JP4802730B2 - Object detection device - Google Patents

Object detection device Download PDF

Info

Publication number
JP4802730B2
JP4802730B2 JP2006015520A JP2006015520A JP4802730B2 JP 4802730 B2 JP4802730 B2 JP 4802730B2 JP 2006015520 A JP2006015520 A JP 2006015520A JP 2006015520 A JP2006015520 A JP 2006015520A JP 4802730 B2 JP4802730 B2 JP 4802730B2
Authority
JP
Japan
Prior art keywords
ultrasonic
detection
lens
object detection
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006015520A
Other languages
Japanese (ja)
Other versions
JP2007198800A (en
Inventor
祐治 佐久間
▲より▼信 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006015520A priority Critical patent/JP4802730B2/en
Publication of JP2007198800A publication Critical patent/JP2007198800A/en
Application granted granted Critical
Publication of JP4802730B2 publication Critical patent/JP4802730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、超音波を送波して反射超音波により物体を検知する物体検知装置に関する。   The present invention relates to an object detection apparatus that transmits ultrasonic waves and detects an object using reflected ultrasonic waves.

従来から、対象とする検知領域に超音波のパルスを送波し、反射超音波パルスの時間情報から検知領域における超音波反射物体の検知を行なう物体検知装置が利用されている。このような物体検地装置は、例えば、車両や移動ロボットの移動方向前方における障害物検知や、防犯用の侵入者検知等に用いられる。超音波の送波器と受波器とは共通にすることもできるが、短時間に繰り返して物体検知を行う場合、例えば、残響の影響を回避するため、送波器と受波器とは別個のものが用いられる。また、受波器を複数の受波素子から構成して、受波素子間の受波信号の時間差から検知物体の方位が求められる。   Conventionally, an object detection apparatus that transmits ultrasonic pulses to a target detection region and detects an ultrasonic reflection object in the detection region from time information of the reflected ultrasonic pulse has been used. Such an object inspection device is used, for example, for obstacle detection in front of a moving direction of a vehicle or a mobile robot, intruder detection for crime prevention, or the like. The ultrasonic transmitter and receiver can be shared, but when performing object detection repeatedly in a short time, for example, to avoid the effects of reverberation, the transmitter and receiver are A separate one is used. Further, the receiver is composed of a plurality of receiving elements, and the direction of the detected object is obtained from the time difference of the received signals between the receiving elements.

上述のような超音波を用いた物体検知において、ノイズによるゴースト信号、つまり実際の検知信号ではない信号が発生した場合に、検知領域に存在しない物体を検出する誤検知が発生する可能性がある。誤検知は、物体検知の利便性を低下するので排除する必要がある。このような誤検知は、例えば、ノイズ強度に対する信号強度の比、つまりS/N比を上げることによって抑制できる。信号強度に注目する場合、反射超音波からの信号強度を上げるには、送波する超音波の強度を上げればよい、ということになる。送波する超音波の強度を上げるには、例えば、超音波発信回路を増強する方法と、送波する超音波の指向性を上げて特定の視野範囲の超音波強度を上げる方法がある。前者の超音波発信回路を強化する方法は、回路の複雑化や大型化、コストアップなどにつながるという問題がある。   In object detection using ultrasonic waves as described above, when a ghost signal due to noise, that is, a signal that is not an actual detection signal, is generated, there is a possibility that false detection for detecting an object that does not exist in the detection region may occur. . Since false detection reduces the convenience of object detection, it needs to be eliminated. Such erroneous detection can be suppressed, for example, by increasing the ratio of signal intensity to noise intensity, that is, the S / N ratio. When attention is paid to the signal intensity, the intensity of the ultrasonic wave to be transmitted may be increased in order to increase the signal intensity from the reflected ultrasonic wave. In order to increase the intensity of the ultrasonic wave to be transmitted, there are, for example, a method of enhancing the ultrasonic wave transmission circuit and a method of increasing the directivity of the ultrasonic wave to be transmitted and increasing the ultrasonic intensity in a specific visual field range. The former method for strengthening the ultrasonic wave transmission circuit has a problem that the circuit is complicated and large, and the cost is increased.

上述した後者の方法として、送波する超音波の指向性を高めるため、医療用の超音波プローブや超音波検知型カテーテルにおいて超音波レンズを用いる例が知られている(例えば、特許文献1参照)。
特開平2−302251号公報
As the latter method described above, there is known an example in which an ultrasonic lens is used in a medical ultrasonic probe or an ultrasonic detection type catheter in order to improve the directivity of ultrasonic waves to be transmitted (see, for example, Patent Document 1). ).
JP-A-2-302251

しかしながら、上述した特許文献1に示されるような、単に超音波レンズを用いて指向性を高めてS/N比を上げる方法は、広い視野の検知領域において物体(障害物や侵入者)検知ができないという問題がある。   However, as shown in Patent Document 1 described above, the method of simply increasing the directivity and increasing the S / N ratio by using an ultrasonic lens is capable of detecting an object (obstacle or intruder) in a detection area with a wide field of view. There is a problem that you can not.

本発明は、上記課題を解消するものであって、広い視野の検知領域において超音波発信回路を増強することなくS/N比を上げて物体の距離と方位を誤検知を抑制して検知できる超音波を用いた物体検知装置を提供することを目的とする。   The present invention solves the above-described problem, and can increase the S / N ratio without increasing the ultrasonic transmission circuit in a wide visual field detection region and detect the distance and orientation of an object while suppressing erroneous detection. An object of the present invention is to provide an object detection apparatus using ultrasonic waves.

上記課題を達成するために、請求項1の発明は、検知領域に超音波を送波する送波器と、検知領域にある被測定物体で反射された前記超音波の反射波を受波してその超音波を電気信号である受波信号に変換する複数個の受波素子と、前記受波素子の受波信号に基づいて超音波が送波されてから受波されるまでの時間に対応する被測定物体までの距離を求めると共に各受波素子における各受波信号の時間差に対応する被測定物体の方位を求めて被測定物体を検知する検知部と、を備えた物体検知装置であって、送波器の前方に配設されたとき送波方向をそのままとするか又は変えると共に検知領域を狭くし、かつ、送波した超音波の音圧を上げる超音波レンズを備え、前記検知部は、前記超音波レンズを送波器の前に配設していない状態で物体検知を行い、その後に、検知された物体の方向に送波方向が向くように前記超音波レンズを送波器の前方に配設した状態で再度、物体検知を行うものである。 In order to achieve the above object, an invention according to claim 1 is directed to a transmitter for transmitting an ultrasonic wave to a detection region, and a reflected wave of the ultrasonic wave reflected by a measurement object in the detection region. A plurality of receiving elements that convert the ultrasonic waves into received signals that are electrical signals, and the time from when the ultrasonic waves are transmitted to when they are received based on the received signals of the receiving elements. A detection unit that detects a distance to the corresponding object to be measured and detects a direction of the object to be measured corresponding to a time difference between each received signal in each wave receiving element to detect the object to be measured. And provided with an ultrasonic lens that keeps or changes the direction of transmission when disposed in front of the transmitter, narrows the detection area , and increases the sound pressure of the transmitted ultrasonic wave, The detection unit is configured such that the ultrasonic lens is not disposed in front of the transmitter. Performs detection, then again in a state of being arranged in front of the transmitters of said ultrasonic lens so as to face the transmitting direction in the direction of the detected object, and performs object detection.

請求項2の発明は、請求項1記載の物体検知装置において、前記超音波レンズは、空気より高密度の屈折用気体と、前記屈折用気体を外包する外側容器と、を備えて成るものである。   According to a second aspect of the present invention, in the object detection device according to the first aspect, the ultrasonic lens comprises a refracting gas having a higher density than air and an outer container enclosing the refracting gas. is there.

請求項1の発明によれば、広い視野の物体検知と狭い視野の物体検知の2段階で物体検知を行うこととし、かつ、狭い視野での物体検知では超音波レンズの効果により指向性を上げて物体検知を行うことができるので、超音波発信回路を増強することなくS/N比を上げることができ、広い視野の検知領域において、誤検知を抑制して物体の距離と方位を検知することができる。   According to the first aspect of the present invention, object detection is performed in two stages, object detection with a wide field of view and object detection with a narrow field of view, and directivity is increased by the effect of the ultrasonic lens in object detection with a narrow field of view. Therefore, it is possible to increase the S / N ratio without increasing the ultrasonic transmission circuit, and to detect the distance and direction of the object while suppressing false detection in a detection area with a wide field of view. be able to.

請求項2の発明によれば、超音波を集音して指向性を上げる超音波レンズを容易に製造できる。   According to the invention of claim 2, it is possible to easily manufacture an ultrasonic lens that collects ultrasonic waves and increases directivity.

以下、本発明の一実施形態に係る物体検知装置について、図面を参照して説明する。図1(a)は本発明の一実施形態に係る物体検知装置において、送波器の前に超音波レンズを配設していない状態を示し、図1(b)は送波器の前方に超音波レンズを配設した状態を示す。この物体検知装置は、検知領域に超音波を送波する送波器1と、検知領域にある被測定物体で反射された前記超音波の反射波を受波してその超音波を電気信号である受波信号に変換する複数個の受波素子2と、受波素子2の受波信号に基づいて超音波が送波されてから受波されるまでの時間に対応する被測定物体までの距離を求めると共に各受波素子2における各受波信号の時間差に対応する被測定物体の方位を求めて被測定物体を検知する検知部3と、を備えている。   Hereinafter, an object detection device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A shows a state in which an ultrasonic lens is not disposed in front of the transmitter in the object detection apparatus according to an embodiment of the present invention, and FIG. The state which has arrange | positioned the ultrasonic lens is shown. This object detection apparatus receives a reflected wave of the ultrasonic wave reflected by the object to be measured in the detection area and a transmitter 1 that transmits the ultrasonic wave to the detection area, and converts the ultrasonic wave into an electric signal. A plurality of receiving elements 2 to be converted into a certain received signal, and an object to be measured corresponding to a time from when an ultrasonic wave is transmitted to when it is received based on the received signal of the receiving element 2 And a detector 3 that detects the object to be measured by obtaining the distance and obtaining the direction of the object to be measured corresponding to the time difference of each received signal in each wave receiving element 2.

そして、物体検知装置は、送波器1の前方に配設されたとき送波方向を変えることができると共に検知領域を狭くすることができる超音波レンズ4を備え、検知部3は、図1(a)に示すように、超音波レンズ4を送波器1の前に配設していない状態で物体検知を行い、その後に、図1(b)に示すように、送波器1が送波する超音波の指向性をより高めるように、超音波レンズ4を送波器1の前方に配設した状態で再度、物体検知を行う。   The object detection apparatus includes an ultrasonic lens 4 that can change the transmission direction when disposed in front of the wave transmitter 1 and can narrow the detection region. As shown in FIG. 1A, object detection is performed in a state where the ultrasonic lens 4 is not disposed in front of the transmitter 1, and thereafter, as shown in FIG. Object detection is performed again in a state where the ultrasonic lens 4 is disposed in front of the transmitter 1 so as to further improve the directivity of the ultrasonic wave to be transmitted.

本発明の物体検知装置は、上述のような超音波レンズ4の配設と非配設を切り替えるための切替機構(後述、図3、図4)を備えており、検知部3は、切替信号を切替機構に出力することにより、超音波レンズ4の配設と非配設を切り替える。また、超音波レンズ4を切り替えることによって超音波の送波方向を変えることもできる。この送波方向を変えて物体検知を行うことについては後述する。以下、各構成要素とその動作を詳述する。   The object detection device of the present invention includes a switching mechanism (described later, FIGS. 3 and 4) for switching between the placement and non-placement of the ultrasonic lens 4 as described above. Is output to the switching mechanism to switch between the placement and non-placement of the ultrasonic lens 4. Further, the ultrasonic wave transmission direction can be changed by switching the ultrasonic lens 4. The object detection by changing the transmission direction will be described later. Hereinafter, each component and its operation will be described in detail.

上述の送波器1は、発信回路10と送波素子11とを備えている。発信回路10は、送波のための電気エネルギと送波信号となる電気信号を送波素子11に出力して送波素子11を励振する。送波素子11は、電気エネルギを受け取り、送波信号を空気の粗密波に変換して超音波として空中に送波する。   The above-described transmitter 1 includes a transmission circuit 10 and a transmission element 11. The transmission circuit 10 excites the transmission element 11 by outputting electric energy for transmission and an electrical signal as a transmission signal to the transmission element 11. The transmission element 11 receives electrical energy, converts a transmission signal into an air density wave, and transmits the air as an ultrasonic wave in the air.

複数の受波素子2は、互いに近接して、同一平面内に一列に配列されている。このように配列した受波素子2の成す平面に、十分遠方からの反射超音波が入射するとき、反射超音波は平面波となって入射する。すると、周知のように、受波素子2の成す平面に対する反射超音波の波面の成す角度から、反射超音波の伝播方向を求めることができる。換言すると、反射超音波の伝播方向は、各受波素子2の配置間隔と各受波時間の遅れから求められる。また、周知のように、超音波の音速と受波素子2の受波までに要した時間とから、超音波反射物体、すなわち被測定物体までの距離を求めることができる。このようにして、物体検知装置は、超音波反射物体を検知することができる。なお、複数の受波素子2は、互いに近接して、同一平面内に、例えば、互いに直交する方向にそれぞれ一列に配列して十字状に配列したり、2次元のアレイ状に配列したりして用いることもできる。   The plurality of wave receiving elements 2 are arranged close to each other and in a line in the same plane. When reflected ultrasonic waves from a sufficiently far distance are incident on the plane formed by the receiving elements 2 arranged in this way, the reflected ultrasonic waves are incident as plane waves. Then, as is well known, the propagation direction of the reflected ultrasonic wave can be obtained from the angle formed by the wavefront of the reflected ultrasonic wave with respect to the plane formed by the wave receiving element 2. In other words, the propagation direction of the reflected ultrasonic wave is obtained from the arrangement interval of each receiving element 2 and the delay of each receiving time. Further, as is well known, the distance to the ultrasonic reflection object, that is, the object to be measured, can be obtained from the sound speed of the ultrasonic wave and the time required for reception by the wave receiving element 2. In this way, the object detection device can detect an ultrasonic reflection object. The plurality of receiving elements 2 are arranged close to each other in the same plane, for example, arranged in a row in a direction orthogonal to each other, arranged in a cross shape, or arranged in a two-dimensional array. Can also be used.

検知部3は、上述の反射超音波の伝播方向、従って、被測定物体の方向、及び、被測定物体までの距離を求める演算を行う。これを行うため、検知部3は、各受波素子2が超音波を受波することにより発生する電気信号を受け取り、電気信号の時間情報と各受波素子2の幾何学的配置情報とに基づいて上述の演算を行うことができる。   The detection unit 3 performs a calculation for obtaining the propagation direction of the reflected ultrasonic wave, the direction of the measured object, and the distance to the measured object. In order to do this, the detection unit 3 receives an electric signal generated when each receiving element 2 receives an ultrasonic wave, and converts the time information of the electric signal and the geometric arrangement information of each receiving element 2. Based on this, the above-described calculation can be performed.

超音波レンズ4は、検知領域を狭くして送波器1が送波する超音波の指向性を高めるので、送波した超音波の到達距離を伸ばして音圧を上げることができる。このような超音波レンズ4は、空気より高密度の屈折用気体と、その屈折用気体を外包する外側容器と、を備えて構成することができる。超音波レンズ4の作用は、空気中のガラスに対する幾何光学とのアナロジーで理解できる。空気より高密度の屈折用気体は、超音波に対して空気の屈折率よりも大きな屈折率を有するので、外側容器の形状を凸レンズの形状にすることによって、超音波に対する凸レンズを構成できる。   Since the ultrasonic lens 4 narrows the detection area and increases the directivity of the ultrasonic wave transmitted by the transmitter 1, it is possible to increase the reach of the transmitted ultrasonic wave and increase the sound pressure. Such an ultrasonic lens 4 can be configured to include a refracting gas having a higher density than air and an outer container enclosing the refracting gas. The action of the ultrasonic lens 4 can be understood by analogy with geometrical optics for glass in the air. Since the refractive gas having a higher density than air has a refractive index larger than that of air with respect to the ultrasonic wave, a convex lens for the ultrasonic wave can be configured by making the outer container into the shape of a convex lens.

本発明の物体検知装置によれば、図1(a)に示すように、左右の視野角度θが、例えば、θ=+45゜〜−45゜の範囲である広い視野の物体検知と、図1(b)に示すように、左右の視野角度θが、例えば、θ=+30゜〜−30゜の範囲である狭い視野の物体検知と、の2段階で物体検知を行うことができ、かつ、狭い視野での物体検知では超音波レンズ4の効果により指向性を上げて物体検知を行うことができる。   According to the object detection apparatus of the present invention, as shown in FIG. 1 (a), the left and right visual field angle θ is, for example, a wide field object detection in the range of θ = + 45 ° to −45 °, and FIG. As shown in (b), the left and right visual field angle θ can be detected in two stages, for example, an object detection with a narrow visual field in the range of θ = + 30 ° to −30 °, and In object detection in a narrow field of view, object detection can be performed with increased directivity by the effect of the ultrasonic lens 4.

また、図1(a)に示す広い視野の検知領域aに対して、図1(b)に示す超音波レンズ4を配設して指向性を上げた場合、検知領域aが狭くなるが、検知領域aよりも遠い検知領域bまで、超音波が到達するようになる。つまり、超音波レンズ4を用いた後者の場合、検知領域bの手前の検知領域aにおいて、超音波は発信回路10を増強することなく強い強度となっている。従って、S/N比が改善された反射超音波の信号が得られるので、物体の距離と方位をより精度良く、すなわち誤検知なく、検知することができる。   In addition, when the ultrasonic lens 4 shown in FIG. 1B is disposed and the directivity is increased with respect to the detection area a having a wide field of view shown in FIG. 1A, the detection area a is narrowed. The ultrasonic wave reaches the detection area b farther than the detection area a. That is, in the latter case using the ultrasonic lens 4, the ultrasonic wave has a strong intensity in the detection area a before the detection area b without increasing the transmission circuit 10. Accordingly, since a reflected ultrasonic signal with an improved S / N ratio is obtained, the distance and direction of the object can be detected with higher accuracy, that is, without erroneous detection.

上述の超音波レンズ4は、図2(a)(b)に示すように、送波器1の前方に配設する超音波レンズ4の形状や種類を変えることにより、送波器1からの送波方向を特定領域の方向に変化させると共に、その領域方向への送波超音波の指向性を上げることができる。図2(a)の超音波レンズ4は、送波器1から送波される超音波を、左側に絞る、すなわち左側に向けて指向性を上げる超音波レンズであり、図2(b)の超音波レンズ4は、送波器1から送波される超音波を、右側に絞る超音波レンズである。また、上述の図1(b)に示した超音波レンズ4は、送波器1から送波される超音波を、方向を変えることなく正面方向に絞る超音波レンズ4である。   As shown in FIGS. 2A and 2B, the above-described ultrasonic lens 4 is changed from the transmitter 1 by changing the shape and type of the ultrasonic lens 4 disposed in front of the transmitter 1. While changing the direction of transmission to the direction of a specific region, the directivity of the transmitted ultrasonic wave toward that region can be increased. The ultrasonic lens 4 in FIG. 2A is an ultrasonic lens that narrows down the ultrasonic wave transmitted from the transmitter 1 to the left side, that is, increases the directivity toward the left side. The ultrasonic lens 4 is an ultrasonic lens that narrows the ultrasonic wave transmitted from the transmitter 1 to the right side. The ultrasonic lens 4 shown in FIG. 1B is an ultrasonic lens 4 that narrows the ultrasonic wave transmitted from the transmitter 1 in the front direction without changing the direction.

上述の超音波を絞ると共に方向を変える超音波レンズ4は、通常、送波器1の正面方向(中心軸方向)に対して非対称な構造にすることにより構成される。例えば、凸レンズ状の超音波レンズ4を用いて、その中心軸を送波器の中心軸から平行にずらしたり、互いの中心軸を傾けたりして、超音波を絞ると共に方向を変える超音波レンズ4を構成できる。   The ultrasonic lens 4 that squeezes the ultrasonic wave and changes the direction is usually configured by an asymmetric structure with respect to the front direction (center axis direction) of the transmitter 1. For example, an ultrasonic lens that uses a convex lens-shaped ultrasonic lens 4 to squeeze the ultrasonic wave and change the direction by shifting its central axis in parallel with the central axis of the transmitter or tilting the central axes of the transmitter. 4 can be configured.

次に、図3(a)(b)、図4(a)(b)を参照して、送波素子11の前方に超音波レンズ4の異なる種類の配設、及び非配設を切り替えるための切替機構の例を説明する。ここで示す超音波レンズ切替機構は、種類の異なる複数の超音波レンズ4を所定の配列で固定しておき、超音波レンズ4の位置を機械的に移動して切り替えるものである。図3(a)(b)に示すものは、視野の左方向用、又は中央方向用、又は右方向用の、各超音波レンズ4配設の状態、又は超音波レンズ非配設41の状態を切り替えられるように、超音波レンズ4を、切替板40に一列に配列している。この切替板40を、矢印xで示すように、スライドすることにより、送波素子11の前に配設する超音波レンズ4、又は超音波レンズ非配設41を切り替えることができる。   Next, referring to FIGS. 3A, 3B and 4A, 4B, in order to switch between different types of arrangement and non-arrangement of the ultrasonic lens 4 in front of the transmission element 11. FIG. An example of the switching mechanism will be described. The ultrasonic lens switching mechanism shown here fixes a plurality of different types of ultrasonic lenses 4 in a predetermined arrangement, and switches the position of the ultrasonic lenses 4 by mechanical movement. 3 (a) and 3 (b) show a state in which the respective ultrasonic lenses 4 are disposed or a state in which the ultrasonic lenses are not disposed 41 for the left direction, the central direction, or the right direction of the visual field. The ultrasonic lenses 4 are arranged in a row on the switching plate 40 so as to be switched. By sliding the switching plate 40 as indicated by an arrow x, it is possible to switch between the ultrasonic lens 4 disposed in front of the wave transmitting element 11 or the ultrasonic lens non-disposed 41.

また、図4(a)(b)に示すものは、タレット状の切替板40に、上記の3種類の超音波レンズ4を配列したものである。この切替板40を、矢印Rで示すように、回転することにより、送波素子11の前に配設する超音波レンズ4、又は超音波レンズ非配設41を切り替えることができる。   4 (a) and 4 (b) are obtained by arranging the above three types of ultrasonic lenses 4 on a turret-like switching plate 40. FIG. By rotating the switching plate 40 as indicated by an arrow R, it is possible to switch between the ultrasonic lens 4 disposed in front of the wave transmitting element 11 or the ultrasonic lens non-disposed 41.

以下に、この物体検知装置の動作について説明する。図5は物体検知装置による物体検知の様子を示し、図6(a)〜(c)は図5に示した物体検知に引き続いて行う物体検知の様子を示す。本発明の物体検知装置は、例えば、上述したように、超音波レンズ4非配設、中央に超音波を絞る超音波レンズ4配設、左側に超音波を絞る超音波レンズ4配設、右側に超音波を絞る超音波レンズ4配設、の4種類の検知条件を選択できる。また、検知領域の視野角度範囲は、送波される超音波の最高強度の方向(指向性の方向)を中心として、超音波レンズ4非配設の場合、例えば±45゜であり、各3種類の超音波レンズ4を用いた場合、例えば±30゜である。   The operation of this object detection device will be described below. FIG. 5 shows a state of object detection by the object detection device, and FIGS. 6A to 6C show a state of object detection performed following the object detection shown in FIG. The object detection device of the present invention includes, for example, as described above, the ultrasonic lens 4 is not disposed, the ultrasonic lens 4 that squeezes the ultrasonic wave in the center, the ultrasonic lens 4 that squeezes the ultrasonic wave on the left side, and the right side. The four types of detection conditions can be selected: an ultrasonic lens 4 for narrowing down the ultrasonic wave. In addition, the viewing angle range of the detection region is, for example, ± 45 ° when the ultrasonic lens 4 is not disposed around the direction of the highest intensity of transmitted ultrasonic waves (direction of directivity). When using the kind of ultrasonic lens 4, for example, ± 30 °.

物体検知に際して、はじめに、超音波レンズ4非配設の状態で物体の検知を行なう。すなわち、本発明の物体検知装置を用いて、図5に示すように、送波器1の前に超音波レンズ4を配設しない広い視野領域とした状態で、粗い物体検知を行う。この粗い物体検知は、いわば、候補としての物体を検知するものであり、次に行う物体検知により候補物体がゴーストか真の物体かの判定がなされる。すなわち、この粗い物体検知の操作により候補物体が検知された領域に応じて超音波レンズ4を選択し、検知領域を狭く絞った検知を行う。この確認の検知により、誤検知のない物体検知を行なうことができる。図5に示した例では、左方向に候補としての被測定物体M1が検知されている。次に、図6(a)に示すように、左側に絞る超音波レンズ4を送波器1の前方に配設した状態で、狭い視野で詳細な物体検知を行う。このとき、被測定物体M1の位置に送波される超音波の強度は増加しているので、S/N比は上がっている。このため、先の粗い物体検知において、実際には存在しない物体をノイズ等の原因により物体が存在するとした誤検知をした場合であっても、次に行う詳細な物体検知においては、再度誤検知をする可能性は低くなる。このようにして、超音波発信回路を増強することなく、物体の誤検知を抑制することができる。あわせて、S/N比が上がっている状態で物体を検知できるので、物体の距離と方位をより正確に、つまり高分解能でもって測定できるという効果も得られる。   When detecting an object, first, the object is detected in a state where the ultrasonic lens 4 is not provided. That is, using the object detection device of the present invention, as shown in FIG. 5, coarse object detection is performed in a state where a wide visual field region is provided in which the ultrasonic lens 4 is not disposed in front of the transmitter 1. This rough object detection is, so to speak, detecting an object as a candidate, and the next object detection determines whether the candidate object is a ghost or a true object. That is, the ultrasonic lens 4 is selected according to the area where the candidate object is detected by the rough object detection operation, and detection is performed with the detection area narrowed down. By detecting this confirmation, it is possible to detect an object without erroneous detection. In the example shown in FIG. 5, the measured object M1 as a candidate is detected in the left direction. Next, as shown in FIG. 6A, detailed object detection is performed with a narrow field of view in a state where the ultrasonic lens 4 that is narrowed to the left is disposed in front of the transmitter 1. At this time, since the intensity of the ultrasonic wave transmitted to the position of the measured object M1 has increased, the S / N ratio has increased. For this reason, in the case of rough object detection, even if an object that does not actually exist is erroneously detected that the object is present due to noise or the like, in the next detailed object detection to be performed, erroneous detection is performed again. The possibility of doing is reduced. In this way, erroneous detection of an object can be suppressed without increasing the ultrasonic transmission circuit. In addition, since the object can be detected in a state where the S / N ratio is increased, there is also an effect that the distance and direction of the object can be measured more accurately, that is, with high resolution.

また、図5に破線で示すように、中央正面方向に候補としての被測定物体M2が検知された場合には、図6(b)に示すように、中央に絞る超音波レンズ4を送波器1の前に配設し、超音波を中央に絞り、被測定物体M2の位置情報を得る。同様に、図5に破線で示すように、右方向に候補としての被測定物体M3が検知された場合には、図6(c)に示すように、右側に絞る超音波レンズ4を送波器1の前に配設し、超音波を右側に絞り、被測定物体M3の位置情報を得る。   Further, as shown by a broken line in FIG. 5, when a measured object M2 as a candidate is detected in the center front direction, as shown in FIG. 6 (b), the ultrasonic lens 4 focused to the center is transmitted. It arrange | positions in front of the container 1, restrict | squeezes an ultrasonic wave to the center, and acquires the positional information on the to-be-measured object M2. Similarly, as shown by a broken line in FIG. 5, when the object to be measured M3 as a candidate is detected in the right direction, as shown in FIG. Positioned in front of the container 1, the ultrasonic wave is narrowed to the right side, and the position information of the object to be measured M3 is obtained.

上述のように、本発明の物体検知装置は、広い視野の物体検知と狭い視野の物体検知の2段階で物体検知を行うこととし、かつ、狭い視野での物体検知では、超音波レンズを用いることにより、指向性と音圧とを上げて物体検知を行うことができるので、広い視野の検知領域において超音波発信回路を増強することなくS/N比を上げて誤検知を抑制し物体の距離と方位を検知する物体検知ができる。   As described above, the object detection apparatus of the present invention performs object detection in two stages, that is, object detection with a wide field of view and object detection with a narrow field of view, and an ultrasonic lens is used for object detection with a narrow field of view. Therefore, object detection can be performed with increased directivity and sound pressure. Therefore, the S / N ratio is increased without increasing the ultrasonic transmission circuit in the detection area of a wide field of view, thereby suppressing false detection. Object detection that detects distance and direction is possible.

ここで、本願発明の物体検知装置は、超音波を中央に絞る超音波レンズ、超音波を左側に絞る超音波レンズと右側に絞る超音波レンズとを具備している。さらに、具備する超音波レンズの種類はこれらに限らず、超音波を上側に絞る超音波レンズと、超音波を下側に絞る超音波レンズとを具備してもよい。加えて、超音波を左上側に絞る超音波レンズと、超音波を左下側に絞る超音波レンズと、右上側に絞る超音波レンズと、右下側に絞る超音波レンズとを具備してもよい。このような種類の超音波レンズを具備することにより、立体的な広い視野の検知領域においても、誤検知を抑制して物体の距離と方位を検知することができる。   Here, the object detection apparatus of the present invention includes an ultrasonic lens that squeezes the ultrasonic wave toward the center, an ultrasonic lens that squeezes the ultrasonic wave toward the left side, and an ultrasonic lens that squeezes the ultrasonic wave toward the right side. Furthermore, the types of the ultrasonic lens provided are not limited to these, and an ultrasonic lens that squeezes the ultrasonic wave upward and an ultrasonic lens that squeezes the ultrasonic wave downward may be provided. In addition, an ultrasonic lens that squeezes the ultrasonic wave to the upper left side, an ultrasonic lens that squeezes the ultrasonic wave to the lower left side, an ultrasonic lens that squeezes the upper right side, and an ultrasonic lens that squeezes the lower right side may be provided. Good. By including such a kind of ultrasonic lens, it is possible to detect the distance and orientation of an object while suppressing erroneous detection even in a detection region having a wide stereoscopic field of view.

なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、上述の各種の超音波レンズ4の機能を変えて用いる場合、超音波レンズ4を移動して交換するかわりに、屈折用気体を外包して超音波レンズ4を構成している外側容器の形状を変化させるようにしてもよい。例えば、外側容器の形状を扁平な同一厚さとすれば、超音波レンズ4を非配設の状態、左や右に傾いた形状とすれば右や左に絞る超音波レンズ4を配設する状態、通常の凸レンズ形状にすれば中央に絞る状態を実現できる。   The present invention is not limited to the above-described configuration, and various modifications can be made. For example, when the functions of the above-described various ultrasonic lenses 4 are changed and used, instead of moving and replacing the ultrasonic lens 4, an outer container that constitutes the ultrasonic lens 4 by enclosing a refraction gas is used. The shape may be changed. For example, when the shape of the outer container is flat and the same thickness, the ultrasonic lens 4 is not disposed, and when the shape is inclined to the left or right, the ultrasonic lens 4 that is squeezed right or left is disposed. If a normal convex lens shape is used, it is possible to realize a state of focusing to the center.

(a)は本発明の一実施形態に係る物体検知装置の、送波器の前に超音波レンズを配設していない状態の概念説明図、(b)は同物体検知装置の、送波器の前方に超音波レンズを配設した状態の概念説明図。(A) Conceptual explanatory drawing of the state which does not arrange | position the ultrasonic lens in front of the wave transmitter of the object detection apparatus which concerns on one Embodiment of this invention, (b) is the wave transmission of the same object detection apparatus. The conceptual explanatory drawing of the state which has arrange | positioned the ultrasonic lens ahead of the vessel. (a)(b)は同上物体検知装置の備える超音波レンズの作用と効果を説明するの概略断面図。(A) (b) is a schematic sectional drawing explaining an effect | action and effect of an ultrasonic lens with which an object detection apparatus same as the above is equipped. (a)は同上物体検知装置に用いられる超音波レンズ切替機構の例を示す平面図、(b)は同側面断面図。(A) is a top view which shows the example of the ultrasonic lens switching mechanism used for an object detection apparatus same as the above, (b) is the side surface sectional drawing. (a)は同上物体検知装置に用いられる超音波レンズ切替機構の他の例を示す平面図、(b)は同側面断面図。(A) is a top view which shows the other example of the ultrasonic lens switching mechanism used for an object detection apparatus same as the above, (b) is the side sectional drawing. 同上物体検知装置による物体検知の様子を示す平面図。The top view which shows the mode of the object detection by an object detection apparatus same as the above. (a)(b)(c)は図5に示した同上物体検知装置による物体検知に引き続いて行う物体検知の様子を示す平面図。(A) (b) (c) is a top view which shows the mode of the object detection performed following the object detection by the object detection apparatus same as the above shown in FIG.

符号の説明Explanation of symbols

1 送波器
2 受波素子
3 検知部
4 超音波レンズ
M1,M2,M3 被測定物体
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Receiver element 3 Detection part 4 Ultrasonic lens M1, M2, M3 Object to be measured

Claims (2)

検知領域に超音波を送波する送波器と、
検知領域にある被測定物体で反射された前記超音波の反射波を受波してその超音波を電気信号である受波信号に変換する複数個の受波素子と、
前記受波素子の受波信号に基づいて超音波が送波されてから受波されるまでの時間に対応する被測定物体までの距離を求めると共に各受波素子における各受波信号の時間差に対応する被測定物体の方位を求めて被測定物体を検知する検知部と、を備えた物体検知装置であって、
送波器の前方に配設されたとき送波方向をそのままとするか又は変えると共に検知領域を狭くし、かつ、送波した超音波の音圧を上げる超音波レンズを備え、
前記検知部は、前記超音波レンズを送波器の前に配設していない状態で物体検知を行い、その後に、検知された物体の方向に送波方向が向くように前記超音波レンズを送波器の前方に配設した状態で再度、物体検知を行うことを特徴とする物体検知装置。
A transmitter for transmitting ultrasonic waves to the detection area;
A plurality of receiving elements that receive the reflected wave of the ultrasonic wave reflected by the object to be measured in the detection region and convert the ultrasonic wave into a received wave signal that is an electrical signal;
Based on the received signal of the receiving element, the distance to the object to be measured corresponding to the time from when the ultrasonic wave is transmitted until it is received is obtained, and the time difference of each received signal at each receiving element is obtained. A detection unit that detects the measurement object by obtaining the orientation of the corresponding measurement object, and an object detection device comprising:
When disposed in front of the transmitter, the ultrasonic wave direction is left unchanged or changed , the detection area is narrowed , and an ultrasonic lens for increasing the sound pressure of the transmitted ultrasonic wave is provided,
The detection unit performs object detection in a state where the ultrasonic lens is not disposed in front of the transmitter, and thereafter, the ultrasonic lens is set so that the transmission direction is directed to the direction of the detected object. An object detection apparatus that performs object detection again in a state of being disposed in front of a transmitter.
前記超音波レンズは、空気より高密度の屈折用気体と、前記屈折用気体を外包する外側容器と、を備えて成ることを特徴とする請求項1記載の物体検知装置。
2. The object detection apparatus according to claim 1, wherein the ultrasonic lens includes a refracting gas having a higher density than air and an outer container enclosing the refracting gas.
JP2006015520A 2006-01-24 2006-01-24 Object detection device Expired - Fee Related JP4802730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015520A JP4802730B2 (en) 2006-01-24 2006-01-24 Object detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015520A JP4802730B2 (en) 2006-01-24 2006-01-24 Object detection device

Publications (2)

Publication Number Publication Date
JP2007198800A JP2007198800A (en) 2007-08-09
JP4802730B2 true JP4802730B2 (en) 2011-10-26

Family

ID=38453555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015520A Expired - Fee Related JP4802730B2 (en) 2006-01-24 2006-01-24 Object detection device

Country Status (1)

Country Link
JP (1) JP4802730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734579B2 (en) * 2016-02-22 2020-08-05 学校法人立命館 Acoustic system, medium container used therefor, and method of reproducing acoustic signal
DE102016119099B4 (en) * 2016-10-07 2023-09-28 Valeo Schalter Und Sensoren Gmbh Ultrasonic sensor, driver assistance device, motor vehicle and method for operating an ultrasonic sensor
JP7235241B2 (en) * 2019-03-29 2023-03-08 株式会社村田製作所 Object detection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214411A (en) * 1986-03-17 1987-09-21 Toshiba Corp Running device
JPH0323586Y2 (en) * 1986-05-29 1991-05-22
JPH0469584A (en) * 1990-07-10 1992-03-04 Asahi Glass Co Ltd Warning device for vehicle driving
JPH0763846A (en) * 1993-08-31 1995-03-10 Mazda Motor Corp Obstacle detector of vehicle
JP3517520B2 (en) * 1996-07-02 2004-04-12 株式会社日立製作所 Safe driving support system and safe driving support method
JPH10148675A (en) * 1996-11-19 1998-06-02 Unisia Jecs Corp Obstacle detector
JP2000162533A (en) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd Optical scanner
JP2006013903A (en) * 2004-06-25 2006-01-12 Seiko Epson Corp Acoustic lens, and ultrasonic speaker using it

Also Published As

Publication number Publication date
JP2007198800A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
TWI649578B (en) Medium range optical systems for remote sensing receivers
JP5306329B2 (en) Touch screen that detects multiple contacts
JP2009031031A (en) Ultrasonic sensor
CN105629213A (en) Multi-sensor proximity sensing
JP3976021B2 (en) Position measurement system
JP5235112B2 (en) Shape detection device, shape detection method, and bone strength diagnosis device using shape detection device
KR20130065641A (en) Arrangement for determining the distance and the direction to an object
JP2009236774A (en) Three dimensional ranging device
JP5374086B2 (en) Bone strength diagnostic apparatus and bone strength measuring method
JP2010287225A (en) Touch input device
US9348467B2 (en) Radial layout for acoustic wave touch sensor
JP4802730B2 (en) Object detection device
RU2642165C2 (en) Device for measuring tank wall thickness
KR101329487B1 (en) System and method for performing optical navigation using a compact optical element
RU2006101683A (en) METHOD FOR CALIBRATING AN ULTRASONIC FLOW METER AND CUSTOMIZED SENSOR (OPTIONS)
US9304629B2 (en) Radial transducer for acoustic wave touch sensor
JP5851208B2 (en) Underwater image acquisition device
JP2007121045A (en) Ultrasonic object detector
WO2014013940A1 (en) Ultrasonic wave measuring method and ultrasonic wave measuring device
KR102348914B1 (en) Module for converting electromagnetic wave and, apparatus for detecting transmission of electromagnetic wave
JPH07306188A (en) Receiving transducer
EP4042186A1 (en) Multilayer optical devices and systems
JP2011159270A (en) Position detector
EP4328552A1 (en) Electromagnetic wave detecting device
JP2002044773A (en) Acoustic lens and ultrasonic transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees