JP4799812B2 - Tailored tube hydroforming method - Google Patents

Tailored tube hydroforming method Download PDF

Info

Publication number
JP4799812B2
JP4799812B2 JP2003348031A JP2003348031A JP4799812B2 JP 4799812 B2 JP4799812 B2 JP 4799812B2 JP 2003348031 A JP2003348031 A JP 2003348031A JP 2003348031 A JP2003348031 A JP 2003348031A JP 4799812 B2 JP4799812 B2 JP 4799812B2
Authority
JP
Japan
Prior art keywords
tube
tailored
strength
low
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003348031A
Other languages
Japanese (ja)
Other versions
JP2005111511A (en
Inventor
正昭 水村
敬之助 井口
幸久 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003348031A priority Critical patent/JP4799812B2/en
Publication of JP2005111511A publication Critical patent/JP2005111511A/en
Application granted granted Critical
Publication of JP4799812B2 publication Critical patent/JP4799812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、自動車用の排気系部品、サスペンション系部品、ボディ部品等の製造に用いられるもので、板厚や材料が異なる金属管を連結したテーラードチューブを金型に入れ、当該金型を型締めした後、テーラードチューブ内に内圧と管軸方向の押し力を負荷することにより所定形状に成形するハイドロフォーム加工方法および成形品に関する。   The present invention is used for manufacturing exhaust system parts, suspension system parts, body parts, etc. for automobiles. A tailored tube in which metal pipes having different plate thicknesses and materials are connected is placed in a mold, and the mold is molded. The present invention relates to a hydroform processing method and a molded product that are molded into a predetermined shape by applying an internal pressure and a pushing force in the tube axis direction into the tailored tube after tightening.

近年ハイドロフォーム技術は、部品数削減によるコスト削減や軽量化等の手段の一つとして自動車分野で注目を浴びており、国内でも1999年から実車への適用を開始した。それ以降、ハイドロフォーム加工の適用部品は年々増加し、その市場規模は大幅に拡大してきた。   In recent years, hydroform technology has been attracting attention in the automobile field as one of the means for reducing costs and reducing weight by reducing the number of parts, and it has been applied to actual vehicles in Japan since 1999. Since then, the number of applicable parts for hydroforming has increased year by year, and the market size has greatly expanded.

一方、同様に軽量化の観点からプレス部品においてはテーラードブランクの技術が広まってきている。テーラードブランクとは、板厚や材料の異なる複数の金属板をあらかじめ結合したものである。すなわち、必要な箇所に必要な板厚を配置しているため、自動車部品の軽量化に非常に有効な技術として注目されている。   On the other hand, from the viewpoint of weight reduction, tailored blank technology has become widespread in press parts. The tailored blank is a combination of a plurality of metal plates having different thicknesses and materials. That is, since a necessary plate thickness is arranged at a necessary location, it is attracting attention as a very effective technique for reducing the weight of automobile parts.

この軽量化を目的とした二つの技術、すなわちハイドロフォームとテーラードブランクを複合したのが、テーラードチューブによるハイドロフォーム加工である。当該分野における従来技術としては、特許文献1や特許文献2のように、テーラードチューブを用いたハイドロフォーム部品を組み込んだ具体的な自動車部品の発明例や、特許文献3のようなハイドロフォーム性に優れたテーラードチューブの発明例などがある。
特開2001-321843号公報 特開2002-53069号公報 特開2003-211234号公報
Two technologies aimed at reducing the weight, that is, hydroforming and tailored blanks are combined to form hydroforming with tailored tubes. As conventional techniques in this field, as in Patent Document 1 and Patent Document 2, specific examples of automobile parts incorporating a hydroform part using a tailored tube, and hydroform properties as in Patent Document 3 are used. There are examples of excellent tailored tube inventions.
Japanese Patent Laid-Open No. 2001-321843 JP 2002-53069 A Japanese Patent Laid-Open No. 2003-211234

ハイドロフォームの成形において最も難しいのは管内部の内圧(以後、内圧と称す)と管軸方向の押し込み量(以後、軸押し量と称す)のバランスである。テーラードチューブでない通常の一様板厚・一様材料の管(以後、単管と称す)におけるハイドロフォーム時の負荷経路例を図1に示す。このように単管でも複雑な負荷経路を示し、最終の内圧と軸押し量だけでなく、その途中の経路も非常に重要となる。例えば、途中の内圧が高すぎると(同図(a))成形途中で管が破裂したり、途中の圧力が低過ぎると(同図(c))しわが残ったりする。この適正な負荷経路は、当然、管の板厚や材料特性によって異なる。
従って、異なる板厚や材料を有しているテーラードチューブの場合、その負荷経路は更に難しくなる。例えば、高強度側の材料に適した負荷経路で成形すると低強度側の材料にとっては高圧すぎるため途中で破裂しやすくなる。また図2に示すように、低強度側の材料1に適した負荷経路で成形すると途中の破裂は防止できるが、高強度側の材料1はほとんど膨らまず、その材料1が低強度側の材料2の中に入り込むような現象が発生する。その後、成形を継続させても継ぎ目部で座屈が残ってしまう(図2)。
The most difficult thing in hydroforming is the balance between the internal pressure inside the pipe (hereinafter referred to as internal pressure) and the amount of pushing in the axial direction of the pipe (hereinafter referred to as axial pushing amount). FIG. 1 shows an example of a load path at the time of hydroforming in a normal uniform thickness / material pipe (hereinafter referred to as a single pipe) which is not a tailored tube. In this way, even a single pipe shows a complicated load path, and not only the final internal pressure and the axial push amount but also the path along the way is very important. For example, if the internal pressure in the middle is too high ((a) in the figure), the tube may rupture in the middle of molding, or wrinkles may remain if the pressure in the middle is too low ((c) in the same figure). This proper load path naturally depends on the tube thickness and material characteristics.
Therefore, in the case of tailored tubes having different plate thicknesses and materials, the load path becomes more difficult. For example, if molding is performed with a load path suitable for the material on the high strength side, the pressure is too high for the material on the low strength side, so that it tends to burst in the middle. In addition, as shown in FIG. 2, when molding is performed with a load path suitable for the material 1 on the low strength side, bursting in the middle can be prevented. 2 occurs. Thereafter, even if molding is continued, buckling remains at the joint (FIG. 2).

以上のようにテーラードチューブは単管に比べて非常にハイドロフォームしにくく、現状ではあまり拡大率(=(最大周長−最小周長)/最小周長×100)を大きくならないような部品形状に設計している。あるいは、材料間の強度差(具体的には、高強度側の材料の引張強さ×板厚の値と低強度側の材料の引張強さ×板厚の値との差)が小さくなるように設定している。しかし、それでは本来のテーラードチューブやハイドロフォームのメリットが活かしきれず、軽量化の効果も薄れてしまう。
尚、拡大率とは成形後の部位別の拡大率を示す指標であり、成形前の素管径と成形後の製品径から求めた拡管率とは異なる指標である。
As described above, tailored tubes are much harder to hydroform than single tubes, and currently have a shape that does not increase the enlargement ratio (= (maximum circumference-minimum circumference) / minimum circumference x 100). Designing. Alternatively, the difference in strength between materials (specifically, the difference between the tensile strength of the material on the high strength side × the thickness value and the tensile strength of the material on the low strength side × the thickness value) is reduced. Is set. However, the advantages of the original tailored tube and hydroform cannot be fully utilized, and the effect of weight reduction will be diminished.
The expansion rate is an index indicating the expansion rate for each region after molding, and is an index different from the tube expansion rate obtained from the raw tube diameter before molding and the product diameter after molding.

本発明は、上述のように、従来は成形不可能であった、材料間の強度差が大きいテーラードチューブで拡大率の大きいハイドロフォーム成形品の加工を可能にしたハイドロフォーム加工方法及び当該加工方法にて可能になった、材料間の強度差が大きくて拡大率の大きいハイドロフォーム成形品を提供することを目的とする。   As described above, the present invention is a hydrofoam processing method capable of processing a hydrofoam molded article having a large enlargement ratio with a tailored tube having a large strength difference between materials, which was conventionally impossible to mold, and the processing method An object of the present invention is to provide a hydroform molded article having a large expansion ratio and a large difference in strength between materials.

係る課題を解決するため、本発明の要旨とするところは下記の通りである。
(1)引張強さTS[MPa]、板厚t[mm]の第1の金属管と、引張強さTS[MPa]、板厚t[mm]の第2の金属管が軸方向に直列に配列され溶接された円筒形のテーラードチューブを、該テーラードチューブの外径よりも内側平面部の間隔が小さい、断面が概長方形の金型に型締めすることで、該テーラードチューブ側面が、該金型内側平面部に、該テーラードチューブ軸方向に直線状に接しさせ、該テーラードチューブに内圧と管軸方向の押し力を負荷するハイドロフォーム加工方法において、引張強さ×板厚の小さい低強度側の金属管のみが拡管する圧力に昇圧した状態で、低強度側の金属管の管端から軸押しを負荷することにより低強度側の金属管を拡管させた後、引張強さ×板厚の大きい高強度側の金属管の管端から軸押しを負荷することにより高強度側の金属管を拡管させることを特徴とするテーラードチューブのハイドロフォーム加工方法。
In order to solve the problem, the gist of the present invention is as follows.
(1) A first metal tube having a tensile strength TS 1 [MPa] and a plate thickness t 1 [mm] and a second metal tube having a tensile strength TS 2 [MPa] and a plate thickness t 2 [mm] A cylindrical tailored tube arrayed in series in the axial direction and welded is clamped to a mold having a substantially rectangular cross section with a space between inner flat portions smaller than the outer diameter of the tailored tube. In the hydroform processing method in which the tube side surface is in linear contact with the inner flat portion of the mold in the tailored tube axial direction, and the tailored tube is loaded with the internal pressure and the pushing force in the tube axis direction, the tensile strength × the plate After expanding the low strength metal tube by applying axial push from the tube end of the low strength metal tube while the pressure is increased to a pressure that only the low strength metal tube of small thickness expands, High-strength metal with high strength x thickness Hydroforming method tailored tubes, characterized in that for tube expansion the metal pipe of the high-strength side by loading the axial pressing from the pipe end.

本発明により、従来のハイドロフォームでは成形できなかった材料間の強度差が大きいテーラードチューブで拡大管率の大きいハイドロフォーム加工が可能になる。それにより、冒頭に述べたような自動車部品の軽量化の効果に寄与できる。   According to the present invention, it is possible to perform a hydroforming process with a large expansion ratio using a tailored tube having a large strength difference between materials that could not be formed by a conventional hydroforming. This can contribute to the effect of reducing the weight of the automobile parts as described at the beginning.

図3は、高強度側の材料1と低強度側の材料2が溶接部3で結合されているテーラードチューブ4を長方形断面に拡管する場合のハイドロフォーム加工の例である。但し、ここでいう強度とは、材料の引張強さ×板厚を意味しており、この値が大きい方を高強度側の材料、低い方を低強度側の材料としている。この例を用いて本発明の詳細を説明する。   FIG. 3 shows an example of hydroforming when the tailored tube 4 in which the high-strength material 1 and the low-strength material 2 are joined by the welded portion 3 is expanded to a rectangular cross section. However, the term “strength” here means the tensile strength of the material × the thickness of the material, and the higher one is the material on the high strength side and the lower one is the material on the low strength side. The details of the present invention will be described using this example.

ハイドロフォーム加工では、まず軸押し量がほとんどない状態(管内部の水が漏れない程度には押しておく)で昇圧するが、その際の内圧は、低強度側の材料2が単管の場合に適した圧力に設定する(a)。これは、低強度側の材料2の破裂を防ぐためである。   In hydroforming, the pressure is increased with almost no axial push amount (press the tube so that the water inside the tube does not leak), but the internal pressure at that time is when the material 2 on the low strength side is a single tube. Set to a suitable pressure (a). This is to prevent the material 2 on the low strength side from bursting.

次に、その状態で軸押しを行う。通常、単管の場合は両管端とも軸押しを加えていくが、ここでは低強度側の材料2の管端のみ軸押しを負荷していく。軸押しが負荷されるに従って、低強度側の材料2は拡管されていき、次第に金型に沿った形状、すなわちこの例では長方形断面に成形されていく(b)。
そして低強度側の材料2の目標軸押し量まで軸押しする。この間、高強度側の材料1は、軸押しもされず、また内圧も材料1にとっては低い圧力のため、ほとんど拡管もされなければ、材料2の中に入り込むような座屈も生じない(c)。
Next, the shaft is pushed in this state. Usually, in the case of a single pipe, axial push is applied to both pipe ends, but here the axial push is applied only to the pipe end of the material 2 on the low strength side. As the axial push is applied, the material 2 on the low strength side is expanded and gradually formed into a shape along the mold, that is, a rectangular cross section in this example (b).
And it axially pushes to the target axial pushing amount of the material 2 on the low strength side. During this time, the material 1 on the high-strength side is not axially pushed, and the internal pressure is also low for the material 1, so that almost no tube expansion is performed, and buckling that enters the material 2 does not occur (c ).

その後、内圧を昇圧するが、その際の圧力は高強度側の材料1が単管の場合に適した圧力に設定する。この時点では、低強度側の材料2は、拡管がかなり進行しており、金型の拘束が大きいため、昇圧しても破裂し難くなっている(d)。   Thereafter, the internal pressure is increased, and the pressure at that time is set to a pressure suitable when the high-strength material 1 is a single pipe. At this time, the material 2 on the low-strength side has progressed considerably in tube expansion, and since the restraint of the mold is large, it is difficult to burst even when the pressure is increased (d).

その状態で今度は高強度側の材料1の管端のみを軸押ししていく。軸押しが負荷されるに従って、今度は高強度側の材料1の方が拡管されていき、次第に長方形断面に成形されていく。そして最終的に高強度側の材料1の目標軸押し量まで軸押しする。ここまでの工程で、両材料とも拡管され、しかも継ぎ目のところに座屈もない良好な形状が得られる(e)。   In this state, only the pipe end of the material 1 on the high strength side is axially pushed. As the axial push is applied, the material 1 on the high strength side is now expanded and gradually formed into a rectangular cross section. Finally, the shaft is pushed to the target push amount of the material 1 on the high strength side. In the process so far, both materials are expanded, and a good shape with no buckling at the joint is obtained (e).

最後に、必要に応じ、軸押しなしで昇圧のみを行うが、これはコーナーRをシャープにする工程で、通常の単管のハイドロフォームでも良く用いられる。以上で、成形中に破裂を起こさず、最終的にも座屈やしわが残らないテーラードチューブのハイドロフォーム成形品が完成させる(f)。   Finally, if necessary, only boosting is performed without pushing the shaft. This is a process of sharpening the corner R, and is often used for ordinary single-tube hydroforms. Thus, a tailored-tube hydroform molded product that does not rupture during molding and does not leave any buckling or wrinkles is completed (f).

上述の負荷経路ではわかりやすく、各軸押し中の内圧は一定とした。しかし、部品形状や材料によっては、成形時の破裂や座屈を防ぐために単管のハイドロフォーム成形でも軸押し中の内圧を変化させた方が良い場合もある。その場合は、図4のように、各材料の単管における負荷経路をもとに軸押し中の内圧を変化させれば良い。   In the above load path, it is easy to understand, and the internal pressure during pressing of each shaft is constant. However, depending on the part shape and material, it may be better to change the internal pressure during axial pushing even in single-tube hydroforming to prevent rupture and buckling during molding. In that case, as shown in FIG. 4, the internal pressure during the axial pushing may be changed based on the load path in the single pipe of each material.

上述の方法により、低強度側の金属管の引張強さ×板厚に対する高強度側の金属管の引張強さ×板厚に対する比が1.2以上で拡大率が15%以上の断面形状を有するテーラードチューブのハイドロフォーム成形品を得ることができる。   By the above-described method, the ratio of the tensile strength of the high strength side metal tube to the thickness of the metal tube on the low strength side × the plate thickness × the ratio of the plate thickness is 1.2 or more and the cross-sectional shape is 15% or more. It is possible to obtain a tailored tube hydroform molded product having the same.

下記に本発明の実施例を示す。
素管として用いたテーラードチューブの外径は63.5mmとし全長は490mmとした。高強度側の材料は、引張強さ330MPaで板厚1.4mmの鋼管とし、低強度側の材料は、引張強さ330MPaで板厚1.0mmの鋼管とした。ハイドロフォームに用いた金型は図5(a)に示すような長方形断面に拡管する形状で、拡大率(=(最大周長−最小周長)/最小周長×100)は54%である。尚、本部品形状に限っては、最小周長が両端の63.5φであり、素管の外径と一致していることから、拡管率(=(製品の最大周長−素管の周長)/素管の周長×100)は拡大率と同一の54%になる。現在実際に単管で量産しているハイドロフォームでもせいぜい拡管率は40%程度であることから、本形状は、拡管率としてはかなり大きいレベルといえる。
Examples of the present invention are shown below.
The outer diameter of the tailored tube used as the raw tube was 63.5 mm, and the total length was 490 mm. The material on the high strength side was a steel pipe having a tensile strength of 330 MPa and a thickness of 1.4 mm, and the material on the low strength side was a steel pipe having a tensile strength of 330 MPa and a thickness of 1.0 mm. The mold used for the hydroform has a shape that expands into a rectangular cross section as shown in FIG. 5A, and the enlargement ratio (= (maximum circumference−minimum circumference) / minimum circumference × 100) is 54%. . For the shape of this part only, the minimum circumference is 63.5φ at both ends, which matches the outer diameter of the tube, so that the tube expansion ratio (= (maximum product circumference-tube circumference) Length) / perimeter of the tube × 100) is 54% which is the same as the enlargement ratio. Even with hydroforms that are currently mass-produced with a single pipe, the pipe expansion rate is at most about 40%, so this shape can be said to be a considerably large level of pipe expansion rate.

加工負荷経路は図5(b)に示す通りであり、まずは薄肉材(1.0mm)の方の条件に合わせて12MPaまで昇圧し、そのまま薄肉側の管端のみ30mmまで軸押しした。但し、軸押し後半は若干圧力を高め14MPaとした。薄肉側の軸押し完了後、今度は厚肉材(1.4mm)の条件に合わせ17MPaまで昇圧してから厚肉側の管端のみ軸押しし、薄肉側と同じ30mmの位置で軸押しを停止させた。最後に両管端を固定したまま内圧を37MPaまで昇圧して成形を完了した。   The processing load path is as shown in FIG. 5B. First, the pressure was increased to 12 MPa in accordance with the condition of the thin material (1.0 mm), and only the tube end on the thin wall side was axially pushed to 30 mm. However, in the latter half of the axial pushing, the pressure was slightly increased to 14 MPa. After completing the axial push on the thin wall side, pressurize only the tube end on the thick wall side after increasing the pressure to 17 MPa according to the conditions of the thick material (1.4 mm), and push the shaft at the same 30 mm position as the thin wall side. Stopped. Finally, the inner pressure was increased to 37 MPa with both pipe ends fixed, thereby completing the molding.

図5(c)に示すように、本ハイドロフォーム加工方法でしわなどの加工不良がない良好な成形品が得られることが分かる。すなわち、本方法によって強度比1.4のテーラードチューブで拡大率54%(管端部の周長=199.4mm、長方形断面部の周長=306.6mm)のハイドロフォーム成形品を得た。   As shown in FIG.5 (c), it turns out that the favorable molded product without processing defects, such as wrinkles, is obtained with this hydrofoam processing method. That is, by this method, a hydroformed molded article having a magnification ratio of 54% (peripheral length of tube end portion = 199.4 mm, peripheral length of rectangular cross section = 306.6 mm) was obtained with a tailored tube having a strength ratio of 1.4.

単管のハイドロフォーム加工における一般的な負荷経路の説明図を示す。The explanatory view of the general load course in single pipe hydroforming is shown. 単管のハイドロフォームの負荷経路をテーラードチューブに適用した際に発生する加工不良の説明図を示す。Explanatory drawing of the processing defect which generate | occur | produces when the load path | route of a single-tube hydroform is applied to a tailored tube is shown. 本発明例によるテーラードチューブのハイドロフォーム加工方法の説明図を示す。The explanatory view of the hydroforming processing method of the tailored tube by the example of the present invention is shown. 本発明例によるテーラードチューブのハイドロフォーム加工方法のうち、内圧の制御が複雑な例を示す。Of the hydroformed processing methods for tailored tubes according to the present invention, an example in which the control of the internal pressure is complicated will be described. 本発明の実施例の説明図を示す。An explanatory view of an example of the present invention is shown.

符号の説明Explanation of symbols

1・・・高強度側の材料
2・・・低強度側の材料
3・・・溶接部
4・・・テーラードチューブ
DESCRIPTION OF SYMBOLS 1 ... High-strength side material 2 ... Low-strength side material 3 ... Welded part 4 ... Tailored tube

Claims (1)

引張強さTS[MPa]、板厚t[mm]の第1の金属管と、引張強さTS[MPa]、板厚t[mm]の第2の金属管が軸方向に直列に配列され溶接された円筒形のテーラードチューブを、該テーラードチューブの外径よりも内側平面部の間隔が小さい、断面が概長方形の金型に型締めすることで、該テーラードチューブ側面が、該金型内側平面部に、該テーラードチューブ軸方向に直線状に接しさせ、該テーラードチューブに内圧と管軸方向の押し力を負荷するハイドロフォーム加工方法において、引張強さ×板厚の小さい低強度側の金属管のみが拡管する圧力に昇圧した状態で、低強度側の金属管の管端から軸押しを負荷することにより低強度側の金属管を拡管させた後、引張強さ×板厚の大きい高強度側の金属管の管端から軸押しを負荷することにより高強度側の金属管を拡管させることを特徴とするテーラードチューブのハイドロフォーム加工方法。 A first metal tube with a tensile strength TS 1 [MPa] and a plate thickness t 1 [mm] and a second metal tube with a tensile strength TS 2 [MPa] and a plate thickness t 2 [mm] are in the axial direction. The cylindrical tailored tubes arranged in series and welded in series are clamped into a mold having a substantially rectangular cross section with a space between the inner plane portions smaller than the outer diameter of the tailored tube, so that the side surface of the tailored tube is In the hydroform processing method in which the inner flat surface of the mold is linearly contacted in the axial direction of the tailored tube, and the internal pressure and the pressing force in the axial direction of the tube are loaded on the tailored tube, the tensile strength × the plate thickness is small In a state where only the low-strength side metal tube is expanded to a pressure that expands, the axial strength is applied from the tube end of the low-strength side metal tube to expand the low-strength side metal tube, and then the tensile strength × Metal pipe on the high strength side with large plate thickness Hydroforming method tailored tubes, characterized in that for tube expansion the metal pipe of the high-strength side by loading the axial pressing from.
JP2003348031A 2003-10-07 2003-10-07 Tailored tube hydroforming method Expired - Fee Related JP4799812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348031A JP4799812B2 (en) 2003-10-07 2003-10-07 Tailored tube hydroforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348031A JP4799812B2 (en) 2003-10-07 2003-10-07 Tailored tube hydroforming method

Publications (2)

Publication Number Publication Date
JP2005111511A JP2005111511A (en) 2005-04-28
JP4799812B2 true JP4799812B2 (en) 2011-10-26

Family

ID=34540345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348031A Expired - Fee Related JP4799812B2 (en) 2003-10-07 2003-10-07 Tailored tube hydroforming method

Country Status (1)

Country Link
JP (1) JP4799812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551419B (en) * 2013-09-30 2015-08-19 沈阳黎明航空发动机(集团)有限责任公司 A kind of asymmetric pipe processing method adopting transition state mould

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3518356B2 (en) * 1998-07-31 2004-04-12 住友金属工業株式会社 Control method of hydraulic bulging of metal tube
JP2000301252A (en) * 1999-04-13 2000-10-31 Nippon Steel Corp Method for shaft pressing metal tube
JP4696334B2 (en) * 2000-05-18 2011-06-08 住友金属工業株式会社 Hydroform method
JP4696367B2 (en) * 2001-02-06 2011-06-08 Jfeスチール株式会社 Hydroforming method for metal pipe
JP2003053442A (en) * 2001-08-22 2003-02-26 Nippon Steel Corp Dissimilar metal welded tube for hydroforming and its manufacturing method

Also Published As

Publication number Publication date
JP2005111511A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR101239927B1 (en) Hydroforming method, and hydroformed parts
JP4374399B1 (en) Hydroform processing method and hydroformed product
JP2010051974A (en) Method of joining pipe and member to be joined
JP5009363B2 (en) Hydroform processing method
JP5355963B2 (en) Method for joining pipe and member to be joined
CA2483113C (en) Process for cold forming tube ends
JP5009364B2 (en) Method for manufacturing hydroformed products
US20020043089A1 (en) Method of and apparatus for making a pipe of different wall thickness
JP4799812B2 (en) Tailored tube hydroforming method
WO2016104706A1 (en) Method for manufacturing wide-mouthed metal pipe
JP4631130B2 (en) Modified tubular product and manufacturing method thereof
JP6567120B1 (en) Hydroforming method
JP2001321844A (en) Method for hydroforming metal tube and die
JP3990574B2 (en) Hydroform processing method
JP4473705B2 (en) Hydroform processing method, hydroform molded article and structure
JP2011131219A (en) Method for forming pipe member
JP2006043738A (en) Fuel feed pipe manufacturing method
JP2005095983A (en) Bellows pipe, manufacturing method therefor, and die
JP5037020B2 (en) Manufacturing method of metal pipe parts
JP2007185697A (en) Machining method and machining device for metallic tube
JP2006116553A (en) Hydro-forming method, product and structural body manufactured by hydro-forming
JP2003001336A (en) Method for manufacturing eccentric tube using hydroform method
JP2005296969A (en) Hydroforming method
US7059033B2 (en) Method of forming thickened tubular members
JP5121040B2 (en) Hydroform molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100528

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4799812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees