JP2004149579A - Material composition for preparing optical waveguide and method for producing optical waveguide - Google Patents

Material composition for preparing optical waveguide and method for producing optical waveguide Download PDF

Info

Publication number
JP2004149579A
JP2004149579A JP2002313422A JP2002313422A JP2004149579A JP 2004149579 A JP2004149579 A JP 2004149579A JP 2002313422 A JP2002313422 A JP 2002313422A JP 2002313422 A JP2002313422 A JP 2002313422A JP 2004149579 A JP2004149579 A JP 2004149579A
Authority
JP
Japan
Prior art keywords
refractive index
polymerizable material
polymerization initiator
optical waveguide
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002313422A
Other languages
Japanese (ja)
Other versions
JP4084633B2 (en
Inventor
Shin Sato
伸 佐藤
Hisao Kato
久雄 加藤
Tatsuya Yamashita
達弥 山下
Manabu Kagami
学 各務
Yukitoshi Inui
幸利 伊縫
Kuniyoshi Kondo
国芳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toagosei Co Ltd
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toagosei Co Ltd
Priority to JP2002313422A priority Critical patent/JP4084633B2/en
Priority to US10/693,605 priority patent/US7399498B2/en
Priority to EP03024527A priority patent/EP1416301A1/en
Publication of JP2004149579A publication Critical patent/JP2004149579A/en
Application granted granted Critical
Publication of JP4084633B2 publication Critical patent/JP4084633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical waveguide having good productivity and the highest refractive index in the core central part and to provide a material composition suitable therefor. <P>SOLUTION: A composition 2 comprising a radical-polymerizable material having a low refractive index, a cationic-polymerizable material having a high refractive index, a radical polymerization initiator effective at a high wavelength and a cationic polymerization initiator effective at a shorter wavelength is used. A transparent container 1 is filled with the composition 2 and irradiated with a first irradiating light 3 effective for the radical-polymerization initiator (a) to thereby polymerize the radical-polymerizable material having the low refractive index in an incorporated state of the cationic-polymerizable material having the high refractive index and the cationic polymerization initiator into a pattern according to the shape of light irradiation. An optically transparent optical path part 4 is once formed (b). When the first irradiating light 3 is continued, a layer 5 having a lower refractive index than that of the surface of the optical path part 4 is formed by a light component to the lateral side from the optical path part 4 (c). An uncured product remaining in the interior of the transparent container 1 is subsequently cured with a second irradiating light 6 (d). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は重合機構及び屈折率の異なる2種類の重合性モノマー及び/又はオリゴマーを主成分とした組成物を用い、それぞれの重合性モノマー及び/又はオリゴマーの重合機構の差を利用して選択的な重合を誘起させて屈折率の差、又は分布を有する重合体を形成する工程からなる光導波路の製造方法に関する。本発明は簡便・安価な光伝送路の製造方法並びにその製法に好適な材料の組成に関する。本発明の光導波路の作製用材料組成物及び光導波路の製造方法は、光ファイバー通信分野における安価で低損失な光インターコネクション、光分波器あるいは合波器等の光導波路部品の製造に応用可能である。
【0002】
【従来の技術】
光硬化性樹脂溶液にビーム状の所定波長光を導入し、自己集光現象を利用して、光導波路デバイスを形成する技術が注目されている。例えば、本願共同出願人による下記特許文献1、2に記載された光導波路の製造方法がある。
【0003】
【特許文献1】
特開2000−347043号公報
【特許文献2】
特開2002−169038号公報
【0004】
この製造方法によると、まず、高屈折率の光硬化性樹脂と低屈折率の光硬化性樹脂の混合溶液を所定の容器に充たす。次に、光ファイバーの先端を混合溶液に浸け、当該高屈折率の光硬化性樹脂のみを硬化させる特定波長帯の光を光ファイバーにて導入する。すると、光ファイバーの先端から出射する光によって当該光ファイバー先端から当該光ファイバーのコア径と同程度の径を有する高屈折率の硬化物を自己集光現象を利用して徐々に形成できる。この後、溶液内に残った高屈折率及び低屈折率の光硬化性樹脂の混合溶液を両樹脂が共に光硬化するよう所定波長帯の光を全体に照射する。こうして、先に形成した屈折率の高い硬化物の周囲に低屈折率の硬化物を形成することにより、ステップ状の屈折率分布を持った光導波路を作成する技術である。
【0005】
【発明が解決しようとする課題】
特許文献1、2に開示された技術では、屈折率の分布は基本的にステップ状の段階的なものとなる。ここで、コア(高屈折率部分)とクラッド(低屈折率部分)の屈折率差を大きくしようとすると、コア形成の時間を長くして、高屈折率材料のみを選択的に重合させる必要があり、生産性が向上しない。また、コア断面における屈折率は正確には平坦ではなく、中心から周辺に向かってやや高くなる。このため、導波路の端面における伝送光のニアフィールドパターンがドーナツ状の強度分布を示す。従って、コア中央部の屈折率が最も高いグレーデッドインデックス型光ファイバとの結合効率が良くないという問題があった。
【0006】
即ち、本発明は上記問題を解決すべくなされたものであり、その目的は、生産性が良く、コア中央部の屈折率が最も高い新たな光導波路の製造方法を提供することである。また、それに適した光導波路作製に適した材料組成物を提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、上記方法における問題点を回避する方法を鋭意検討し、次のことを見出した。まず、高屈折率の光硬化性材料と低屈折率の光硬化性材料の混合溶液に、当該低屈折率光硬化性材料のみを硬化させる特定波長帯の光照射を行う。すると高屈折率の光硬化性材料を取り込んだ状態で低屈折率の光硬化性材料を光照射の形状に応じたパターンに重合硬化させることによって光学的に透明な光路部分(コア)を形成できる。尚、取り込まれた高屈折率の光硬化性材料はこの状態では硬化していない。次に、引き続いて低屈折率材料のみを硬化させる特定波長帯の光を光伝送路部分に一定時間以上照射継続すると、光伝送路部分からの漏洩または散乱による光成分によって光路部分の表面に低屈折率の光硬化性材料のみが選択的に重合し、光伝送路部分よりも屈折率の低い重合硬化物の層(擬似クラッド層)が形成される。尚、やはりこの状態では光路部分の表面に屈折率の高い光硬化性材料が取り込まれたとしても当該屈折率の高い光硬化性材料は硬化していない。その後、溶液内に残った高屈折率及び低屈折率の光硬化性材料の混合溶液を両樹脂が光硬化する特定波長帯の光を照射することによって、先に形成した屈折率の低い硬化物層の周囲に高屈折率の硬化物(基体部)が形成され、光照射方向の直交断面内に、高屈折率部分(基体部)に保持された低屈折率部分に被覆された高屈折率部分となる屈折率分布を形成できることを見出した。
【0008】
即ち、上記の課題を解決するため、請求項1に記載の手段は、ラジカル重合性材料と、カチオン重合性材料と、光照射によりラジカル重合性材料の重合を開始させるラジカル重合開始剤と、光照射によりカチオン重合性材料の重合を開始させるカチオン重合開始剤とを含む組成物であって、特定波長の光照射は、ラジカル重合開始剤の活性化に有効であってカチオン重合開始剤の活性化に有効でなく、ラジカル重合性材料の硬化物の屈折率はカチオン重合性材料の硬化物の屈折率よりも小さいことを特徴とする光導波路の作製用材料組成物である。
【0009】
ここで、ラジカル重合性材料とは、ラジカル重合可能な反応基を1つ以上有するモノマー及び/又はオリゴマーを言う。ラジカル重合可能な反応基としては、例えばアクリロイル基やメタクリロイル基が挙げられる。また、カチオン重合性材料とは、カチオン重合可能な反応基を有するモノマー及び/又はオリゴマーを言う。カチオン重合可能な反応基としては、化学構造中に例えばオキシラン環(エポキシド)やオキセタン環を有するものが挙げられる。ここにおいてラジカル重合性材料及びカチオン重合性材料は各々単一化合物に限られず、異なる構造の複数のモノマー及び/又はオリゴマーの混合物であっても良い。本発明の組成物は、最終的に必要な部分が硬化できれば良く、硬化する範囲で溶媒その他の重合に直接関与しない化合物が含まれていても良い。
【0010】
また、請求項2に記載の手段は、組成物全体の硬化物の屈折率は、ラジカル重合性材料の硬化物の屈折率よりも0.001以上大きいことを特徴とする。また、請求項3に記載の手段は、組成物は液状であって、25℃における粘度が0.1MPa秒以下であることを特徴とする。
【0011】
また、請求項4に記載の手段は、ラジカル重合性材料とを、加熱によって重合させ得る熱重合開始剤を更に含むことを特徴とする。
【0012】
請求項5に記載の手段は、請求項1乃至請求項4のいずれか1項に記載の光導波路の作製用材料組成物を用いて光導波路を製造する方法であって、特定波長の第1の光照射によりラジカル重合開始剤を活性化させて、少なくともカチオン重合性材料とカチオン重合開始剤とを取り込む形でラジカル重合性材料を硬化させ、光学的に透明な光路部分を形成する第1の光硬化工程と、光路部分を形成した後、第1の光照射を継続して、光路部分の表面にラジカル重合性材料を硬化させる第2の光硬化工程と、ラジカル重合開始剤とカチオン重合開始剤の両方を活性化させる第2の光照射により、光路部分に取り込まれたカチオン重合性材料、並びに、未硬化の残余の組成物全体を硬化させる第3の光硬化工程とから成り、高屈折率の光路部分と、その表面の低屈折率部分とを有する光導波路を製造する方法である。また、請求項6に記載の手段は、請求項5の手段において、未硬化物を含浸した硬化物を未硬化の残余の組成物から取り出して第3の光硬化工程を行うことである。
【0013】
【作用及び発明の効果】
ラジカル重合性材料とカチオン重合性材料との混合物に、ラジカル重合開始剤のみが活性化する第1の光照射を行うと、当該第1の光が照射された部分のラジカル重合性材料のみが硬化する(第1の光硬化工程)。このとき、ラジカル重合は速いので、硬化するラジカル重合性材料の間にカチオン重合性材料が硬化しないまま取り込まれる形となり得る。この部分はのちの第3の光硬化工程でカチオン重合性材料も硬化させることで、ラジカル重合性材料とカチオン重合性材料とが混合して硬化したものと同様になり、最終的にはラジカル重合性材料硬化物の屈折率とカチオン重合性材料硬化物の屈折率の中間の屈折率を有する光路部分(コア)となるものである。この時、通常の重合性材料は硬化前よりも硬化後のほうが屈折率が高くなるため、いわゆる自己集光現象が起こる。即ち照射される光は、硬化前における拡散よりも、第1の光が照射された部分が硬化していくに従い、拡散が少なくなっていき、軸状にカチオン重合性材料を取り込んだ形でラジカル重合性材料が硬化する。
【0014】
次に、第2の光硬化工程では、光照射の方向等を変化させないので、大部分の照射光は第1の光硬化工程で形成された未硬化のカチオン重合性材料を取り込んだラジカル重合性材料の硬化物からなる光路部分にのみ照射される。しかし、当該光路部分を光路方向に完全に平行な光のみが導入されているわけではなく光路部分の外側にわずかながら漏れ出す光が存在する。すると当該わずかな漏光により、未硬化のカチオン重合性材料を取り込んだラジカル重合性材料の硬化物からなる光路部分の周囲即ち表面に、ラジカル重合性材料の重合が発生する。このとき、漏光が微弱であるため、第1の光硬化工程で形成された光路部分ほどにはカチオン重合性材料の取り込みが生じないようにし得る。即ち、第1の光硬化工程ではラジカル重合性材料が硬化する際、混合したカチオン重合性材料はほとんど散逸できずに取り込まれるが、第2の光硬化工程ではラジカル重合性材料の硬化速度が遅ければカチオン重合性材料は未硬化の混合物溶液に散逸可能だからである。すると、当該光路部分の周囲即ち表面は、光路部分のラジカル重合性材料硬化物の濃度よりもラジカル重合性材料硬化物の濃度の高い部分が膜状に覆うこととなる。
【0015】
更に第3の光硬化工程で光路部分の未硬化のカチオン重合性材料の硬化と、表面をラジカル重合性材料の硬化物で覆われた光路部分の周囲の未硬化の残余の組成物の硬化を行えば、中心部にラジカル重合性材料硬化物の屈折率とカチオン重合性材料硬化物の屈折率の中間の屈折率を有する光路部分、光路部分の周囲のよりラジカル重合性材料硬化物の屈折率に近い屈折率を有する光路の周囲部分、ラジカル重合性材料硬化物の屈折率とカチオン重合性材料硬化物の屈折率の中間の屈折率を有する残余の周囲の3つの部分から成る光導波路を構成できる。ここで、ラジカル重合性材料硬化物の屈折率はカチオン重合性材料硬化物の屈折率より小さいので、結局表面を低屈折率硬化物(クラッド様部)で覆われた光路部分はいわゆるコアとして用いることができる。尚ここで、コアからクラッド様部にかけての屈折率変化は、連続的であっても良いものとする。即ち、ステップインデックス型の屈折率の変化があっても良く、グレーデッドインデックス型の連続した屈折率の変化があっても良い。尚、未硬化物を含浸した硬化物を未硬化の残余の組成物から取り出したうえで第3の光硬化工程を行っても良い。
【0016】
このとき形成される光導波路の光路部分の中心から周辺方向即ち低屈折率硬化物(クラッド様部)方向に向けての屈折率変化は、周辺に行くに従って低くなり、グレーデッドインデックス型光ファイバとの結合効率も良い。また、光路部分を形成する第1の光硬化工程の際には、カチオン重合性材料が光路部分から逃げられないよう、強度の高い光照射を行うので、既述の技術よりもコア形成の時間を短縮でき、生産性を良くすることができる(以上請求項5、6)。
【0017】
このような製造方法に適した組成物は極めて有用である(請求項1)。組成物全体の硬化物の屈折率とラジカル重合性材料の硬化物の屈折率との差が0.001以上とすることで、光路部分の最も屈折率の高い部分と光路の周囲の屈折率の最も低い部分との屈折率差がコアとクラッドの屈折率の関係を有するようにすることができる(請求項2)。
【0018】
少なくとも光路の表面を硬化させる第2の光硬化工程ではラジカル重合性材料のみ硬化させたいのであるから、カチオン重合性材料が容易にそこから遊離できるよう、また、適宜容器に充填して脱泡できるよう、組成物は全体として液状であることが好ましい。更にその液状の組成物の粘度は0.1MPa秒以下であることが望ましい(請求項3)。また、第3の光硬化工程でも硬化が不十分である場合に加熱して熱重合させるため、組成物はラジカル重合性材料を、加熱によって重合させ得る熱重合開始剤を更に含むことがより好ましい(請求項4)。
【0019】
【発明の実施の形態】
以下、本発明の実施に適した形態を詳細に説明する。
【0020】
〔ラジカル重合性材料〕
本発明のラジカル重合性材料としては、ラジカル重合可能なアクリロイル基等のエチレン性不飽和反応性基を構造単位中に1個以上、好ましくは2個以上有する光重合性モノマー及び/又はオリゴマーであって、低屈折率とすべき観点から脂肪族系のモノマー及び/又はオリゴマーが好ましい。エチレン性不飽和反応性基を有するものの例としては、(メタ)アクリル酸エステル、イタコン酸エステル、マレイン酸エステル等の共役酸エステルを挙げることができる。尚、(メタ)アクリル酸は、アクリル酸又はメタクリル酸を表す。
【0021】
具体的には、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ネオペンチルグリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールの(メタ)アクリル酸エステル誘導体、イタコン酸エステル誘導体、マレイン酸エステル誘導体を挙げることができ、また、これらの混合物であっても良い。更に、屈折率を下げるために構造単位中の水素の一部をフッ素に置換したものであっても良く、これらに限定されることはない。
【0022】
〔カチオン重合性材料〕
本発明のカチオン重合性材料としては、カチオン重合可能なオキシラン環(エポキシド)、オキセタン環等の反応性エーテル構造を構造単位中に1個以上、好ましくは2個以上有し、共に用いられるラジカル重合性材料よりも屈折率の高い光重合性のモノマー及び/又はオリゴマーであって、高屈折率の観点から構造単位中にフェニル基等の芳香族環を一つ以上含んだものが好ましい。尚、本願におけるオキシラン環(エポキシド)としては、オキシラニル基の他、3,4−エポキシシクロヘキシル基なども含まれる。またオキセタン環とは、4員環構造のエーテルである。
【0023】
具体的には、例えば、フェニルグリシジルエーテルや、ビスフェノールA、ビスフェノールS、ビスフェノールZ、ビスフェノールF、ノボラック、o−クレゾールノボラック、p−クレゾールノボラック、p−アルキルフェノールノボラック等の各種フェノール化合物等のグリシジルエーテル誘導体、オキセタニル誘導体を挙げることができ、これらの混合物であっても良い。更に、屈折率を高める目的で芳香族環の水素を塩素あるいは臭素で置換しても良く、これらに限定されることはない。また、特開平7−62082号公報に記載されているように、モノマーの構造単位中にオキシラン環(エポキシド)のみを含む場合よりも、構造単位中にオキセタン環を含んだモノマーと構造単位中にオキシラン環(エポキシド)を含んだ混合物は、その重合硬化性等の硬化物物性が向上することが知られており、構造単位中にオキシラン環(エポキシド)を一つ以上含んだモノマーと構造単位中にオキセタン環を一つ以上含んだ単一モノマー、あるいは、構造単位中にそれぞれ単独にオキシラン環(エポキシド)とオキセタン環を一つ以上含んだモノマーの混合物であってもよい。
【0024】
〔ラジカル重合開始剤〕
本発明のラジカル重合開始剤としては、ラジカル重合性モノマー及び/又はオリゴマーから成るラジカル重合性材料の重合反応を光によって活性化する化合物である。具体例としては、ベンゾイン、ベンゾインメチルエーテル及びベンゾインプロピルエーテル等のベンゾイン類、アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1−オン及びN,N−ジメチルアミノアセトフェノン等のアセトフェノン類、2−メチルアントラキノン、1−クロロアントラキノン及び2−アミルアントラキノン等のアントラキノン類、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン及び2,4−ジイソプロピルチオキサントン等のチオキサントン類、アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール類、ベンゾフェノン、メチルベンゾフェノン、4,4’−ジクロロベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、ミヒラーズケトン及び4−ベンゾイル−4’−メチルジフェニルサルファイド等のベンゾフェノン類、並びに2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等が挙げられる。尚、ラジカル重合開始剤は単独で使用しても、2種以上を併用しても良く、また、これらに限定されることはない。
【0025】
〔カチオン重合開始剤〕
本発明のカチオン重合開始剤としては、カチオン重合性モノマー及び/又はオリゴマーから成るカチオン重合性材料の重合反応を光によって活性化する化合物である。具体例としては、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩、チオピリニウム塩が挙げられるが、熱的に比較的安定であるジフェニルヨードニウム、ジトリルヨードニウム、フェニル(p−アニシル)ヨードニウム、ビス(p−t−ブチルフェニル)ヨードニウム、ビス(p−クロロフェニル)ヨードニウムなどの芳香族ヨードニウム塩、ジフェニルスルホニウム、ジトリルスルホニウム、フェニル(p−アニシル)スルホニウム、ビス(p−t−ブチルフェニル)スルホニウム、ビス(p−クロロフェニル)スルホニウムなどの芳香族スルホニウム塩等のオニウム塩光重合開始剤が好ましい。芳香族ヨードニウム塩および芳香族スルホニウム塩等のオニウム塩光重合開始剤を使用する場合、アニオンとしてはBF 、AsF 、SbF 、PF 、B(C などが挙げられる。尚、カチオン重合開始剤は単独で使用しても、2種以上を併用しても良く、また、これらに限定されることはない。
【0026】
〔選定と配合比について〕
以上の構成要素を含む本発明の光導波路の作製用材料組成物は、ラジカル重合性材料の単独の重合硬化物における屈折率n、カチオン重合性材料の単独の重合硬化物における屈折率n、及び、組成物全体の重合硬化物における屈折率nrcの関係がn<nrc<nを充たし、かつ、nrcとnの差(nrc−n)が0.001以上、より好ましくは0.003以上、さらに望ましくは0.01以上の関係を充たすよう、ラジカル重合性材料、カチオン重合性材料を上記から選定して組合わせ、また配合比を選定する。尚、本願において屈折率は全てナトリウムのD輝線光(589nm)における屈折率を言うものとする。nrcとnの差(nrc−n)が0.01以上であれば、光路部分(コア)中心部の最大屈折率nmax(ほぼnrcに等しい。)と、光路部分外周の最低屈折率nmin(nrc>nmin>n)との差Δnを0.001以上とすることが容易となるので、とくに有用である。
【0027】
上記nrcとnの差(nrc−n)が0.001以上、好ましくは0.003以上の関係を充たした上、ラジカル重合性材料とカチオン重合性材料の配合比(質量比、以下同様)は90:10から20:80の範囲にあることが好ましい。ラジカル重合性材料の配合比が組成物の20%未満では、以下に記載する光導波路の製法における第1の光硬化工程におけるラジカル重合性材料のモノマー(及び/又はオリゴマー)の量が不足するため、最初に形成される光伝送路部分の形成時間に長時間を要したり、たとえ形成出来ても十分な強度を備えた光伝送路部分を形成することが困難となる。また、カチオン重合性材料の配合比を10%未満にすることは不可能ではないが、このような組成比で上記nrcとnの差(nrc−n)が0.003以上を充たすには、カチオン重合性材料として屈折率が著しく高いものを選定する必要がある。そのようなカチオン重合性材料の多くは単独では固体の材料となるため、ラジカル重合性材料と均一に混合するためには、ラジカル重合性材料に溶媒としての性質を備えたものを選定、配合するか、別途溶媒にカチオン重合性材料を溶解させた後、ラジカル重合性材料と配合/調製した後、溶媒成分を除去する必要があるなどの操作が煩雑となり好ましくない。
【0028】
また、上記構成を含む本発明の光導波路の作製用材料組成物において、ラジカル重合開始剤は特定波長λ以下の光照射により、カチオン重合開始剤は特定波長λ以下の光照射によって活性化され得る化合物である。ここで、特定波長λ以下と特定波長λ以下の光照射によって活性化され得る化合物成分とは其々特定波長以下に光学吸収端(光学吸収における最も長い吸収波長)が存在する化合物である。また、以下に記載する光導波路の製法における第1及び第2の光硬化工程の第1の光照射とに用いる特定波長帯の光λと、 第3の光硬化工程での第2光照射に用いる特定波長帯の光λがλ>λの関係を充たす必要性があることからλ>λとなる関係を充たすものであれば上記化合物の組合わせは任意に選定可能である。即ち、波長について、λ>λ>λ>λであれば良い。また、λとλは波長帯であって、単一波長光を意味するものでも、また、第1及び第2の光硬化工程、第3の光硬化工程で一定の波長帯の照射に限定されるものでもない。当然、照射強度も工程途中で変化させても本願発明に包含される。
【0029】
また、ラジカル重合開始剤とカチオン重合開始剤は、ラジカル重合性材料とカチオン重合性材料の混合溶液に対して相溶性をもったものを選定することが好ましい。更には、カチオン重合開始剤の特定波長λは一般的に400nm以下にあることから、ラジカル重合開始剤としては、λよりも長い波長に特定波長λのあるものが好ましく、かつ、以下に記載する光導波路の製法における第2の光照射に用いる特定波長帯λ(≦λ)の光照射によっても分解反応を起こすものが好ましい。特に好ましくは、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド(λ=430nm、BASF社製、商品名「Lucirin TPO」)、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(λ=460nm、チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 819」)、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド(50%)と1−ヒドロキシシクロヘキシルフェニルケトン(50%)の混合物(λ=440nm、チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 1850」)等を挙げることができる。尚、これらに限定されることはない。
【0030】
また、ラジカル重合開始剤の量は、ラジカル重合性材料100質量部に対し、0.05から10質量部、好ましくは、0.1から5質量部である。さらに、カチオン重合開始剤の量は、カチオン重合性材料100質量部に対して0.1から20質量部、好ましくは、1から10質量部である。
【0031】
〔ポストキュアの必要性〕
本発明の光導波路の作製用材料組成物を構成する成分には、ラジカル重合開始可能な熱重合開始剤を配合してもよい。一般的に光重合性モノマー(及び/又はオリゴマー)に対して光重合だけを実施した場合には重合が完了し得ないモノマー(及び/又はオリゴマー)が系内に少量残余する。このため、所謂ポストキュアによって重合を完了させることが一般的に実施される。また、カチオン重合性モノマー(及び/又はオリゴマー)の場合に光重合直後にポストキュアを実施すれば、系内に残余するカチオン種(塩であるカチオン重合開始剤のカチオン側)によって熱重合が誘起される。しかし、ラジカル重合性モノマー(及び/又はオリゴマー)の場合には、系内のラジカル種は光照射の停止により直ちに消滅すると考えられており、ポストキュアによる残余モノマー(及び/又はオリゴマー)の重合を完了させることは困難となる。以下に記載する本発明の光導波路の製法においても、第2の光照射によっても重合し得なかったラジカル重合性材料とカチオン重合性材料が系内に微量残余する。このため、最終製品の熱安定性を高める目的においてポストキュアが有効となるが、上記のような理由からラジカル重合性モノマー(及び/又はオリゴマー)からなるラジカル重合性材料の残余モノマー(及び/又はオリゴマー)をポストキュアさせ得るためには熱重合開始剤の配合が有効となる。
【0032】
〔熱重合開始剤〕
熱重合開始剤としては、有機過酸化物及びアゾ系化合物等が挙げられるが、一般的にアゾ化合物は分解に伴い窒素を発生するため好ましくなく、有機過酸化物の使用が好ましい。有機過酸化物の具体例としては、過酸化3,5,5−トリメチルヘキサノイル、過酸化ラウリル、過酸化ベンゾイル、1,1−ビス(t−ブチルペルオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ヘキシルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルペルオキシ)シクロヘキサン、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルペルオキシ)シクロヘキサン、2,2−ビス(4,4−ジブチルペルオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルペルオキシ)シクロドデカン、t−ヘキシルペルオキシイソプロピルモノカーボネート、ペルオキシマレイン酸t−ブチル、ペルオキシ−3,5,5−トリメチルヘキサン酸t−ブチル、ペルオキシラウリン酸t−ブチル、2,5−ジメチル−2,5−ジ(m−トルオイルペルオキシ)ヘキサン、t−ブチルペルオキシイソプロピルモノカーボネート、t−ブチルペルオキシ−2−エチルヘキシルモノカーボネート、過安息香酸t−ヘキシル、2,5−ジメチル−2,5−ジベンゾイルペルオキシヘキサン、過酢酸t−ブチル、2,2−ビス(t−ブチルペルオキシ)ブタン、過安息香酸t−ブチル、4,4−ビス(t−ブチルペルオキシ)吉草酸n−ブチル、ペルオキシイソフタル酸ジt−ブチル、α、α’−ビス(t−ブチルペルオキシ)ジイソプロピルベンゼン、過酸化クミル、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、t−ブチルクミルペルオキシド、過酸化t−ブチル、p−メンタンヒドロペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−3、ジイソプロピルベンゼンヒドロペルオキシド、t−ブチルトリメチルシリルペルオキシド、1,1,3,3−テトラメチルブチルヒドロペルオキシド、クミルヒドロペルオキシド、t−ヘキシルヒドロペルオキシド、t−ブチルヒドロペルオキシド等が挙げられる。
【0033】
なお、熱重合開始剤の添加は本発明の光導波路の作製用材料組成物の熱安定性を下げる原因にもなり得ることから、その選定においては、組成物の貯蔵温度、ポストキュアの温度並びに時間を勘案する必要がある。この観点から、組成物の貯蔵温度を室温とし、10時間ポストキュアするとした場合、熱重合開始剤は加熱分解による半減期を得るための温度範囲が50℃から100℃の範囲にあるものが好ましい。このような有機過酸化物としては、過酸化3,5,5−トリメチルヘキサノイル(60℃、日本油脂製、商品名「パーロイル355」)、過酸化ラウリル(62℃、日本油脂製、商品名「パーロイルL」)、過酸化ベンゾイル(74℃、日本油脂製、商品名「ナイパーB」)、1,1−ビス(t−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン(90℃、日本油脂製、商品名「パーヘキサ3M」)、1,1−ビス(t−ブチルペルオキシ)シクロヘキサン(91℃、日本油脂製、商品名「パーヘキサC」)、ペルオキシ−3,5,5−トリメチルヘキサン酸t−ブチル(97℃、日本油脂製、商品名「パーブチル355」)、t−ブチルペルオキシイソプロピルモノカーボネート(98℃、日本油脂製、商品名「パーブチル1」)等を挙げることが出来る。尚、これらに限定されることはない。また、上記熱重合開始剤の添加量は、本発明の光導波路の作製用材料組成物の0.01質量%から5質量%、より好ましくは、0.05質量%から1質量%の範囲が良い。
【0034】
さらに、以下に記載する本発明の光導波路作製では、第1の光照射によって光伝送可能な硬化物領域を形成する。また、第2の光照射によって前記光伝送可能な硬化物を保護する目的の硬化物領域を形成するが、当該製法の優位性は、特許文献1、2に公開されている製法と同様に、光伝送経路内に光学フィルターや45度反射ミラーを設置した状態で光伝送路や当該光伝送路を保護する硬化物領域を形成することが可能である。このためには、光伝送路の形成を開始する前に、予め光伝送路系内に光学フィルターやミラー等の光学部品を設置する必要があり、これを実現するには、本発明に用いる光伝送路又は導波路製法用組成物は液状であることが必要である。組成物の液性は粘度として表現可能であり、本特許の光伝送路又は導波路製法に適した当該製法用の組成物における粘度としては室温25℃において0.1MPa秒以下の液状であることが好ましい。当該粘度はラジカル重合性材料及びカチオン重合性材料の好適組成条件における混合物の粘度に大きく依存し、組成物の脱泡処理や充填工程の作業性向上の観点からは、より低い粘度であることが望まれるが、0.1MPa秒以下の粘度を持ったものであれば、上記のような光学部品を設置した状態で組成物を充填することは不可能ではない。一方、組成物粘度が0.1MPa秒を越えると粘性が高くなり過ぎて光学部品を設置した状態で組成物を充填すると気泡が混入する、あるいは、当該光学部品が移動してしまうなどの不具合を生じ易くなり製法上好ましくない。
【0035】
本発明の光導波路の作製用材料組成物の構成例を挙げると、ラジカル重合性材料を脂肪族系(メタ)アクリル酸モノマーとし、カチオン重合性材料をビスフェノール系エポキシモノマー、あるいは、ビスフェノール系エポキシモノマーと芳香族置換基を含んだオキセタンモノマーの混合物として、それらの質量組成比が10:90〜90:10、好ましくは20:80〜85:15であり、ビスフェノール系エポキシモノマーと芳香族置換基を含んだオキセタンモノマーの混合物の場合はそれらの質量組成比は、100:0〜0:100である。質量組成比は以下に記載する本発明の光導波路作製におけるコアの形成速度、機械的強度また、クラッド様部分の機械的強度、信頼性等に鑑みて選択すれば良い。
【0036】
また、ラジカル重合開始剤の例としては、ラジカル重合性材料と100質量部に対してはビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 819」)0.05〜10質量部、好ましくは、0.1〜5質量部添加する。尚、ラジカル重合開始剤の種類、使用量は、その光学濃度又は吸光度の分光特性及びラジカル重合性材料の光硬化に用いる光源の波長に依存し、当該波長における光学濃度が2を越さない範囲で使用することが望ましい。また、カチオン重合開始剤としては、カチオン重合性材料100質量部に対してはプロピレンカーボネート溶媒に希釈したビス(p−t−ブチルフェニル)スルホニウム及びトリアリールスルホニウムのヘキサフルオロリン酸塩(ユニオンカーバイド社製、商品名「UVI−6990」)を0.1〜20質量部、好ましくは、1〜10質量部添加する。
【0037】
〔導波路の製造方法〕
図1は本発明による光導波路の製法を説明する工程図である。透明容器1に本発明の光導波路の作製用材料組成物2を充填する。次にカチオン重合開始剤の特定波長λより長く、かつラジカル重合開始剤の特定波長λ以下の波長成分λを含んだ光源による第1の照射光3を照射する(図1の(a))。これにより、高屈折率のカチオン重合性材料、カチオン重合開始剤を取込んだ状態で低屈折率のラジカル重合性材料が光照射の形状に応じたパターンに重合し、光学的に透明なる重合硬化した光路部分(コア)4が一旦形成される(図1の(b))。引き続いて第1の照射光3を一定時間以上継続すると、光路部分(コア)4からの側方への漏洩または散乱による光成分により、光路部分(コア)4の表面にやはり低屈折率のラジカル重合性材料のみが選択的に重合する。この時も高屈折率のカチオン重合性材料、カチオン重合開始剤を一部取込んだ状態ではあるが、漏洩または散乱による光成分は弱いので光路部分(コア)4におけるラジカル重合の際よりも反応が遅い。すると高屈折率のカチオン重合性材料の取り込まれる量は比較的少なく、低屈折率のラジカル重合性材料の硬化物の濃度(体積割合)が高くなる。こうして、光路部分(コア)4よりも屈折率の低い層(クラッド様部)5が形成される(図1の(c))。その後に、カチオン重合開始剤の特定波長λ以下の波長成分を含んだ光源による第2の照射光6によって透明容器1内に残存する低屈折率のラジカル重合性材料と高屈折率のカチオン重合性材料を同時に重合させる。こうして低屈折率層(クラッド様部)5よりも屈折率の高い硬化物からなる基体部2’が形成される。このとき、第1の光照射によって形成された光路部分(コア)4と低屈折率層(クラッド様部)5内に残存する未硬化の高屈折率のカチオン重合性材料も重合する(図1の(d))。
【0038】
図2の(a)、(b)は図1の製造方法により製造された光導波路の縦断面図と横断面図である。図1における第1の照射光3が円柱状のビームであれば図2(b)のように光路部分(コア)4の横断面は円形となる。図2(c)は基体部2’から低屈折率層(クラッド様部)5、光路部分(コア)4、低屈折率層(クラッド様部)5、基体部2’へと走査した場合の屈折率変化の概略を示す概念図である。このように本発明の組成物を用いることで、図2(c)に示すようなステップインデックス型又はW型の屈折率差、又は屈折率分布を有する光導波路を形成することができる。以下、図2(c)で示すように、光路部分(コア)4の最大屈折率とその外周の低屈折率層(クラッド様部)5の最小屈折率の差をΔnとして示す。
【0039】
【実施例】
本明細書において、「部」は質量部を意味する。
〔第1実施例〕
ラジカル重合性材料としてトリメチロールプロパントリメタクリレート(東亞合成社製、商品名「アロニックスM−309」、未硬化物屈折率1.475、硬化物屈折率1.515)を70部、カチオン重合性材料及びカチオン重合開始剤としてビスフェノール型エポキシモノマー(ジャパンエポキシレジン社製、商品名「エピコート828」、未硬化物屈折率1.574、硬化物屈折率1.60)を30部、ラジカル重合開始剤としてビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 819」λ=460nm)を0.35部、カチオン重合開始剤としてプロピレンカーボネート溶媒に希釈したビス(p−t−ブチルフェニル)スルホニウム及びトリアリールスルホニウムのヘキサフルオロリン酸塩(ユニオンカーバイド社製、商品名「UVI−6990」)を0.9部の配合比で混合して、光導波路の作製用材料組成物を作製した。次にこの組成物を5mm×5mm×15mmの透明容器内に充填した。Arレーザー光(λ=488nm)を強度25mWで6分照射し、15mm長のコアを形成した。次にArレーザー光を照射したまま120分放置した。次に20mW/cm(λ=365nmにおける光強度)のUV光源を10分間照射し、残溶液を硬化させた。光路部分(コア部)の最大屈折率と低屈折率層の最小屈折率との差Δnを二光束干渉顕微鏡にて評価したところ、0.008であった。
【0040】
〔第2実施例〕
ラジカル重合性材料としてトリメチロールプロパントリメタクリレート(東亞合成社製、商品名「アロニックスM−309」、未硬化物屈折率1.475、硬化物屈折率1.515)を70部、カチオン重合性材料として1,4−ビス((3−エチル−3オキセタニル)メトキシ)ベンゼン(東亞合成社製、商品名「OXT−121」、未硬化物屈折率1.511、硬化物屈折率1.54)とビスフェノール型エポキシモノマー(ジャパンエポキシレジン社製、商品名「エピコート828」)の1:1混合組成物(未硬化物屈折率1.541、硬化物屈折率1.57)を30部、ラジカル重合開始剤としてビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 819」λ=460nm)を0.35部、カチオン重合開始剤としてプロピレンカーボネート溶媒に希釈したビス(p−t−ブチルフェニル)スルホニウム及びトリアリールスルホニウムのヘキサフルオロリン酸塩(ユニオンカーバイド社製、商品名「UVI−6990」)を0.9部の配合比でで混合して光導波路の作製用材料組成物を作製した他は、上記第1実施例と同様にして光導波路を形成した。光路部分(コア部)の最大屈折率と低屈折率層の最小屈折率との差Δnを二光束干渉顕微鏡にて評価したところ、0.007であった。
【0041】
〔その他の実施例〕
表1に示すような、高屈折率のカチオン重合性材料C1〜C5、低屈折率のラジカル重合性材料R1〜R5を、表2、表3のように組み合わせて第1実施例と同様にして光導波路を形成した。
【表1】

Figure 2004149579
【0042】
表2の各実施例においては、ラジカル重合開始剤としてビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバスペシャリティ・ケミカルズ社製、商品名「IRUGACURE 819」λ=460nm)を0.5部、カチオン重合開始剤としてプロピレンカーボネート溶媒に希釈したビス(p−t−ブチルフェニル)スルホニウム及びトリアリールスルホニウムのヘキサフルオロリン酸塩(ユニオンカーバイド社製、商品名「UVI−6990」)を3部用いた。コア形成の際はArレーザー光(λ=488nm)を強度50mWで表2の各時間照射し、その後5分放置した。次に20mW/cm(λ=365nmにおける光強度)のUV光源を5分間照射した。
【表2】
Figure 2004149579
【0043】
表3の各実施例においては、ラジカル重合開始剤の部数を0.75部とし、Arレーザー光(λ=488nm)の強度を80mWとした他は表2の実施例と全く同条件とした。
【表3】
Figure 2004149579
【0044】
尚、表2、表3の光路部分(コア部)の最大屈折率と低屈折率層の最小屈折率との差Δnは、二光束干渉顕微鏡にて評価した。
【図面の簡単な説明】
【図1】本発明の具体的な実施例に係る光導波路の製造方法を示す工程図。
【図2】本発明の具体的な実施例に係る光導波路の縦断面図(a)、横断面図(b)、屈折率分布の概念図(c)。
【符号の説明】
1 透明容器
2 光導波路の作製用材料組成物
2’ 基体部
3 第1の光照射
4 光路部分(コア)
5 低屈折率層(クラッド様部)
6 第2の光照射
λ ラジカル重合開始剤の特定波長
λ カチオン重合開始剤の特定波長
λ 第1の光照射の波長
λ 第2の光照射の波長
ラジカル重合性材料の硬化物の屈折率
カチオン重合性材料の硬化物の屈折率
rc 本発明に係る組成物全体の硬化物の屈折率
max 光路部分(コア)の屈折率の最大値
min 低屈折率層(クラッド様部)の屈折率の最小値
Δn nmaxとnminの差[0001]
BACKGROUND OF THE INVENTION
The present invention uses a composition mainly composed of two kinds of polymerizable monomers and / or oligomers having different polymerization mechanisms and refractive indexes, and selectively utilizes the difference in polymerization mechanism of each polymerizable monomer and / or oligomer. The present invention relates to a method for manufacturing an optical waveguide comprising a step of forming a polymer having a refractive index difference or distribution by inducing proper polymerization. The present invention relates to a simple and inexpensive method for producing an optical transmission line and a composition of a material suitable for the production method. The optical waveguide fabrication material composition and optical waveguide manufacturing method of the present invention can be applied to the manufacture of optical waveguide components such as inexpensive and low-loss optical interconnections, optical demultiplexers or multiplexers in the field of optical fiber communications. It is.
[0002]
[Prior art]
A technique for forming an optical waveguide device by introducing a light beam having a predetermined wavelength into a photocurable resin solution and utilizing a self-condensing phenomenon has attracted attention. For example, there is an optical waveguide manufacturing method described in the following Patent Documents 1 and 2 by the present applicant.
[0003]
[Patent Document 1]
JP 2000-347043 A
[Patent Document 2]
JP 2002-169038 A
[0004]
According to this manufacturing method, first, a predetermined container is filled with a mixed solution of a high refractive index photocurable resin and a low refractive index photocurable resin. Next, the tip of the optical fiber is immersed in the mixed solution, and light of a specific wavelength band that cures only the high refractive index photocurable resin is introduced by the optical fiber. Then, a high refractive index cured product having a diameter approximately equal to the core diameter of the optical fiber can be gradually formed from the optical fiber tip by light emitted from the tip of the optical fiber by utilizing the self-condensing phenomenon. Thereafter, the whole light is irradiated with light of a predetermined wavelength band so that both the resins are photocured with the mixed solution of the high refractive index and low refractive index photocurable resins remaining in the solution. In this way, a low refractive index cured product is formed around the previously formed cured product having a high refractive index, thereby producing an optical waveguide having a stepped refractive index distribution.
[0005]
[Problems to be solved by the invention]
In the techniques disclosed in Patent Documents 1 and 2, the refractive index distribution is basically stepwise and stepwise. Here, in order to increase the refractive index difference between the core (high refractive index portion) and the clad (low refractive index portion), it is necessary to lengthen the core formation time and selectively polymerize only the high refractive index material. Yes, productivity does not improve. In addition, the refractive index in the core cross section is not exactly flat, but increases slightly from the center toward the periphery. For this reason, the near-field pattern of the transmitted light on the end face of the waveguide shows a donut-shaped intensity distribution. Accordingly, there is a problem that the coupling efficiency with the graded index optical fiber having the highest refractive index at the center of the core is not good.
[0006]
That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a new method for manufacturing an optical waveguide with high productivity and the highest refractive index at the center of the core. Moreover, it is providing the material composition suitable for optical waveguide production suitable for it.
[0007]
[Means for Solving the Problems]
The present inventors diligently studied a method for avoiding the problems in the above method, and found the following. First, a mixed solution of a high refractive index photocurable material and a low refractive index photocurable material is irradiated with light in a specific wavelength band that cures only the low refractive index photocurable material. Then, an optically transparent optical path portion (core) can be formed by polymerizing and curing the low refractive index photocurable material into a pattern corresponding to the shape of the light irradiation in a state where the high refractive index photocurable material is taken in. . The incorporated high refractive index photocurable material is not cured in this state. Next, if the light transmission path portion is continuously irradiated with light of a specific wavelength band that cures only the low refractive index material for a certain period of time, the light component due to leakage or scattering from the light transmission path portion is reduced to the surface of the optical path portion. Only the photocurable material having a refractive index is selectively polymerized to form a layer of a polymerized cured product (pseudo clad layer) having a refractive index lower than that of the optical transmission line portion. In this state, even if a photocurable material having a high refractive index is taken into the surface of the optical path portion, the photocurable material having a high refractive index is not cured. Then, a cured product with a low refractive index formed earlier by irradiating light of a specific wavelength band in which both resins are photocured with a mixed solution of a high refractive index and a low refractive index photocurable material remaining in the solution. A high refractive index coated with a low refractive index portion held by a high refractive index portion (base portion) in a cross section orthogonal to the light irradiation direction, with a high refractive index cured product (base portion) formed around the layer It has been found that a refractive index distribution can be formed.
[0008]
That is, in order to solve the above-described problem, the means according to claim 1 includes a radical polymerizable material, a cationic polymerizable material, a radical polymerization initiator that initiates polymerization of the radical polymerizable material by light irradiation, A composition comprising a cationic polymerization initiator that initiates polymerization of a cationic polymerizable material upon irradiation, and light irradiation at a specific wavelength is effective in activating the radical polymerization initiator and activating the cationic polymerization initiator This is a material composition for producing an optical waveguide, characterized in that the refractive index of the cured product of the radical polymerizable material is smaller than the refractive index of the cured product of the cationic polymerizable material.
[0009]
Here, the radically polymerizable material refers to a monomer and / or oligomer having one or more reactive groups capable of radical polymerization. Examples of the radical polymerizable reactive group include an acryloyl group and a methacryloyl group. The cationically polymerizable material means a monomer and / or oligomer having a reactive group capable of cationic polymerization. Examples of the reactive group capable of cationic polymerization include those having an oxirane ring (epoxide) or an oxetane ring in the chemical structure. Here, each of the radical polymerizable material and the cationic polymerizable material is not limited to a single compound, and may be a mixture of a plurality of monomers and / or oligomers having different structures. The composition of the present invention only needs to be able to cure a necessary portion in the end, and may contain a solvent or other compound that does not directly participate in polymerization within the range of curing.
[0010]
The means described in claim 2 is characterized in that the refractive index of the cured product of the whole composition is 0.001 or more larger than the refractive index of the cured product of the radical polymerizable material. The means described in claim 3 is characterized in that the composition is liquid and has a viscosity at 25 ° C. of 0.1 MPa seconds or less.
[0011]
The means described in claim 4 further includes a thermal polymerization initiator capable of polymerizing the radical polymerizable material by heating.
[0012]
According to a fifth aspect of the present invention, there is provided a method for manufacturing an optical waveguide using the optical waveguide manufacturing material composition according to any one of the first to fourth aspects, wherein the first optical waveguide has a first wavelength. The radical polymerization initiator is activated by irradiating the light, and the radical polymerizable material is cured by taking in at least the cationic polymerizable material and the cationic polymerization initiator to form an optically transparent optical path portion. After the photocuring step, the optical path portion is formed, the first light irradiation is continued, the second photocuring step for curing the radical polymerizable material on the surface of the optical path portion, the radical polymerization initiator and the cationic polymerization start Comprising a third photo-curing step of curing the whole of the uncured residual composition and the cationically polymerizable material incorporated into the optical path portion by the second light irradiation that activates both of the agent The optical path part of the rate, A method for producing an optical waveguide having a low refractive index portion of the surface of the. Further, the means described in claim 6 is that, in the means according to claim 5, the cured product impregnated with the uncured product is taken out from the remaining uncured composition and the third photocuring step is performed.
[0013]
[Operation and effect of the invention]
When the first light irradiation in which only the radical polymerization initiator is activated is performed on the mixture of the radical polymerizable material and the cationic polymerizable material, only the radical polymerizable material in the portion irradiated with the first light is cured. (First photocuring step). At this time, since radical polymerization is fast, the cationic polymerizable material can be taken in without being cured between the radical polymerizable materials to be cured. This part becomes the same as the one obtained by mixing and curing the radical polymerizable material and the cationic polymerizable material by finally curing the cationic polymerizable material in the third photocuring step. It becomes an optical path portion (core) having a refractive index intermediate between the refractive index of the cured cured material and the refractive index of the cured cationic polymerizable material. At this time, since a normal polymerizable material has a higher refractive index after curing than before curing, a so-called self-condensing phenomenon occurs. In other words, the irradiated light is less diffused as the portion irradiated with the first light is cured than the diffusion before curing, and the radical is in the form of incorporating a cationically polymerizable material in an axial shape. The polymerizable material is cured.
[0014]
Next, in the second photocuring step, the light irradiation direction and the like are not changed. Therefore, most of the irradiation light is radically polymerizable by incorporating the uncured cationic polymerizable material formed in the first photocuring step. It is irradiated only to the optical path part which consists of hardened | cured material. However, only light that is completely parallel to the optical path portion is not introduced into the optical path portion, but there is light that slightly leaks outside the optical path portion. Then, due to the slight light leakage, polymerization of the radical polymerizable material occurs around the surface of the optical path made of a cured product of the radical polymerizable material incorporating the uncured cationic polymerizable material. At this time, since the light leakage is weak, it is possible to prevent the cationic polymerizable material from being taken in as much as the optical path portion formed in the first photocuring step. That is, when the radical polymerizable material is cured in the first photocuring step, the mixed cationic polymerizable material is taken in without being dissipated, but in the second photocuring step, the curing rate of the radical polymerizable material is slow. This is because the cationically polymerizable material can dissipate into an uncured mixture solution. Then, the periphery, that is, the surface of the optical path portion is covered in a film shape with a portion having a higher concentration of the radical polymerizable material cured product than the concentration of the radical polymerizable material cured product in the optical path portion.
[0015]
Further, in the third light curing step, curing of the uncured cationic polymerizable material in the optical path portion and curing of the remaining uncured composition around the optical path portion whose surface is covered with the cured product of the radical polymerizable material are performed. The optical path portion having a refractive index intermediate between the refractive index of the radical polymerizable material cured product and the refractive index of the cationic polymerizable material cured product at the center, and the refractive index of the radical polymerizable material cured product around the optical path portion. An optical waveguide consisting of a peripheral part of the optical path having a refractive index close to, and the remaining three parts having a refractive index intermediate between the refractive index of the radical polymerizable material cured product and the refractive index of the cationic polymerizable material cured product it can. Here, since the refractive index of the radical polymerizable material cured product is smaller than the refractive index of the cationic polymerizable material cured product, the optical path portion whose surface is covered with the low refractive index cured product (clad-like portion) is used as a so-called core. be able to. Here, the refractive index change from the core to the clad-like portion may be continuous. That is, there may be a step index type refractive index change, or a graded index type continuous refractive index change. In addition, after taking out the hardened | cured material which impregnated the unhardened material from the uncured residual composition, you may perform a 3rd photocuring process.
[0016]
The refractive index change from the center of the optical path portion of the optical waveguide formed at this time toward the peripheral direction, that is, the direction of the low refractive index cured product (cladding-like portion) becomes lower toward the periphery, and the graded index optical fiber The coupling efficiency is also good. In addition, in the first photocuring step for forming the optical path portion, since the high-intensity light irradiation is performed so that the cationic polymerizable material does not escape from the optical path portion, the core formation time is longer than that of the technique described above. Can be shortened, and productivity can be improved (above claims 5 and 6).
[0017]
A composition suitable for such a production method is extremely useful (claim 1). By setting the difference between the refractive index of the cured product of the entire composition and the refractive index of the cured product of the radical polymerizable material to 0.001 or more, the refractive index of the optical path portion having the highest refractive index and the refractive index around the optical path The difference in refractive index from the lowest portion can have a relationship between the refractive indexes of the core and the clad (claim 2).
[0018]
At least in the second photocuring step for curing the surface of the optical path, only the radically polymerizable material is desired to be cured, so that the cationically polymerizable material can be easily released therefrom, and the container can be appropriately filled and defoamed. Thus, the composition is preferably liquid as a whole. Furthermore, the viscosity of the liquid composition is desirably 0.1 MPa seconds or less (Claim 3). In addition, since the composition is further heated and thermally polymerized when the curing is insufficient even in the third photocuring step, it is more preferable that the composition further includes a thermal polymerization initiator capable of polymerizing the radical polymerizable material by heating. (Claim 4).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments suitable for carrying out the present invention will be described in detail.
[0020]
[Radical polymerizable material]
The radical polymerizable material of the present invention is a photopolymerizable monomer and / or oligomer having one or more, preferably two or more ethylenically unsaturated reactive groups such as acryloyl group capable of radical polymerization in the structural unit. In view of the low refractive index, aliphatic monomers and / or oligomers are preferable. Examples of those having an ethylenically unsaturated reactive group include conjugate acid esters such as (meth) acrylic acid esters, itaconic acid esters, and maleic acid esters. In addition, (meth) acrylic acid represents acrylic acid or methacrylic acid.
[0021]
Specifically, for example, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, neopentyl glycol, 1,3-propanediol, 1,4- (Meth) acrylic acid ester derivatives, itaconic acid ester derivatives, maleic acid ester derivatives of polyhydric alcohols such as butanediol, 1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, pentaerythritol and dipentaerythritol In addition, a mixture thereof may be used. Furthermore, in order to lower the refractive index, a part of hydrogen in the structural unit may be substituted with fluorine, and the present invention is not limited to these.
[0022]
[Cationically polymerizable material]
As the cationically polymerizable material of the present invention, radical polymerization that is used together with one or more, preferably two or more reactive ether structures such as oxirane ring (epoxide) or oxetane ring capable of cationic polymerization in the structural unit. A photopolymerizable monomer and / or oligomer having a refractive index higher than that of the light-sensitive material and having at least one aromatic ring such as a phenyl group in the structural unit is preferred from the viewpoint of high refractive index. In addition, as an oxirane ring (epoxide) in this application, 3, 4- epoxy cyclohexyl group etc. are contained other than an oxiranyl group. The oxetane ring is a 4-membered ether.
[0023]
Specifically, for example, glycidyl ether derivatives such as phenyl glycidyl ether, various phenol compounds such as bisphenol A, bisphenol S, bisphenol Z, bisphenol F, novolac, o-cresol novolak, p-cresol novolak, p-alkylphenol novolak, etc. And oxetanyl derivatives, and a mixture thereof may be used. Further, for the purpose of increasing the refractive index, hydrogen in the aromatic ring may be substituted with chlorine or bromine, but is not limited thereto. Further, as described in JP-A-7-62082, a monomer having an oxetane ring in a structural unit and a structural unit are contained in the structural unit, rather than a case in which the structural unit of the monomer contains only an oxirane ring (epoxide). Mixtures containing an oxirane ring (epoxide) are known to improve the physical properties of the cured product such as polymerization curability, and a monomer containing at least one oxirane ring (epoxide) in the structural unit and the structural unit. It may be a single monomer containing one or more oxetane rings, or a mixture of monomers each containing one or more oxirane rings (epoxides) and oxetane rings in the structural unit.
[0024]
[Radical polymerization initiator]
The radical polymerization initiator of the present invention is a compound that activates a polymerization reaction of a radical polymerizable material comprising a radical polymerizable monomer and / or oligomer by light. Specific examples include benzoins such as benzoin, benzoin methyl ether and benzoin propyl ether, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, Acetophenones such as 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one and N, N-dimethylaminoacetophenone, 2-methylanthraquinone, 1- Anthraquinones such as chloroanthraquinone and 2-amylanthraquinone, thios such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthone Sandons, ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal, benzophenone, methyl benzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone, Michler's ketone and 4-benzoyl-4'-methyldiphenyl sulfide Benzophenones, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and the like. In addition, a radical polymerization initiator may be used independently, or may use 2 or more types together, and is not limited to these.
[0025]
(Cationic polymerization initiator)
The cationic polymerization initiator of the present invention is a compound that activates a polymerization reaction of a cationic polymerizable material comprising a cationic polymerizable monomer and / or oligomer by light. Specific examples include diazonium salts, iodonium salts, sulfonium salts, selenium salts, pyridinium salts, ferrocenium salts, phosphonium salts, and thiopyrinium salts, but diphenyliodonium, ditolyliodonium, phenyl (which are thermally relatively stable) aromatic iodonium salts such as p-anisyl) iodonium, bis (pt-butylphenyl) iodonium, bis (p-chlorophenyl) iodonium, diphenylsulfonium, ditolylsulfonium, phenyl (p-anisyl) sulfonium, bis (p- Preferred are onium salt photopolymerization initiators such as aromatic sulfonium salts such as t-butylphenyl) sulfonium and bis (p-chlorophenyl) sulfonium. When an onium salt photopolymerization initiator such as aromatic iodonium salt or aromatic sulfonium salt is used, BF is used as the anion.4 , AsF6 , SbF6 , PF6 , B (C6F5)4 Etc. In addition, a cationic polymerization initiator may be used individually or may use 2 or more types together, and is not limited to these.
[0026]
[Selection and blending ratio]
The material composition for producing an optical waveguide of the present invention including the above components has a refractive index n in a single polymerized cured product of a radical polymerizable material.r, Refractive index n in a single polymerized cured product of a cationic polymerizable materialcAnd the refractive index n in the polymerized cured product of the entire compositionrcRelationship is nr<Nrc<NcAnd nrcAnd nrDifference (nrc-Nr) Is 0.001 or more, more preferably 0.003 or more, and even more desirably 0.01 or more, the radically polymerizable material and the cationically polymerizable material are selected and combined, and the blending ratio is Select. In the present application, the refractive index refers to the refractive index of sodium D emission line light (589 nm). nrcAnd nrDifference (nrc-Nr) Is 0.01 or more, the maximum refractive index n at the center of the optical path portion (core)max(Nearly nrcbe equivalent to. ) And the minimum refractive index n of the outer periphery of the optical path portionmin(Nrc> Nmin> NrThis is particularly useful since it is easy to set the difference Δn to) to 0.001 or more.
[0027]
N abovercAnd nrDifference (nrc-Nr) Satisfies the relationship of 0.001 or more, preferably 0.003 or more, and the mixing ratio (mass ratio, the same applies hereinafter) of the radical polymerizable material and the cationic polymerizable material is in the range of 90:10 to 20:80. Preferably there is. When the blending ratio of the radical polymerizable material is less than 20% of the composition, the amount of the monomer (and / or oligomer) of the radical polymerizable material in the first photocuring step in the optical waveguide manufacturing method described below is insufficient. It takes a long time to form the first optical transmission line portion, or it is difficult to form an optical transmission line portion having sufficient strength even if it can be formed. In addition, it is not impossible to make the blending ratio of the cationic polymerizable material less than 10%.rcAnd nrDifference (nrc-Nr) Satisfies 0.003 or more, it is necessary to select a cationically polymerizable material having a remarkably high refractive index. Many of such cationically polymerizable materials are solid materials by themselves. Therefore, in order to mix uniformly with the radically polymerizable material, the radically polymerizable material having properties as a solvent is selected and blended. Alternatively, it is not preferable because it requires complicated operations such as separately dissolving the cationic polymerizable material in a solvent and then blending / preparing with the radical polymerizable material, and then removing the solvent component.
[0028]
In the material composition for producing an optical waveguide of the present invention having the above-described configuration, the radical polymerization initiator has a specific wavelength λ.rWith the following light irradiation, the cationic polymerization initiator has a specific wavelength λ.cIt is a compound that can be activated by the following light irradiation. Where the specific wavelength λrBelow and specific wavelength λcThe compound component that can be activated by the following light irradiation is a compound having an optical absorption edge (the longest absorption wavelength in optical absorption) below a specific wavelength. In addition, the light λ having a specific wavelength band used for the first light irradiation in the first and second photocuring steps in the optical waveguide manufacturing method described below.1And light λ of a specific wavelength band used for the second light irradiation in the third photocuring step2Is λ1> Λ2Because it is necessary to satisfy the relationshipr> ΛcAny combination of the above compounds can be selected as long as the above relationship is satisfied. That is, for the wavelength, λr> Λ1> Λc> Λ2If it is good. Λ1And λ2Is a wavelength band and does not mean single wavelength light, nor is it limited to irradiation in a certain wavelength band in the first and second photocuring steps and the third photocuring step. Naturally, even if the irradiation intensity is changed during the process, it is included in the present invention.
[0029]
Moreover, it is preferable to select a radical polymerization initiator and a cationic polymerization initiator that are compatible with a mixed solution of a radical polymerizable material and a cationic polymerizable material. Furthermore, the specific wavelength λ of the cationic polymerization initiatorcIs generally not more than 400 nm, the radical polymerization initiator is λcLonger than a specific wavelength λrThe specific wavelength band λ used for the second light irradiation in the optical waveguide manufacturing method described below is preferable.2(≦ λcIt is preferable to cause a decomposition reaction by light irradiation. Particularly preferably, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (λr= 430 nm, manufactured by BASF, trade name “Lucirin TPO”), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (λr= 460 nm, manufactured by Ciba Specialty Chemicals, trade name “IRUGACURE 819”), bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide (50%) and 1-hydroxycyclohexyl phenyl ketone ( 50%) mixture (λr= 440 nm, manufactured by Ciba Specialty Chemicals, Inc., trade name “IRUGACURE 1850”) and the like. Note that the present invention is not limited to these.
[0030]
The amount of the radical polymerization initiator is 0.05 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the radical polymerizable material. Furthermore, the amount of the cationic polymerization initiator is 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the cationic polymerizable material.
[0031]
[Necessity of post cure]
You may mix | blend the thermal polymerization initiator which can start radical polymerization with the component which comprises the material composition for preparation of the optical waveguide of this invention. Generally, when only photopolymerization is performed on a photopolymerizable monomer (and / or oligomer), a small amount of monomer (and / or oligomer) that cannot be completely polymerized remains in the system. For this reason, it is common practice to complete the polymerization by so-called post-cure. In the case of a cationic polymerizable monomer (and / or oligomer), if post-cure is performed immediately after photopolymerization, thermal polymerization is induced by the cationic species remaining in the system (cation side of the cationic polymerization initiator which is a salt). Is done. However, in the case of radically polymerizable monomers (and / or oligomers), it is believed that radical species in the system disappear immediately upon termination of light irradiation, and polymerization of residual monomers (and / or oligomers) by post-cure is performed. It will be difficult to complete. Also in the method for producing an optical waveguide of the present invention described below, a small amount of radical polymerizable material and cationic polymerizable material that could not be polymerized by the second light irradiation remain in the system. For this reason, post-cure is effective for the purpose of increasing the thermal stability of the final product. For the reasons described above, the residual monomer (and / or the radical polymerizable material comprising the radical polymerizable monomer (and / or oligomer)). In order to be able to post-cure the oligomer), the incorporation of a thermal polymerization initiator is effective.
[0032]
(Thermal polymerization initiator)
Examples of the thermal polymerization initiator include organic peroxides and azo compounds. In general, azo compounds are not preferred because they generate nitrogen upon decomposition, and the use of organic peroxides is preferred. Specific examples of the organic peroxide include 3,5,5-trimethylhexanoyl peroxide, lauryl peroxide, benzoyl peroxide, 1,1-bis (t-butylperoxy) -2-methylcyclohexane, 1,1 -Bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethyl Cyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (4,4-dibutylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl Monocarbonate, t-butyl peroxymaleate, peroxy-3,5,5-trimethyl T-butyl xanthate, t-butyl peroxylaurate, 2,5-dimethyl-2,5-di (m-toluoyl peroxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl mono Carbonate, t-hexyl perbenzoate, 2,5-dimethyl-2,5-dibenzoylperoxyhexane, t-butyl peracetate, 2,2-bis (t-butylperoxy) butane, t-butyl perbenzoate, N-butyl 4,4-bis (t-butylperoxy) valerate, di-t-butyl peroxyisophthalate, α, α′-bis (t-butylperoxy) diisopropylbenzene, cumyl peroxide, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide, t-butyl peroxide p-menthane hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, diisopropylbenzene hydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3,3-tetramethylbutylhydro Examples include peroxide, cumyl hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide and the like.
[0033]
In addition, since the addition of the thermal polymerization initiator can also cause a decrease in the thermal stability of the material composition for producing an optical waveguide of the present invention, in the selection thereof, the storage temperature of the composition, the temperature of the post cure, and It is necessary to consider time. From this viewpoint, when the storage temperature of the composition is room temperature and post-curing is performed for 10 hours, the thermal polymerization initiator preferably has a temperature range of 50 ° C. to 100 ° C. for obtaining a half-life by thermal decomposition. . As such an organic peroxide, 3,5,5-trimethylhexanoyl peroxide (60 ° C., manufactured by NOF Corporation, trade name “PAROIL 355”), lauryl peroxide (62 ° C., manufactured by NOF Corporation, trade name) “Perloyl L”), benzoyl peroxide (74 ° C., manufactured by Nippon Oil & Fats, trade name “Nyper B”), 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane (90 ° C., Japan Product name: “Perhexa 3M”), 1,1-bis (t-butylperoxy) cyclohexane (91 ° C., product name: “Perhexa C”), Peroxy-3,5,5-trimethylhexanoic acid t-butyl (97 ° C., manufactured by NOF Corporation, trade name “Perbutyl 355”), t-butyl peroxyisopropyl monocarbonate (98 ° C., manufactured by NOF Corporation, trade name “Perbutyl 1” ), And the like can be mentioned. Note that the present invention is not limited to these. The amount of the thermal polymerization initiator added is in the range of 0.01% to 5% by weight, more preferably 0.05% to 1% by weight of the optical waveguide manufacturing material composition of the present invention. good.
[0034]
Further, in the production of the optical waveguide of the present invention described below, a cured product region capable of optical transmission is formed by the first light irradiation. Moreover, although the cured product region for the purpose of protecting the cured product that can be transmitted by the second light irradiation is formed, the superiority of the production method is similar to the production method disclosed in Patent Documents 1 and 2, It is possible to form a light transmission path and a cured product region that protects the light transmission path in a state where an optical filter or a 45-degree reflection mirror is installed in the light transmission path. For this purpose, before starting the formation of the optical transmission path, it is necessary to install optical components such as an optical filter and a mirror in the optical transmission path system in advance, and in order to realize this, the light used in the present invention is used. The composition for the transmission line or the waveguide manufacturing method needs to be liquid. The liquid property of the composition can be expressed as a viscosity, and the viscosity of the composition for the manufacturing method suitable for the optical transmission line or waveguide manufacturing method of this patent is a liquid of 0.1 MPa seconds or less at room temperature of 25 ° C. Is preferred. The viscosity greatly depends on the viscosity of the mixture under the suitable composition conditions of the radical polymerizable material and the cationic polymerizable material, and may be lower from the viewpoint of improving the workability of the defoaming treatment and filling process of the composition. Although it is desirable, it is not impossible to fill the composition with the optical component as described above provided that it has a viscosity of 0.1 MPa seconds or less. On the other hand, if the viscosity of the composition exceeds 0.1 MPa seconds, the viscosity becomes too high, and if the composition is filled with the optical component installed, bubbles may be mixed in or the optical component may move. It tends to occur and is not preferable in terms of the production method.
[0035]
An example of the composition of the material composition for producing an optical waveguide of the present invention is as follows. The radical polymerizable material is an aliphatic (meth) acrylic acid monomer, and the cationic polymerizable material is a bisphenol epoxy monomer or a bisphenol epoxy monomer. And an oxetane monomer containing an aromatic substituent, and their mass composition ratio is 10:90 to 90:10, preferably 20:80 to 85:15, and the bisphenol epoxy monomer and the aromatic substituent are In the case of the mixture of the oxetane monomers contained, the mass composition ratio thereof is 100: 0 to 0: 100. The mass composition ratio may be selected in view of the core formation speed, mechanical strength, mechanical strength of the clad-like portion, reliability, etc. in the production of the optical waveguide of the present invention described below.
[0036]
Examples of the radical polymerization initiator include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd., trade name “IRUGACURE 819” with respect to the radical polymerizable material and 100 parts by mass. ]) 0.05-10 mass parts, Preferably, 0.1-5 mass parts is added. The type and amount of the radical polymerization initiator depend on the optical density or absorbance spectral characteristics and the wavelength of the light source used for photocuring the radical polymerizable material, and the optical density at the wavelength does not exceed 2. It is desirable to use in. As the cationic polymerization initiator, bis (pt-butylphenyl) sulfonium diluted with propylene carbonate solvent and triarylsulfonium hexafluorophosphate (Union Carbide) with respect to 100 parts by mass of the cationic polymerizable material. Manufactured, trade name “UVI-6990”) is added in an amount of 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass.
[0037]
[Waveguide Manufacturing Method]
FIG. 1 is a process diagram for explaining a method of manufacturing an optical waveguide according to the present invention. A transparent container 1 is filled with a material composition 2 for producing an optical waveguide of the present invention. Next, the specific wavelength λ of the cationic polymerization initiatorcLonger and specific wavelength λ of radical polymerization initiatorrThe following wavelength component λ1The first irradiation light 3 from the light source including is irradiated (FIG. 1A). As a result, a cationically polymerizable material having a high refractive index and a radically polymerizable material having a low refractive index in a state in which a cationic polymerization initiator is incorporated are polymerized into a pattern corresponding to the shape of light irradiation, thereby making the optically transparent polymerization curing The optical path portion (core) 4 thus formed is once formed ((b) in FIG. 1). Subsequently, when the first irradiation light 3 is continued for a certain time or more, a radical having a low refractive index is also formed on the surface of the optical path portion (core) 4 due to light components due to leakage or scattering from the optical path portion (core) 4 to the side. Only the polymerizable material polymerizes selectively. At this time, a cationically polymerizable material having a high refractive index and a cationic polymerization initiator are partially incorporated, but the light component due to leakage or scattering is weak, so that it reacts more than in radical polymerization in the optical path portion (core) 4. Is slow. Then, the amount of the cationically polymerizable material having a high refractive index taken in is relatively small, and the concentration (volume ratio) of the cured product of the radically polymerizable material having a low refractive index is increased. In this way, a layer (clad-like portion) 5 having a refractive index lower than that of the optical path portion (core) 4 is formed ((c) in FIG. 1). After that, the specific wavelength λ of the cationic polymerization initiatorcThe low refractive index radical polymerizable material and the high refractive index cationic polymerizable material remaining in the transparent container 1 are simultaneously polymerized by the second irradiation light 6 from the light source including the following wavelength components. In this way, a base portion 2 ′ made of a cured product having a refractive index higher than that of the low refractive index layer (cladding-like portion) 5 is formed. At this time, the uncured high refractive index cationically polymerizable material remaining in the optical path portion (core) 4 and the low refractive index layer (cladding-like portion) 5 formed by the first light irradiation is also polymerized (FIG. 1). (D)).
[0038]
2A and 2B are a longitudinal sectional view and a transverse sectional view of an optical waveguide manufactured by the manufacturing method of FIG. If the first irradiation light 3 in FIG. 1 is a cylindrical beam, the cross section of the optical path portion (core) 4 is circular as shown in FIG. FIG. 2 (c) shows a case where scanning is performed from the base portion 2 ′ to the low refractive index layer (cladding-like portion) 5, the optical path portion (core) 4, the low refractive index layer (cladding-like portion) 5, and the base portion 2 ′. It is a conceptual diagram which shows the outline of a refractive index change. Thus, by using the composition of the present invention, an optical waveguide having a step index type or W type refractive index difference or refractive index distribution as shown in FIG. 2C can be formed. Hereinafter, as shown in FIG. 2C, the difference between the maximum refractive index of the optical path portion (core) 4 and the minimum refractive index of the low refractive index layer (cladding-like portion) 5 on the outer periphery thereof is shown as Δn.
[0039]
【Example】
In the present specification, “part” means part by mass.
[First embodiment]
70 parts of trimethylolpropane trimethacrylate (trade name “Aronix M-309”, uncured product refractive index 1.475, cured product refractive index 1.515), a cationic polymerizable material, as radically polymerizable material And 30 parts of a bisphenol type epoxy monomer (trade name “Epicoat 828”, uncured product refractive index 1.574, cured product refractive index 1.60) manufactured by Japan Epoxy Resin Co., Ltd. as a radical polymerization initiator as a cationic polymerization initiator. Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by Ciba Specialty Chemicals, Inc., trade name “IRUGACURE 819” λr= 460 nm), 0.35 part of bis (pt-butylphenyl) sulfonium diluted with propylene carbonate solvent as a cationic polymerization initiator and hexafluorophosphate of triarylsulfonium (manufactured by Union Carbide, trade name “UVI”) -6990 ") was mixed at a blending ratio of 0.9 part to prepare a material composition for manufacturing an optical waveguide. Next, this composition was filled in a transparent container of 5 mm × 5 mm × 15 mm. Ar laser light (λ1= 488 nm) at an intensity of 25 mW for 6 minutes to form a 15 mm long core. Next, it was left for 120 minutes while being irradiated with Ar laser light. Next 20mW / cm2The remaining solution was cured by irradiating with a UV light source of (light intensity at λ = 365 nm) for 10 minutes. When the difference Δn between the maximum refractive index of the optical path portion (core portion) and the minimum refractive index of the low refractive index layer was evaluated with a two-beam interference microscope, it was 0.008.
[0040]
[Second Embodiment]
70 parts of trimethylolpropane trimethacrylate (trade name “Aronix M-309”, uncured product refractive index 1.475, cured product refractive index 1.515), a cationic polymerizable material, as radically polymerizable material 1,4-bis ((3-ethyl-3oxetanyl) methoxy) benzene (manufactured by Toagosei Co., Ltd., trade name “OXT-121”, uncured product refractive index 1.511, cured product refractive index 1.54) and 30 parts of a 1: 1 mixed composition (uncured product refractive index 1.541, cured product refractive index 1.57) of bisphenol type epoxy monomer (trade name “Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.), radical polymerization start Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by Ciba Specialty Chemicals, Inc., trade name “IRUGA”) URE 819 "λr= 460 nm), 0.35 part of bis (pt-butylphenyl) sulfonium diluted with propylene carbonate solvent as a cationic polymerization initiator and hexafluorophosphate of triarylsulfonium (manufactured by Union Carbide, trade name “UVI”) -6990 ") was mixed at a blending ratio of 0.9 part to produce an optical waveguide material composition, and an optical waveguide was formed in the same manner as in the first example. When the difference Δn between the maximum refractive index of the optical path portion (core portion) and the minimum refractive index of the low refractive index layer was evaluated with a two-beam interference microscope, it was 0.007.
[0041]
[Other Examples]
As shown in Table 1, high refractive index cationic polymerizable materials C1 to C5 and low refractive index radical polymerizable materials R1 to R5 are combined as shown in Tables 2 and 3 in the same manner as in the first example. An optical waveguide was formed.
[Table 1]
Figure 2004149579
[0042]
In each Example of Table 2, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by Ciba Specialty Chemicals, trade name “IRUGACURE 819” λ as a radical polymerization initiatorr= 460 nm), 0.5 part of bis (pt-butylphenyl) sulfonium diluted with propylene carbonate solvent as a cationic polymerization initiator and triarylsulfonium hexafluorophosphate (manufactured by Union Carbide, trade name “UVI”) -6990 ") was used in 3 parts. Ar laser light (λ1= 488 nm) was irradiated for each time in Table 2 at an intensity of 50 mW, and then allowed to stand for 5 minutes. Next 20mW / cm2A UV light source of (light intensity at λ = 365 nm) was irradiated for 5 minutes.
[Table 2]
Figure 2004149579
[0043]
In each Example of Table 3, the number of parts of the radical polymerization initiator was 0.75 parts, and Ar laser light (λ1= 488 nm), except that the intensity was 80 mW.
[Table 3]
Figure 2004149579
[0044]
The difference Δn between the maximum refractive index of the optical path portion (core portion) and the minimum refractive index of the low refractive index layer in Tables 2 and 3 was evaluated with a two-beam interference microscope.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method of manufacturing an optical waveguide according to a specific embodiment of the present invention.
FIG. 2 is a longitudinal sectional view (a), a transverse sectional view (b), and a conceptual diagram of a refractive index distribution (c) of an optical waveguide according to a specific embodiment of the present invention.
[Explanation of symbols]
1 Transparent container
2 Material composition for optical waveguide fabrication
2 'base part
3 First light irradiation
4 Optical path part (core)
5 Low refractive index layer (cladding-like part)
6 Second light irradiation
λr  Specific wavelength of radical polymerization initiator
λc  Specific wavelength of cationic polymerization initiator
λ1  Wavelength of the first light irradiation
λ2  Second light irradiation wavelength
nr  Refractive index of cured material of radical polymerizable material
nc  Refractive index of cured product of cationic polymerizable material
nrc  Refractive index of the cured product of the entire composition according to the present invention
nmax  Maximum refractive index of the optical path (core)
nmin  Minimum refractive index of low refractive index layer (cladding-like part)
Δn nmaxAnd nminDifference

Claims (6)

ラジカル重合性材料と、
カチオン重合性材料と、
光照射により前記ラジカル重合性材料の重合を開始させるラジカル重合開始剤と、
光照射により前記カチオン重合性材料の重合を開始させるカチオン重合開始剤とを含む組成物であって、
特定波長の光照射は、前記ラジカル重合開始剤の活性化に有効であって前記カチオン重合開始剤の活性化に有効でなく、
前記ラジカル重合性材料の硬化物の屈折率は前記カチオン重合性材料の硬化物の屈折率よりも小さいことを特徴とする光導波路の作製用材料組成物。
A radically polymerizable material;
A cationically polymerizable material;
A radical polymerization initiator for initiating polymerization of the radical polymerizable material by light irradiation;
A composition comprising a cationic polymerization initiator for initiating polymerization of the cationic polymerizable material by light irradiation,
Light irradiation with a specific wavelength is effective for activating the radical polymerization initiator and not effective for activating the cationic polymerization initiator,
A material composition for producing an optical waveguide, wherein a refractive index of a cured product of the radical polymerizable material is smaller than a refractive index of a cured product of the cationic polymerizable material.
前記組成物全体の硬化物の屈折率は、前記ラジカル重合性材料の硬化物の屈折率よりも0.001以上大きいことを特徴とする請求項1に記載の光導波路の作製用材料組成物。The material composition for producing an optical waveguide according to claim 1, wherein the refractive index of the cured product of the entire composition is 0.001 or more larger than the refractive index of the cured product of the radical polymerizable material. 前記光導波路の作製用材料組成物は液状であって、25℃における粘度が0.1MPa秒以下であることを特徴とする請求項1又は請求項2に記載の光導波路の作製用材料組成物。The material composition for producing an optical waveguide according to claim 1 or 2, wherein the material composition for producing an optical waveguide is liquid and has a viscosity at 25 ° C of 0.1 MPa seconds or less. . 前記ラジカル重合性材料を、加熱によって重合させ得る熱重合開始剤を更に含むことを特徴とする請求項1乃至請求項3のいずれか1項に記載の光導波路の作製用材料組成物。The material composition for producing an optical waveguide according to any one of claims 1 to 3, further comprising a thermal polymerization initiator capable of polymerizing the radical polymerizable material by heating. 請求項1乃至請求項4のいずれか1項に記載の光導波路の作製用材料組成物を用いて光導波路を製造する方法であって、
前記特定波長の第1の光照射により前記ラジカル重合開始剤を活性化させて、少なくとも前記カチオン重合性材料と前記カチオン重合開始剤とを取り込む形で前記ラジカル重合性材料を硬化させ、光学的に透明な光路部分を形成する第1の光硬化工程と、
前記光路部分を形成した後、前記第1の光照射を継続して、前記光路部分の表面に前記ラジカル重合性材料を硬化させる第2の光硬化工程と、
前記ラジカル重合開始剤と前記カチオン重合開始剤の両方を活性化させる第2の光照射により、前記光路部分に取り込まれた前記カチオン重合性材料、並びに、未硬化の残余の組成物全体を硬化させる第3の光硬化工程とから成り、
高屈折率の光路部分と、その表面の低屈折率部分とを有する光導波路を製造する方法。
A method for producing an optical waveguide using the material composition for producing an optical waveguide according to any one of claims 1 to 4,
The radical polymerization initiator is activated by irradiating the first light of the specific wavelength, and the radical polymerizable material is cured in such a manner that at least the cationic polymerizable material and the cationic polymerization initiator are incorporated, and optically A first photocuring step for forming a transparent optical path portion;
After forming the optical path portion, continuing the first light irradiation, a second photocuring step of curing the radical polymerizable material on the surface of the optical path portion;
By the second light irradiation that activates both the radical polymerization initiator and the cationic polymerization initiator, the cationic polymerizable material incorporated into the optical path portion and the entire remaining uncured composition are cured. A third photocuring step,
A method of manufacturing an optical waveguide having an optical path portion having a high refractive index and a low refractive index portion on the surface thereof.
請求項1乃至請求項4のいずれか1項に記載の光導波路の作製用材料組成物を用いて光導波路を製造する方法であって、
前記特定波長の第1の光照射により前記ラジカル重合開始剤を活性化させて、少なくとも前記カチオン重合性材料と前記カチオン重合開始剤とを取り込む形で前記ラジカル重合性材料を硬化させ、光学的に透明な光路部分を形成する第1の光硬化工程と、
前記光路部分を形成した後、前記第1の光照射を継続して、前記光路部分の表面に前記ラジカル重合性材料を硬化させる第2の光硬化工程と、
未硬化物を含浸した硬化物を未硬化の残余の組成物から取り出したうえで、硬化物に含浸した未硬化物を、前記ラジカル重合開始剤と前記カチオン重合開始剤の両方を活性化させる第2の光照射により硬化させる第3の光硬化工程とから成り、
高屈折率の光路部分と、その表面の低屈折率部分とを有する光導波路を製造する方法。
A method for producing an optical waveguide using the material composition for producing an optical waveguide according to any one of claims 1 to 4,
The radical polymerization initiator is activated by irradiating the first light of the specific wavelength, and the radical polymerizable material is cured in such a manner that at least the cationic polymerizable material and the cationic polymerization initiator are incorporated, and optically A first photocuring step for forming a transparent optical path portion;
After forming the optical path portion, continuing the first light irradiation, a second photocuring step of curing the radical polymerizable material on the surface of the optical path portion;
The cured product impregnated with the uncured product is taken out from the remaining uncured composition, and the uncured product impregnated with the cured product is activated in both the radical polymerization initiator and the cationic polymerization initiator. A third photocuring step for curing by light irradiation of 2,
A method of manufacturing an optical waveguide having an optical path portion having a high refractive index and a low refractive index portion on the surface thereof.
JP2002313422A 2002-10-28 2002-10-28 Manufacturing method of optical waveguide Expired - Fee Related JP4084633B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002313422A JP4084633B2 (en) 2002-10-28 2002-10-28 Manufacturing method of optical waveguide
US10/693,605 US7399498B2 (en) 2002-10-28 2003-10-27 Material composition for producing optical waveguide and method for producing optical waveguide
EP03024527A EP1416301A1 (en) 2002-10-28 2003-10-27 Material composition for producing optical-waveguide and method for producing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313422A JP4084633B2 (en) 2002-10-28 2002-10-28 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JP2004149579A true JP2004149579A (en) 2004-05-27
JP4084633B2 JP4084633B2 (en) 2008-04-30

Family

ID=32458053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313422A Expired - Fee Related JP4084633B2 (en) 2002-10-28 2002-10-28 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP4084633B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602950A1 (en) 2004-06-02 2005-12-07 Toyoda Gosei Co., Ltd. Optical module and manufacturing method of the same
JP2007070321A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bisoxetane ether compound, method for producing the same and an optical waveguide by using the same
JP2007070320A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Trisoxetane ether compound, method for producing the same and an optical waveguide by using the same
JP2007070324A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bisoxetane ether compound having fluorene structure, method for producing the same and optical waveguide using the same
JP2007070326A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bis(hydroxyphenyl)alkane derivative having oxetane ring, method for producing the same and optical waveguide using the same
JP2007070328A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Trisoxetane ether compound, method for producing the same and optical waveguide using the same
JP2007070323A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Tetrakis-oxetane ether compound having fluorene structure, method for producing the same and optical waveguide using the same
JP2007070325A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bis(hydroxyphenyl)alkylbenzene derivative having oxetane ring, method for producing the same and optical waveguide using the same
JP2007070327A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Oxetane ether compound having carboxyl group, method for producing the same and optical waveguide using the same
JP2007212793A (en) * 2006-02-09 2007-08-23 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide
WO2008038730A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for producing self-formation optical waveguide
JP2008122984A (en) * 2007-12-26 2008-05-29 Toyota Central R&D Labs Inc Self-forming optical waveguide and manufacturing method therefor
JP2008242449A (en) * 2007-02-27 2008-10-09 Keio Gijuku Polymer parallel optical waveguide and its manufacturing method
DE102009008358A1 (en) 2008-02-19 2009-09-17 Toyoda Gosei Co., Ltd., Nishikasugai Light coupler and manufacturing method for this
JP2009223258A (en) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc Self-forming optical waveguide manufacturing method, and optical waveguide
US7899287B2 (en) 2008-06-27 2011-03-01 Toyoda Gosei Co., Ltd. Optical branching-coupling device, and manufacturing method and optical module of the same
US7907808B2 (en) 2005-09-06 2011-03-15 Kabushiki Kaisha Totoya Chuo Kenkyusho Optical waveguide and method for manufacturing the same
US9297951B2 (en) 2012-02-27 2016-03-29 Sumitomo Bakelite Co., Ltd. Optical waveguide, optical wiring component, optical waveguide module and electronic device
DE102018116527A1 (en) 2017-07-10 2019-01-10 Adamant Namiki Precision Jewel Co., Ltd. An optical device, communication system and method for multiplexing and demultiplexing an optical signal

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602950A1 (en) 2004-06-02 2005-12-07 Toyoda Gosei Co., Ltd. Optical module and manufacturing method of the same
US7560055B2 (en) 2004-06-02 2009-07-14 Toyoda Gosei Co. Ltd. Method of manufacturing an optical module
US7907808B2 (en) 2005-09-06 2011-03-15 Kabushiki Kaisha Totoya Chuo Kenkyusho Optical waveguide and method for manufacturing the same
JP2007070326A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bis(hydroxyphenyl)alkane derivative having oxetane ring, method for producing the same and optical waveguide using the same
JP2007070328A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Trisoxetane ether compound, method for producing the same and optical waveguide using the same
JP2007070323A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Tetrakis-oxetane ether compound having fluorene structure, method for producing the same and optical waveguide using the same
JP2007070325A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bis(hydroxyphenyl)alkylbenzene derivative having oxetane ring, method for producing the same and optical waveguide using the same
JP2007070327A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Oxetane ether compound having carboxyl group, method for producing the same and optical waveguide using the same
JP4664164B2 (en) * 2005-09-09 2011-04-06 日東電工株式会社 Trisoxetane ether compound, process for producing the same, optical waveguide using the same, and resin composition for optical waveguide formation
JP2007070324A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bisoxetane ether compound having fluorene structure, method for producing the same and optical waveguide using the same
JP2007070320A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Trisoxetane ether compound, method for producing the same and an optical waveguide by using the same
JP4664165B2 (en) * 2005-09-09 2011-04-06 日東電工株式会社 Bisoxetane ether compound, process for producing the same, optical waveguide using the same, and resin composition for forming optical waveguide
JP2007070321A (en) * 2005-09-09 2007-03-22 Nitto Denko Corp Bisoxetane ether compound, method for producing the same and an optical waveguide by using the same
JP4552868B2 (en) * 2006-02-09 2010-09-29 株式会社豊田中央研究所 Manufacturing method of optical waveguide
JP2007212793A (en) * 2006-02-09 2007-08-23 Toyota Central Res & Dev Lab Inc Method of manufacturing optical waveguide
WO2008038730A1 (en) 2006-09-28 2008-04-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for producing self-formation optical waveguide
JP2008242449A (en) * 2007-02-27 2008-10-09 Keio Gijuku Polymer parallel optical waveguide and its manufacturing method
JP4563445B2 (en) * 2007-12-26 2010-10-13 株式会社豊田中央研究所 Manufacturing method of self-forming optical waveguide
JP2008122984A (en) * 2007-12-26 2008-05-29 Toyota Central R&D Labs Inc Self-forming optical waveguide and manufacturing method therefor
DE102009008358A1 (en) 2008-02-19 2009-09-17 Toyoda Gosei Co., Ltd., Nishikasugai Light coupler and manufacturing method for this
US8170385B2 (en) 2008-02-19 2012-05-01 Toyoda Gosei Co., Ltd. Light coupler and manufacturing method thereof
JP2009223258A (en) * 2008-03-19 2009-10-01 Toyota Central R&D Labs Inc Self-forming optical waveguide manufacturing method, and optical waveguide
US7899287B2 (en) 2008-06-27 2011-03-01 Toyoda Gosei Co., Ltd. Optical branching-coupling device, and manufacturing method and optical module of the same
US9297951B2 (en) 2012-02-27 2016-03-29 Sumitomo Bakelite Co., Ltd. Optical waveguide, optical wiring component, optical waveguide module and electronic device
DE102018116527A1 (en) 2017-07-10 2019-01-10 Adamant Namiki Precision Jewel Co., Ltd. An optical device, communication system and method for multiplexing and demultiplexing an optical signal

Also Published As

Publication number Publication date
JP4084633B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4084633B2 (en) Manufacturing method of optical waveguide
US6335149B1 (en) High performance acrylate materials for optical interconnects
CN100384910C (en) Optical devices made from radiation curable fluorinated compositions
JP2000356720A (en) Material for optical waveguide, optical waveguide and its manufacture
CN1267754C (en) Design of low insertion loss, single-mode polymeric waveguides
CN1549937A (en) Optimized multi-layer optical waveguiding system
US7399498B2 (en) Material composition for producing optical waveguide and method for producing optical waveguide
EP1630180B1 (en) Curing resin composition, optical component and optical waveguide
JP4011283B2 (en) Manufacturing method of optical transmission line
JP5291030B2 (en) Optical device and manufacturing method thereof
JP2010032584A (en) Optical waveguide, optical module, and method of manufacturing the same
JP4179947B2 (en) Manufacturing method of self-forming optical waveguide
JP3063903B2 (en) Optical waveguide
JP2019183133A (en) Curable resin composition and manufacturing method of solid article using the same
WO2006009173A1 (en) Polymer optical waveguide and process for production thereof
JP4466396B2 (en) Manufacturing method of optical waveguide
JPH07238106A (en) Photocurable composition for forming three-dimensional molding and method of accelerating photocuring
JP2004151160A (en) Manufacturing method of optical waveguide
JP4552868B2 (en) Manufacturing method of optical waveguide
US6824934B2 (en) One step laser fabrication of polymer wave-guided structures having varying width and height, and their application to pigtailing of optical fibers
JP2004292801A (en) Light waveguide
JP2006215447A (en) Optical waveguide mold
JP2002275260A (en) Composition for optically curable resin for three- dimensional molding
JP4024729B2 (en) Manufacturing method of optical waveguide
JP4563445B2 (en) Manufacturing method of self-forming optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Ref document number: 4084633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees