化させ、得られる多孔質の炭素材料中にCaCO 3 が主体であるカルシウム系化合物を微細に高分散させた反応性の高い材料、即ち、例えば排ガス中の塩素系ガスや硫黄酸化物等を高効率で除去できる上に、水質浄化も高効率で達成される好適な材料が、コスト的に安価に提供される。
【図面の簡単な説明】
【図1】排ガス処理設備の一部の構成図である。
【図2】顕微鏡写真を図面化し、かつ、その一部を取り出して拡大図示したヤシ繊維表面の模式図である。
【符号の説明】
a…植物性多孔質材料、d…カルシウム系化合物。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a calcium-containing porous carbon material suitable for use, for example, for removing chlorine-based gas in exhaust gas.
[0002]
[Prior art]
For example, activated carbon, a representative of porous carbon materials, is widely applied to air purification, material recovery, water and sewage treatment, wastewater treatment, etc.Charcoal is also widely used as a moisture conditioner, river purification and soil improvement material. For example, they are also used to remove chlorine-based gas and sulfur oxides in exhaust gas.However, these use only the adsorption characteristics of fine pores inside the porous carbon material. there were.
[0003]
Alternatively, not only these activated carbons are used alone, but also a catalyst-supported activated carbon in which a metal or chloride is supported on the pore surface so as to exhibit catalytic activity, is also used for various reactions. Other attempts have been made to mix the organic matter with the metal source before and after the carbonization of the activated carbon to finely and highly disperse the metal component and to develop a new catalytic action. A resin with a known catalytic action, such as Co, Ni, Cu, Pt, Mo, Fe, etc., is used as a metal source. It was expensive.
[0004]
[Problems to be solved by the invention]
As an inexpensive technology for removing chlorine-based gas instead of these, a mixture of activated carbon and slaked lime powder is blown into, for example, the flue of an incinerator to remove chlorine-based gas in exhaust gas discharged from the incinerator. Technology is known, which utilizes the reactivity of slaked lime with hydrogen chloride gas and the adsorption of other chlorine-based substances such as dioxins in activated carbon, but the reaction of slaked lime is limited to the particle surface. As a result, the reactivity is low, and the adsorption of activated carbon is not sufficient and efficient at present.
[0005]
The present invention has been made in view of such circumstances, and has an object to provide a calcium-containing porous carbon material having extremely high reactivity with, for example, a chlorine-based gas or a sulfur oxide. I have.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the calcium-containing porous carbon material according to the present invention is provided by immersing a plant porous material before carbonization in a solution or suspension of calcium hydroxide so that calcium is contained in the plant tissue. It is characterized in that a calcium-based compound mainly composed of CaCO 3 is finely and highly dispersed in a carbonized tissue of a plant porous material by carbonizing after taking in a system-based compound.
[0007]
That is, plant porous materials, for example, general wood having conduits and temporary conduits, plant fibers having continuous pores such as coconut fiber, jute, hemp, areca, etc., straw, chaff, bamboo, etc. For example, in wood, the fine pores of the tissue forming the conduit become porous, and in the plant fiber such as palm fiber, the tissue forming continuous pores becomes porous, and furthermore, straw, chaff, bamboo, etc. Also, the fibrous structure becomes porous, and becomes a porous carbon material having an enormous surface area.
[0008]
On the other hand, before carbonizing these vegetable porous materials, when they are immersed in a solution or suspension of calcium hydroxide, specifically, they have continuous pores such as coconut fiber, jute, hemp, areca, etc. For a plant porous material such as plant fiber, straw, and rice hull, if this is used as it is and immersed in a solution or suspension of calcium hydroxide, the calcium compound can be taken into the plant tissue.
[0009]
Also, when wood is turned into chips or processed into wool, or sawdust is used, and immersed in a calcium hydroxide solution or suspension, the pipe or temporary pipe is used. The calcium-based compound can be taken into the fine pores in the tissue that is making the same, and the same is true for bamboo, by carbonizing the plant-based porous material incorporating these calcium-based compounds, The calcium-based compound mainly composed of CaCO 3 can be finely and highly dispersed in the carbonized tissue in the vegetable porous material.
[0010]
Therefore, when the calcium-containing porous carbon material according to the present invention is used, for example, for the removal of chlorine-based gas in exhaust gas, the chlorine-based gas is removed due to the gas adsorption characteristics of the porous carbon material and the high reactivity of fine calcium compounds. Can be removed with high efficiency. In addition, when the pore size in the carbonized tissue of the plant porous material was measured, this pore size was distributed in the vicinity of 1 to 2 nm, and the typical dioxin According to the calcium-containing porous carbon material of the present invention, since the activated carbon having a pore of 1 to 2 nm is effective for adsorbing dioxins and having a thickness of about 0.3 nm, Dioxin adsorption is also achieved with high efficiency.
[0011]
Further, if the calcium-containing porous carbon material according to the present invention is used at the time of combustion, the sulfur oxides in the exhaust gas can be removed as calcium sulfate with high efficiency due to the gas adsorption characteristics and high reactivity. The high removal rate means that the use amount of the porous carbon material according to the present invention can be greatly reduced as compared with the use amount of a conventional mixture of activated carbon and slaked lime powder. For example, the landfill treatment of the carbon material is reduced.
[0012]
Furthermore, when a calcium-containing porous carbon material is used in the water purification process, the inclusion of calcium enhances the reactive adsorption of organic chlorinated compounds such as trihalomethane and achieves highly efficient water purification. Therefore, as a vegetable porous material, palm fiber, jute, hemp, etc. can be obtained at a low cost, and in addition, thinning materials, fallen tree materials, rice husks, etc., which are difficult to treat, can be used. According to the porous carbon material containing calcium, a material suitable for gas purification and water purification can be provided at a low cost.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows, for example, a part of an exhaust gas treatment facility connected to a flue of an incinerator 1, a charging means 3 for a calcium-containing porous carbon material 2 described later, and a device for capturing the porous carbon material 2. And a bag filter 4.
[0014]
The calcium-containing porous carbon material 2 was carbonized after immersing a vegetable-based porous material containing cellulose as a main component in a solution or suspension of calcium hydroxide to incorporate a calcium-based compound into the plant tissue . By the carbonization , a calcium-based compound mainly composed of CaCO 3 is finely and highly dispersed in the carbonized tissue of the vegetable porous material.
[0015]
More specifically, as a porous vegetable material, for example, coconut fiber, jute, hemp, areca, bamboo and wood (thinned wood, cut wood, waste wood, etc.), and among them, preferably, conifers having high water absorption are formed into chips. And whisks, and also sawdust, straw, rice hulls, etc., which are then selected from lime water (a solution of calcium hydroxide) or thin lime milk (so that lime does not adhere to the surface after immersion) (Suspension of calcium hydroxide) for 3 hours or more, take out, dry, and carbonize using a general carbonization furnace. The material is immersed in milk of lime because it has been found that the lime becomes large particles and the reactivity is reduced.
[0016]
The temperature range of the carbonization is 400 to 1300 ° C., preferably 600 to 1000 ° C. At a temperature of around 400 ° C. or lower, Ca (OH) 2 does not decompose, This is because OH) 2 remains or carbonization does not proceed sufficiently.
[0017]
Further, carbonization may be performed at a temperature of about 1300 ° C. or higher. However, since refractory and energy costs are extremely high, the temperature is set to 1300 ° C. or lower. It has been found that the decomposition of Ca (OH) 2 surely occurs and the surface area of the carbon material surely increases within the range, so that carbonization is preferably performed in a temperature range of 600 to 1000C. The calcium compound in the carbon material carbonized in this temperature range is mainly composed of CaCO 3 , and it is necessary to contain 1% or more as Ca in order to enhance the reactivity. I believe that.
[0018]
Specifically, 100 g of Akamatsu chips (1 mm thick and 5 mm square) were immersed in 10 liters of lime water for 3 hours, dried at 110 ° C for half a day, and then carbonized at 900 ° C. OH) 2 was mainly composed of CaCO 3 , and contained about 6% as Ca in the carbon material.
[0019]
Furthermore, the coconut fiber was similarly immersed in lime water and carbonized to obtain a carbon material containing about 7% as Ca. The reason for the high Ca content was that coconut fiber was In addition to the high water absorption, as apparent from FIG. 2 in which the micrograph is drawn, the palm fiber a has a large number of strain-shaped concave grooves b on the surface thereof. In addition, it has variously large and small depressions c of a complicated shape, and further, although not shown, has continuous holes of various sizes large and small, and the surface area of the entire carbonized tissue is enormous. CaCO 3 (calcium-based compound) d is finely and highly dispersed in the tissue, thereby increasing the Ca content as compared with the Akamatsu chips.
[0020]
0.5 g of these carbides was placed in a quartz glass tube, and the amount of HCl absorbed when a gas containing 600 ppm of HCl was passed at 200 ° C. for 1 hour was measured. As a comparison, the same test was performed on slaked lime containing 30% activated carbon for incinerators.
[0021]
As a result, the absorption amount of HCl was 54% for the calcium-containing porous carbon material 2 of the present invention and 83% for the coconut fiber, while 52% for the slaked lime containing activated carbon. there were.
[0022]
As is clear from the experimental results, when the porous carbon material 2 containing calcium by the coconut fiber a is used, for example, for removing chlorine-based gas in exhaust gas, the gas adsorption characteristics of the porous carbon material 2 and the fine calcium compound With high reactivity, chlorine-based gas in exhaust gas can be removed with high efficiency.
[0023]
Alternatively, if the porous carbon material 2 containing calcium by the palm fiber a is put into, for example, an incinerator and used at the time of combustion, the sulfur oxides in the exhaust gas can be converted into calcium sulfate due to the gas adsorption characteristics and high reactivity. If it is used in a water purification process, since the porous carbon material 2 contains calcium, the reactive adsorptivity of organic chlorine-based compounds such as trihalomethane is increased, and water purification with high efficiency is achieved. Is also achieved.
[0024]
On the other hand, the calcium-containing porous carbon material 2 formed by the Akamatsu chips absorbs about the same amount of HCl as the activated carbon-containing slaked lime. The porous carbon material 2 can be suitably used as a substitute. Of course, the porous carbon material 2 still has a great effect on desulfurization and water purification in exhaust gas.
[0025]
In addition, in contrast to the conventional slaked lime containing activated carbon, which adheres to the bag filter 4 much and the dust collecting ability is easily reduced, the calcium-containing porous carbon material 2 according to the present invention is Since the adhesion is greatly reduced, a decrease in the dust collecting capability is suppressed, and the function is excellent in that the porous carbon material 2 can be easily recovered.
[0026]
【The invention's effect】
As described above, according to the present invention, the vegetable porous material before carbonization is immersed in a solution or suspension of calcium hydroxide to incorporate the calcium-based compound into the plant tissue, and thereafter carbonized, Highly reactive material in which a calcium-based compound mainly composed of CaCO 3 is finely and highly dispersed in a porous carbon material to be obtained, that is, for example, a chlorine-based gas or sulfur oxide in an exhaust gas can be removed with high efficiency. In addition, a suitable material that can achieve water purification with high efficiency is provided at a low cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a part of an exhaust gas treatment facility.
FIG. 2 is a schematic view of a palm fiber surface in which a micrograph is drawn and a part thereof is taken out and enlarged.
[Explanation of symbols]
a: vegetable porous material; d: calcium-based compound.

Claims (2)

炭化させる前の植物性多孔質材料を水酸化カルシウムの溶液または懸濁液に浸漬させてその植物組織内にカルシウム系化合物を取り込んだ後に炭化させて、植物性多孔質材料中の炭化組織内に、CaCO 3 が主体であるカルシウム系化合物を微細に高分散させて成ることを特徴とするカルシウム含有の多孔質炭素材料。Before the carbonization, the vegetable porous material is immersed in a solution or suspension of calcium hydroxide to incorporate the calcium-based compound into the plant tissue and then carbonized to form the carbonized tissue in the plant porous material. A calcium-containing porous carbon material obtained by finely and highly dispersing a calcium compound mainly composed of CaCO 3 . 植物性多孔質材料の炭化温度が600〜1000℃の範囲である請求項1に記載されたカルシウム含有の多孔質炭素材料。The calcium-containing porous carbon material according to claim 1, wherein the carbonization temperature of the vegetable porous material is in a range of 600 to 1000C.
JP12725099A 1999-05-07 1999-05-07 Calcium-containing porous carbon material Expired - Lifetime JP3566884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12725099A JP3566884B2 (en) 1999-05-07 1999-05-07 Calcium-containing porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12725099A JP3566884B2 (en) 1999-05-07 1999-05-07 Calcium-containing porous carbon material

Publications (2)

Publication Number Publication Date
JP2000319011A JP2000319011A (en) 2000-11-21
JP3566884B2 true JP3566884B2 (en) 2004-09-15

Family

ID=14955414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12725099A Expired - Lifetime JP3566884B2 (en) 1999-05-07 1999-05-07 Calcium-containing porous carbon material

Country Status (1)

Country Link
JP (1) JP3566884B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002241523A1 (en) 2000-11-29 2002-06-11 Research Foundation Of The City University Of New York Process to prepare adsorbents from organic fertilizer and their applications for removal of acidic gases from wet air streams
JP4804659B2 (en) * 2001-07-11 2011-11-02 日本植生株式会社 Method for producing porous carbon material for protein adsorption
US6962616B1 (en) 2003-08-08 2005-11-08 Research Foundation Of The City University Of New York Preparation of adsorbents from organic fertilizer and mineral oil and their application for removal of acidic gases from sulfur containing wet gas streams
KR101393120B1 (en) 2005-09-08 2014-05-08 리서치 파운데이션 오브 더 시티 유니버시티 오브 뉴욕 Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and process for their production
US20080300131A1 (en) 2005-09-08 2008-12-04 Research Foundation Of The City University Of New York Catalytic adsorbents obtained from municipal sludges, industrial sludges, compost and tobacco waste and a rotary drying process for their production
JP4840846B2 (en) * 2005-09-13 2011-12-21 秋田県 Phosphorus recovery material, production method thereof, and fertilizer using phosphorus recovery material
CN103305950A (en) * 2012-03-07 2013-09-18 行地纺织品有限公司 Production method of betel nut yarn
WO2019049611A1 (en) * 2017-09-08 2019-03-14 杉山 修 Production method for hydrogen gas
CN114082404A (en) * 2021-12-02 2022-02-25 中国热带农业科学院分析测试中心 Betel nut waste-based biochar material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2000319011A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
Liu et al. Removal of gaseous Hg0 using novel seaweed biomass-based activated carbon
US6858192B2 (en) Activated carbon for odor control and method for making same
US20140291578A1 (en) Process to prepare adsorbents from organic fertilizer and their applications for removal of acidic gases from wet air streams
JP3566884B2 (en) Calcium-containing porous carbon material
CN107814385B (en) Method for treating industrial wastewater and preparing graphite type porous carbon material by using biomass coke
EP2934722A1 (en) Siloxane removal from gases using lignite-enhanced activated carbons and adsorbent media used therefor
Liu et al. Molten salt shielded preparation of rice straw biochars doped by copper sulfide for elemental mercury capture
CN112871134B (en) Cu-HAP-biochar composite material for adsorbing hydrogen sulfide and preparation method thereof
JP5574668B2 (en) Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
CN110201661A (en) A kind of manganese base charcoal of porous array structure and its preparation method and application
JP3397304B2 (en) Sewage treatment method using sludge carbonization system
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
JP3632152B2 (en) Absorbent for desulfurization and method for producing desulfurization agent
JP3521730B2 (en) How to remove organic chlorine compounds
JP2000288386A (en) Filter medium for removing environmental pollutant and recovering useful substance
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
CN111672464A (en) Adsorbent for simultaneously removing mercury in different forms in flue gas and preparation method and application thereof
JPH0598942A (en) Method for processing exhaust gas of light oil combustion equipment, active carbon and manufacture thereof
CN217829471U (en) Tail gas recovery active carbon adsorption device
CN110975828B (en) Adsorbing material for purifying sludge incineration flue gas and preparation method thereof
CN113321212A (en) Preparation method and application of novel modified rubber seed shell biochar material
JP3776388B2 (en) Exhaust gas treatment method
JP3090839B2 (en) Exhaust gas treatment method
HONGO et al. A comparative ammonia recovery study of solid wastes discharged from rice husk gasifi cation and combustion plants
JP2003154234A (en) Porous oxide hydrate for adsorbing and decomposing dioxin from waste combustion gas and method for removing or diminishing dioxins using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

EXPY Cancellation because of completion of term