JP4804655B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP4804655B2
JP4804655B2 JP2001196537A JP2001196537A JP4804655B2 JP 4804655 B2 JP4804655 B2 JP 4804655B2 JP 2001196537 A JP2001196537 A JP 2001196537A JP 2001196537 A JP2001196537 A JP 2001196537A JP 4804655 B2 JP4804655 B2 JP 4804655B2
Authority
JP
Japan
Prior art keywords
generation
water
salt water
electrolyzed water
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001196537A
Other languages
Japanese (ja)
Other versions
JP2003010851A (en
Inventor
昌浩 藤田
正人 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2001196537A priority Critical patent/JP4804655B2/en
Publication of JP2003010851A publication Critical patent/JP2003010851A/en
Application granted granted Critical
Publication of JP4804655B2 publication Critical patent/JP4804655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、希塩水を電気分解して例えば殺菌などに用いる電解水を生成する電解水生成装置に関する。
【0002】
【従来の技術】
従来、この種の装置は、直流電圧が印加される一対の電極を収容してなり、供給された希塩水を電気分解して電解水を生成する電解槽と、電解槽の両電極間を流れる電流を計測する電流計と、電気的に開閉制御可能な電磁バルブを介装してなり該電磁バルブの開状態にて電解槽に連続的に水を供給する給水路と、電気的に作動制御可能な電動ポンプを介装してなり該電動ポンプの作動により電解槽の下方に配設した濃塩水タンク内に貯えた濃塩水を給水路に供給する濃塩水供給路と、電解水の生成を指示するための生成指示手段と、生成指示手段により電解水の生成が指示されているとき電磁バルブを開状態に保つとともに電動ポンプを電流計により計測される両電極間の電流が一定となるように送水量を制御しながら作動させて電解槽に所定濃度の希塩水を供給し電解槽の両電極間に直流電圧を印加することにより電解水を生成するようにした生成制御手段とを備え、所定濃度の希塩水を電気分解することにより常に所定の有効塩素濃度を有する電解水を生成するようにしている。この場合、さらに、前記電解水の生成中に両電極間の電流が所定の下限電流値より小さい状態を所定時間継続したとき電流計による計測に基づいて濃塩水タンク内の濃塩水が無くなったと判定し生成制御手段による各制御を禁止して電解槽の両電極に対する直流電圧の印加及び電動ポンプの作動を停止するとともに電磁バルブを閉じて前記電解水の生成を停止する生成停止制御手段を備えて、自動的に濃塩水タンクの濃塩水切れを判定して電解水の生成を停止するようにしたものもあった。
【0003】
【発明が解決しようとする課題】
上記従来装置においては、電解水の生成の停止中、電解槽より下流の希塩水が、時間の経過とともに自重により濃塩水タンク側に逆流して濃塩水供給路中に溜ることがあった。この場合、電解水の生成を再開したとき、しばらくの間は、電動ポンプを作動させても、濃塩水供給路から給水路に上記逆流して溜った希塩水しか供給できず濃塩水を供給できないことになる。したがって、このとき、電解槽に供給する希塩水の濃度を速やかに上げることができなかったため、両電極間の電流が速やかに下限電流値まで達さず、濃塩水タンク内にまだ濃塩水が残っているにもかかわらず生成停止制御手段が濃塩水切れを判定して電解水の生成を無意味に停止させることがあった。
【0004】
【発明の概要】
本発明は上記問題に対処しようとするもので、その目的は、濃塩水切れの誤判定を回避して無意味な電解水の生成の停止を回避する電解水生成装置を提供することにある。
【0005】
本発明の第1の構成上の特徴は、前記電解槽、給水路、濃塩水供給路、生成指示手段、生成制御手段、及び生成停止制御手段を備えた電解水生成装置において、生成制御手段が生成指示手段による指示に応答して電解水の生成を開始したとき同開始から所定時間が経過するまでは前記生成停止制御手段による各制御を禁止する生成停止制御禁止手段を設けたことにある。これによれば、電解水の生成の停止中に電解槽より下流の希塩水が時間の経過とともに濃塩水タンク側に逆流して濃塩水供給路中に溜ることにより、電解水の生成の再開時、濃塩水タンク内にまだ濃塩水が残っているにもかかわらず電解槽に供給する希塩水の濃度を速やかに上げることができず両電極間の電流が速やかに下限電流値まで達さなかった場合においても、生成停止制御禁止手段が電解水の生成の開始から所定時間の間は生成停止制御手段による各制御を禁止しているため、生成停止制御手段が濃塩水切れを誤判定して電解水の生成を無意味に停止することが回避される。
【0006】
本発明の第2の構成上の特徴は、前記電解槽、給水路、濃塩水供給路、生成指示手段、生成制御手段、及び生成停止制御手段を備えた電解水生成装置において、生成制御手段が生成指示手段による指示に応答して電解水の生成を開始したとき同開始から電動ポンプが所定量の濃塩水を送水するまでは前記生成停止制御手段による各制御を禁止する生成停止制御禁止手段を設けたことにある。これによっても、上記第1の特徴を有する電解水生成装置における場合と同様に、電解水の生成の再開時における生成停止制御手段による濃塩水切れの誤判定が回避されて電解水の生成の無意味な停止が回避される。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照して説明する。図1に示した電解水生成装置は、電解槽10、直流電源装置20、給水路30、濃塩水供給路40、濃塩水タンク50、電動ポンプ60、及び電気制御回路70を備えている。
【0008】
電解槽10は、内部が隔膜11によって一対の電極室12,13に区画されており、各電極室12,13内に一対の電極14,15をそれぞれ収容している。両電極14,15間には直流電源装置20によって直流電圧が印加されるようになっており、この電圧印加によって電解槽10は各電極室12,13内に供給された希塩水を電気分解して酸性及びアルカリ性の電解水を生成する。各電極室12,13にて生成された電解水は、それぞれ導出管16,17を通して外部に注出される。直流電源装置20から両電極14,15への電圧の供給路には、分流器21を介して、両電極14,15間を流れる電流を計測する電流計22が接続されている。
【0009】
給水路30は、図示しない外部給水源から圧送される水を電解槽10の各電極室12,13に導く管である。給水路30には、電気的に開閉制御されて開状態にて前記外部給水源の水を電解槽10に供給するとともに閉状態にて前記水を閉止する電磁バルブ31が介装されている。
【0010】
濃塩水供給路40は、濃塩水タンク50内に貯えた濃塩水中に一端を開口するとともに他端を電動ポンプ60に接続した吸い込み管41と、電動ポンプ60と電解槽10の近傍の給水路20とを接続した供給管42とを備えており、電解槽10の下方に配設した濃塩水タンク50内の濃塩水を電動ポンプ60の作動により給水路30に供給するものである。
【0011】
電動ポンプ60は、バルブハウジング61と協働してポンプ室62を画定するダイヤフラム63を備えている。ダイヤフラム63はソレノイド64に対して通電及び非通電が繰返されたとき往復動するようになっており、同ダイヤフラム62の往復動によって、電動ポンプ60は、濃塩水タンク50内の濃塩水を吸い込み管41を通して吸入口65からポンプ室62内に吸入するとともに吐出口66から吐出し供給管42を通して給水路20に供給する。このとき、濃塩水の単位時間当たりの送水量は、上記通電及び非通電の繰返し周期の調整によって制御される。ポンプ室62と吸入口65の間には、電動ポンプ60の作動時に吸入口65からポンプ室62方向への流れのみを許容する逆止弁67が設けられている。また、ポンプ室62と吐出口66の間には、電動ポンプ60の作動時にポンプ室62から吐出口66方向への流れのみを許容する逆止弁68が設けられている。各逆止弁67,68は電動ポンプ60の非作動時においては両方向の流れを許容するものであり、これにより電動ポンプ60はポンプ室63内に空気が侵入した場合においても同空気を特に抜く必要なく必要な吐出圧を得られるようになっている。
【0012】
電気制御回路70はマイクロコンピュータにより構成されており、上記直流電源装置20、電流計22、電磁バルブ31、電動ポンプ60のソレノイド64、並びに、電解水の生成を指示するための生成スイッチ71、及び濃塩水タンク50内の濃塩水切れを報知する塩切れランプ72に接続されている。電気制御回路70は、電流計22及び生成スイッチ71からの入力に基づき図2,3のフローチャートに対応したプログラムを実行して、直流電源装置20、電磁バルブ31、電動ポンプ60、及び塩切れランプ72の作動を制御する。
【0013】
次に、上記のように構成した塩水処理装置の動作を図2のフローチャートに沿って説明する。
【0014】
最初、図示しない電源スイッチがオン操作されると、電気制御回路70はステップ100にてプログラムの実行を開始し、まずステップ102にてタイマカウント値TM1,TM2をそれぞれ値“0”に初期設定する。タイマカウント値TM1は、電解水の生成の開始後の経過時間を計測するためのものである。タイマカウント値TM2は、濃塩水タンク50内の濃塩水切れを監視するために用いるものである。これら各初期設定後、電気制御回路70はステップ104の判定処理を繰返し実行して生成スイッチ71のオン操作を待つ。
【0015】
上記繰返し実行中、生成スイッチ71がオン操作されると、電気制御回路70はプログラムをステップ106以降へ進めて電解水の生成を開始する。ステップ106においては、電磁バルブ31を開いて電解槽10への給水を開始し、直流電源装置20を作動させて電極14,15に対する電圧の印加を開始するとともに、電動ポンプ60を作動させて給水路30に対する濃塩水の供給を開始する。なお、この作動開始時の電動ポンプ60の送水量は、予め初期設定された量となるように制御される。これにより、外部給水源から給水路20を通って供給される水に濃塩水が混入して希塩水が生成され、同希塩水が電解槽10の各電解室12,13に供給されて電気分解され電解水が生成され始める。
【0016】
上記電解水の生成開始後、電気制御回路70は、生成スイッチ71がオン状態を維持していれば、ステップ108における「YES」との判定のもとに、まずステップ108〜118からなる循環処理を繰返し実行し続ける。ステップ110は、タイマカウント値TM1に値“1”を加算する処理である。このステップ110の繰返し実行により、上記循環処理中、電解水の生成開始後の経過時間がタイマカウント値TM1として計測され続ける。
【0017】
ステップ112〜116は、電流計22により計測される両電極14,15間の電流に応じて電動ポンプ60の送水量を制御する処理である。両電極14,15間の電流が予め設定された所定の電流値I0より小さかった場合は、ステップ114にて、電動ポンプ60の送水量を増加させて給水路30に対する濃塩水の供給量を増加させる。両電極14,15間の電流が設定電流値I0と等しかった場合は、それまでの電動ポンプ60の送水量を維持して給水路30に対するそれまでの濃塩水の供給量を維持する。両電極14,15間の電流が設定電流値I0より大きかった場合は、ステップ116にて、電動ポンプ60の送水量を減少させて給水路30に対する濃塩水の供給量を減少させる。これにより、電解槽10に供給する希塩水の濃度が所定濃度に保たれて電解槽10における電気分解の強度が常に一定に保たれるため、生成される電解水の有効塩素濃度が常に一定に保たれる。
【0018】
上記各処理後、電気制御回路70は、ステップ118にて、タイマカウント値TM1による計時に基づいて、電解水の生成開始から所定時間T1が経過したか否かを判定する。この所定時間T1は、濃塩水タンク50内の濃塩水が電動ポンプ60の作動によって給水路30に達するために十分な時間に予め設定されている。このとき、電解水の生成開始から所定時間T1が経過しておらずタイマカウント値TM1が所定時間T1に達していなければ、電気制御回路70は「NO」と判定してプログラムをステップ108へ戻す。
【0019】
一方、上記ステップ108〜118からなる処理の繰返し実行中、電解水の生成開始から所定時間T1が経過すると、電気制御回路70は、ステップ118の実行時にタイマカウント値TM1による計時に基づき「YES」と判定し、プログラムをステップ120以降へ進めて濃塩水タンク50内の濃塩水切れの監視を開始する。
【0020】
ステップ120においては、電流計22による計測に基づいて、両電極14,15間を流れている電流が所定の下限電流値Iminより小さいか否かを判定する。下限電流値Iminは、前記設定電流値I0より所定値(例えば、4A)だけ小さい値に予め設定されている。両電極14,15間の電流が下限電流値Iminより小さかった場合、電気制御回路70は「YES」と判定してステップ122にてタイマカウント値TM2に値“1”を加算する。一方、両電極14,15間の電流が下限電流値Imin以上であった場合、電気制御回路70は「NO」と判定してステップ124にてタイマカウント値TM2を値“0”にリセットする。このように、ステップ108〜126からなる循環処理中、ステップ120の判定処理が実行される毎にステップ122又はステップ124のうちのいずれか一方の処理が実行されることにより、両電極14,15間の電流が下限電流値Iminより小さい状態を継続した時間が計測される。両電極14,15間の電流が下限電流値Iminより小さくタイマカウント値TM2による計時が継続しているときは、ステップ122の実行後、ステップ126にて、タイマカウント値TM2が所定時間T2(例えば、15秒)に達しているか否かを判定する。このとき、両電極14,15間の電流が下限電流値Iminより小さい状態を所定時間T2だけ継続しておらず、タイマカウント値TM2が所定時間T2に達していければ、電気制御回路70はプログラムをステップ108へ戻す。
【0021】
上記ステップ108〜126からなる処理の繰返し実行中、生成スイッチ71がオフ操作されると、電気制御回路70は、ステップ108における判定のもとにプログラムをステップ128へ進め、電動ポンプ60及び直流電源装置20の作動を停止させるとともに電磁バルブ31を閉じて上記電解水の生成を停止させる。そして、プログラムを前記ステップ102へ戻して各タイマカウント値TM1,TM2を値“0”にリセットした上で、再びステップ104の判定処理を繰返し実行して生成スイッチ71がオン操作されるのを待つ。
【0022】
一方、上記循環処理中、濃塩水タンク50内の濃塩水が無くなった場合は、給水路30に濃塩水を供給できなくなるため、電動ポンプ60をいくら作動させても電解槽10に供給する希塩水の濃度を上げることができず両電極14,15間を流れる電流が上昇しないことになる。これにより、両電極14,15間の電流が下限電流値Iminより小さい状態を所定時間T2だけ継続すると、ステップ126における判定のもとに、電気制御回路70はプログラムをステップ130以降へ進める。ステップ130においては、電動ポンプ60及び直流電源装置20の作動を停止させるとともに電磁バルブ31を閉じて、上記電解水の生成を停止させる。ステップ132においては、塩切れランプ72を点灯させて濃塩水タンク50内の濃塩水切れを報知する。そして、これら各処理後、ステップ134にてこのプログラムの実行を終了する。
【0023】
上述のように、上記プログラムの実行により、電気制御回路70は、生成スイッチ71の操作に応答して電解水の生成及び停止を繰返し実行し続け(ステップ104〜108,128)、電解水の生成中は、電解槽10の両電極14,15間を流れる電流を設定電流値I0に保つように電動ポンプ60の送水量を制御して、生成する電解水の有効塩素濃度を常に一定に保つようにしている(ステップ112〜116)。また、同制御のもとで、電解水の生成中、電解槽10の両電極14,15間の電流が下限電流値Iminより小さい状態を所定時間T2だけ継続した場合は、濃塩水タンク50内の濃塩水が無くなったと判定して、電解水の生成を停止するようにしている(ステップ120〜126,130)。
【0024】
ただし、電解水の生成の開始後、濃塩水タンク50内の濃塩水が電動ポンプ60の作動によって給水路30に達するために十分な所定時間T1が経過するまでは、上記濃塩水切れの判定及び同判定に基づく電解水の生成の停止を禁止するようにしている(ステップ110,118)。これにより、上記実施形態においては、電解水の生成の停止中に電解槽10より下流の希塩水が時間の経過とともに濃塩水タンク50側に逆流して濃塩水供給路40中に溜ることにより、電解水の生成の再開時、濃塩水タンク50内にまだ濃塩水が残っているにもかかわらず電解槽10に供給する希塩水の濃度を速やかに上げることができず両電極14,15間の電流が速やかに下限電流値まで達さなかった場合において、濃塩水切れが誤判定されて電解水の生成が無意味に停止されることが回避される。
【0025】
なお、上記実施形態は、濃塩水切れの判定及び同判定に基づく電解水の生成の停止を電解水の生成の開始から所定時間T2が経過するまでの間禁止するものであったが、これに代えて、上記濃塩水切れの判定及び同判定に基づく電解水の生成の停止を、電解水の生成の開始から電動ポンプ60が所定量の濃塩水を送水するまでの間禁止するようにしてもよい。この場合、電動ポンプ60のソレノイド64に対する通電及び非通電の回数、すなわちダイヤフラム62の往復動の回数を計測するとともに、同計測した回数が所定数に達したか否かを判定する処理を図2におけるステップ118に代えて採用し、同計測した回数が所定数に達した場合のみステップ120〜126の処理を実行して濃塩水切れの監視を行うようにするとよい。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る塩水処理装置の全体構成図である。
【図2】図1の電気制御回路により実行されるプログラムを示すフローチャートである。
【符号の説明】
10…電解槽、14,15…電極、20…直流電源装置、22…電流計、30…給水路、31…給水バルブ、40…濃塩水供給路、50…濃塩水タンク、60…電動ポンプ、70…電気制御回路、71…生成スイッチ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyzed water generating apparatus for electrolyzing dilute salt water to generate electrolyzed water used for, for example, sterilization.
[0002]
[Prior art]
Conventionally, this type of device accommodates a pair of electrodes to which a DC voltage is applied, and flows between an electrolytic cell that electrolyzes the supplied diluted salt water to generate electrolytic water, and both electrodes of the electrolytic cell. An ammeter that measures current and an electromagnetic valve that can be electrically controlled to open and close, and a water supply channel that continuously supplies water to the electrolytic cell when the electromagnetic valve is open, and electrical operation control A concentrated salt water supply path for supplying concentrated salt water stored in a concentrated salt water tank disposed below the electrolytic cell by the operation of the electric pump, to the water supply path, and generation of the electrolyzed water. Generation instruction means for instructing, and when generation of electrolyzed water is instructed by the generation instruction means, the electromagnetic valve is kept open, and the electric current between both electrodes measured by the ammeter of the electric pump is made constant To control the amount of water supplied to the electrolytic cell. And a generation control unit configured to supply electrolytic water by supplying a diluted salt water with a concentration and applying a DC voltage between both electrodes of the electrolytic cell, and by always electrolyzing the diluted salt water with a predetermined concentration, Electrolyzed water having an effective chlorine concentration is generated. In this case, it is further determined that the concentrated salt water in the concentrated salt water tank has disappeared based on the measurement by the ammeter when the current between the electrodes is smaller than the predetermined lower limit current value during the predetermined time during the generation of the electrolyzed water. And a generation stop control means for prohibiting each control by the generation control means to stop the application of the DC voltage to both electrodes of the electrolytic cell and the operation of the electric pump, and close the electromagnetic valve to stop the generation of the electrolyzed water. In some cases, the generation of electrolyzed water is automatically stopped by determining whether the concentrated salt water tank has run out of concentrated salt water.
[0003]
[Problems to be solved by the invention]
In the above conventional apparatus, while the generation of the electrolyzed water is stopped, the dilute salt water downstream from the electrolyzer sometimes flows back to the concentrated salt water tank side due to its own weight and accumulates in the concentrated salt water supply path. In this case, when the generation of the electrolyzed water is resumed, even if the electric pump is operated for a while, only the diluted salt water that has flowed back from the concentrated salt water supply channel to the water supply channel can be supplied and the concentrated salt water cannot be supplied. It will be. Therefore, at this time, the concentration of the dilute salt water supplied to the electrolytic cell could not be increased quickly, so the current between the electrodes did not reach the lower limit current value quickly, and the concentrated salt water still remained in the concentrated salt water tank. In spite of this, the generation stop control means determines that the salt water has run out and stops the generation of the electrolyzed water meaninglessly.
[0004]
SUMMARY OF THE INVENTION
An object of the present invention is to provide an electrolyzed water generating device that avoids erroneous determination of running out of concentrated salt water and avoids stop of generation of meaningless electrolyzed water.
[0005]
According to a first structural feature of the present invention, in the electrolyzed water generating apparatus including the electrolytic cell, the water supply channel, the concentrated salt water supply channel, the generation instruction unit, the generation control unit, and the generation stop control unit, the generation control unit includes: When generation of electrolyzed water is started in response to an instruction from the generation instruction means, generation stop control prohibiting means for prohibiting each control by the generation stop control means is provided until a predetermined time elapses from the start. According to this, when the generation of electrolyzed water is resumed, the dilute salt water downstream from the electrolysis tank flows back to the concentrated salt water tank side and accumulates in the concentrated salt water supply channel with the passage of time. The concentration of dilute brine supplied to the electrolyzer could not be increased quickly even though concentrated brine remained in the concentrated brine tank, and the current between both electrodes did not reach the lower limit current value quickly. Even in this case, the generation stop control prohibiting means prohibits each control by the generation stop control means for a predetermined time from the start of electrolyzed water generation. It is avoided that the water production stops meaninglessly.
[0006]
According to a second structural feature of the present invention, in the electrolyzed water generating apparatus including the electrolytic cell, the water supply channel, the concentrated salt water supply channel, the generation instruction unit, the generation control unit, and the generation stop control unit, the generation control unit includes: A generation stop control prohibiting means for prohibiting each control by the generation stop control means from the start until the electric pump supplies a predetermined amount of concentrated salt water when the generation of electrolyzed water is started in response to an instruction from the generation instruction means. It is in providing. This also avoids the erroneous determination of running out of concentrated salt water by the production stop control means when resuming the production of electrolyzed water, as in the case of the electrolyzed water producing apparatus having the first feature described above, so that no electrolyzed water is produced. A meaningful stop is avoided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The electrolyzed water generator shown in FIG. 1 includes an electrolyzer 10, a DC power supply device 20, a water supply channel 30, a concentrated salt water supply channel 40, a concentrated salt water tank 50, an electric pump 60, and an electric control circuit 70.
[0008]
The electrolytic cell 10 is internally partitioned into a pair of electrode chambers 12 and 13 by a diaphragm 11 and accommodates a pair of electrodes 14 and 15 in the electrode chambers 12 and 13, respectively. A DC voltage is applied between the electrodes 14 and 15 by the DC power supply device 20, and by applying this voltage, the electrolytic cell 10 electrolyzes the diluted salt water supplied into the electrode chambers 12 and 13. To produce acidic and alkaline electrolyzed water. The electrolyzed water produced in the electrode chambers 12 and 13 is poured out through the outlet pipes 16 and 17, respectively. An ammeter 22 for measuring the current flowing between the electrodes 14 and 15 is connected to the voltage supply path from the DC power supply device 20 to the electrodes 14 and 15 via the shunt 21.
[0009]
The water supply channel 30 is a tube that guides water pumped from an external water supply source (not shown) to the electrode chambers 12 and 13 of the electrolytic cell 10. The water supply passage 30 is provided with an electromagnetic valve 31 that is electrically opened and closed and supplies water from the external water supply source to the electrolytic cell 10 in the open state and closes the water in the closed state.
[0010]
The concentrated salt water supply path 40 has a suction pipe 41 having one end opened in the concentrated salt water stored in the concentrated salt water tank 50 and the other end connected to the electric pump 60, and a water supply path in the vicinity of the electric pump 60 and the electrolytic cell 10. 20, a supply pipe 42 connected to the electrolytic tank 10 is provided, and the concentrated salt water in the concentrated salt water tank 50 disposed below the electrolytic cell 10 is supplied to the water supply path 30 by the operation of the electric pump 60.
[0011]
The electric pump 60 includes a diaphragm 63 that cooperates with the valve housing 61 to define a pump chamber 62. The diaphragm 63 reciprocates when energization and de-energization are repeated with respect to the solenoid 64, and the electric pump 60 sucks the concentrated salt water in the concentrated salt water tank 50 by the reciprocation of the diaphragm 62. 41 is sucked into the pump chamber 62 from the suction port 65 through 41, discharged from the discharge port 66, and supplied to the water supply channel 20 through the supply pipe 42. At this time, the amount of concentrated salt water supplied per unit time is controlled by adjusting the cycle of energization and non-energization. A check valve 67 is provided between the pump chamber 62 and the suction port 65 to allow only the flow from the suction port 65 toward the pump chamber 62 when the electric pump 60 is operated. A check valve 68 is provided between the pump chamber 62 and the discharge port 66 to allow only the flow from the pump chamber 62 toward the discharge port 66 when the electric pump 60 is operated. The check valves 67 and 68 allow the flow in both directions when the electric pump 60 is not in operation, so that the electric pump 60 particularly extracts the air even when the air enters the pump chamber 63. Necessary discharge pressure can be obtained without necessity.
[0012]
The electric control circuit 70 is constituted by a microcomputer, and the DC power supply device 20, the ammeter 22, the electromagnetic valve 31, the solenoid 64 of the electric pump 60, a generation switch 71 for instructing generation of electrolyzed water, and It is connected to a salt-out lamp 72 that reports out of concentrated salt water in the concentrated salt water tank 50. The electric control circuit 70 executes a program corresponding to the flowcharts of FIGS. 2 and 3 based on inputs from the ammeter 22 and the generation switch 71, and the DC power supply device 20, the electromagnetic valve 31, the electric pump 60, and the salt break lamp The operation of 72 is controlled.
[0013]
Next, the operation of the salt water treatment apparatus configured as described above will be described with reference to the flowchart of FIG.
[0014]
Initially, when a power switch (not shown) is turned on, the electric control circuit 70 starts executing the program in step 100, and first initializes the timer count values TM1 and TM2 to the value “0” in step 102, respectively. . The timer count value TM1 is for measuring the elapsed time after the start of the generation of electrolyzed water. The timer count value TM2 is used to monitor running out of concentrated salt water in the concentrated salt water tank 50. After each of these initial settings, the electric control circuit 70 repeatedly executes the determination process of step 104 and waits for the ON operation of the generation switch 71.
[0015]
When the generation switch 71 is turned on during the repeated execution, the electric control circuit 70 advances the program to step 106 and the subsequent steps to start the generation of electrolyzed water. In step 106, the electromagnetic valve 31 is opened to start water supply to the electrolytic cell 10, the DC power supply device 20 is operated to start application of voltage to the electrodes 14 and 15, and the electric pump 60 is operated to supply water. Supply of concentrated salt water to the passage 30 is started. It should be noted that the water supply amount of the electric pump 60 at the start of the operation is controlled so as to be a preset amount. Thereby, concentrated salt water is mixed into the water supplied from the external water supply source through the water supply channel 20 to generate diluted salt water, and the diluted salt water is supplied to the electrolysis chambers 12 and 13 of the electrolytic cell 10 for electrolysis. Electrolyzed water begins to be generated.
[0016]
After the start of generation of the electrolyzed water, the electrical control circuit 70 first performs the circulation process including steps 108 to 118 based on the determination of “YES” in step 108 if the generation switch 71 is kept on. Continue to be executed repeatedly. Step 110 is a process of adding the value “1” to the timer count value TM1. By repeatedly executing step 110, the elapsed time after the start of electrolyzed water generation is continuously measured as the timer count value TM1 during the circulation process.
[0017]
Steps 112 to 116 are processes for controlling the water supply amount of the electric pump 60 in accordance with the current between the electrodes 14 and 15 measured by the ammeter 22. If the current between the electrodes 14 and 15 is smaller than a predetermined current value I0 set in advance, in step 114, the amount of water supplied by the electric pump 60 is increased to increase the amount of concentrated salt water supplied to the water supply channel 30. Let When the current between the electrodes 14 and 15 is equal to the set current value I0, the water supply amount of the electric pump 60 up to that time is maintained, and the supply amount of concentrated salt water to the water supply channel 30 is maintained. If the current between the electrodes 14 and 15 is larger than the set current value I0, the amount of water supplied to the electric pump 60 is decreased in step 116 to decrease the amount of concentrated salt water supplied to the water supply passage 30. As a result, the concentration of dilute salt water supplied to the electrolytic cell 10 is maintained at a predetermined concentration, and the strength of electrolysis in the electrolytic cell 10 is always maintained constant, so that the effective chlorine concentration of the generated electrolytic water is always constant. Kept.
[0018]
After each of the above processes, in step 118, the electric control circuit 70 determines whether or not a predetermined time T1 has elapsed from the start of the generation of the electrolyzed water, based on the time measured by the timer count value TM1. The predetermined time T1 is set in advance to a time sufficient for the concentrated salt water in the concentrated salt water tank 50 to reach the water supply channel 30 by the operation of the electric pump 60. At this time, if the predetermined time T1 has not elapsed since the start of electrolyzed water generation and the timer count value TM1 has not reached the predetermined time T1, the electric control circuit 70 determines “NO” and returns the program to step 108. .
[0019]
On the other hand, when the predetermined time T1 has elapsed from the start of the generation of the electrolyzed water during the repeated execution of the processing consisting of steps 108 to 118, the electric control circuit 70 determines “YES” based on the time count by the timer count value TM1 when executing step 118. The program is advanced to step 120 and the subsequent steps, and monitoring of running out of concentrated salt water in the concentrated salt water tank 50 is started.
[0020]
In step 120, based on the measurement by the ammeter 22, it is determined whether or not the current flowing between the electrodes 14 and 15 is smaller than a predetermined lower limit current value Imin. The lower limit current value Imin is set in advance to a value smaller than the set current value I0 by a predetermined value (for example, 4A). If the current between the electrodes 14 and 15 is smaller than the lower limit current value Imin, the electric control circuit 70 determines “YES” and adds the value “1” to the timer count value TM2 in step 122. On the other hand, if the current between the electrodes 14 and 15 is equal to or greater than the lower limit current value Imin, the electric control circuit 70 determines “NO” and resets the timer count value TM2 to the value “0” in step 124. In this way, during the circulation process consisting of steps 108 to 126, each time the determination process of step 120 is executed, either one of step 122 or step 124 is executed, whereby both electrodes 14, 15 are executed. The time during which the current in between has continued to be smaller than the lower limit current value Imin is measured. When the current between the electrodes 14 and 15 is smaller than the lower limit current value Imin and the time count by the timer count value TM2 is continued, the timer count value TM2 is set to a predetermined time T2 (for example, after step 122 is executed, in step 126). , 15 seconds). At this time, if the current between the electrodes 14 and 15 is not kept lower than the lower limit current value Imin for a predetermined time T2, and the timer count value TM2 has reached the predetermined time T2, the electric control circuit 70 is programmed. Is returned to step 108.
[0021]
When the generation switch 71 is turned off during the repeated execution of the processing consisting of the above steps 108 to 126, the electric control circuit 70 advances the program to step 128 based on the determination in step 108, and the electric pump 60 and the DC power supply The operation of the apparatus 20 is stopped and the electromagnetic valve 31 is closed to stop the generation of the electrolyzed water. Then, the program is returned to the step 102 and the timer count values TM1 and TM2 are reset to the value “0”. Then, the determination process of the step 104 is repeatedly executed to wait for the generation switch 71 to be turned on. .
[0022]
On the other hand, when there is no concentrated salt water in the concentrated salt water tank 50 during the circulation process, the concentrated salt water cannot be supplied to the water supply passage 30, so that the diluted salt water supplied to the electrolytic cell 10 is operated no matter how much the electric pump 60 is operated. Therefore, the current flowing between the electrodes 14 and 15 does not increase. As a result, when the state where the current between the electrodes 14 and 15 is smaller than the lower limit current value Imin is continued for a predetermined time T2, the electric control circuit 70 advances the program to step 130 and subsequent steps based on the determination in step 126. In step 130, the operation of the electric pump 60 and the DC power supply device 20 is stopped and the electromagnetic valve 31 is closed to stop the generation of the electrolyzed water. In step 132, the salt cut lamp 72 is turned on to notify that the concentrated salt water tank 50 is out of salt water. Then, after each of these processes, the execution of this program is terminated at step 134.
[0023]
As described above, by executing the above program, the electric control circuit 70 continues to repeatedly generate and stop electrolyzed water in response to the operation of the generation switch 71 (steps 104 to 108, 128), thereby generating electrolyzed water. During this, the amount of water supplied by the electric pump 60 is controlled so that the current flowing between the electrodes 14 and 15 of the electrolytic cell 10 is kept at the set current value I0, so that the effective chlorine concentration of the generated electrolyzed water is always kept constant. (Steps 112 to 116). Further, under the same control, when the current between the electrodes 14 and 15 of the electrolytic cell 10 is smaller than the lower limit current value Imin during the generation of the electrolyzed water, the inside of the concentrated salt water tank 50 is maintained. It is determined that the concentrated salt water is no longer present, and the generation of the electrolyzed water is stopped (steps 120 to 126, 130).
[0024]
However, after the start of the generation of the electrolyzed water, until the predetermined time T1 sufficient for the concentrated salt water in the concentrated salt water tank 50 to reach the water supply path 30 by the operation of the electric pump 60 passes, Stopping the generation of electrolyzed water based on the determination is prohibited (steps 110 and 118). Thereby, in the said embodiment, when the production | generation of electrolyzed water stops, the dilute salt water downstream from the electrolytic cell 10 flows back to the concentrated salt water tank 50 side over time, and accumulates in the concentrated salt water supply path 40, When resuming the generation of the electrolyzed water, the concentration of the dilute salt water supplied to the electrolyzer 10 cannot be increased quickly even though the concentrated salt water still remains in the concentrated salt water tank 50, and between the electrodes 14 and 15. In the case where the current does not quickly reach the lower limit current value, it is avoided that the concentrated salt water outage is erroneously determined and the generation of electrolyzed water is stopped meaninglessly.
[0025]
In the above embodiment, the determination of running out of concentrated salt water and the stop of the generation of electrolyzed water based on the determination are prohibited until a predetermined time T2 elapses from the start of the generation of electrolyzed water. Instead, the determination of running out of the concentrated salt water and the stop of the generation of the electrolyzed water based on the determination may be prohibited until the electric pump 60 supplies a predetermined amount of concentrated salt water from the start of the electrolyzed water generation. Good. In this case, a process of measuring the number of energizations and de-energizations of the solenoid 64 of the electric pump 60, that is, the number of reciprocations of the diaphragm 62, and determining whether or not the number of times the measurement has reached a predetermined number is shown in FIG. It is good to adopt instead of Step 118 and monitor the run of concentrated salt water by executing the processing of Steps 120 to 126 only when the number of times of the same measurement reaches a predetermined number.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a salt water treatment apparatus according to a first embodiment of the present invention.
2 is a flowchart showing a program executed by the electric control circuit of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electrolyzer, 14, 15 ... Electrode, 20 ... DC power supply device, 22 ... Ammeter, 30 ... Water supply path, 31 ... Water supply valve, 40 ... Concentrated salt water supply path, 50 ... Concentrated salt water tank, 60 ... Electric pump, 70: Electric control circuit, 71: Generation switch.

Claims (2)

直流電圧が印加される一対の電極を収容してなり、供給された希塩水を電気分解して電解水を生成する電解槽と、
前記一対の電極間を流れる電流を計測する電流計と、
電気的に開閉制御可能な電磁バルブを介装してなり該電磁バルブの開状態にて前記電解槽に連続的に水を供給する給水路と、
電気的に作動制御可能な電動ポンプを介装してなり該電動ポンプの作動により前記電解槽の下方に配設した濃塩水タンク内に貯えた濃塩水を前記給水路に供給する濃塩水供給路と、
電解水の生成を指示するための生成指示手段と、
前記生成指示手段により電解水の生成が指示されているとき前記電磁バルブを開状態に保つとともに前記電動ポンプを前記電流計により計測される両電極間の電流が一定となるように送水量を制御しながら作動させて前記電解槽に所定濃度の希塩水を供給し前記電解槽の両電極間に直流電圧を印加することにより電解水を生成するようにした生成制御手段と、
前記電解水の生成中に両電極間の電流が所定の下限電流値より小さい状態を所定時間継続したとき前記電流計による計測に基づいて前記濃塩水タンク内の濃塩水が無くなったと判定し前記生成制御手段による各制御を禁止して前記電解槽の両電極に対する直流電圧の印加及び電動ポンプの作動を停止するとともに前記電磁バルブを閉じて前記電解水の生成を停止する生成停止制御手段とを備えた電解水生成装置において、
前記生成制御手段が前記生成指示手段による指示に応答して電解水の生成を開始したとき同開始から所定時間が経過するまでは前記生成停止制御手段による各制御を禁止する生成停止制御禁止手段を設けたことを特徴とする電解水生成装置。
An electrolytic cell that accommodates a pair of electrodes to which a DC voltage is applied, and electrolyzes the supplied dilute salt water to generate electrolyzed water;
An ammeter for measuring a current flowing between the pair of electrodes;
A water supply path that is provided with an electromagnetic valve that can be electrically opened and closed, and that continuously supplies water to the electrolytic cell in the open state of the electromagnetic valve;
Concentrated salt water supply passage for supplying concentrated salt water stored in a concentrated salt water tank disposed under the electrolytic cell by operation of the electric pump, which is electrically operated and controlled, to the water supply passage. When,
Generation instruction means for instructing generation of electrolyzed water;
When generation of electrolyzed water is instructed by the generation instructing means, the electromagnetic valve is kept open, and the water supply amount is controlled so that the electric pump measures a current between both electrodes measured by the ammeter. Generation control means for generating electrolyzed water by operating while supplying dilute salt water of a predetermined concentration to the electrolyzer and applying a DC voltage between both electrodes of the electrolyzer,
During the generation of the electrolyzed water, when the current between the electrodes is smaller than a predetermined lower limit current value for a predetermined time, it is determined that the concentrated salt water in the concentrated salt water tank has disappeared based on the measurement by the ammeter and the generation A generation stop control means for prohibiting each control by the control means to stop the application of the DC voltage to both electrodes of the electrolytic cell and the operation of the electric pump, and closing the electromagnetic valve to stop the generation of the electrolyzed water. In the electrolyzed water generator,
Generation stop control prohibiting means for prohibiting each control by the generation stop control means until a predetermined time elapses after the generation control means starts generating electrolyzed water in response to an instruction from the generation instruction means; An electrolyzed water generator characterized by being provided.
直流電圧が印加される一対の電極を収容してなり、供給された希塩水を電気分解して電解水を生成する電解槽と、
前記一対の電極間を流れる電流を計測する電流計と、
電気的に開閉制御可能な電磁バルブを介装してなり該電磁バルブの開状態にて前記電解槽に連続的に水を供給する給水路と、
電気的に作動制御可能な電動ポンプを介装してなり該電動ポンプの作動により前記電解槽の下方に配設した濃塩水タンク内に貯えた濃塩水を前記給水路に供給する濃塩水供給路と、
電解水の生成を指示するための生成指示手段と、
前記生成指示手段により電解水の生成が指示されているとき前記電磁バルブを開状態に保つとともに前記電動ポンプを前記電流計により計測される両電極間の電流が一定となるように送水量を制御しながら作動させて前記電解槽に所定濃度の希塩水を供給し前記電解槽の両電極間に直流電圧を印加することにより電解水を生成するようにした生成制御手段と、
前記電解水の生成中に両電極間の電流が所定の下限電流値より小さい状態を所定時間継続したとき前記電流計による計測に基づいて前記濃塩水タンク内の濃塩水が無くなったと判定し前記生成制御手段による各制御を禁止して前記電解槽の両電極に対する直流電圧の印加及び電動ポンプの作動を停止するとともに前記電磁バルブを閉じて前記電解水の生成を停止する生成停止制御手段とを備えた電解水生成装置において、
前記生成制御手段が前記生成指示手段による指示に応答して電解水の生成を開始したとき同開始から前記電動ポンプが所定量の濃塩水を送水するまでは前記生成停止制御手段による各制御を禁止する生成停止制御禁止手段を設けたことを特徴とする電解水生成装置。
An electrolytic cell that accommodates a pair of electrodes to which a DC voltage is applied, and electrolyzes the supplied dilute salt water to generate electrolyzed water;
An ammeter for measuring a current flowing between the pair of electrodes;
A water supply path that is provided with an electromagnetic valve that can be electrically opened and closed, and that continuously supplies water to the electrolytic cell in the open state of the electromagnetic valve;
Concentrated salt water supply passage for supplying concentrated salt water stored in a concentrated salt water tank disposed under the electrolytic cell by operation of the electric pump, which is electrically operated and controlled, to the water supply passage. When,
Generation instruction means for instructing generation of electrolyzed water;
When generation of electrolyzed water is instructed by the generation instructing means, the electromagnetic valve is kept open, and the water supply amount is controlled so that the electric pump measures a current between both electrodes measured by the ammeter. Generation control means for generating electrolyzed water by operating while supplying dilute salt water of a predetermined concentration to the electrolyzer and applying a DC voltage between both electrodes of the electrolyzer,
During the generation of the electrolyzed water, when the current between the electrodes is smaller than a predetermined lower limit current value for a predetermined time, it is determined that the concentrated salt water in the concentrated salt water tank has disappeared based on the measurement by the ammeter and the generation A generation stop control means for prohibiting each control by the control means to stop the application of the DC voltage to both electrodes of the electrolytic cell and the operation of the electric pump, and closing the electromagnetic valve to stop the generation of the electrolyzed water. In the electrolyzed water generator,
When the generation control unit starts generating electrolyzed water in response to an instruction from the generation instruction unit, each control by the generation stop control unit is prohibited from the start until the electric pump supplies a predetermined amount of concentrated salt water. An electrolyzed water generating apparatus, characterized in that a generation stop control prohibiting means is provided.
JP2001196537A 2001-06-28 2001-06-28 Electrolyzed water generator Expired - Fee Related JP4804655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196537A JP4804655B2 (en) 2001-06-28 2001-06-28 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196537A JP4804655B2 (en) 2001-06-28 2001-06-28 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2003010851A JP2003010851A (en) 2003-01-14
JP4804655B2 true JP4804655B2 (en) 2011-11-02

Family

ID=19034328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196537A Expired - Fee Related JP4804655B2 (en) 2001-06-28 2001-06-28 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4804655B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705775B2 (en) * 2004-11-09 2011-06-22 ホシザキ電機株式会社 Electrolyzed water generator
WO2009078278A1 (en) * 2007-12-14 2009-06-25 Hoshizaki Denki Kabushiki Kaisha Electrolyzed water production system
JP6917283B2 (en) * 2017-11-22 2021-08-11 ホシザキ株式会社 Electrolyzed water generator

Also Published As

Publication number Publication date
JP2003010851A (en) 2003-01-14

Similar Documents

Publication Publication Date Title
CA2639613C (en) Electrolyzed water producing method and apparatus
KR100462639B1 (en) Water treatment apparatus
JP4804655B2 (en) Electrolyzed water generator
JP6098919B2 (en) Sterilization water generator
US20130199928A1 (en) Device for producing an electrochemically activated solution by means of an electrolysis process
JP2000218271A (en) Electrolytic device
JP3571258B2 (en) Electrolyzed water generator
JP2006239534A (en) Apparatus for generating electrolytic water and sink equipped with the same
JP3575726B2 (en) Method for producing weakly acidic water
JP2003010850A (en) Electrolytic water making apparatus
JP2001327968A (en) Electrolytic water generating device
JPH11114565A (en) Electrolyzed water producing device
JP2010207668A (en) Electrolytic water generator
JP3393587B2 (en) Electrolyzed water generator
JP3412669B2 (en) Electrolyzed water generator
JP3653135B2 (en) Electrolyzed water generator
JP3411094B2 (en) Salt water supply device
JP4705775B2 (en) Electrolyzed water generator
JPH1066973A (en) Electrolyzed water forming device
JPH10469A (en) Electrolytic water producing apparatus
JPH08332484A (en) Electrolyzed water forming device
JP2009131812A (en) Electrolytic water generating apparatus
JP2005279519A (en) Apparatus for producing electrolytic water
JP2000005752A (en) Electrolytc water producing device
KR100367895B1 (en) Electrolytic Water Generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees