JP4802511B2 - Linear motor stator and linear motor - Google Patents

Linear motor stator and linear motor Download PDF

Info

Publication number
JP4802511B2
JP4802511B2 JP2005050523A JP2005050523A JP4802511B2 JP 4802511 B2 JP4802511 B2 JP 4802511B2 JP 2005050523 A JP2005050523 A JP 2005050523A JP 2005050523 A JP2005050523 A JP 2005050523A JP 4802511 B2 JP4802511 B2 JP 4802511B2
Authority
JP
Japan
Prior art keywords
linear motor
stator
resin
metal plate
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005050523A
Other languages
Japanese (ja)
Other versions
JP2006238622A (en
Inventor
道雄 小川
研史 三村
睦冶 鈴木
和彦 加藤
明 度会
長生 八代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005050523A priority Critical patent/JP4802511B2/en
Publication of JP2006238622A publication Critical patent/JP2006238622A/en
Application granted granted Critical
Publication of JP4802511B2 publication Critical patent/JP4802511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、リニアモータ用固定子、特に、金属板に複数の永久磁石が配列されたリニアモータ用固定子と、この固定子を用いたリニアモータに関するものである。   The present invention relates to a stator for a linear motor, and more particularly to a stator for a linear motor in which a plurality of permanent magnets are arranged on a metal plate, and a linear motor using this stator.

従来のリニアモータにおける固定子は、複数の永久磁石が、交互に磁極が異なるようにして平行に並べ、且つ所定の間隔をあけて金属平板上に固定された構造をしている。これら永久磁石の金属平板への固定には、接着剤が用いられ、さらに接着された永久磁石の周縁がモールド樹脂でモールドされている(例えば、特許文献1参照)。
また、従来のリニアモータ用固定子では、リニアモータの組み立て時や使用時において、金属平板表面上に突出している永久磁石の破損を防止するため、樹脂で封止されている。
A stator in a conventional linear motor has a structure in which a plurality of permanent magnets are arranged in parallel with different magnetic poles alternately, and fixed on a metal flat plate with a predetermined interval. For fixing these permanent magnets to the metal flat plate, an adhesive is used, and the periphery of the bonded permanent magnet is molded with a mold resin (for example, see Patent Document 1).
Further, the conventional linear motor stator is sealed with resin in order to prevent the permanent magnets protruding on the surface of the metal flat plate from being damaged when the linear motor is assembled or used.

特開2002−369490号公報(第2−3頁、第2図)JP 2002-369490 A (page 2-3, FIG. 2)

リニアモータは、高精度の位置決め装置に使用されており、リニアモータ用固定子には高い平面度が要求される。しかし、リニアモータ用固定子を形成する、金属板と永久磁石と封止樹脂とは線膨張係数が異なるので、金属板上に永久磁石を固定し、この金属板上の永久磁石を加熱硬化型の樹脂で封止した場合、リニアモータ用固定子を封止樹脂の硬化温度から室温に戻す時に反りが発生する。
しかも、リニアモータの小形化・軽量化を実現するため、永久磁石を搭載する金属板および封止樹脂の厚さが薄くなってきており、また、リニアモータの生産性向上のため、金属板になるべく多数の永久磁石を搭載する必要があり、リニアモータ用固定子に用いる金属板の可動子が移動する方向の長さが長くなってきており、リニアモータ用固定子の反りが大きくなるとの問題があった。
Linear motors are used in high-precision positioning devices, and high flatness is required for linear motor stators. However, since the linear expansion coefficient of the metal plate, permanent magnet, and sealing resin that form the stator for the linear motor is different, the permanent magnet is fixed on the metal plate, and the permanent magnet on the metal plate is heated and cured. When the linear motor stator is returned from the curing temperature of the sealing resin to room temperature, warping occurs.
In addition, in order to reduce the size and weight of linear motors, the thickness of the metal plate on which permanent magnets are mounted and the sealing resin are becoming thinner, and in order to improve the productivity of linear motors, It is necessary to mount as many permanent magnets as possible, and the length of the moving direction of the metal plate mover used for the linear motor stator is getting longer, and the problem is that the linear motor stator warps more. was there.

この発明は、上述のような課題を解決するためになされたものであり、その目的は、永久磁石を搭載する金属板および封止樹脂の厚さが薄くても、永久磁石を搭載する金属板の可動子が移動する方向の長さが長くても、反りが小さくて、平面性に優れ、且つ長期信頼性に優れたリニアモータ用固定子と、この固定子を用いたリニアモータとを得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a metal plate for mounting a permanent magnet and a metal plate for mounting a permanent magnet even when the sealing resin is thin. Even if the length of the mover in the moving direction is long, a linear motor stator that is small in warpage, excellent in flatness, and excellent in long-term reliability, and a linear motor using this stator are obtained. Is.

この発明のリニアモータ用固定子は、金属板と、この金属板の同じ表面に、間隔をあけ
て且つ交互に磁極が異なるようにして平行に並べられ固定された複数の永久磁石と、永久
磁石を封止する樹脂とを備えたリニアモータ用固定子であって、上記封止する樹脂、使
用温度範囲でゴム状であり、且つ硬化完了後の25℃ での硬度(JIS)がA−10〜
A−80の範囲内であると共に、樹脂内に可塑剤など高温で飛散するような成分が10 %以上含有しないものである。
A stator for a linear motor according to the present invention includes a metal plate, a plurality of permanent magnets that are arranged in parallel and fixed on the same surface of the metal plate at intervals and with different magnetic poles alternately, and a permanent magnet And the resin for sealing is rubber-like in the operating temperature range, and the hardness (JIS) at 25 ° C. after the curing is completed is A−. 10
In addition to being in the range of A-80 , the resin does not contain 10% or more of a component such as a plasticizer that scatters at a high temperature .

またこの発明のリニアモータは、ステージと、このステージに載置された上記リニアモータ用固定子と、上記リニアモータ用固定子に対向し、上記ステージの長手方向に往復移動自在に配設された可動子とを備えてなるものである。   Further, the linear motor of the present invention is arranged to be reciprocally movable in the longitudinal direction of the stage, facing the stage, the linear motor stator mounted on the stage, and the linear motor stator. A mover is provided.

この発明によれば、金属板および封止樹脂の厚さが薄く薄肉であるとともに、長さが長くても、反りやうねりが小さく平面性に優れたリニアモータ用固定子を得ることができる。   According to this invention, the metal plate and the sealing resin are thin and thin, and even if the length is long, it is possible to obtain a stator for a linear motor that is small in warpage and undulation and excellent in flatness.

またこの発明によれば、樹脂内に可塑剤など高温で飛散するような成分が10%以上含有しないので、製品運転時の温度によってこれら飛散物が飛散して樹脂の収縮や硬度の上昇を引き起こし、クラック発生の原因となるようなこともない。   Further, according to the present invention, since the resin does not contain 10% or more of a component that scatters at high temperature such as a plasticizer, the scattered matter scatters depending on the temperature during product operation, causing the resin to shrink or increase in hardness. It does not cause cracks.

実施の形態1.
図1は、この発明の実施の形態1におけるリニアモータ用固定子の横断面模式図(a)上面模式図(b)および側面断面図(c)である。上面模式図(b)には、封止樹脂の一部が取り除かれ、金属板と永久磁石が見える状態も示している。
図1に示すように、リニアモータ用固定子(固定子と略記する)1は、長尺の金属板2と、この金属板2の表面に設けられた永久磁石3と封止樹脂4とから形成されている。
永久磁石3は、金属板2の長手方向に対して略垂直な方向に沿って複数のものが、交互に磁極が異なるようにして平行に並べられ、且つ所定の間隔をあけて金属板2に設けられている。封止樹脂4は、永久磁石3と、永久磁石3が設けられた金属板2の表面とを、覆うようにして設けられている。
そして、固定子1は、単独または必要に応じて長手方向に接続して複数で用いられる。
Embodiment 1 FIG.
1A and 1B are a schematic cross-sectional view (a), a schematic top view (b), and a side cross-sectional view (c), respectively, of a linear motor stator according to Embodiment 1 of the present invention. The top schematic view (b) also shows a state where a part of the sealing resin is removed and the metal plate and the permanent magnet can be seen.
As shown in FIG. 1, a linear motor stator (abbreviated as “stator”) 1 includes a long metal plate 2, a permanent magnet 3 provided on the surface of the metal plate 2, and a sealing resin 4. Is formed.
A plurality of permanent magnets 3 are arranged in parallel along a direction substantially perpendicular to the longitudinal direction of the metal plate 2 so that the magnetic poles are alternately different, and are arranged on the metal plate 2 at a predetermined interval. Is provided. The sealing resin 4 is provided so as to cover the permanent magnet 3 and the surface of the metal plate 2 on which the permanent magnet 3 is provided.
And the stator 1 is used by connecting with a longitudinal direction as needed individually or in plurality.

本実施の形態で用いられる金属板2としては、加工性、入手性の点から、例えば鋼板が挙げられる。
また本実施の形態で用いられる永久磁石3としては、例えば、ネオジ磁石、フェライト磁石が挙げられるが、磁力が強いものであれば、特にこれらに限定されるものではない。
また本実施の形態で用いられる封止樹脂4は、本リニアモータが使用される使用温度範囲(例えば0°C〜150°C)でゴム状である樹脂である。
使用温度範囲でゴム状である樹脂として、具体的にはエポキシ樹脂、シリコーン樹脂、ウレタン樹脂、熱可塑性エラストマーが挙げられる。使用温度範囲でゴム状でないと硬化完了後における熱歪による応力が増し、反りが大きくなる。このことを換言すると、ガラス転移温度が10℃より高いと硬化完了後における熱歪による応力が増し、反りが大きくなる。
Examples of the metal plate 2 used in the present embodiment include a steel plate from the viewpoint of workability and availability.
Further, examples of the permanent magnet 3 used in the present embodiment include neodymium magnets and ferrite magnets. However, the permanent magnets 3 are not particularly limited as long as they have a strong magnetic force.
The sealing resin 4 used in the present embodiment is a resin that is rubbery in the operating temperature range (for example, 0 ° C. to 150 ° C.) in which the linear motor is used.
Specific examples of the resin that is rubbery in the operating temperature range include epoxy resins, silicone resins, urethane resins, and thermoplastic elastomers. If it is not rubbery in the operating temperature range, the stress due to thermal strain after completion of curing increases and warpage increases. In other words, if the glass transition temperature is higher than 10 ° C., the stress due to thermal strain after completion of curing increases and warpage increases.

また本実施の形態で用いられる封止樹脂4は、硬化完了後の25℃での硬度(JIS)がA−80以下であることが望ましい。硬度(JIS)がA−80より大きいと硬化時における硬化収縮による応力、あるいは硬化完了後の熱歪による応力が増大し、反りが大きくなる。
硬度(JIS)がA−10より小さいと金属板2や永久磁石3との接着強度が低く、硬化が完了しても表面のタック性に劣るなどの問題が生じる。
Moreover, as for sealing resin 4 used by this Embodiment, it is desirable that the hardness (JIS) in 25 degreeC after completion of hardening is A-80 or less. If the hardness (JIS) is greater than A-80, the stress due to curing shrinkage at the time of curing or the stress due to thermal strain after the curing is increased, and warping is increased.
If the hardness (JIS) is smaller than A-10, the adhesive strength with the metal plate 2 or the permanent magnet 3 is low, and problems such as poor surface tackiness occur even when curing is completed.

また本実施の形態で用いられる封止樹脂4は、樹脂内に可塑剤など高温で飛散するような成分が10%以上含有しないことが望ましい。樹脂内に飛散成分が10%以上含有すると製品運転時の温度によってこれら飛散物が飛散して樹脂の収縮や硬度の上昇を引き起こし、クラック発生の原因となる。   Moreover, it is desirable that the sealing resin 4 used in the present embodiment does not contain 10% or more of a component such as a plasticizer that scatters at a high temperature. If the scattering component is contained in the resin in an amount of 10% or more, the scattered matter is scattered depending on the temperature during the operation of the product, causing the resin to shrink or increase in hardness, thereby causing cracks.

また本実施の形態で用いられる封止樹脂4には、低収縮化や、強度および弾性率向上のために無機物の粉末を配合することができる。
無機物の粉末としては、たとえば、溶融シリカ、結晶シリカ、カンラン石、ウォラストナイト、コージエライトもしくはフォルステライトなどのケイ酸塩化合物、アルミナ、水和アルミナ、水酸化アルミニウム、中空ガラスビーズ、ガラス繊維、酸化マグネシウム、酸化チタン、炭酸カルシウム、炭酸マグネシウム、ドロマイト、タルク、チタン酸カリ繊維、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン、無水石こう、硫酸バリウム、窒化ホウ素、炭化ケイ素、フッ化アルミニウム、フッ化カルシウム、フッ化マグネシウムまたはホウ酸アルミニウムなどの粉末が挙げられる。なお、無機物の粉末は、それぞれ単独で、または、任意に組み合わせて用いることができる。
In addition, the sealing resin 4 used in the present embodiment can be blended with an inorganic powder in order to reduce shrinkage and improve strength and elastic modulus.
Examples of inorganic powders include fused silica, crystalline silica, olivine, wollastonite, cordierite or forsterite, alumina, hydrated alumina, aluminum hydroxide, hollow glass beads, glass fibers, and oxidation. Magnesium, titanium oxide, calcium carbonate, magnesium carbonate, dolomite, talc, potassium titanate fiber, calcium hydroxide, magnesium hydroxide, antimony trioxide, anhydrous gypsum, barium sulfate, boron nitride, silicon carbide, aluminum fluoride, fluoride Examples of the powder include calcium, magnesium fluoride, and aluminum borate. The inorganic powders can be used alone or in any combination.

次に、実施例を挙げて、この発明をさらに詳細に説明する。
実施例1.
リニアモータ用固定子1を構成する部材には、金属板2としてS45C鋼板を、永久磁石3として、ネオジ磁石{NEOREC42SH:TDK(株)製}を、封止樹脂4として、ウレタン樹脂{SU-3600A/SU-3600B:サンユレック(株)製}を用いる。表1に金属板2と永久磁石3の寸法を示す。
Next, the present invention will be described in more detail with reference to examples.
Example 1.
The members constituting the linear motor stator 1 include an S45C steel plate as the metal plate 2, a neodymium magnet {NEOREC42SH: manufactured by TDK Co., Ltd.} as the permanent magnet 3, a urethane resin {SU- 3600A / SU-3600B: Sanyu Rec Co., Ltd.} is used. Table 1 shows the dimensions of the metal plate 2 and the permanent magnet 3.

Figure 0004802511
Figure 0004802511

リニアモータ用固定子1は以下のようにして作製される。42個の永久磁石3を、金属板2の幅方向と平行にし、4mmの間隔を設けて、金属板2に固定する。この時、両端にある永久磁石3は、金属板2の長手方向の各端部から2mmの位置に設けられている。次に、永久磁石3を設けた金属板2を、この金属板2の周囲を囲う金型内に入れ、この金型内に、永久磁石3の上面から0.5mmの高さまで封止樹脂4である上記ウレタン樹脂を注入し、80℃で所定時間加熱して、上記ウレタン樹脂を硬化して、リニアモータ用固定子1を得る。   The linear motor stator 1 is manufactured as follows. The 42 permanent magnets 3 are fixed to the metal plate 2 in parallel with the width direction of the metal plate 2 with an interval of 4 mm. At this time, the permanent magnets 3 at both ends are provided at a position 2 mm from each end in the longitudinal direction of the metal plate 2. Next, the metal plate 2 provided with the permanent magnet 3 is placed in a mold surrounding the metal plate 2, and the sealing resin 4 is placed in the mold up to a height of 0.5 mm from the upper surface of the permanent magnet 3. The urethane resin is injected and heated at 80 ° C. for a predetermined time to cure the urethane resin to obtain the linear motor stator 1.

得られたリニアモータ用固定子1を20℃で水平な定盤におき、定盤面と金属板2の下面との最大隙間を測定し、リニアモータ用固定子1の平面性を評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)とJIS−A硬度とともに表3に示した。   The obtained linear motor stator 1 was placed on a horizontal surface plate at 20 ° C., and the maximum gap between the surface plate surface and the lower surface of the metal plate 2 was measured to evaluate the flatness of the linear motor stator 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and JIS-A hardness of the sealing resin 4 used in this example.

円筒型の樹脂塊を作製し、得られた樹脂塊を高温暴露し初期からの重量変化を評価した。図2は、得られた樹脂塊の横断面模式図(a)および上面模式図(b)である。得られた樹脂塊の寸法を表2に示す。得られた重量変化を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)とJIS−A硬度とともに表3に示した。   A cylindrical resin lump was prepared, and the obtained resin lump was exposed to high temperature to evaluate the change in weight from the initial stage. FIG. 2 is a schematic cross-sectional view (a) and a schematic top view (b) of the obtained resin mass. Table 2 shows the dimensions of the resin mass obtained. The obtained weight change is shown in Table 3 together with the glass transition temperature (Tg) and JIS-A hardness of the sealing resin 4 used in this example.

Figure 0004802511
Figure 0004802511

得られたリニアモータ用固定子1を高温暴露後、+100℃〜-20℃のヒートサイクルを5回繰り返し、クラック等の発生の有無を本実施例に用いた封止樹脂4のガラス転移温度(Tg)とJIS−A硬度とともに表3に示した。   After the obtained linear motor stator 1 is exposed to high temperature, the heat cycle of + 100 ° C. to −20 ° C. is repeated 5 times, and the presence or absence of cracks or the like is determined for the glass transition temperature of the sealing resin 4 used in this example. The results are shown in Table 3 together with (Tg) and JIS-A hardness.

SUS 303の板を樹脂で接着し、引張りせん断強度を測定し、樹脂の接着強度を評価した。得られた接着強度を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)とJIS−A硬度とともに表3に示した。   A SUS 303 plate was bonded with resin, the tensile shear strength was measured, and the adhesive strength of the resin was evaluated. The obtained adhesive strength is shown in Table 3 together with the glass transition temperature (Tg) and JIS-A hardness of the sealing resin 4 used in this example.

実施例2.
封止樹脂4として、表3に示したようにウレタン樹脂{ MU-102A/MU102B:日本ペルノックス(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)とJIS硬度とともに表3に示した。
Example 2.
As shown in Table 3, a linear motor stator 1 is obtained in the same manner as in Example 1 except that urethane resin {MU-102A / MU102B: Nippon Pernox Co., Ltd.} is used as the sealing resin 4. The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained value of the maximum gap is shown in Table 3 together with the glass transition temperature (Tg) and JIS hardness of the sealing resin 4 used in this example.

実施例3.
封止樹脂4として、表3に示したようにエポキシ樹脂{XM-2437/HY-690:日本ペルノックス(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Example 3.
As shown in Table 3, the linear resin stator 1 was obtained in the same manner as in Example 1 except that an epoxy resin {XM-2437 / HY-690: Nippon Pernox Co., Ltd.} was used as the sealing resin 4. obtain. The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

実施例4.
封止樹脂4として、表3に示したようにウレタン樹脂{UF-110A/UF-110B:サンユレック(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Example 4
A linear motor stator 1 is obtained in the same manner as in Example 1 except that urethane resin {UF-110A / UF-110B: Sanyu Rec Co., Ltd.} is used as the sealing resin 4 as shown in Table 3. . The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

実施例5.
封止樹脂5として、表3に示したようにウレタン樹脂{SU-3001A/SU-3001B:サンユレック(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Example 5.
A linear motor stator 1 is obtained in the same manner as in Example 1 except that the urethane resin {SU-3001A / SU-3001B: Sanyu Rec Co., Ltd.} is used as the sealing resin 5 as shown in Table 3. . The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

実施例6.
封止樹脂5として、表3に示したようにウレタン樹脂{XN-2248/XY-2233-1:日本ペルノックス(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Example 6
As shown in Table 3, a linear motor stator was used in the same manner as in Example 1 except that urethane resin {XN-2248 / XY-2233-1: Nippon Pernox Co., Ltd.} was used as sealing resin 5. Get one. The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

比較例1.
封止樹脂6として、表3に示したように硬度JIS A−80以上かつ使用温度範囲でゴム状でないウレタン樹脂{SU-1000A/SU-1000B:サンユレック(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Comparative Example 1.
Example except that urethane resin {SU-1000A / SU-1000B: Sanyu Rec Co., Ltd.} having a hardness of JIS A-80 or higher and not rubbery as shown in Table 3 was used as the sealing resin 6. 1 to obtain a linear motor stator 1. The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

比較例2
封止樹脂7として、表3に示したように硬度JIS A−80以上かつ使用温度範囲でゴム状でないウレタンエポキシ樹脂{XNR5002/XNH5002:ナガセケムテックス(株)}を用いた以外、実施例1と同様にして、リニアモータ用固定子1を得る。得られたリニアモータ用固定子1の平面性を実施例1と同様にして評価した。求められた最大隙間の値を、本実施例に用いた封止樹脂4のガラス転移温度(Tg)と硬度とともに表3に示した。
Comparative Example 2
Example 1 except that a urethane epoxy resin {XNR5002 / XNH5002: Nagase ChemteX Corp.} that has a hardness of JIS A-80 or higher and is not rubbery in the operating temperature range as shown in Table 3 was used as the sealing resin 7. In the same manner as described above, the linear motor stator 1 is obtained. The planarity of the obtained linear motor stator 1 was evaluated in the same manner as in Example 1. The obtained maximum gap value is shown in Table 3 together with the glass transition temperature (Tg) and hardness of the sealing resin 4 used in this example.

表3の実施例に示すように、使用温度範囲でゴム状である封止樹脂を用いると金属板および封止樹脂の厚さが薄く、薄肉で長さが長くても、反りやうねりが小さく平面性に優れたリニアモータ用固定子を得ることができる。これらのリニアモータ用固定子を用いると、薄肉で長尺のリニアモータが実現できる。   As shown in the examples of Table 3, when a sealing resin that is rubbery in the operating temperature range is used, the metal plate and the sealing resin are thin, and even if they are thin and long, warping and undulation are small. A stator for a linear motor having excellent flatness can be obtained. When these linear motor stators are used, a thin and long linear motor can be realized.

Figure 0004802511
Figure 0004802511

この発明に係るリニアモータ用固定子は、金属板に複数の永久磁石が配列された固定子を備えたリニアモータに使用されるのに適している。   The stator for a linear motor according to the present invention is suitable for use in a linear motor including a stator in which a plurality of permanent magnets are arranged on a metal plate.

この発明の実施の形態1におけるリニアモータ用固定子の横断面模式図(a)、上面模式図(b)および側面断面図(c)である。It is a cross-sectional schematic diagram (a), a top schematic diagram (b), and a side cross-sectional view (c) of the stator for a linear motor according to Embodiment 1 of the present invention. この発明の実施の形態1における、樹脂の高温暴露による重量変化評価で用いた樹脂塊の横断面模式図(a)および上面模式図(b)である。It is the cross-sectional schematic diagram (a) and upper surface schematic diagram (b) of the resin lump used by weight change evaluation by high temperature exposure of resin in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 リニアモータ用固定子、2 金属板、3 永久磁石、4 封止樹脂   1 Stator for linear motor, 2 Metal plate, 3 Permanent magnet, 4 Sealing resin

Claims (2)

金属板と、この金属板の同じ表面に、間隔をあけて且つ交互に磁極が異なるようにして平行に並べられ固定された複数の永久磁石と、この永久磁石を封止する樹脂とを備えたリニアモータ用固定子であって、上記封止する樹脂、使用温度範囲でゴム状であり、且つ硬化完了後の25℃ での硬度(JIS)がA−10〜A−80の範囲内であると共に、樹脂内に可塑剤など高温で飛散するような成分が10 %以上含有しないことを特徴とするリニアモータ用固定子。 Provided with a metal plate, a plurality of permanent magnets arranged in parallel and spaced apart on the same surface of the metal plate so that the magnetic poles are alternately different, and a resin for sealing the permanent magnet The stator for a linear motor, wherein the resin to be sealed is rubbery in the operating temperature range, and the hardness (JIS) at 25 ° C. after completion of curing is within the range of A-10 to A-80. In addition, the linear motor stator is characterized in that the resin does not contain 10% or more of a component such as a plasticizer that scatters at a high temperature . ステージと、このステージに載置された請求項1に記載のリニアモータ用固定子と、上記リニアモータ用固定子に対向し、上記ステージの長手方向に往復移動自在に配設された可動子とを備えてなるリニアモータ。 A stage, a stator for a linear motor according to claim 1 placed on the stage, a mover facing the linear motor stator and reciprocally movable in a longitudinal direction of the stage; A linear motor comprising
JP2005050523A 2005-02-25 2005-02-25 Linear motor stator and linear motor Active JP4802511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050523A JP4802511B2 (en) 2005-02-25 2005-02-25 Linear motor stator and linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050523A JP4802511B2 (en) 2005-02-25 2005-02-25 Linear motor stator and linear motor

Publications (2)

Publication Number Publication Date
JP2006238622A JP2006238622A (en) 2006-09-07
JP4802511B2 true JP4802511B2 (en) 2011-10-26

Family

ID=37045668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050523A Active JP4802511B2 (en) 2005-02-25 2005-02-25 Linear motor stator and linear motor

Country Status (1)

Country Link
JP (1) JP4802511B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230437A (en) * 2013-05-24 2014-12-08 シンフォニアテクノロジー株式会社 Linear motor and manufacturing method thereof
JP6179446B2 (en) * 2014-04-14 2017-08-16 株式会社オートネットワーク技術研究所 Reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112011B2 (en) * 1999-01-18 2000-11-27 株式会社デンソー Insulation structure of stator of rotating electric machine and stator of alternator for vehicle
JP2000216301A (en) * 1999-01-22 2000-08-04 Kyocera Corp Semiconductor device
JP3876856B2 (en) * 2003-07-16 2007-02-07 三菱電機株式会社 Linear motor stator and linear motor

Also Published As

Publication number Publication date
JP2006238622A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5486036B2 (en) Electric motor having a rotor structure for preventing problems due to distortion caused by temperature change and method for manufacturing the same
JP2021065092A (en) Permanent magnet piece
KR101352567B1 (en) Linear Transfer Stage Apparatus
EP1427088A2 (en) Rotor with bonded permanent magnets for an electric motor
EP2993768B1 (en) Method for inserting magnet into rotor core
TWI338431B (en)
US9118237B2 (en) Mover for a linear motor and linear motor
JP4802511B2 (en) Linear motor stator and linear motor
JP2014239575A (en) Driving member, linear drive unit, camera device and electronic apparatus
JP2011120328A (en) Rotor for permanent magnet type motor, the permanent magnet type motor, and method of manufacturing the rotor and the permanent magnet type motor
JP2013247812A (en) Slide device
CN103444054A (en) Moving magnet actuator magnet carrier
CN110391063B (en) Actuator
JP2007215334A (en) Stator for motor, and motor
JP2007060889A (en) Permanent magnet type motor
JP2009094328A (en) Reactor
JP3876856B2 (en) Linear motor stator and linear motor
JP2010166705A (en) Coreless linear motor armature and coreless linear motor
JP5156684B2 (en) Driving stage and chip mounter using the same
JP2001169529A (en) Mobile body and mobile body system
JP6048338B2 (en) Linear motor
US10396645B2 (en) Vibration motor
JP2006230117A (en) Armature
JP2011035993A (en) Linear motor actuator
CN103701294A (en) Motor driven equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R151 Written notification of patent or utility model registration

Ref document number: 4802511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250