JP4803609B2 - Manufacturing method of self-forming optical waveguide - Google Patents
Manufacturing method of self-forming optical waveguide Download PDFInfo
- Publication number
- JP4803609B2 JP4803609B2 JP2007171829A JP2007171829A JP4803609B2 JP 4803609 B2 JP4803609 B2 JP 4803609B2 JP 2007171829 A JP2007171829 A JP 2007171829A JP 2007171829 A JP2007171829 A JP 2007171829A JP 4803609 B2 JP4803609 B2 JP 4803609B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- cured product
- curing
- self
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
本発明は液状の未硬化の光硬化性樹脂(以下、単に光硬化性樹脂液と言う)に硬化波長光を導入し、硬化波長光の光軸に沿って軸状に硬化物を順次成長させてコアを形成する、自己形成光導波路の製造方法に関する。 The present invention introduces a curing wavelength light into a liquid uncured photocurable resin (hereinafter simply referred to as a photocurable resin liquid), and sequentially grows a cured product in an axial shape along the optical axis of the curing wavelength light. The present invention relates to a method of manufacturing a self-forming optical waveguide that forms a core.
本願出願人らは、光硬化性樹脂液充填した透明筐体に光ファイバを挿入し、当該光ファイバから光硬化性樹脂液に硬化光を照射して、軸状のコアを形成する技術を開発し、多数報告している。これらは、完成品としては、透明筐体に光ファイバが挿入され、形成されたコアと、それを覆うクラッドとが当該透明筐体内部に保持されるものを基本としている。形成されたコア端に、例えば受発光素子(受光素子及び発光素子を包括的に言うもの。以下同じ)を結合させれば、光ファイバを介して光通信が可能である。本願出願人らは、コア形成の際にミラー、ハーフミラー、波長選択性ミラー(フィルタ、例えば所望に設計された誘電体多層膜)に向けてコアを成長させることで、ミラーによる90度屈曲したコアや、分岐コアを有し、複数個の受発光素子と結合させた、光ファイバとの複数波長による光通信モジュールについても報告している。 The applicants of the present application have developed a technology for forming an axial core by inserting an optical fiber into a transparent casing filled with a photocurable resin liquid and irradiating the photocurable resin liquid with the optical fiber from the optical fiber. And many reports. As a completed product, an optical fiber is inserted into a transparent casing, and a core formed and a clad covering the core are held inside the transparent casing. If, for example, a light receiving / emitting element (a generic term for a light receiving element and a light emitting element; the same applies hereinafter) is coupled to the formed core end, optical communication is possible via an optical fiber. Applicants have bent 90 degrees with a mirror by growing the core towards a mirror, half mirror, wavelength selective mirror (filter, eg, dielectric multilayer designed as desired) during core formation. An optical communication module using a plurality of wavelengths with an optical fiber, which has a core or a branch core and is coupled to a plurality of light emitting / receiving elements, has also been reported.
さて、本願出願人による自己形成光導波路は、基本的にはミラー、ハーフミラー、波長選択性ミラーを介さない場合は、硬化光の照射方向に直線状に形成されるものであり、それらミラー等で分岐又は屈曲することはあっても、例えば湾曲するものではなかった。
そこで自己形成光導波路の更なる展開を測るため、湾曲或いはY字分岐の可能性を検討することとなった。
By the way, the self-forming optical waveguide by the applicant of the present application is basically formed in a straight line in the irradiation direction of the curing light when not using a mirror, a half mirror, and a wavelength selective mirror. For example, it was not bent.
Therefore, in order to measure further development of the self-forming optical waveguide, the possibility of bending or Y-shaped branching was examined.
単に、光造形の分野の関連技術を列挙すると次のようなものがある。
特許文献1及び2は、2本の光束の集光点を重ね合わせて光導波路を作製するものである。
特許文献2及び3は、多光子吸収を利用し、集光点を走査して光導波路を作製するものである。
特許文献4乃至6は、自己形成光導波路を屈曲させるものである。
In Patent Documents 1 and 2, an optical waveguide is produced by superimposing the condensing points of two light beams.
Patent Documents 2 and 3 use multiphoton absorption to scan a condensing point to produce an optical waveguide.
In Patent Documents 4 to 6, a self-forming optical waveguide is bent.
特許文献1及び2の技術の問題点は、光ファイバなどの他の予め用意された光伝送路との精密な位置あわせが難しいことである。これは、外部から2本の光束を収束し、光導波路を作製する為であり、レンズの収差、材料の物性等を考慮して、精密に位置を合わせて光導波路を作製する必要がある。加えて、光ファイバ等との位置あわせをパッシブに行うことは難しい。
特許文献2及び3の技術の問題点は、光導波路の断面形状が接続対象となる光ファイバの真円コア断面形状と一致しないという問題点がある。これは、レーザー焦点部分の楕円状のエネルギー分布を反映する為である。
特許文献4乃至6の技術の問題点は、自己形成光導波路の定量的かつ連続的な成長方向変化が難しいことである。特許文献4及び5については、自己形成光導波路の成長方向変化(光軸方向以外への)は、実のところ2つの対向する照射光の重なった領域へ自己形成光導波路が成長することによるものである。これは開口数(NA)などに由来し、光の重なる領域にしか成長できないと言う点と、光の重なる領域の強度分布に依存する成長しか出来ない為である。それ故に例えばS字形状、Z次形状など成長の形状を指定することは難しい。又、特許文献6は自己形成光導波路をミラー、フィルタなどパッシブな光部品により屈曲点を設けているが、これら光部品が無い時には直線状にしか成長させることが出来ない。
The problem with the techniques of Patent Documents 1 and 2 is that precise alignment with other optical transmission paths prepared in advance, such as optical fibers, is difficult. This is because an optical waveguide is produced by converging two light beams from the outside, and it is necessary to produce an optical waveguide with precise alignment in consideration of lens aberration, material properties, and the like. In addition, it is difficult to passively align with an optical fiber or the like.
The problem with the techniques of Patent Documents 2 and 3 is that the cross-sectional shape of the optical waveguide does not match the cross-sectional shape of the perfect circular core of the optical fiber to be connected. This is to reflect the elliptical energy distribution of the laser focus portion.
The problem with the techniques of Patent Documents 4 to 6 is that it is difficult to quantitatively and continuously change the growth direction of the self-formed optical waveguide. Regarding Patent Documents 4 and 5, the growth direction change (in the direction other than the optical axis direction) of the self-forming optical waveguide is actually due to the growth of the self-forming optical waveguide in a region where two opposing irradiation lights overlap. It is. This is because it is derived from the numerical aperture (NA) and the like and can only grow in a region where light overlaps, and it can only grow depending on the intensity distribution of the region where light overlaps. Therefore, it is difficult to specify a growth shape such as an S-shape or a Z-order shape. In Patent Document 6, the self-formed optical waveguide is provided with a bending point by passive optical parts such as a mirror and a filter. However, when these optical parts are not provided, they can be grown only in a straight line.
本発明者らは全く新しい着想にて、自己形成光導波路の成長端を所望の方向に誘導することができること見出し、本願発明を完成させた。 The present inventors have found that the growth edge of the self-formed optical waveguide can be guided in a desired direction with a completely new idea, and completed the present invention.
本願各請求項に係る発明の共通する本質は、自己形成光導波路となる硬化物の成長端近傍に、硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、硬化物の成長方向を当該制御光の走査方向に誘導することである。 The common essence of the inventions according to the claims of the present application is that the control light having a wavelength longer than that of the curing light is condensed near the growth end of the cured product to be a self-forming optical waveguide, and the condensing point of the control light is scanned. By doing so, it is to guide the growth direction of the cured product in the scanning direction of the control light.
請求項1に係る発明は、光軸に対して所定形状の垂直断面を有し、所定波長の硬化光を導入するための硬化光導入用導波路を用い、光硬化性樹脂液に、硬化光導入用導波路の射出端から所定波長の硬化光を導入して自己形成的に光硬化性樹脂液を硬化させて軸状の硬化物を形成する際に、当該硬化物の成長端近傍に、硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、硬化物の成長方向を当該制御光の走査方向に誘導することを特徴とする湾曲した自己形成光導波路の製造方法である。 The invention according to claim 1 has a vertical cross section having a predetermined shape with respect to the optical axis, and uses a curing light introducing waveguide for introducing curing light having a predetermined wavelength. When curing light of a predetermined wavelength is introduced from the exit end of the introduction waveguide and the photocurable resin liquid is cured in a self-forming manner to form an axially cured product, in the vicinity of the growth end of the cured product, A curved self characterized by condensing control light having a wavelength longer than that of the curing light and scanning the condensing point of the control light to guide the growth direction of the cured product in the scanning direction of the control light. This is a method of manufacturing a formed optical waveguide.
請求項2に係る発明は、光軸に対して所定形状の垂直断面を有し、所定波長の硬化光を導入するための硬化光導入用導波路を用い、光硬化性樹脂液に、硬化光導入用導波路の射出端から所定波長の硬化光を導入して自己形成的に光硬化性樹脂液を硬化させて第1の軸状の硬化物を形成したのち、硬化光を導入したまま、第1の軸状の硬化物の任意の位置に硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、新たな硬化物の成長端を発生させると共に、当該新たな硬化物の成長方向を当該制御光の走査方向に誘導して、第1の軸状の硬化物から分岐した第2の軸状の硬化物を形成することを特徴とする分岐した自己形成光導波路の製造方法である。 The invention according to claim 2 has a vertical cross section having a predetermined shape with respect to the optical axis, and uses a curing light introducing waveguide for introducing curing light having a predetermined wavelength. After introducing the curing light of a predetermined wavelength from the exit end of the introduction waveguide and curing the photocurable resin liquid in a self-forming manner to form the first shaft-shaped cured product, with the curing light introduced, A control light having a wavelength longer than that of the curing light is collected at an arbitrary position of the first axis-shaped cured product, and a growth end of a new cured product is generated by scanning a condensing point of the control light. And a branch characterized by forming a second shaft-shaped cured product branched from the first shaft-shaped cured product by guiding the growth direction of the new cured product in the scanning direction of the control light. This is a method for manufacturing a self-formed optical waveguide.
請求項3に係る発明は、光軸に対して所定形状の垂直断面を有し、所定波長の硬化光を導入するための硬化光導入用導波路を用い、光硬化性樹脂液に、硬化光導入用導波路の射出端から所定波長の硬化光を導入して自己形成的に光硬化性樹脂液を硬化させて軸状の硬化物を形成する際に、当該硬化物の成長端近傍に、硬化光よりも長波長の複数個の制御光を各々集光し、当該複数個の制御光の集光点を走査することにより、硬化物の成長端を複数個発生させると共に、当該複数個の硬化物の成長方向を各制御光の走査方向に各々誘導して、複数個の分岐を有する硬化物を形成することを特徴とする分岐した自己形成光導波路の製造方法である。 The invention according to claim 3 has a vertical cross section having a predetermined shape with respect to the optical axis, and uses a curing light introducing waveguide for introducing curing light having a predetermined wavelength. When curing light of a predetermined wavelength is introduced from the exit end of the introduction waveguide and the photocurable resin liquid is cured in a self-forming manner to form an axially cured product, in the vicinity of the growth end of the cured product, A plurality of control lights having a wavelength longer than that of the curing light are collected respectively, and a plurality of growth ends of the cured product are generated by scanning a collection point of the plurality of control lights, and the plurality of the plurality of control lights are generated. A method of manufacturing a branched self-forming optical waveguide, wherein a cured product having a plurality of branches is formed by guiding a growth direction of the cured product in a scanning direction of each control light.
請求項4に係る発明は、制御光の集光点近傍において、多光子過程により光硬化性樹脂液の硬化反応を生じさせることを特徴とする。
請求項5に係る発明は、請求項4に記載の自己形成光導波路の製造方法において、制御光の波長が600nm以上830nm以下であることを特徴とする。
The invention according to claim 4 is characterized in that a curing reaction of the photocurable resin liquid is caused by a multiphoton process in the vicinity of the condensing point of the control light.
The invention according to claim 5 is the method for manufacturing a self-forming optical waveguide according to claim 4, wherein the wavelength of the control light is 600 nm or more and 830 nm or less.
以下の実施例に示す通り、本発明者らは、自己形成光導波路となる硬化物の成長端近傍に、硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、硬化物の成長方向を当該制御光の走査方向に誘導できることを見出した。この際、硬化光導入用導波路と光硬化性樹脂液を用いれば、当該硬化光導入用導波路の射出端から極めて自由度の高い、湾曲した軸状の硬化物を得ることができる。即ち、硬化物の硬化開始地点と硬化終了地点を正確に計測し、例えば自動制御により制御光の集光点を走査することで、2つの地点を3次元的に結ぶ自己形成光導波路を形成することが容易にできる。この際、形成された自己形成光導波路の断面は、硬化光導入用導波路の射出端の形状、或いは硬化光導入用導波路の光軸に対する垂直断面の形状にほぼ従う。これにより、例えば2つの光ファイバの端面を、自己形成光導波路により接続し、所望のクラッド部材で覆うことで、光損失の少ない光ファイバの接続が可能となる(請求項1)。 As shown in the following examples, the present inventors condense control light having a wavelength longer than that of the curing light in the vicinity of the growth end of the cured product to be a self-forming optical waveguide, and set a condensing point of the control light. It was found that the growth direction of the cured product can be guided in the scanning direction of the control light by scanning. At this time, if a curing light introduction waveguide and a photocurable resin liquid are used, a curved shaft-like cured product having a very high degree of freedom can be obtained from the exit end of the curing light introduction waveguide. That is, the self-forming optical waveguide that connects the two points three-dimensionally is formed by accurately measuring the curing start point and the curing end point of the cured product, for example, by scanning the condensing point of the control light by automatic control. Can be easily done. At this time, the cross section of the formed self-forming optical waveguide substantially conforms to the shape of the exit end of the curing light introduction waveguide or the shape of the cross section perpendicular to the optical axis of the curing light introduction waveguide. Thus, for example, the end faces of two optical fibers are connected by a self-forming optical waveguide and covered with a desired clad member, so that an optical fiber with little optical loss can be connected.
このような効果が生ずる理由は必ずしも明確ではないが、例えば以下の機構による可能性がある。
最も可能性の高い機構は、制御光の集光点近傍に微小な硬化物が形成されることである。当該硬化物は、まさしく硬化光による硬化物と同一物であって、硬化光により形成される軸状の硬化物(コア)の径の範囲内にあるならば、最終的には軸状の硬化物(コア)の内部に埋没する。この際、硬化光による硬化物の先端付近で、制御光の集光点に形成される微小な硬化物が、硬化光による硬化物の先端を誘導する形となる。即ち、硬化光により形成される軸状の硬化物(コア)の先端に、制御光の集光点に形成される微小な硬化物が次々と形成される。この際、制御光の集光点が所望方向に走査されることにより、制御光の集光点に形成される微小な硬化物が、列をなして(微小な連続体として)当該集光点の走査された軌跡に配置されることとなる。この際、光硬化性樹脂は、光照射により活性化された後、短時間ではあるが一定の時間、反応点が活性化されており、重合(硬化)が継続する。すると、当該集光点の走査された軌跡に配置された微小な硬化物の表面から、硬化光の光軸から離れる方向にも硬化が生じ、軸状の硬化物(コア)が順次形成される状況となる。軸状の硬化物(コア)の径が、それ以前に形成された硬化物(コア)の径程度になることから、最終的な軸状の硬化物(コア)形状は、硬化光導入用導波路から導入される硬化光によって決定されるものである。しかし、軸状の硬化物(コア)の成長端において、集光点の走査された軌跡に配置された微小な硬化物が常に存在し、当該微小な硬化物表面の光硬化性樹脂の反応点が一定の時間、消失せずに活性化されているならば、微小な硬化物が例えば湾曲している場合、最終的な軸状の硬化物(コア)も、微小な硬化物の湾曲に合わせて湾曲するものと考えられる。
ここにおいて、制御光の集光点に形成される微小な硬化物の最先端は、硬化光による軸状の硬化物(コア)の成長端から、余り離れていないことが望ましい可能性が高い。また、集光点以外の制御光の照射部分が硬化しないことが望ましい。
The reason why such an effect occurs is not necessarily clear, but may be due to the following mechanism, for example.
The most likely mechanism is that a minute cured product is formed in the vicinity of the condensing point of the control light. If the cured product is exactly the same as the cured product by the curing light and is within the range of the diameter of the axial cured product (core) formed by the curing light, the final cured product is axial. It is buried inside the object (core). At this time, a minute cured product formed at the condensing point of the control light in the vicinity of the front end of the cured product by the curing light takes a form in which the leading end of the cured product by the curing light is guided. That is, the minute hardened | cured material formed in the condensing point of control light is formed one after another at the front-end | tip of the axial-shaped hardened | cured material (core) formed with hardening light. At this time, the condensing point of the control light is scanned in a desired direction, so that the minute cured product formed at the condensing point of the control light forms a line (as a minute continuous body). Will be placed on the trajectory scanned. In this case, after the photocurable resin is activated by light irradiation, the reaction point is activated for a certain period of time, but the polymerization (curing) continues. Then, curing occurs in the direction away from the optical axis of the curing light from the surface of the minute cured product arranged on the scanned locus of the condensing point, and an axially cured product (core) is sequentially formed. Situation. Since the diameter of the shaft-shaped cured product (core) is about the diameter of the previously formed cured product (core), the final shape of the shaft-shaped cured product (core) is the guide for introducing the curing light. It is determined by the curing light introduced from the waveguide. However, at the growth end of the axially cured product (core), there is always a minute cured product arranged on the scanned locus of the condensing point, and the reaction point of the photocurable resin on the surface of the minute cured product If it is activated without disappearing for a certain period of time, if the microcured material is curved, for example, the final shaft-cured material (core) will also conform to the curvature of the microcured material. It is considered to be bent.
Here, there is a high possibility that it is desirable that the tip of the minute cured product formed at the converging point of the control light is not so far away from the growth end of the axial cured product (core) by the curing light. Moreover, it is desirable that the irradiated portion of the control light other than the condensing point is not cured.
他の可能性としては、光マニピュレーションによる成長端への光力学的外力が、光硬化性樹脂硬化物を湾曲させることも考えられる。 Another possibility is that the photodynamic external force applied to the growth edge by optical manipulation causes the cured photocurable resin to bend.
請求項2に係る発明のように分岐が可能であることも下記実施例の通り見出された。即ち、既に形成された光硬化性樹脂硬化物の表面に、新たな成長端を作り出すこと、及び当該成長端を制御光の走査方向に誘導して、極めて自由度の高い、湾曲した軸状の硬化物を得ることができる。勿論、光損失その他の面で、先に形成される光硬化性樹脂硬化物による光導波路と、新たに形成される光硬化性樹脂硬化物による光導波路とが、完全に自由な形状を取りうるわけではない。少なくとも、分岐の開始点においては、硬化光導入用導波路からの硬化光の照射されうる方向に、新たに形成される分岐は成長しなければならない。 It was also found out as in the following examples that branching is possible as in the invention according to claim 2. That is, a new growth edge is created on the surface of the already formed photo-curing resin cured product, and the growth edge is guided in the scanning direction of the control light, so that a curved shaft having a very high degree of freedom is formed. A cured product can be obtained. Of course, in terms of light loss and other aspects, the optical waveguide formed by the previously formed photo-cured resin cured product and the optical waveguide formed by the newly formed photo-cured resin cured product can take a completely free shape. Do not mean. At least at the branch start point, the newly formed branch must grow in the direction in which the curing light from the curing light introduction waveguide can be irradiated.
これらから、請求項3に係る発明のように、一度に複数個の成長端を形成することも可能である。 From these, it is also possible to form a plurality of growth edges at a time as in the invention according to claim 3.
上述のような硬化は、主として制御光の多光子吸収、又は制御光と硬化光との多光子吸収を利用すると良い。制御光は集光点近傍以外の照射部分では、光硬化性樹脂液が硬化しないことが望ましいからである(請求項4)。 For the curing as described above, it is preferable to mainly use multiphoton absorption of control light or multiphoton absorption of control light and curing light. This is because it is desirable that the photocurable resin liquid is not cured in the irradiated portion other than the vicinity of the condensing point of the control light.
一般に、光重合開始剤はUV乃至500nm以下の波長に対して有効である。そこで、制御光としては、そのような光重合開始剤の吸収端を越えるものが好ましい。但し2光子吸収で当該光重合開始剤を活性化させるためには、吸収端の波長の2倍の波長以下であることが好ましい(請求項5)。 In general, photopolymerization initiators are effective for wavelengths from UV to 500 nm. Therefore, the control light preferably exceeds the absorption edge of such a photopolymerization initiator. However, in order to activate the photopolymerization initiator by two-photon absorption, the wavelength is preferably not more than twice the wavelength of the absorption edge (Claim 5).
自己形成光導波路が極めてゆっくり成長する必要があるため、自己形成光導波路を形成するための硬化光は光重合開始剤の吸収端よりもやや長波長のものが好ましい。硬化光による重合は、光重合開始剤の多光子吸収により開始されている可能性は否定できない。
一方、制御光は多光子吸収でのみ開始されている。この際、二光子吸収により極端に早い重合が起きないよう、制御光は光重合開始剤の吸収端よりもやや短波長の2倍波長を選択すると良い。
制御光は、多光子吸収が容易となるように、例えばフェムト秒パルスレーザを用いると良い。また、二光子吸収色素その他の色素を添加することで、多光子吸収が更に容易となる。
Since the self-forming optical waveguide needs to grow very slowly, the curing light for forming the self-forming optical waveguide preferably has a wavelength slightly longer than the absorption edge of the photopolymerization initiator. It cannot be denied that the polymerization by the curing light is initiated by the multiphoton absorption of the photopolymerization initiator.
On the other hand, the control light is started only by multiphoton absorption. At this time, it is preferable that the control light has a wavelength twice as short as the absorption edge of the photopolymerization initiator so that extremely fast polymerization does not occur due to two-photon absorption.
As the control light, for example, a femtosecond pulse laser may be used so that multiphoton absorption can be facilitated. Moreover, multiphoton absorption is further facilitated by adding a two-photon absorbing dye or other dyes.
制御光の照射方向は、硬化光による光軸と垂直な方向に照射集光し、制御光の光軸に垂直な面内で制御光の集光点を走査することが最も理想的ではある。しかし、本願発明は、硬化光による光軸と垂直な方向に制御光を照射集光する必要はなく、制御光の光軸に垂直な面内で制御光の集光点を走査する必要もない。 Ideally, the irradiation direction of the control light is irradiated and condensed in a direction perpendicular to the optical axis of the curing light, and the condensing point of the control light is scanned in a plane perpendicular to the optical axis of the control light. However, in the present invention, it is not necessary to irradiate and collect the control light in a direction perpendicular to the optical axis by the curing light, and it is not necessary to scan the condensing point of the control light in a plane perpendicular to the optical axis of the control light. .
途中に透明部材、ミラー等の反射部材、フィルタ等の干渉部材を介しても良い。
成長終了端は、任意の光学部材、光学素子までとして接続して終端させると良い。光学部材としては、筐体等の透明部材、ミラー等の反射部材、フィルタ等の干渉部材、或いは光ファイバ等の光導波路が挙げられる。
光学素子としては、発光素子、受光素子、その他の光電素子等が挙げられる。
A transparent member, a reflecting member such as a mirror, and an interference member such as a filter may be interposed in the middle.
The growth end is preferably connected and terminated as an arbitrary optical member or optical element. Examples of the optical member include a transparent member such as a casing, a reflecting member such as a mirror, an interference member such as a filter, or an optical waveguide such as an optical fiber.
Examples of the optical element include a light emitting element, a light receiving element, and other photoelectric elements.
本発明に用いる光硬化性樹脂液は、入手可能な任意のものを適用できる。硬化機構も、ラジカル重合、カチオン重合其の他任意である。硬化光は一般的にはレーザ光が好ましい。レーザの波長と強度で、光硬化性樹脂液の硬化速度を調整すると良い。尚、光硬化開始剤(光重合開始剤)は光硬化性樹脂液とレーザの波長に応じ、入手可能な任意のものを適用できる。これらについては、本願出願人が共願人である例えば特開2004−149579に次のものが列挙されている。 Any available photocurable resin liquid used in the present invention can be applied. The curing mechanism is also arbitrarily selected from radical polymerization, cationic polymerization and the like. In general, the curing light is preferably laser light. It is preferable to adjust the curing rate of the photocurable resin liquid by the wavelength and intensity of the laser. As the photocuring initiator (photopolymerization initiator), any available one can be applied according to the photocurable resin liquid and the wavelength of the laser. Regarding these, the following are listed in, for example, Japanese Patent Application Laid-Open No. 2004-149579 in which the applicant of the present application is a co-applicant.
構造単位中にフェニル基等の芳香族環を一つ以上含んだものが高屈折率、脂肪族系のみからなる場合は低屈折率となる。屈折率を下げるために構造単位中の水素の一部をフッ素に置換したものであっても良い。
脂肪族系としてはエチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ネオペンチルグリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコール。
芳香族系としてはビスフェノールA、ビスフェノールS、ビスフェノールZ、ビスフェノールF、ノボラック、o-クレゾールノボラック、p-クレゾールノボラック、p-アルキルフェノールノボラック等の各種フェノール化合物等。
これら、あるいはこれらから任意に1種乃至複数種選択された多価アルコールのオリゴマー(ポリエーテル)の構造を有する比較的低分子(分子量3000程度以下)骨格に、反応基として次の官能基等を導入したもの。
〔ラジカル重合性材料〕
ラジカル重合可能なアクリロイル基等のエチレン性不飽和反応性基を構造単位中に1個以上、好ましくは2個以上有する光重合性モノマー及び/又はオリゴマー。エチレン性不飽和反応性基を有するものの例としては、(メタ)アクリル酸エステル、イタコン酸エステル、マレイン酸エステル等の共役酸エステルを挙げることができる。
〔カチオン重合性材料〕
カチオン重合可能なオキシラン環(エポキシド)、オキセタン環等の反応性エーテル構造を構造単位中に1個以上、好ましくは2個以上有する、光重合性のモノマー及び/又はオリゴマー。オキシラン環(エポキシド)としては、オキシラニル基の他、3,4-エポキシシクロヘキシル基なども含まれる。またオキセタン環とは、4員環構造のエーテルである。
When a structural unit containing at least one aromatic ring such as a phenyl group consists of a high refractive index and an aliphatic group only, the refractive index is low. In order to lower the refractive index, a part of hydrogen in the structural unit may be substituted with fluorine.
Aliphatic ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, neopentyl glycol, 1,3-propanediol, 1,4-butanediol Polyhydric alcohols such as 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, pentaerythritol and dipentaerythritol.
Examples of aromatic compounds include various phenol compounds such as bisphenol A, bisphenol S, bisphenol Z, bisphenol F, novolac, o-cresol novolak, p-cresol novolak, and p-alkylphenol novolak.
The following functional groups or the like are added as reactive groups to a relatively low molecular (molecular weight of about 3000 or less) skeleton having the structure of an oligomer (polyether) of these, or one or more polyhydric alcohols arbitrarily selected from these. What was introduced.
[Radical polymerizable material]
Photopolymerizable monomers and / or oligomers having one or more, preferably two or more ethylenically unsaturated reactive groups such as radically polymerizable acryloyl groups in the structural unit. Examples of those having an ethylenically unsaturated reactive group include conjugate acid esters such as (meth) acrylic acid esters, itaconic acid esters, and maleic acid esters.
[Cationically polymerizable material]
Photopolymerizable monomers and / or oligomers having one or more, preferably two or more reactive ether structures such as cationically polymerizable oxirane rings (epoxides) and oxetane rings in the structural unit. Examples of the oxirane ring (epoxide) include an oxiranyl group and a 3,4-epoxycyclohexyl group. The oxetane ring is a 4-membered ether.
〔ラジカル重合開始剤〕
ラジカル重合性モノマー及び/又はオリゴマーから成るラジカル重合性材料の重合反応を光によって活性化する化合物である。具体例としては、ベンゾイン、ベンゾインメチルエーテル及びベンゾインプロピルエーテル等のベンゾイン類、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルホリノプロパン-1-オン及びN,N-ジメチルアミノアセトフェノン等のアセトフェノン類、2-メチルアントラキノン、1-クロロアントラキノン及び2-アミルアントラキノン等のアントラキノン類、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン及び2,4-ジイソプロピルチオキサントン等のチオキサントン類、アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール類、ベンゾフェノン、メチルベンゾフェノン、4,4'-ジクロロベンゾフェノン、4,4'-ビスジエチルアミノベンゾフェノン、ミヒラーズケトン及び4-ベンゾイル-4'-メチルジフェニルサルファイド等のベンゾフェノン類、並びに2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。尚、ラジカル重合開始剤は単独で使用しても、2種以上を併用しても良く、また、これらに限定されることはない。
〔カチオン重合開始剤〕
カチオン重合性モノマー及び/又はオリゴマーから成るカチオン重合性材料の重合反応を光によって活性化する化合物である。具体例としては、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩、チオピリニウム塩が挙げられるが、熱的に比較的安定であるジフェニルヨードニウム、ジトリルヨードニウム、フェニル(p-アニシル)ヨードニウム、ビス(p-t-ブチルフェニル)ヨードニウム、ビス(p-クロロフェニル)ヨードニウムなどの芳香族ヨードニウム塩、ジフェニルスルホニウム、ジトリルスルホニウム、フェニル(p-アニシル)スルホニウム、ビス(p-t-ブチルフェニル)スルホニウム、ビス(p-クロロフェニル)スルホニウムなどの芳香族スルホニウム塩等のオニウム塩光重合開始剤が好ましい。芳香族ヨードニウム塩および芳香族スルホニウム塩等のオニウム塩光重合開始剤を使用する場合、アニオンとしてはBF4 -、AsF6 -、SbF6 -、PF6 -、B(C6F5)4 -などが挙げられる。尚、カチオン重合開始剤は単独で使用しても、2種以上を併用しても良く、また、これらに限定されることはない。
〔その他〕
更には、二光子吸収を効率よく生じさせるため、二光子吸収色素を添加しても良い。
[Radical polymerization initiator]
It is a compound that activates a polymerization reaction of a radical polymerizable material comprising a radical polymerizable monomer and / or oligomer by light. Specific examples include benzoins such as benzoin, benzoin methyl ether and benzoin propyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, Acetophenones such as 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one and N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 1- Anthraquinones such as chloroanthraquinone and 2-amylanthraquinone, thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone, acetophenone dimethyl ketal and benzyldimethyl ketal Ketter Benzophenones, such as benzophenone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone, Michler's ketone and 4-benzoyl-4'-methyldiphenyl sulfide, and 2,4,6-trimethyl Examples include benzoyldiphenylphosphine oxide. In addition, a radical polymerization initiator may be used independently, or may use 2 or more types together, and is not limited to these.
(Cationic polymerization initiator)
It is a compound that activates a polymerization reaction of a cationic polymerizable material comprising a cationic polymerizable monomer and / or oligomer by light. Specific examples include diazonium salts, iodonium salts, sulfonium salts, selenium salts, pyridinium salts, ferrocenium salts, phosphonium salts, and thiopyrinium salts, which are thermally relatively stable diphenyliodonium, ditolyliodonium, phenyl ( Aromatic iodonium salts such as p-anisyl) iodonium, bis (pt-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, diphenylsulfonium, ditolylsulfonium, phenyl (p-anisyl) sulfonium, bis (pt-butylphenyl) ) Preferable are onium salt photopolymerization initiators such as aromatic sulfonium salts such as sulfonium and bis (p-chlorophenyl) sulfonium. When using an onium salt photoinitiator such as aromatic iodonium salts and aromatic sulfonium salts, as the anion BF 4 -, AsF 6 -, SbF 6 -, PF 6 -, B (C 6 F 5) 4 - Etc. In addition, a cationic polymerization initiator may be used individually or may use 2 or more types together, and is not limited to these.
[Others]
Furthermore, a two-photon absorption dye may be added to efficiently generate two-photon absorption.
〔予備実験〕
以下の実施例に先立って、次の予備実験を行った。
アクリル系の液状の光重合性化合物を用意した。光重合開始剤としてはチバスペシャリティケミカルズ社のIRGACURE1800を用いた。通常、その吸収端は488nmよりも小さいと考えられているものである。
硬化光導入用導波路として、コア径100μmのステップインデックス型光ファイバ(次の実施例1で10a)を用意した。
光ファイバの一端を光硬化性樹脂液(次の実施例1で11)に浸し、他端にアルゴンイオンレーザからの波長488nmのレーザ光を導入した。出力は0.03mWとした。この際、光硬化性樹脂液に浸した光ファイバ端から、自己形成的に軸状の硬化物が形成された。当該硬化物の光軸方向の成長速度は0.2mm/分であった。
〔Preliminary experiment〕
Prior to the following examples, the following preliminary experiments were conducted.
An acrylic liquid photopolymerizable compound was prepared. IRGACURE 1800 manufactured by Ciba Specialty Chemicals was used as the photopolymerization initiator. Usually, the absorption edge is considered to be smaller than 488 nm.
A step index optical fiber (10a in Example 1) having a core diameter of 100 μm was prepared as a waveguide for introducing curing light.
One end of the optical fiber was immersed in a photocurable resin liquid (11 in the following Example 1), and laser light having a wavelength of 488 nm from an argon ion laser was introduced into the other end. The output was 0.03 mW. At this time, a shaft-like cured product was formed in a self-forming manner from the end of the optical fiber immersed in the photocurable resin liquid. The growth rate of the cured product in the optical axis direction was 0.2 mm / min.
次に、光ファイバ10aの一端10aeを光硬化性樹脂液11に浸した。更に同様の光ファイバ10bの一端10beを光硬化性樹脂液11に浸した。
これらの位置関係は、いずれの光ファイバ10a、10bの光軸もx軸方向にほぼ平行であり、且つそれらはほぼ240μm離れていた。各々の端部は、x軸方向に3850μm、y軸方向に211μm、z軸方向に120μm離れていた。
Next, one end 10ae of the optical fiber 10a was immersed in the photocurable resin liquid 11. Furthermore, one end 10be of the similar optical fiber 10b was immersed in the photocurable resin liquid 11.
As for these positional relationships, the optical axes of any of the optical fibers 10a and 10b were substantially parallel to the x-axis direction, and they were separated by approximately 240 μm. Each end portion was 3850 μm in the x-axis direction, 211 μm in the y-axis direction, and 120 μm in the z-axis direction.
光ファイバ10aの他端にアルゴンイオンレーザからの波長488nmのレーザ光を出力0.03mWで導入して光ファイバ10aの一端10aeから光硬化性樹脂液11に照射して自己形成的に硬化物を形成すると共に、モードロックチタンサファイアレーザからの制御光を硬化物の成長端近傍に集光して走査した。チタンサファイアレーザからの制御光は、波長800nm、パルス幅130フェムト秒、繰り返し周波数76MHz、平均出力150mWとした。また、集光には開口数0.12のレンズを用いた。
こうして、硬化物の成長速度0.2mm/分に合わせて、制御光の集光点を速度0.2mm/分で光ファイバ10aの一端10aeと光ファイバ10bの一端10beを滑らかに繋ぐように走査した。これにより、硬化物の成長端が制御光の集光点に追随して光ファイバ10aの一端10aeと光ファイバ10bの一端10beを滑らかに繋ぐように、ゆるやかに湾曲した軸状の硬化物11cとして形成された。これを図1に写真図で、図2に当該写真図の説明図として示す。
A laser beam having a wavelength of 488 nm from an argon ion laser is introduced into the other end of the optical fiber 10a at an output of 0.03 mW, and the photocurable resin liquid 11 is irradiated from one end 10ae of the optical fiber 10a to form a cured product in a self-forming manner. At the same time, the control light from the mode-locked titanium sapphire laser was condensed and scanned near the growth edge of the cured product. The control light from the titanium sapphire laser had a wavelength of 800 nm, a pulse width of 130 femtoseconds, a repetition frequency of 76 MHz, and an average output of 150 mW. A lens with a numerical aperture of 0.12 was used for condensing light.
Thus, in accordance with the growth rate of the cured product of 0.2 mm / min, the condensing point of the control light is scanned at a speed of 0.2 mm / min so as to smoothly connect the one end 10ae of the optical fiber 10a and the one end 10be of the optical fiber 10b. did. As a result, a shaft-shaped cured product 11c that is gently curved so that the growth end of the cured product follows the condensing point of the control light and smoothly connects the one end 10ae of the optical fiber 10a and the one end 10be of the optical fiber 10b. Been formed. FIG. 1 is a photographic diagram, and FIG. 2 is an explanatory diagram of the photographic diagram.
図2は、図1の写真図の説明図であり、光ファイバ10aの一端10aeと光ファイバ10bの一端10beをゆるやかに湾曲した軸状の硬化物11cが接続していることを示している。尚、光ファイバ10aの一端10ae付近での光軸と、ゆるやかに湾曲した軸状の硬化物11cの当該端10ae付近での光軸は一致し、光ファイバ10bの一端10be付近での光軸と、ゆるやかに湾曲した軸状の硬化物11cの当該端10be付近での光軸もほぼ一致している。図2の右下に座標軸を示す。上述の通り、光ファイバ10aの一端10aeと光ファイバ10bの一端10beは、x軸方向に3850μm、y軸方向に211μm、z軸方向に120μm離れている。
図1で破線で示したものは、図2の破線で示した仮想コア11ia及び11ibであって、各々、光ファイバ10aの一端10aeから、並びに、光ファイバ10bの一端10beから、波長488nmのレーザ光を照射した場合に形成されるべき硬化物(コア)の位置を示すものである。このように、光ファイバ10aの一端10aeから、光ファイバ10bの一端10beから、各々波長488nmのレーザ光を照射した場合にはそれにより形成される硬化物(コア)は交わることはない。尚、図2でra及びrbで示した、ゆるやかに湾曲した軸状の硬化物11cの2箇所の曲率半径は、約3cm程度と考えられる。
FIG. 2 is an explanatory diagram of the photographic diagram of FIG. 1, and shows that the one end 10 ae of the optical fiber 10 a and the one end 10 be of the optical fiber 10 b are connected with a gently curved shaft-shaped cured product 11 c. The optical axis in the vicinity of one end 10ae of the optical fiber 10a is coincident with the optical axis in the vicinity of the end 10ae of the slowly curved shaft-shaped cured product 11c, and the optical axis in the vicinity of the one end 10be of the optical fiber 10b The optical axis in the vicinity of the end 10be of the slowly-cured shaft-like cured product 11c is also substantially coincident. The coordinate axes are shown in the lower right of FIG. As described above, the one end 10ae of the optical fiber 10a and the one end 10be of the optical fiber 10b are separated by 3850 μm in the x-axis direction, 211 μm in the y-axis direction, and 120 μm in the z-axis direction.
The broken lines in FIG. 1 are the virtual cores 11 ia and 11 ib shown in broken lines in FIG. 2, which are lasers having a wavelength of 488 nm from one end 10 ae of the optical fiber 10 a and from one end 10 be of the optical fiber 10 b. It shows the position of the cured product (core) to be formed when irradiated with light. As described above, when laser light having a wavelength of 488 nm is irradiated from one end 10ae of the optical fiber 10a and from one end 10be of the optical fiber 10b, the cured product (core) formed thereby does not intersect. In addition, it is thought that the curvature radius of two places of the moderately curved axial-shaped hardened | cured material 11c shown by ra and rb in FIG. 2 is about 3 cm.
図3は、ゆるやかに湾曲した軸状の硬化物11cの、光ファイバ10aの一端10aeに接続されていた部分の顕微鏡写真である。ゆるやかに湾曲した軸状の硬化物11cの断面は、光ファイバ10aの光射出面(端10ae)のコア形状と同様に円形であった。 FIG. 3 is a photomicrograph of the portion of the slowly-cured shaft-shaped cured product 11c connected to one end 10ae of the optical fiber 10a. The cross section of the slowly-cured shaft-like cured product 11c was circular, similar to the core shape of the light exit surface (end 10ae) of the optical fiber 10a.
実施例1と同様にして、より湾曲部の曲率の大きな(曲率半径の最小値が3cmより小さな)軸状の硬化物11’を形成した。 In the same manner as in Example 1, a shaft-shaped cured product 11 ′ having a larger curvature of the curved portion (the minimum value of the curvature radius is smaller than 3 cm) was formed.
実施例2で得られた硬化物11’の成長開始端である光ファイバ10aの一端10aeに集光点を配置し、光ファイバ10aから硬化光を導入したまま、実施例2で硬化させた硬化物11’の湾曲方向とは逆方向に湾曲するように集光点を走査した。すると光ファイバ10aの一端10ae近傍に新たな成長端が生じて、集光点の走査の軌跡に追随するように、新たな軸状の硬化物が形成された。これを図4に示す。
即ち、請求項2に係る発明が実施可能であることが証明された。
Curing that is cured in Example 2 with a condensing point arranged at one end 10ae of the optical fiber 10a that is the growth start end of the cured product 11 ′ obtained in Example 2 and introducing the curing light from the optical fiber 10a. The condensing point was scanned so as to bend in the direction opposite to the bending direction of the object 11 ′. Then, a new growth end was generated in the vicinity of one end 10ae of the optical fiber 10a, and a new shaft-like cured product was formed so as to follow the scanning locus of the condensing point. This is shown in FIG.
That is, it was proved that the invention according to claim 2 can be implemented.
〔比較例〕
実施例1において、制御光の出力を500mWとした他は全く同様に行った。光ファイバ10aの一端10ae近傍において、断面が円外部に凸部を有する軸状の硬化物11’’が得られた。硬化物11’’の顕微鏡写真を図5に示す。
[Comparative Example]
In Example 1, the same operation was performed except that the output of the control light was 500 mW. In the vicinity of one end 10ae of the optical fiber 10a, a shaft-shaped cured product 11 '' having a convex portion outside the circle in the cross section was obtained. A photomicrograph of the cured product 11 '' is shown in FIG.
図5から、制御光の出力を500mWとすることで、制御光の集光点が光ファイバ10aの一端10aeの射出面の中心からおおよそ80μm付近まで、制御光の二光子吸収等により光硬化性樹脂液11の硬化が生じていることが明かである。
このことから、本実施例1乃至3の出力を150mWとした場合においても、制御光の集光点近傍では二光子吸収等により光重合開始剤が活性化(開裂等)し、硬化物が生じていることが想像できる。即ち、光ファイバ10aからの硬化光により硬化する範囲である直径100μmよりも小さい範囲において、制御光により硬化物が生じていると考えられる。
硬化光による硬化物に先立って、制御光により硬化物が生じ、当該制御光による硬化物の表面からも硬化光による硬化が継続して生じているものと考えられる。
From FIG. 5, by setting the output of the control light to 500 mW, the light curable by the two-photon absorption of the control light, etc., from the center of the exit surface of the one end 10ae of the optical fiber 10a to about 80 μm. It is clear that the resin liquid 11 is cured.
Therefore, even when the outputs of Examples 1 to 3 are set to 150 mW, the photopolymerization initiator is activated (cleaved) by the two-photon absorption in the vicinity of the converging point of the control light, and a cured product is generated. I can imagine that. That is, it is considered that a cured product is generated by the control light in a range smaller than a diameter of 100 μm, which is a range cured by the curing light from the optical fiber 10a.
Prior to the cured product by the curing light, a cured product is generated by the control light, and it is considered that the curing by the curing light is continuously generated from the surface of the cured product by the control light.
10a、10b:光ファイバ
10ae:硬化光の射出端
11c:ゆるやかに湾曲した軸状の硬化物(自己形成光導波路のコア)
10a, 10b: Optical fiber 10ae: Ejection end of cured light 11c: Slowly curved shaft-shaped cured product (core of self-forming optical waveguide)
Claims (5)
光硬化性樹脂液に、前記硬化光導入用導波路の射出端から前記所定波長の硬化光を導入して自己形成的に前記光硬化性樹脂液を硬化させて軸状の硬化物を形成する際に、
当該硬化物の成長端近傍に、前記硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、前記硬化物の成長方向を当該制御光の走査方向に誘導することを特徴とする湾曲した自己形成光導波路の製造方法。 Using a curing light introduction waveguide having a vertical cross section with a predetermined shape with respect to the optical axis, for introducing curing light of a predetermined wavelength,
A curing light having a predetermined wavelength is introduced into the photo-curing resin liquid from the exit end of the waveguide for introducing the curing light, and the photo-curing resin liquid is cured in a self-forming manner to form a shaft-shaped cured product. When
By condensing control light having a wavelength longer than that of the curing light in the vicinity of the growth end of the cured product and scanning the condensing point of the control light, the growth direction of the cured product is changed to the scanning direction of the control light. A method of manufacturing a curved self-forming optical waveguide, characterized in that:
光硬化性樹脂液に、前記硬化光導入用導波路の射出端から前記所定波長の硬化光を導入して自己形成的に前記光硬化性樹脂液を硬化させて第1の軸状の硬化物を形成したのち、
前記硬化光を導入したまま、前記第1の軸状の硬化物の任意の位置に前記硬化光よりも長波長の制御光を集光し、当該制御光の集光点を走査することにより、新たな硬化物の成長端を発生させると共に、当該新たな硬化物の成長方向を当該制御光の走査方向に誘導して、前記第1の軸状の硬化物から分岐した第2の軸状の硬化物を形成することを特徴とする分岐した自己形成光導波路の製造方法。 Using a curing light introduction waveguide having a vertical cross section with a predetermined shape with respect to the optical axis, for introducing curing light of a predetermined wavelength,
A first shaft-shaped cured product is produced by introducing the curing light of the predetermined wavelength into the photocurable resin liquid from the exit end of the waveguide for introducing cured light to cure the photocurable resin liquid in a self-forming manner. After forming
By collecting the control light having a wavelength longer than that of the curing light at an arbitrary position of the first shaft-shaped cured product while introducing the curing light, and scanning the condensing point of the control light, A growth end of a new cured product is generated, and a growth direction of the new cured product is guided in a scanning direction of the control light, so that a second shaft-shaped branch branched from the first shaft-shaped cured product is generated. A method of manufacturing a branched self-forming optical waveguide, characterized by forming a cured product.
光硬化性樹脂液に、前記硬化光導入用導波路の射出端から前記所定波長の硬化光を導入して自己形成的に前記光硬化性樹脂液を硬化させて軸状の硬化物を形成する際に、
当該硬化物の成長端近傍に、前記硬化光よりも長波長の複数個の制御光を各々集光し、当該複数個の制御光の集光点を走査することにより、前記硬化物の成長端を複数個発生させると共に、当該複数個の硬化物の成長方向を各制御光の走査方向に各々誘導して、複数個の分岐を有する硬化物を形成することを特徴とする分岐した自己形成光導波路の製造方法。 Using a curing light introduction waveguide having a vertical cross section with a predetermined shape with respect to the optical axis, for introducing curing light of a predetermined wavelength,
A curing light having a predetermined wavelength is introduced into the photo-curing resin liquid from the exit end of the waveguide for introducing the curing light, and the photo-curing resin liquid is cured in a self-forming manner to form a shaft-shaped cured product. When
In the vicinity of the growth end of the cured product, a plurality of control lights having a longer wavelength than the curing light are respectively collected, and the growth ends of the cured product are scanned by scanning condensing points of the plurality of control lights. A branched self-forming light, wherein a plurality of branches are generated and a growth direction of the plurality of cured products is guided in a scanning direction of each control light to form a cured product having a plurality of branches. A method for manufacturing a waveguide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007171829A JP4803609B2 (en) | 2007-06-29 | 2007-06-29 | Manufacturing method of self-forming optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007171829A JP4803609B2 (en) | 2007-06-29 | 2007-06-29 | Manufacturing method of self-forming optical waveguide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009008992A JP2009008992A (en) | 2009-01-15 |
JP4803609B2 true JP4803609B2 (en) | 2011-10-26 |
Family
ID=40324107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007171829A Expired - Fee Related JP4803609B2 (en) | 2007-06-29 | 2007-06-29 | Manufacturing method of self-forming optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4803609B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08320422A (en) * | 1994-06-22 | 1996-12-03 | Fujitsu Ltd | Production of optical waveguide system and optical device using the system |
US7014988B2 (en) * | 2000-06-15 | 2006-03-21 | 3M Innovative Properties Company | Multiphoton curing to provide encapsulated optical elements |
JP4446618B2 (en) * | 2001-02-27 | 2010-04-07 | イビデン株式会社 | Method for forming optical waveguide |
JP2003315608A (en) * | 2002-04-23 | 2003-11-06 | Matsushita Electric Works Ltd | Method of coupling optical transmission line of optical component join part |
JP2003340588A (en) * | 2002-05-24 | 2003-12-02 | Inst Of Physical & Chemical Res | Method for processing inside transparent material and its device |
JP2004325706A (en) * | 2003-04-24 | 2004-11-18 | Seiko Epson Corp | Optical waveguide forming method, optical waveguide forming device, optical circuit board, and electronic device |
-
2007
- 2007-06-29 JP JP2007171829A patent/JP4803609B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009008992A (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1624327B1 (en) | Process for producing optical waveguide | |
JP5486359B2 (en) | Optical waveguide for optical connector, optical connector using the same, and method for manufacturing optical waveguide for optical connector | |
CN102262269B (en) | Optical connection structure and production method of optical waveguide to be used for the optical connection structure | |
JP2000356720A (en) | Material for optical waveguide, optical waveguide and its manufacture | |
EP1843178A1 (en) | Process for producing optical waveguide | |
US8236374B2 (en) | Method of manufacturing optical waveguide device | |
JP5096252B2 (en) | Optical waveguide, optical module, and manufacturing method thereof | |
JP2004149579A (en) | Material composition for preparing optical waveguide and method for producing optical waveguide | |
JP5101325B2 (en) | Method for manufacturing optical waveguide for touch panel | |
JP2005266739A (en) | Optical waveguide and its production method | |
JP2012155215A (en) | Manufacturing method of optical waveguide and optical waveguide body used for the same | |
US7998374B2 (en) | Fabrication method of self-written optical waveguide | |
JP2008009150A (en) | Method of manufacturing optical waveguide | |
JP4803609B2 (en) | Manufacturing method of self-forming optical waveguide | |
US7399498B2 (en) | Material composition for producing optical waveguide and method for producing optical waveguide | |
JP6183530B1 (en) | Optical waveguide film and optical component | |
CN110320599B (en) | Method for preparing space optical waveguide | |
JP4676419B2 (en) | Optical component, method for manufacturing the same, and optical communication module | |
JP6183531B1 (en) | Optical waveguide resin film manufacturing method and optical component manufacturing method | |
JP6956088B2 (en) | Methods and related kits for creating self-aligned optical guides between light sources and fiber optics | |
JP2010032582A (en) | Method of manufacturing optical module | |
JP5315715B2 (en) | Optical coupler | |
JP5562710B2 (en) | Manufacturing method of polymer optical waveguide | |
JP2009198608A (en) | Light coupler, component parts thereof and manufacturing method thereof | |
JP2022036382A (en) | Flexible self-forming optical waveguide and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110803 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140819 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |