JP2007121045A - Ultrasonic object detector - Google Patents

Ultrasonic object detector Download PDF

Info

Publication number
JP2007121045A
JP2007121045A JP2005312010A JP2005312010A JP2007121045A JP 2007121045 A JP2007121045 A JP 2007121045A JP 2005312010 A JP2005312010 A JP 2005312010A JP 2005312010 A JP2005312010 A JP 2005312010A JP 2007121045 A JP2007121045 A JP 2007121045A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
wave
wave receiving
receiving elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005312010A
Other languages
Japanese (ja)
Inventor
Kenichiro Nosaka
健一郎 野坂
Tomoharu Nakahara
智治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005312010A priority Critical patent/JP2007121045A/en
Publication of JP2007121045A publication Critical patent/JP2007121045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a distance to an object to be measured and the direction of the object to be measured at low costs and with high resolution. <P>SOLUTION: First, a single transmitter 2 transmits ultrasonic waves in one-cycle waveform. Then, the ultrasonic waves are reflected by the object to be measured. Then, a reference wave receiving element 30 at a wave reception section 3 and respective wave receiving elements 31a-34d receive ultrasonic waves reflected by the object to be measured. The reference wave receiving element 30 is arranged at the center of a square as the wave reception section 3, and the plurality of wave receiving elements 31a-34d are arranged on the side of the square at a fixed interval so that the distance to the reference wave receiving element 30 becomes longer than that to the adjacent wave receiving elements 31a-34d. In this case, a detection section simultaneously detects the distance to the object to be measured and the direction of the object to be measured by adding delay corresponding to each direction and obtaining delay addition strength. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被測定物体までの距離と被測定物体の方向とを検知するために用いられる超音波物体検知装置に関するものである。   The present invention relates to an ultrasonic object detection device used for detecting a distance to a measurement object and a direction of the measurement object.

従来、この種の超音波物体検知装置は、種々提案され、また開発されている。例えば、特許文献1には、複数の素子(受波素子)が一次元状アレイ又は二次元状アレイに配列された受波部を有する超音波アレイを用いた三次元センサ(超音波物体検知装置)が開示されている。上記特許文献1の三次元センサは、指向性を有する超音波ビームを放射し、検出対象物(被測定物体)からの反射波を受信して検出対象物との距離を検出する。   Conventionally, various ultrasonic object detection devices of this type have been proposed and developed. For example, Patent Document 1 discloses a three-dimensional sensor (ultrasonic object detection device) using an ultrasonic array having a receiving unit in which a plurality of elements (receiving elements) are arranged in a one-dimensional array or a two-dimensional array. ) Is disclosed. The three-dimensional sensor of Patent Document 1 emits a directivity ultrasonic beam, receives a reflected wave from a detection target (measured object), and detects a distance from the detection target.

また、従来の超音波物体検知装置は、図14に示すように、複数の受波素子80・・・がT字状に配置された受波部8を備えている。また、他の例として、複数の受波素子80・・・が縦横のクロスに配置された受波部8a(図15参照)、縦横に加えて斜めクロスに配置された受波部8b(図16参照)、又は3×3のマトリックス状に配置された受波部8c(図17参照)を備えている。
特公平6−27803号公報(第2〜6頁及び第5図)
Further, as shown in FIG. 14, the conventional ultrasonic object detection apparatus includes a wave receiving unit 8 in which a plurality of wave receiving elements 80 are arranged in a T shape. As another example, a receiving unit 8a (see FIG. 15) in which a plurality of receiving elements 80... Are arranged in a vertical and horizontal cross, and a receiving unit 8b (see FIG. 15) arranged in an oblique cross in addition to vertical and horizontal. 16), or receiving portions 8c (see FIG. 17) arranged in a 3 × 3 matrix.
Japanese Examined Patent Publication No. 6-27803 (pages 2 to 6 and FIG. 5)

しかしながら、上記従来の超音波物体検知装置は、特許文献1のような受波部、又は図14〜17に示すような受波部8,8a〜8cによって、被測定物体で反射した超音波を受波するので、被測定物体の方向を検知する場合に誤差が大きくなるという問題があった。図18に示すように、複数の受波素子80・・・が5×5のマトリックス状に配置された受波部8dを用いたとしても、上記問題が解決するが、受波素子の個数が多くなるので、コストが高くなるという新たな問題が発生した。   However, the conventional ultrasonic object detection device described above receives ultrasonic waves reflected by the object to be measured by the wave receiving unit as in Patent Document 1 or the wave receiving units 8 and 8a to 8c as shown in FIGS. Since the wave is received, there is a problem that an error becomes large when detecting the direction of the object to be measured. As shown in FIG. 18, the above problem is solved even when a receiving unit 8d in which a plurality of receiving elements 80... Are arranged in a 5 × 5 matrix is used. As the number increased, a new problem of high costs occurred.

本発明は上記の点に鑑みて為されたものであり、その目的とするところは、被測定物体までの距離と被測定物体の方向とを低コスト及び高分解能で検知することができる超音波物体検知装置を提供することにある。   The present invention has been made in view of the above points, and an object thereof is an ultrasonic wave capable of detecting the distance to the object to be measured and the direction of the object to be measured with low cost and high resolution. The object is to provide an object detection device.

請求項1に記載の発明は、予め決められた周波数の超音波を検知領域に送波する送波手段と、それぞれが、前記検知領域にある被測定物体で反射した前記超音波を受波して受波信号に変換する複数の受波素子と、前記超音波が前記送波手段によって送波されてから前記複数の受波素子によって受波されるまでに要した時間に基づいて前記被測定物体までの距離を検知するとともに、前記複数の受波素子のそれぞれからの前記受波信号の時間差に基づいて前記被測定物体の方向を検知する検知手段とを備え、前記送波手段によって送波される前記超音波が1周期の波形であり、前記複数の受波素子のうち一の受波素子が多角形又は円の中心に配置され、他の受波素子のそれぞれが、隣接する他の受波素子との距離より前記一の受波素子との距離が長くなるように前記多角形又は前記円の辺上に配置されることを特徴とする。   According to the first aspect of the present invention, the transmitting means for transmitting the ultrasonic wave having a predetermined frequency to the detection area, and each receiving the ultrasonic wave reflected by the measurement object in the detection area. A plurality of receiving elements for converting into received signals, and the time to be measured based on the time required for the ultrasonic waves to be received by the plurality of receiving elements after being transmitted by the transmitting means. Detecting a distance to an object, and detecting a direction of the object to be measured based on a time difference of the received signals from each of the plurality of receiving elements, and transmitting by the transmitting means The ultrasonic wave having a waveform of one period, one receiving element of the plurality of receiving elements is arranged at the center of a polygon or a circle, and each of the other receiving elements is adjacent to another The distance to the one receiving element from the distance to the receiving element Characterized in that it is arranged on a side of the polygon or the circle to be longer.

この構成では、被測定物体までの距離と被測定物体の方向とを低コスト及び高分解能で検知することができる。   With this configuration, it is possible to detect the distance to the object to be measured and the direction of the object to be measured with low cost and high resolution.

請求項2に記載の発明は、請求項1に記載の発明において、前記多角形が正多角形であることを特徴とする。この構成では、被測定物体の位置検知の分解能を向上させることができる。   The invention according to claim 2 is the invention according to claim 1, wherein the polygon is a regular polygon. With this configuration, it is possible to improve the resolution for detecting the position of the object to be measured.

請求項3に記載の発明は、請求項2に記載の発明において、前記正多角形が正方形であることを特徴とする。この構成では、被測定物体の位置検知の分解能を向上させることができる。   The invention according to claim 3 is the invention according to claim 2, wherein the regular polygon is a square. With this configuration, it is possible to improve the resolution for detecting the position of the object to be measured.

本発明によれば、被測定物体までの距離と被測定物体の方向とを低コスト及び高分解能で検知することができる。   According to the present invention, the distance to the object to be measured and the direction of the object to be measured can be detected at low cost and with high resolution.

(実施形態1)
本発明の実施形態1について図1〜6を用いて説明する。図1は実施形態1の超音波物体検知装置の正面図である。図2は、実施形態1の超音波物体検知装置と被測定物体との関係を示す図である。図3は、実施形態1の超音波物体検知装置の受波について説明する図である。図4は、実施形態1の超音波物体検知装置において被測定物体が真正面にある場合の動作を説明する図である。図5は、実施形態1の超音波物体検知装置において被測定物体が角度θにある場合の動作を説明する図である。図6は、実施形態1の超音波物体検知装置において、基準受波素子と他の受波素子との距離が異なる場合について説明する図である。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of the ultrasonic object detection apparatus according to the first embodiment. FIG. 2 is a diagram illustrating a relationship between the ultrasonic object detection device according to the first embodiment and an object to be measured. FIG. 3 is a diagram illustrating reception of the ultrasonic object detection device according to the first embodiment. FIG. 4 is a diagram for explaining the operation when the object to be measured is in front of the ultrasonic object detection apparatus according to the first embodiment. FIG. 5 is a diagram for explaining the operation when the object to be measured is at the angle θ in the ultrasonic object detection apparatus according to the first embodiment. FIG. 6 is a diagram illustrating a case where the distance between the reference receiving element and other receiving elements is different in the ultrasonic object detection device of the first embodiment.

まず、実施形態1の基本的な構成について説明する。実施形態1の超音波物体検知装置(超音波三次元センサ)は、図1に示すように、ケース1と、送波器2と、受波部3とを備えているとともに、検知部4(図4参照)を備えている。上記超音波物体検知装置は、図2に示すように、検知領域Aにある被測定物体Bまでの距離と、被測定物体Bの方向(三次元座標)とを検知する。   First, the basic configuration of the first embodiment will be described. As shown in FIG. 1, the ultrasonic object detection device (ultrasonic three-dimensional sensor) of Embodiment 1 includes a case 1, a transmitter 2, and a wave receiver 3, and a detector 4 ( 4). As shown in FIG. 2, the ultrasonic object detection apparatus detects the distance to the measurement object B in the detection region A and the direction (three-dimensional coordinates) of the measurement object B.

ケース1は、図1に示すように、前面が略長方形状に形成された厚みの薄いものである。上記ケース1は、単一の送波器2と、受波部3とを前面10に配置して備え、検知部4(図4参照)を収納している。   As shown in FIG. 1, the case 1 has a thin front surface formed in a substantially rectangular shape. The case 1 includes a single transmitter 2 and a wave receiving unit 3 arranged on the front surface 10 and houses a detection unit 4 (see FIG. 4).

送波器2は、図2に示すように、1周期のみの波形の超音波を検知領域Aに送波するものである。上記超音波は、例えば40kHzなど、予め決められた周波数の波形であり、波長をλとする。   As shown in FIG. 2, the wave transmitter 2 transmits ultrasonic waves having a waveform of only one period to the detection region A. The ultrasonic wave is a waveform having a predetermined frequency such as 40 kHz, for example, and the wavelength is λ.

受波部3は、図1に示すように、基準受波素子30と、複数の受波素子31a〜34dとを備えている。基準受波素子30は、正方形の中心に配置されているものであり、被測定物体B(図2参照)までの距離を特定するときに基準となる受波素子である。一方、複数の受波素子31a〜34dのそれぞれは、隣接する受波素子31a〜34dとの距離より基準受波素子30との距離が長くなるように上記正方形の辺上に一定の間隔で配置されている。具体的には、基準受波素子30と受波素子31a〜34dの距離はλ以上、隣接する受波素子31a〜34d間の距離はλ/2としている。上記基準受波素子30及び受波素子31a〜34dのそれぞれは、被測定物体Bで反射した超音波を受波して、電気信号である受波信号に変換する。さらに、基準受波素子30及び受波素子31a〜34dのそれぞれは、上記受波信号を検知部4(図4参照)に出力する。基準受波素子30及び受波素子31a〜34dが上記のように配置されることによって、誤計測点が現れにくくすることができる。   As shown in FIG. 1, the wave receiving unit 3 includes a reference wave receiving element 30 and a plurality of wave receiving elements 31 a to 34 d. The reference wave receiving element 30 is arranged at the center of the square, and is a wave receiving element that serves as a reference when specifying the distance to the measured object B (see FIG. 2). On the other hand, each of the plurality of wave receiving elements 31a to 34d is arranged at regular intervals on the square side so that the distance from the reference wave receiving element 30 is longer than the distance from the adjacent wave receiving elements 31a to 34d. Has been. Specifically, the distance between the reference receiving element 30 and the receiving elements 31a to 34d is λ or more, and the distance between the adjacent receiving elements 31a to 34d is λ / 2. Each of the reference wave receiving element 30 and the wave receiving elements 31a to 34d receives the ultrasonic wave reflected by the measured object B and converts it into a wave receiving signal which is an electric signal. Furthermore, each of the reference receiving element 30 and the receiving elements 31a to 34d outputs the received signal to the detection unit 4 (see FIG. 4). By arranging the reference receiving element 30 and the receiving elements 31a to 34d as described above, it is possible to make an erroneous measurement point difficult to appear.

検知部4(図4参照)は、超音波が送波器2によって送波されてから基準受波素子30及び受波素子31a〜34dによって受波されるまでに要した時間に基づいて被測定物体B(図2参照)までの距離を検知する。また、検知部4は、基準受波素子30の受波信号と受波素子31a〜34dの受波信号との時間差に基づいて被測定物体Bの方向を検知する。ここで、具体例として、基準受波素子30及び受波素子31dの受波信号から被測定物体Bの方向を検知する方法について図3を用いて説明する。なお、基準受波素子30の位置を原点(0,0)とし、受波素子31dの位置を(dx,dy)とする。受波素子31dは、超音波が反射した被測定物体Bの方向(θ,ψ)に対して、基準受波素子30との間に経路差が発生する。上記経路差によって遅延時間(時間差)Δtが一意に決定する。これにより、基準受波素子30及び受波素子31a〜34dの配置が決定した時点で、基準受波素子30及び受波素子31a〜34dに対する遅延時間テーブルが作成される。つまり、方向(θ1,ψ1)、方向(θ1,ψ2)の場合、方向(θ1,ψ3)の場合、・・・方向(θ2,ψ2)の場合・・・と図1の水平方向(縦方向)×垂直方向(横方向)の分解能に対応した数(実施形態1では5°間隔、−45〜+45°の19×19とする。)だけの遅延時間Δtを求める。   The detection unit 4 (see FIG. 4) is measured based on the time required from when the ultrasonic wave is transmitted by the transmitter 2 until it is received by the reference receiving element 30 and the receiving elements 31a to 34d. The distance to the object B (see FIG. 2) is detected. Further, the detection unit 4 detects the direction of the measurement object B based on the time difference between the reception signal of the reference reception element 30 and the reception signals of the reception elements 31a to 34d. Here, as a specific example, a method for detecting the direction of the measurement object B from the received signals of the reference receiving element 30 and the receiving element 31d will be described with reference to FIG. The position of the reference wave receiving element 30 is the origin (0, 0), and the position of the wave receiving element 31d is (dx, dy). The wave receiving element 31d generates a path difference from the reference wave receiving element 30 with respect to the direction (θ, ψ) of the object B to be measured from which the ultrasonic waves are reflected. The delay time (time difference) Δt is uniquely determined by the path difference. Thereby, when the arrangement of the reference receiving element 30 and the receiving elements 31a to 34d is determined, a delay time table for the reference receiving element 30 and the receiving elements 31a to 34d is created. That is, in the case of direction (θ1, ψ1), direction (θ1, ψ2), in the case of direction (θ1, ψ3), in the case of direction (θ2, ψ2), and in the horizontal direction (vertical direction in FIG. ) × delay times Δt corresponding to the number corresponding to the resolution in the vertical direction (horizontal direction) (in the first embodiment, 19 × 19 at 5 ° intervals and −45 to + 45 °) are obtained.

dxdy≠0の場合、遅延時間Δtは数1及び数2によって算出される。ただし、数2のA及びBは数3、数4に示す。なお、音速をcとしている。   When dxdy ≠ 0, the delay time Δt is calculated by Equation 1 and Equation 2. However, A and B in Equation 2 are shown in Equation 3 and Equation 4. Note that the speed of sound is c.

一方、dx=0の場合、遅延時間Δtは数5によって算出される。   On the other hand, when dx = 0, the delay time Δt is calculated by Equation 5.

また、dy=0の場合、遅延時間Δtは数6によって算出される。   When dy = 0, the delay time Δt is calculated by Equation 6.

検知部4は、基準受波素子30及び受波素子31a〜34dの各受波信号が超音波を受波した場合、まず、基準受波素子30及び受波素子31a〜34dから受波信号を入力する。続いて、遅延時間テーブルに基づいて、被測定物体B(図2参照)が方向(θ1,ψ1)に存在すると仮定したときの遅延時間Δtだけ受波素子31a〜34dの各受波信号をずらして基準受波素子30の受波信号に加算して遅延加算強度を求める。同様にして、方向(θ1,ψ2)の場合、方向(θ1,ψ3)の場合、・・・方向(θ2,ψ2)の場合・・・と遅延加算強度を順に求める。最後に、上記遅延加算強度の分布から、強度が最も強くなる方向(θ,ψ)に被測定物体Bが存在すると決定する。   When each received signal of the reference receiving element 30 and the receiving elements 31a to 34d receives an ultrasonic wave, the detection unit 4 first receives the received signals from the reference receiving element 30 and the receiving elements 31a to 34d. input. Subsequently, based on the delay time table, the received signals of the receiving elements 31a to 34d are shifted by the delay time Δt when it is assumed that the measured object B (see FIG. 2) exists in the direction (θ1, ψ1). And adding to the received signal of the reference receiving element 30 to obtain the delayed added strength. Similarly, in the case of direction (θ1, ψ2), in the case of direction (θ1, ψ3),... Finally, it is determined from the distribution of the delayed addition intensity that the measured object B exists in the direction (θ, ψ) in which the intensity is strongest.

次に、被測定物体B(図2参照)が実施形態1の超音波物体検知装置の真正面にある場合の超音波物体検知装置の動作について図4を用いて説明する。なお、図4(b)は、−45°に対応する遅延加算を行った場合の遅延加算強度を示し、図4(c)は、0°に対応する遅延加算を行った場合の遅延加算強度を示し、図4(d)は、45°に対応する遅延加算を行った場合の遅延加算強度を示す。まず、送波器2(図2参照)が1周期の波形の超音波を送波する。その後、上記超音波が被測定物体Bで反射する。続いて、基準受波素子30及び受波素子31a〜34dのそれぞれが、図4(a)に示すように、被測定物体Bで反射した超音波を受波する。このとき、超音波が超音波物体検知装置の真正面から到達するので、基準受波素子30及びすべての受波素子31a〜34dが同じタイミングで受波する。これにより、遅延加算強度が、図4(c)に示すように、0°に対応する遅延加算を行った場合に最大となり、基準受波素子30が受波した時間を読み取ることによって被測定物体Bまでの距離を検知する。   Next, the operation of the ultrasonic object detection apparatus when the measured object B (see FIG. 2) is directly in front of the ultrasonic object detection apparatus according to the first embodiment will be described with reference to FIG. 4B shows the delay addition intensity when the delay addition corresponding to −45 ° is performed, and FIG. 4C shows the delay addition intensity when the delay addition corresponding to 0 ° is performed. FIG. 4D shows the delay addition intensity when the delay addition corresponding to 45 ° is performed. First, the transmitter 2 (see FIG. 2) transmits ultrasonic waves having a waveform of one cycle. Thereafter, the ultrasonic wave is reflected by the measurement object B. Subsequently, each of the reference wave receiving element 30 and the wave receiving elements 31a to 34d receives the ultrasonic waves reflected by the measured object B as shown in FIG. At this time, since the ultrasonic wave arrives from directly in front of the ultrasonic object detection device, the reference wave receiving element 30 and all the wave receiving elements 31a to 34d receive the wave at the same timing. As a result, the delay addition intensity becomes maximum when delay addition corresponding to 0 ° is performed as shown in FIG. 4C, and the object to be measured is read by reading the time received by the reference receiving element 30. The distance to B is detected.

これに対して、被測定物体B(図2参照)が実施形態1の超音波物体検知装置の真正面からずれて角度θにある場合の超音波物体検知装置の動作について図5を用いて説明する。なお、図5(b)は、−45°に対応する遅延加算を行った場合の遅延加算強度を示し、図5(c)は、0°に対応する遅延加算を行った場合の遅延加算強度を示し、図5(d)は、角度θに対応する遅延加算を行った場合の遅延加算強度を示す。まず、被測定物体Bが真正面にある場合と同様に、超音波が送波器2(図2参照)から送波され、被測定物体Bで反射する。その後、基準受波素子30及び受波素子31a〜34dのそれぞれが、図5(a)に示すように、被測定物体Bで反射した超音波を受波する。このとき、検知部4が、図5(b)〜(d)に示すように、遅延加算を行うと、遅延加算強度が、角度θに対応する遅延加算を行った場合に最大となる。これにより、被測定物体Bまでの距離と被測定物体Bの方向とを同時に検知する。   In contrast, the operation of the ultrasonic object detection apparatus when the object to be measured B (see FIG. 2) is displaced from the front in front of the ultrasonic object detection apparatus according to the first embodiment and is at the angle θ will be described with reference to FIG. . 5B shows the delay addition intensity when the delay addition corresponding to −45 ° is performed, and FIG. 5C shows the delay addition intensity when the delay addition corresponding to 0 ° is performed. FIG. 5D shows the delay addition intensity when the delay addition corresponding to the angle θ is performed. First, the ultrasonic wave is transmitted from the wave transmitter 2 (see FIG. 2) and reflected by the measured object B, as in the case where the measured object B is directly in front. Thereafter, each of the reference wave receiving element 30 and the wave receiving elements 31a to 34d receives the ultrasonic wave reflected by the measured object B as shown in FIG. At this time, as shown in FIGS. 5B to 5D, when the detection unit 4 performs delay addition, the delay addition intensity becomes maximum when the delay addition corresponding to the angle θ is performed. Thereby, the distance to the measured object B and the direction of the measured object B are detected simultaneously.

続いて、基準受波素子30と受波素子31a〜34dの間の距離に対する遅延加算強度について図6を用いて説明する。なお、図6は、基準受波素子30及び受波素子31a〜34dの配置が一軸方向(例えば図1の上下方向、左右方向など)のみである場合の遅延加算の手順を示す。図6の(a)と(b)を比較すると、基準受波素子30と受波素子31a〜34dの間の距離が長いほど、角度変化に対する強度変化が大きくなる。これにより、方向の分解能を高くすることができる。   Next, the delay addition intensity with respect to the distance between the reference receiving element 30 and the receiving elements 31a to 34d will be described with reference to FIG. 6 shows a procedure of delay addition when the reference receiving element 30 and the receiving elements 31a to 34d are arranged in only one axial direction (for example, the up and down direction and the left and right direction in FIG. 1). 6A and 6B are compared, the longer the distance between the reference wave receiving element 30 and the wave receiving elements 31a to 34d, the larger the intensity change with respect to the angle change. Thereby, the direction resolution can be increased.

なお、超音波が連続波形であれば、基準受波素子30と受波素子31a〜34dの間の距離がλ/2を超えると加算する値が次の波形に重なってしまうので、基準受波素子30と受波素子31a〜34dの間の距離をλ/2以内にする必要があるが、実施形態1では超音波が1周期の波形であるので、基準受波素子30と受波素子31a〜34dの間の距離を長くしても問題がない。   If the ultrasonic wave is a continuous waveform, if the distance between the reference receiving element 30 and the receiving elements 31a to 34d exceeds λ / 2, the value to be added overlaps with the next waveform. Although the distance between the element 30 and the wave receiving elements 31a to 34d needs to be within λ / 2, in the first embodiment, since the ultrasonic wave has a waveform of one cycle, the reference wave receiving element 30 and the wave receiving element 31a. There is no problem even if the distance between ˜34d is increased.

次に、被測定物体B(図2参照)が真正面の方向(0,0)にある場合の強度分布画像を図7に示す。横軸は水平角度(図1の左右方向の角度)、縦軸は垂直角度(図1の上下方向の角度)である。図7において、水平角度、垂直角度ともに0°の場合に最も強度が大きくなっている。一方、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合の強度分布画像を図8に示す。横軸は水平角度、縦軸は垂直角度である。図8において、水平角度、垂直角度ともに−45°の場合に最大ピークがあり、最も強度が大きくなっている。なお、水平角度、垂直角度ともに10°あたりに2番目に大きなピークが現れている。   Next, FIG. 7 shows an intensity distribution image when the object to be measured B (see FIG. 2) is in the direction (0, 0) in front of the object. The horizontal axis is the horizontal angle (left-right angle in FIG. 1), and the vertical axis is the vertical angle (up-down direction angle in FIG. 1). In FIG. 7, the intensity is greatest when both the horizontal angle and the vertical angle are 0 °. On the other hand, FIG. 8 shows an intensity distribution image when the measured object B is in a direction (−45, −45) inclined by 45 ° in both the horizontal angle and the vertical angle. The horizontal axis is the horizontal angle, and the vertical axis is the vertical angle. In FIG. 8, there is a maximum peak when the horizontal angle and the vertical angle are both −45 °, and the intensity is the highest. It should be noted that the second largest peak appears around 10 ° in both the horizontal angle and the vertical angle.

ここで、実施形態1の受波部3(図1参照)と従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態1に示す。ピーク半値面積とは、強度分布画像(図7参照)において最大ピークを中心として最大ピークの50%以上の強度となる部分の面積である。ピーク半値面積は小さいほどよく、75以下であると、受波部としてより良好である。これは、ピーク半値面積が大きくなると、最大ピークの位置とは別の位置にノイズが重畳された場合に、ノイズが重畳された位置の強度が最大ピークより大きくなり、被測定物体Bの方向を誤って検知してしまうためである。また、ピーク比とは、強度分布画像(図8参照)において最大ピークに対する2番目に大きなピークの強度比である。ピーク比も小さいほどよく、0.15以下であると、受波部としてより良好である。これは、ピーク比が大きくなると、2番目に大きなピークの位置にノイズが重畳された場合に、ノイズの重畳により2番目に大きなピークの強度が最大ピークより大きくなり、被測定物体Bの方向を誤って検知してしまうためである。なお、図9には従来の受波部として、比較例1は複数の受波素子がT型に配置された場合(図14参照)、比較例2は縦横クロスに配置された場合(図15参照)、比較例3は斜めクロスに配置された場合、比較例4は縦横斜めクロスに配置された場合(図16参照)、比較例5は3×3のマトリックス状に配置された場合(図17参照)、比較例6は5×5のマトリックス状に配置された場合(図18参照)の測定結果を示す。   Here, the peak half-value area when the object to be measured B (see FIG. 2) is in the direction (0, 0) in front of the receiving section 3 (see FIG. 1) of the first embodiment and the conventional receiving section. And the peak ratio when the measured object B is in a direction (−45, −45) inclined by 45 ° in both the horizontal angle and the vertical angle. The measurement results are shown in Embodiment 1 in FIG. The peak half-value area is an area of a portion having an intensity of 50% or more of the maximum peak centering on the maximum peak in the intensity distribution image (see FIG. 7). The smaller the peak half-value area, the better, and when it is 75 or less, the receiving part is better. This is because when the peak half-value area increases, when noise is superimposed at a position different from the position of the maximum peak, the intensity at the position where the noise is superimposed becomes larger than the maximum peak, and the direction of the object B to be measured is changed. This is because they are detected erroneously. The peak ratio is the intensity ratio of the second largest peak with respect to the maximum peak in the intensity distribution image (see FIG. 8). The smaller the peak ratio, the better. When the peak ratio is 0.15 or less, the receiving part is better. This is because, when the peak ratio increases, when noise is superimposed at the position of the second largest peak, the intensity of the second largest peak becomes larger than the maximum peak due to the noise superposition, and the direction of the object B to be measured is changed. This is because they are detected erroneously. In FIG. 9, as a conventional receiving unit, Comparative Example 1 has a plurality of receiving elements arranged in a T shape (see FIG. 14), and Comparative Example 2 has a vertical and horizontal cross (see FIG. 15). Reference Example), Comparative Example 3 is arranged in a diagonal cross, Comparative Example 4 is arranged in a vertical and horizontal diagonal cross (see FIG. 16), and Comparative Example 5 is arranged in a 3 × 3 matrix (see FIG. 16). 17), Comparative Example 6 shows the measurement results when arranged in a 5 × 5 matrix (see FIG. 18).

まず、実施形態1と比較例5(図17参照)を比較する。実施形態1は、比較例5よりピーク半値面積が約79%減少し、ピーク比が約39%減少する。これにより、実施形態1は、比較例5より被測定物体B(図2参照)の方向を特定する分解能を向上させることができる。続いて、実施形態1と比較例6(図18参照)を比較する。実施形態1は、比較例6より受波素子の個数を25個から17個に減らすことができるとともに、比較例6よりピーク半値面積が約32%減少する。これは、実施形態1のほうが比較例6より受波素子が基準受波素子から遠くに配置され、角度変化あたりの遅延加算の減少量が大きくなるためである。つまり、実施形態1の場合、比較例6から基準受波素子に近接する受波素子を取り除いたことによって、最大強度の周辺にあたる方向における遅延加算強度が減少している。さらに、実施形態1と比較例1〜4(図14〜16参照)を比較すると、実施形態1は、比較例1〜4よりピーク半値面積及びピーク比の両方とも小さくなっている。   First, Embodiment 1 is compared with Comparative Example 5 (see FIG. 17). In Embodiment 1, the peak half-value area is reduced by about 79% and the peak ratio is reduced by about 39% compared to Comparative Example 5. Thereby, Embodiment 1 can improve the resolution which specifies the direction of the to-be-measured object B (refer FIG. 2) from the comparative example 5. FIG. Subsequently, Embodiment 1 and Comparative Example 6 (see FIG. 18) are compared. In the first embodiment, the number of receiving elements can be reduced from 25 to 17 as compared with Comparative Example 6, and the peak half-value area is reduced by about 32% as compared with Comparative Example 6. This is because the receiving element is arranged farther from the reference receiving element than the comparative example 6 in the first embodiment, and the amount of decrease in the delay addition per angle change is larger. That is, in the case of the first embodiment, the delay addition intensity in the direction corresponding to the periphery of the maximum intensity is reduced by removing the receiving element close to the reference receiving element from the comparative example 6. Furthermore, when comparing Embodiment 1 with Comparative Examples 1 to 4 (see FIGS. 14 to 16), Embodiment 1 is smaller in both peak half-value area and peak ratio than Comparative Examples 1 to 4.

以上、実施形態1によれば、送波器2から1周期の波形を送波することにより、誤計測点が現れにくくすることができ、被測定物体Bまでの距離と被測定物体Bの方向とを低コスト及び高分解能で検知することができる。特に、受波素子がT型、クロス、3×3のマトリックス状に配置された場合と比較して顕著である。   As described above, according to the first embodiment, by transmitting a waveform of one period from the transmitter 2, it is possible to make an erroneous measurement point difficult to appear, and the distance to the measured object B and the direction of the measured object B. Can be detected at low cost and with high resolution. This is particularly remarkable as compared with the case where the wave receiving elements are arranged in a T-type, cross, 3 × 3 matrix.

(実施形態2)
本発明の実施形態2について図10を用いて説明する。図10は実施形態2の超音波物体検知装置における受波部の正面図である。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. FIG. 10 is a front view of a wave receiving unit in the ultrasonic object detection apparatus according to the second embodiment.

実施形態2の超音波物体検知装置は、実施形態1の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態1の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the first embodiment, the ultrasonic object detection device according to the second embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic part described below that is not included in the ultrasonic object detection apparatus of the first embodiment.

実施形態2の超音波物体検知装置は、実施形態1の受波部3に代えて、図10に示すような受波部5を備えている。受波部5は、基準受波素子50と、複数の受波素子51a〜53dとを備えている。基準受波素子50は、正三角形の中心に配置されている。一方、複数の受波素子51a〜53dのそれぞれは、隣接する受波素子51a〜53dとの距離より基準受波素子50との距離が長くなるように正三角形の辺上に一定の間隔で配置されている。なお、受波部5は、上記以外の点において、実施形態1の受波部3(図1参照)と同様である。   The ultrasonic object detection apparatus according to the second embodiment includes a wave receiving unit 5 as illustrated in FIG. 10 instead of the wave receiving unit 3 according to the first embodiment. The wave receiving unit 5 includes a reference wave receiving element 50 and a plurality of wave receiving elements 51a to 53d. The reference wave receiving element 50 is disposed at the center of an equilateral triangle. On the other hand, each of the plurality of receiving elements 51a to 53d is arranged at regular intervals on the sides of the equilateral triangle so that the distance to the reference receiving element 50 is longer than the distance to the adjacent receiving elements 51a to 53d. Has been. The wave receiving unit 5 is the same as the wave receiving unit 3 (see FIG. 1) of the first embodiment except for the points described above.

次に、実施形態2の受波部5と従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態2に示す。まず、実施形態2と比較例5(図17参照)を比較する。実施形態2は、比較例5に対してピーク半値面積が約41%減少し、ピーク比が約50%減少する。これにより、実施形態2は、比較例5より被測定物体B(図2参照)の方向を特定する分解能を向上させることができる。続いて、実施形態2と比較例6(図18参照)を比較する。実施形態2は、比較例6に対してピーク半値面積が増加するものの、ピーク比が大きくなることなく受波素子の個数を25個から13個に減らすことができる。さらに、実施形態2と比較例1〜4(図14〜16参照)を比較すると、実施形態2は、比較例1〜4よりピーク比が小さい。   Next, the peak half-value area when the object to be measured B (see FIG. 2) is in the direction (0, 0) in front of the wave receiving part 5 of the second embodiment and the conventional wave receiving part, and the object to be measured The peak ratio was measured when B was in the direction (−45, −45) inclined by 45 ° in both the horizontal angle and the vertical angle. The measurement results are shown in Embodiment 2 in FIG. First, Embodiment 2 is compared with Comparative Example 5 (see FIG. 17). In Embodiment 2, the peak half-value area is reduced by about 41% and the peak ratio is reduced by about 50% compared to Comparative Example 5. Thereby, Embodiment 2 can improve the resolution which specifies the direction of the to-be-measured object B (refer FIG. 2) from the comparative example 5. FIG. Subsequently, Embodiment 2 and Comparative Example 6 (see FIG. 18) are compared. In the second embodiment, although the peak half-value area is increased as compared with Comparative Example 6, the number of receiving elements can be reduced from 25 to 13 without increasing the peak ratio. Furthermore, when Embodiment 2 and Comparative Examples 1-4 (refer FIGS. 14-16) are compared, Embodiment 2 has a smaller peak ratio than Comparative Examples 1-4.

以上、実施形態2によれば、受波素子が3×3のマトリックス状に配置された場合より、被測定物体Bまでの距離と被測定物体Bの方向とを低コストで高分解能で検出することができる。また、受波素子がT型、クロスに配置された場合より、被測定物体Bが45°傾いた場合の測定分解能を改善することができる。   As described above, according to the second embodiment, the distance to the measured object B and the direction of the measured object B are detected at a lower cost and with higher resolution than when the receiving elements are arranged in a 3 × 3 matrix. be able to. Further, the measurement resolution when the measured object B is inclined by 45 ° can be improved as compared with the case where the wave receiving elements are arranged in a T shape and a cross.

(実施形態3)
本発明の実施形態3について図11を用いて説明する。図11は実施形態3の超音波物体検知装置における受波部の正面図である。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. FIG. 11 is a front view of a wave receiving unit in the ultrasonic object detection apparatus according to the third embodiment.

実施形態3の超音波物体検知装置は、実施形態1の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態1の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the first embodiment, the ultrasonic object detection device according to the third embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic part described below that is not included in the ultrasonic object detection apparatus of the first embodiment.

実施形態3の超音波物体検知装置は、実施形態1の受波部3に代えて、図11に示すような受波部6を備えている。受波部6は、基準受波素子60と、複数の受波素子61a〜65cとを備えている。基準受波素子60は、正五角形の中心に配置されている。一方、複数の受波素子61a〜65cのそれぞれは、隣接する受波素子61a〜65cとの距離より基準受波素子60との距離が長くなるように正五角形の辺上に一定の間隔で配置されている。なお、受波部6は、上記以外の点において、実施形態1の受波部3(図1参照)と同様である。   The ultrasonic object detection apparatus according to the third embodiment includes a wave receiving unit 6 as illustrated in FIG. 11 instead of the wave receiving unit 3 according to the first embodiment. The wave receiving unit 6 includes a reference wave receiving element 60 and a plurality of wave receiving elements 61a to 65c. The reference receiving element 60 is arranged at the center of a regular pentagon. On the other hand, each of the plurality of receiving elements 61a to 65c is arranged at regular intervals on a regular pentagonal side so that the distance to the reference receiving element 60 is longer than the distance to the adjacent receiving elements 61a to 65c. Has been. The wave receiving unit 6 is the same as the wave receiving unit 3 (see FIG. 1) of the first embodiment except for the points described above.

次に、実施形態3の受波部6と従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態3に示す。まず、実施形態3と比較例5(図17参照)を比較する。実施形態3は、比較例5に対してピーク半値面積が約67%減少し、ピーク比が約50%減少する。これにより、実施形態3は、比較例5より被測定物体B(図2参照)の方向を特定する分解能を向上させることができる。続いて、実施形態3と比較例6(図18参照)を比較する。実施形態3は、比較例6に対してピーク半値面積及びピーク比が大きくなることなく受波素子の個数を25個から16個に減らすことができる。さらに、実施形態3と比較例1〜4(図14〜16参照)を比較すると、実施形態3は、比較例1〜4よりピーク半値面積及びピーク比の両方とも小さい。   Next, in the wave receiving unit 6 of Embodiment 3 and the conventional wave receiving unit, the peak half-value area when the measured object B (see FIG. 2) is in the frontal direction (0, 0), and the measured object The peak ratio was measured when B was in the direction (−45, −45) inclined by 45 ° in both the horizontal angle and the vertical angle. The measurement results are shown in Embodiment 3 in FIG. First, Embodiment 3 is compared with Comparative Example 5 (see FIG. 17). In Embodiment 3, the peak half-value area is reduced by about 67% and the peak ratio is reduced by about 50% compared to Comparative Example 5. Thereby, Embodiment 3 can improve the resolution which specifies the direction of the to-be-measured object B (refer FIG. 2) from the comparative example 5. FIG. Subsequently, Embodiment 3 and Comparative Example 6 (see FIG. 18) are compared. The third embodiment can reduce the number of receiving elements from 25 to 16 without increasing the peak half-value area and the peak ratio as compared with Comparative Example 6. Furthermore, when Embodiment 3 and Comparative Examples 1-4 (refer FIGS. 14-16) are compared, Embodiment 3 has both a peak half value area and a peak ratio smaller than Comparative Examples 1-4.

以上、実施形態3によれば、受波素子がT型、クロス、3×3のマトリックス状に配置された場合より、被測定物体Bまでの距離と被測定物体Bの方向とを低コストで高分解能で検出することができる。また、受波素子が5×5のマトリックス状に配置された場合と同等の特性を得ながら、受波素子の個数を減少することができる。   As described above, according to the third embodiment, the distance to the measured object B and the direction of the measured object B can be reduced at a lower cost than when the receiving elements are arranged in a T-shaped, crossed, 3 × 3 matrix. It can be detected with high resolution. Further, the number of receiving elements can be reduced while obtaining the same characteristics as when receiving elements are arranged in a 5 × 5 matrix.

(実施形態4)
本発明の実施形態4について図12を用いて説明する。図12は実施形態4の超音波物体検知装置における受波部の正面図である。
(Embodiment 4)
Embodiment 4 of the present invention will be described with reference to FIG. FIG. 12 is a front view of a wave receiving unit in the ultrasonic object detection apparatus according to the fourth embodiment.

実施形態4の超音波物体検知装置は、実施形態1の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態1の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the first embodiment, the ultrasonic object detection device according to the fourth embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic part described below that is not included in the ultrasonic object detection apparatus of the first embodiment.

実施形態4の超音波物体検知装置は、実施形態1の受波部3に代えて、図12に示すような受波部7を備えている。受波部7は、基準受波素子70と、12個の受波素子71a〜74cとを備えている。基準受波素子70は、半径λの円の中心に配置されている。なお、λは、送波器2から送波された超音波の波長である。一方、複数の受波素子71a〜74cのそれぞれは、隣接する受波素子71a〜74cとの距離より基準受波素子70との距離が長くなるように円の辺上に一定の間隔で配置されている。なお、受波部7は、上記以外の点において、実施形態1の受波部3(図1参照)と同様である。   The ultrasonic object detection apparatus according to the fourth embodiment includes a wave receiving unit 7 as illustrated in FIG. 12 instead of the wave receiving unit 3 according to the first embodiment. The wave receiving unit 7 includes a reference wave receiving element 70 and 12 wave receiving elements 71a to 74c. The reference wave receiving element 70 is arranged at the center of a circle having a radius λ. Note that λ is the wavelength of the ultrasonic wave transmitted from the transmitter 2. On the other hand, each of the plurality of wave receiving elements 71a to 74c is arranged at regular intervals on the side of the circle so that the distance to the reference wave receiving element 70 is longer than the distance to the adjacent wave receiving elements 71a to 74c. ing. The wave receiving unit 7 is the same as the wave receiving unit 3 (see FIG. 1) of the first embodiment except for the points described above.

以上、実施形態4であっても、被測定物体Bまでの距離と被測定物体Bの方向とを低コスト及び高分解能で検知することができる。   As described above, even in the fourth embodiment, the distance to the measured object B and the direction of the measured object B can be detected with low cost and high resolution.

(実施形態5)
本発明の実施形態5について図13を用いて説明する。図13は実施形態5の超音波物体検知装置における受波部の正面図である。
(Embodiment 5)
Embodiment 5 of the present invention will be described with reference to FIG. FIG. 13 is a front view of a wave receiving unit in the ultrasonic object detection apparatus according to the fifth embodiment.

実施形態5の超音波物体検知装置は、実施形態4の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態4の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the fourth embodiment, the ultrasonic object detection device according to the fifth embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic portion described below that is not included in the ultrasonic object detection apparatus of the fourth embodiment.

実施形態5の超音波物体検知装置は、実施形態4の受波部7に代えて、図13に示すような受波部7aを備えている。受波部7aは、基準受波素子70と、16個の受波素子71a〜74dとを備えている。基準受波素子70は、円の中心に配置されている。一方、複数の受波素子71a〜74dのそれぞれは、隣接する受波素子71a〜74dとの距離より基準受波素子70との距離が長くなるように円の辺上に一定の間隔で配置されている。なお、受波部7aは、上記以外の点において、実施形態4の受波部7(図12参照)と同様である。   The ultrasonic object detection apparatus according to the fifth embodiment includes a wave receiving unit 7a as illustrated in FIG. 13 instead of the wave receiving unit 7 according to the fourth embodiment. The wave receiving unit 7a includes a reference wave receiving element 70 and 16 wave receiving elements 71a to 74d. The reference receiving element 70 is disposed at the center of the circle. On the other hand, each of the plurality of receiving elements 71a to 74d is arranged on the side of the circle at regular intervals so that the distance to the reference receiving element 70 is longer than the distance to the adjacent receiving elements 71a to 74d. ing. The wave receiving unit 7a is the same as the wave receiving unit 7 of the fourth embodiment (see FIG. 12) in points other than the above.

次に、実施形態5の受波部7aと従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態5に示す。まず、実施形態5と比較例5(図17参照)を比較する。実施形態5は、比較例5に対してピーク半値面積が約68%減少し、ピーク比が約44%減少する。これにより、実施形態5は、比較例5より被測定物体Bの方向を特定する分解能を向上させることができる。続いて、実施形態5と比較例6(図18参照)を比較する。実施形態5は、比較例6に対してピーク半値面積及びピーク比がほとんど大きくなることなく受波素子の個数を25個から17個に減らすことができる。さらに、実施形態5と比較例4(図16参照)を比較すると、実施形態5は、比較例4と同等の受波素子の個数でありながら、ピーク半値面積及びピーク比の両方とも減少する。実施形態5と比較例1〜3(図14,15参照)を比較すると、実施形態5は、比較例1〜3よりピーク半値面積及びピーク比の両方とも小さい。   Next, in the wave receiving unit 7a of the fifth embodiment and the conventional wave receiving unit, the peak half-value area when the measured object B (see FIG. 2) is in the frontal direction (0, 0), and the measured object The peak ratio was measured when B was in the direction (−45, −45) inclined by 45 ° in both the horizontal angle and the vertical angle. The measurement results are shown in Embodiment 5 in FIG. First, Embodiment 5 is compared with Comparative Example 5 (see FIG. 17). In the fifth embodiment, the peak half-value area is reduced by about 68% and the peak ratio is reduced by about 44% compared to the comparative example 5. Thereby, Embodiment 5 can improve the resolution for specifying the direction of the object B to be measured as compared with Comparative Example 5. Subsequently, Embodiment 5 and Comparative Example 6 (see FIG. 18) are compared. In the fifth embodiment, the number of wave receiving elements can be reduced from 25 to 17 without substantially increasing the peak half-value area and the peak ratio as compared with Comparative Example 6. Furthermore, when Embodiment 5 is compared with Comparative Example 4 (see FIG. 16), Embodiment 5 has both the number of receiving elements equivalent to that of Comparative Example 4, but both the peak half-value area and the peak ratio are reduced. Comparing Embodiment 5 and Comparative Examples 1 to 3 (see FIGS. 14 and 15), Embodiment 5 has both a peak half-value area and a peak ratio smaller than those of Comparative Examples 1 to 3.

以上、実施形態5によれば、受波素子がT型、クロス、3×3のマトリックス状に配置された場合より、被測定物体Bまでの距離と被測定物体Bの方向とを低コストで高分解能で検出することができる。また、受波素子が5×5のマトリックス状に配置された場合と略同等の特性を得ながら、受波素子の個数を減少することができる。   As described above, according to the fifth embodiment, the distance to the measured object B and the direction of the measured object B can be reduced at a lower cost than when the receiving elements are arranged in a T-shaped, cross, 3 × 3 matrix. It can be detected with high resolution. Further, the number of receiving elements can be reduced while obtaining substantially the same characteristics as when receiving elements are arranged in a 5 × 5 matrix.

(実施形態6)
本発明の実施形態6について説明する。
(Embodiment 6)
Embodiment 6 of the present invention will be described.

実施形態6の超音波物体検知装置は、実施形態4の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態4の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the fourth embodiment, the ultrasonic object detection device according to the sixth embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic portion described below that is not included in the ultrasonic object detection apparatus of the fourth embodiment.

実施形態6の超音波物体検知装置は、実施形態4の受波部7に代えて、半径1.25λの受波部を備えている。なお、λは、送波器2から送波された超音波の波長である。また、実施形態6の受波部は、上記以外の点において、実施形態4の受波部7(図12参照)と同様である。   The ultrasonic object detection apparatus according to the sixth embodiment includes a wave receiving unit having a radius of 1.25λ instead of the wave receiving unit 7 according to the fourth embodiment. Note that λ is the wavelength of the ultrasonic wave transmitted from the transmitter 2. Further, the receiving unit of the sixth embodiment is the same as the receiving unit 7 of the fourth embodiment (see FIG. 12) except for the points described above.

次に、実施形態6の受波部と従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態6に示す。まず、実施形態6と比較例5(図17参照)を比較する。実施形態6は、比較例5に対してピーク比が大きくなるものの、ピーク半値面積が約82%減少する。続いて、実施形態6と比較例6(図18参照)を比較する。実施形態6は、比較例6に対してピーク比が増加するものの、ピーク半値面積が約43%減少し、受波素子の個数を25個から13個に減らすことができる。さらに、実施形態6と比較例4(図16参照)を比較すると、実施形態6は、比較例4よりピーク半値面積が約53%減少する。実施形態6と比較例1〜3(図14,15参照)を比較すると、実施形態6は、比較例1〜3よりピーク半値面積及びピーク比の両方とも小さい。   Next, the peak half-value area when the object to be measured B (see FIG. 2) is in the direction (0, 0) in front of the wave receiving part of the sixth embodiment and the conventional wave receiving part, and the object to be measured B Was measured in the direction (−45, −45) inclined 45 ° both in the horizontal angle and in the vertical angle. The measurement results are shown in Embodiment 6 of FIG. First, Embodiment 6 is compared with Comparative Example 5 (see FIG. 17). In Embodiment 6, the peak ratio is larger than that of Comparative Example 5, but the peak half-value area is reduced by about 82%. Subsequently, Embodiment 6 and Comparative Example 6 (see FIG. 18) are compared. In the sixth embodiment, although the peak ratio is increased as compared with Comparative Example 6, the peak half-value area is reduced by about 43%, and the number of receiving elements can be reduced from 25 to 13. Furthermore, when Embodiment 6 is compared with Comparative Example 4 (see FIG. 16), the peak half-value area of Embodiment 6 is about 53% less than that of Comparative Example 4. Comparing Embodiment 6 and Comparative Examples 1 to 3 (see FIGS. 14 and 15), Embodiment 6 is smaller in both peak half-value area and peak ratio than Comparative Examples 1 to 3.

以上、実施形態6によれば、受波素子がT型、縦横クロス、斜めクロスに配置された場合より、被測定物体Bまでの距離と被測定物体Bの方向とを低コストで高分解能で検出することができる。   As described above, according to the sixth embodiment, the distance to the object to be measured B and the direction of the object to be measured B can be reduced at a lower cost and with higher resolution than when the receiving elements are arranged in a T shape, vertical and horizontal crosses, and oblique crosses. Can be detected.

(実施形態7)
本発明の実施形態7について説明する。
(Embodiment 7)
Embodiment 7 of the present invention will be described.

実施形態7の超音波物体検知装置は、実施形態4の超音波物体検知装置(図1参照)と同様に、ケース1と、送波器2と、検知部4(図4参照)とを備えているが、実施形態4の超音波物体検知装置にはない以下に記載の特徴部分がある。   Similar to the ultrasonic object detection device (see FIG. 1) according to the fourth embodiment, the ultrasonic object detection device according to the seventh embodiment includes a case 1, a transmitter 2, and a detection unit 4 (see FIG. 4). However, there is a characteristic portion described below that is not included in the ultrasonic object detection apparatus of the fourth embodiment.

実施形態7の超音波物体検知装置は、実施形態4の受波部7に代えて、半径1.5λの受波部を備えている。なお、λは、送波器2から送波された超音波の波長である。また、実施形態7の受波部は、上記以外の点において、実施形態4の受波部7(図12参照)と同様である。   The ultrasonic object detection device according to the seventh embodiment includes a wave receiving unit having a radius of 1.5λ instead of the wave receiving unit 7 according to the fourth embodiment. Note that λ is the wavelength of the ultrasonic wave transmitted from the transmitter 2. Further, the receiving unit of the seventh embodiment is the same as the receiving unit 7 of the fourth embodiment (see FIG. 12) in points other than the above.

次に、実施形態7の受波部と従来の受波部とで、被測定物体B(図2参照)が真正面の方向(0,0)にある場合のピーク半値面積と、被測定物体Bが水平角度、垂直角度ともに45°傾いた方向(−45,−45)にある場合のピーク比とを測定した。測定結果を図9の実施形態7に示す。まず、実施形態7と比較例5を比較する。実施形態7は、比較例5に対してピーク比が大きくなるものの、ピーク半値面積が約89%減少する。続いて、実施形態7と比較例6を比較する。実施形態7は、比較例6に対してピーク比が大きくなるものの、ピーク半値面積が約65%減少し、受波素子の個数を25個から13個に減らすことができる。さらに、実施形態7と比較例4を比較すると、実施形態7は、比較例4に対してピーク比が略同等でありながら、ピーク半値面積が約71%減少する。実施形態7と比較例1〜3を比較すると、実施形態5は、比較例1〜3よりピーク半値面積及びピーク比の両方とも小さい。   Next, the peak half-value area when the object to be measured B (see FIG. 2) is in the direction (0, 0) in front of the receiving part of the seventh embodiment and the conventional receiving part, and the object to be measured B Was measured in the direction (−45, −45) inclined 45 ° both in the horizontal angle and in the vertical angle. The measurement results are shown in Embodiment 7 of FIG. First, Embodiment 7 and Comparative Example 5 are compared. In Embodiment 7, the peak ratio is larger than that of Comparative Example 5, but the peak half-value area is reduced by about 89%. Subsequently, Embodiment 7 and Comparative Example 6 are compared. In Embodiment 7, although the peak ratio is larger than that of Comparative Example 6, the peak half-value area is reduced by about 65%, and the number of receiving elements can be reduced from 25 to 13. Further, when the embodiment 7 and the comparative example 4 are compared, the peak half-value area of the seventh embodiment is reduced by about 71% while the peak ratio is substantially the same as that of the comparative example 4. When Embodiment 7 and Comparative Examples 1 to 3 are compared, Embodiment 5 is smaller in both peak half-value area and peak ratio than Comparative Examples 1 to 3.

以上、実施形態7によれば、受波素子がT型、クロスに配置された場合より、被測定物体Bまでの距離と被測定物体Bの方向とを低コストで高分解能で検出することができる。また、マトリックス状に配置された場合よりも、被測定物体Bが真正面の方向にある場合と45°傾いた方向にある場合との特性バランスがよい。   As described above, according to the seventh embodiment, the distance to the object to be measured B and the direction of the object to be measured B can be detected at a lower cost and with higher resolution than when the receiving elements are T-shaped and arranged in a cross. it can. In addition, the characteristic balance between the case in which the measured object B is in the direction directly in front and the direction in which it is inclined by 45 ° is better than that in the case where the measurement object B is arranged in a matrix.

本発明による実施形態1の超音波物体検知装置の正面図である。It is a front view of the ultrasonic object detection apparatus of Embodiment 1 by the present invention. 同上の超音波物体検知装置と被測定物体との関係を示す図である。It is a figure which shows the relationship between an ultrasonic object detection apparatus same as the above, and a to-be-measured object. 同上の超音波物体検知装置の受波について説明する図である。It is a figure explaining the wave reception of an ultrasonic object detection apparatus same as the above. 同上の超音波物体検知装置において、(a)は被測定物体が真正面にある場合の動作を説明する図、(b)は−45°に対応する遅延加算を行った場合の遅延加算強度、(c)は0°に対応する遅延加算を行った場合の遅延加算強度、(d)は45°に対応する遅延加算を行った場合の遅延加算強度である。In the ultrasonic object detection apparatus described above, (a) is a diagram for explaining the operation when the object to be measured is directly in front, (b) is the delay addition intensity when the delay addition corresponding to −45 ° is performed, ( c) is the delay addition intensity when the delay addition corresponding to 0 ° is performed, and (d) is the delay addition intensity when the delay addition corresponding to 45 ° is performed. 同上の超音波物体検知装置において、(a)は被測定物体が角度θにある場合の動作を説明する図、(b)は−45°に対応する遅延加算を行った場合の遅延加算強度、(c)は0°に対応する遅延加算を行った場合の遅延加算強度、(d)は角度θに対応する遅延加算を行った場合の遅延加算強度である。In the ultrasonic object detection apparatus as described above, (a) is a diagram for explaining the operation when the object to be measured is at the angle θ, (b) is the delay addition intensity when the delay addition corresponding to −45 ° is performed, (C) is the delay addition intensity when delay addition corresponding to 0 ° is performed, and (d) is the delay addition intensity when delay addition corresponding to the angle θ is performed. 同上の超音波物体検知装置において、(a)は基準受波素子と他の受波素子との距離が短い場合について説明する図、(b)は基準受波素子と他の受波素子との距離が長い場合について説明する図である。In the ultrasonic object detection apparatus as described above, (a) illustrates a case where the distance between the reference receiving element and another receiving element is short, and (b) illustrates the relationship between the reference receiving element and the other receiving element. It is a figure explaining the case where distance is long. 同上の超音波物体検知装置において、被測定物体が真正面の方向にある場合の強度分布画像を示す図である。In an ultrasonic object detection apparatus same as the above, it is a figure which shows an intensity distribution image in case a to-be-measured object exists in the front direction. 同上の超音波物体検知装置において、被測定物体が水平角度、垂直角度ともに45°傾いた方向にある場合の強度分布画像を示す図である。FIG. 6 is a diagram showing an intensity distribution image when the object to be measured is in a direction inclined by 45 ° in both the horizontal angle and the vertical angle in the ultrasonic object detection apparatus same as above. 実施形態1〜3,5〜7の超音波物体検知装置において、被測定物体が真正面の方向にある場合のピーク半値面積と、被測定物体が水平角度、垂直角度ともに45°傾いた方向にある場合のピーク比とを示す図である。In the ultrasonic object detection devices according to the first to third and fifth to seventh embodiments, the peak half-value area when the object to be measured is directly in front and the object to be measured are in a direction inclined by 45 ° in both the horizontal angle and the vertical angle. It is a figure which shows the peak ratio in a case. 本発明による実施形態2の超音波物体検知装置における受波部の正面図である。It is a front view of the wave receiving part in the ultrasonic object detection apparatus of Embodiment 2 by the present invention. 本発明による実施形態3の超音波物体検知装置における受波部の正面図である。It is a front view of the wave receiving part in the ultrasonic object detection apparatus of Embodiment 3 by the present invention. 本発明による実施形態4の超音波物体検知装置における受波部の正面図である。It is a front view of the wave receiving part in the ultrasonic object detection apparatus of Embodiment 4 by the present invention. 本発明による実施形態5の超音波物体検知装置における受波部の正面図である。It is a front view of the wave receiving part in the ultrasonic object detection apparatus of Embodiment 5 by the present invention. 従来の超音波物体検知装置における受波部の正面図である。It is a front view of the wave receiving part in the conventional ultrasonic object detection apparatus. 同上の他の超音波物体検知装置における受波部の正面図である。It is a front view of the wave-receiving part in the other ultrasonic object detection apparatus same as the above. 同上の他の超音波物体検知装置における受波部の正面図である。It is a front view of the wave-receiving part in the other ultrasonic object detection apparatus same as the above. 同上の他の超音波物体検知装置における受波部の正面図である。It is a front view of the wave-receiving part in the other ultrasonic object detection apparatus same as the above. 同上の他の超音波物体検知装置における受波部の正面図である。It is a front view of the wave-receiving part in the other ultrasonic object detection apparatus same as the above.

符号の説明Explanation of symbols

2 送波器
3 受波部
30 基準受波素子
31a〜34d 受波素子
2 Transmitter 3 Receiver 30 Reference receiver 31a-34d Receiver

Claims (3)

予め決められた周波数の超音波を検知領域に送波する送波手段と、
それぞれが、前記検知領域にある被測定物体で反射した前記超音波を受波して受波信号に変換する複数の受波素子と、
前記超音波が前記送波手段によって送波されてから前記複数の受波素子によって受波されるまでに要した時間に基づいて前記被測定物体までの距離を検知するとともに、前記複数の受波素子のそれぞれからの前記受波信号の時間差に基づいて前記被測定物体の方向を検知する検知手段と
を備え、
前記送波手段によって送波される前記超音波が1周期の波形であり、
前記複数の受波素子のうち一の受波素子が多角形又は円の中心に配置され、他の受波素子のそれぞれが、隣接する他の受波素子との距離より前記一の受波素子との距離が長くなるように前記多角形又は前記円の辺上に配置される
ことを特徴とする超音波物体検知装置。
Wave transmitting means for transmitting ultrasonic waves of a predetermined frequency to the detection region;
A plurality of receiving elements each receiving the ultrasonic wave reflected by the object to be measured in the detection region and converting it into a received signal;
The distance to the object to be measured is detected based on the time required from the time when the ultrasonic wave is transmitted by the wave transmitting means to the time when the ultrasonic wave is received by the plurality of receiving elements, and the plurality of received waves Detecting means for detecting the direction of the object to be measured based on a time difference between the received signals from each of the elements;
The ultrasonic wave transmitted by the wave transmitting means is a waveform of one cycle;
One receiving element of the plurality of receiving elements is arranged at the center of a polygon or a circle, and each of the other receiving elements is further away from the adjacent other receiving element than the one receiving element. The ultrasonic object detection device is arranged on the side of the polygon or the circle so that the distance to the polygon becomes longer.
前記多角形が正多角形であることを特徴とする請求項1記載の超音波物体検知装置。   The ultrasonic object detection device according to claim 1, wherein the polygon is a regular polygon. 前記正多角形が正方形であることを特徴とする請求項2記載の超音波物体検知装置。   The ultrasonic object detection device according to claim 2, wherein the regular polygon is a square.
JP2005312010A 2005-10-26 2005-10-26 Ultrasonic object detector Pending JP2007121045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312010A JP2007121045A (en) 2005-10-26 2005-10-26 Ultrasonic object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312010A JP2007121045A (en) 2005-10-26 2005-10-26 Ultrasonic object detector

Publications (1)

Publication Number Publication Date
JP2007121045A true JP2007121045A (en) 2007-05-17

Family

ID=38145058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312010A Pending JP2007121045A (en) 2005-10-26 2005-10-26 Ultrasonic object detector

Country Status (1)

Country Link
JP (1) JP2007121045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130144A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Robot, sound collecting apparatus, and sound processing method
JP2011091851A (en) * 2010-12-17 2011-05-06 Toyota Motor Corp Robot and sound collecting device
JP2011101407A (en) * 2010-12-28 2011-05-19 Toyota Motor Corp Robot, and sound collection apparatus
CN107149485A (en) * 2017-06-07 2017-09-12 青岛海信医疗设备股份有限公司 Ultrasonic signal processing method and processing device based on medical science

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269080A (en) * 1988-04-20 1989-10-26 Agency Of Ind Science & Technol Supersonic transducer and its manufacture
JPH01280282A (en) * 1988-05-06 1989-11-10 Tokyo Univ Holographic sonar equipment
JPH04122872A (en) * 1990-09-14 1992-04-23 Nippon Hoso Kyokai <Nhk> Method and apparatus for discriminating direction of sound source
JPH09236654A (en) * 1996-03-01 1997-09-09 Tech Res & Dev Inst Of Japan Def Agency Arm developing flat array type wave receiver
JPH1164089A (en) * 1997-08-18 1999-03-05 Toshiba Corp Wave motion diagnostic equipment
JP2000152391A (en) * 1998-11-17 2000-05-30 Nec Eng Ltd Method for sensor layout
JP2002156451A (en) * 2000-11-20 2002-05-31 Osaka Prefecture Sound wave sensor, semiconductor device equipped with delay circuit, stick for visually handicapped person, and three-dimensional measuring method
WO2004021031A1 (en) * 2002-08-30 2004-03-11 Nittobo Acoustic Engineering Co.,Ltd. Sound source search system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269080A (en) * 1988-04-20 1989-10-26 Agency Of Ind Science & Technol Supersonic transducer and its manufacture
JPH01280282A (en) * 1988-05-06 1989-11-10 Tokyo Univ Holographic sonar equipment
JPH04122872A (en) * 1990-09-14 1992-04-23 Nippon Hoso Kyokai <Nhk> Method and apparatus for discriminating direction of sound source
JPH09236654A (en) * 1996-03-01 1997-09-09 Tech Res & Dev Inst Of Japan Def Agency Arm developing flat array type wave receiver
JPH1164089A (en) * 1997-08-18 1999-03-05 Toshiba Corp Wave motion diagnostic equipment
JP2000152391A (en) * 1998-11-17 2000-05-30 Nec Eng Ltd Method for sensor layout
JP2002156451A (en) * 2000-11-20 2002-05-31 Osaka Prefecture Sound wave sensor, semiconductor device equipped with delay circuit, stick for visually handicapped person, and three-dimensional measuring method
WO2004021031A1 (en) * 2002-08-30 2004-03-11 Nittobo Acoustic Engineering Co.,Ltd. Sound source search system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130144A (en) * 2008-11-26 2010-06-10 Toyota Motor Corp Robot, sound collecting apparatus, and sound processing method
JP2011091851A (en) * 2010-12-17 2011-05-06 Toyota Motor Corp Robot and sound collecting device
JP2011101407A (en) * 2010-12-28 2011-05-19 Toyota Motor Corp Robot, and sound collection apparatus
CN107149485A (en) * 2017-06-07 2017-09-12 青岛海信医疗设备股份有限公司 Ultrasonic signal processing method and processing device based on medical science

Similar Documents

Publication Publication Date Title
CN102066971B (en) Ultrasound apparatus and method for side lobe suppression
US9964631B2 (en) Radar apparatus and antenna apparatus
US20130100774A1 (en) System for determining the distance from and the direction to an object
US20080048907A1 (en) Object direction detection method and apparatus for determining target object direction based on rectified wave phase information obtained from plurality of pairs of receiver elements
JP2006510009A (en) Multi-target correspondence method and multi-target correspondence sensor device for specifying the distance and angle of a short-distance target object
CN104781662A (en) Two-dimensional tr probe array
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP2007121045A (en) Ultrasonic object detector
EP2871475B1 (en) Ultrasonic testing sensor and ultrasonic testing method
US6289231B1 (en) Wave receiving apparatus and ultrasonic diagnostic apparatus
JP2009075086A (en) Ultrasonic three-dimensional distance measuring device, and ultrasonic three-dimensional distance measuring method
JP2007170975A (en) Object detector
JP5055513B2 (en) Ultrasonic array sensor system and delay addition processing method
JP4551827B2 (en) Secondary monitoring radar control device and secondary monitoring radar control method
US11187788B2 (en) Nonlinear array antenna radar and method thereof
JP2007085866A (en) Object detection device
JP4802730B2 (en) Object detection device
JP7238516B2 (en) Sonar device and target detection method using the same
JP2010133907A (en) Angle measurement processing apparatus
JP4337421B2 (en) Position measuring method and position measuring system for moving object
JP4682771B2 (en) Object detection device
JP2011069780A (en) Ultrasonic measuring device, ultrasonic sensor for use in the same, and ultrasonic measuring method
JP2007017393A (en) Source display device of electric wave emission
JP2005049301A (en) Ultrasonic sensor
JP4521238B2 (en) Height measuring radar device and its angle measurement processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426