JP4799495B2 - Internal combustion engine catalyst deterioration judgment system - Google Patents

Internal combustion engine catalyst deterioration judgment system Download PDF

Info

Publication number
JP4799495B2
JP4799495B2 JP2007179376A JP2007179376A JP4799495B2 JP 4799495 B2 JP4799495 B2 JP 4799495B2 JP 2007179376 A JP2007179376 A JP 2007179376A JP 2007179376 A JP2007179376 A JP 2007179376A JP 4799495 B2 JP4799495 B2 JP 4799495B2
Authority
JP
Japan
Prior art keywords
reaction heat
catalyst
exhaust purification
purification catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007179376A
Other languages
Japanese (ja)
Other versions
JP2009013945A (en
Inventor
好正 児玉
孝彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2007179376A priority Critical patent/JP4799495B2/en
Publication of JP2009013945A publication Critical patent/JP2009013945A/en
Application granted granted Critical
Publication of JP4799495B2 publication Critical patent/JP4799495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、内燃機関の触媒劣化判定システムに関する。   The present invention relates to a catalyst deterioration determination system for an internal combustion engine.

自動車の内燃機関から排出される排気中の有害成分(例えば、HC,CO,NOx)の規制が強化されるに伴い、排気中の有害成分を排気浄化触媒によって浄化する技術が提案されている。ここで、排気浄化触媒としては、代表的なものにNOxの還元と、HC,COの酸化処理を同時に処理する三元触媒がある。   As regulations on harmful components (for example, HC, CO, NOx) in exhaust discharged from an internal combustion engine of an automobile are strengthened, a technology for purifying harmful components in exhaust with an exhaust purification catalyst has been proposed. Here, as a typical exhaust purification catalyst, there is a three-way catalyst that simultaneously processes NOx reduction and HC and CO oxidation.

上記三元触媒は酸素吸蔵能(OSC:Oxygen Storage Capacity)を有しており、排気
中の酸素を吸蔵・放出する性質を有している。より詳しくは、三元触媒に流入する排気空燃比がリッチ空燃比の場合には三元触媒に吸蔵されている酸素が放出されることで排気中のHCやCOが酸化される。一方、排気空燃比がリーン空燃比の場合には三元触媒に酸素が吸蔵されることでNOxが還元される。なお、「吸蔵」には吸着および吸収の概念が含まれるものである。
The three-way catalyst has an oxygen storage capacity (OSC: Oxygen Storage Capacity), and has a property of storing and releasing oxygen in exhaust gas. More specifically, when the exhaust air-fuel ratio flowing into the three-way catalyst is a rich air-fuel ratio, oxygen stored in the three-way catalyst is released, and HC and CO in the exhaust are oxidized. On the other hand, when the exhaust air-fuel ratio is a lean air-fuel ratio, NOx is reduced by storing oxygen in the three-way catalyst. “Occlusion” includes the concept of adsorption and absorption.

上記のような酸素吸蔵能を有する排気浄化触媒が劣化すると、その酸素吸蔵能が低下して排気浄化能力が悪化する。酸素吸蔵能と触媒の劣化度合いとには相関関係があるため、排気浄化触媒の酸素吸蔵能に基づいて触媒が劣化しているか否かを判定する劣化判定制御を行う技術が提案されている(例えば、特許文献1を参照。)。   When the exhaust purification catalyst having the oxygen storage capacity as described above deteriorates, the oxygen storage capacity decreases and the exhaust purification capacity deteriorates. Since there is a correlation between the oxygen storage capacity and the degree of deterioration of the catalyst, there has been proposed a technique for performing deterioration determination control for determining whether or not the catalyst is deteriorated based on the oxygen storage capacity of the exhaust purification catalyst ( For example, see Patent Document 1.)

特許文献1には、排気浄化触媒に流入する排気空燃比がリッチ側からリーン側へと、あるいはリーン側からリッチ側へと周期的に反転させる空燃比制御を行う。すなわち、排気浄化触媒に流入する排気の空燃比が反転した後、同触媒から流出する排気の空燃比が反転するまでの期間の長さに基づいて触媒が劣化しているか否かが判定される。   Patent Document 1 performs air-fuel ratio control in which the exhaust air-fuel ratio flowing into the exhaust purification catalyst is periodically reversed from the rich side to the lean side or from the lean side to the rich side. That is, it is determined whether or not the catalyst has deteriorated based on the length of the period from when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is reversed until the air-fuel ratio of the exhaust gas flowing out from the catalyst is reversed. .

しかしながら、上記空燃比制御を実施している最中においても運転者の要求によって内燃機関の運転状態は変化するため、運転状態の変化が空燃比制御に影響を及ぼす場合がある。つまり、触媒の劣化判定制御に係る判定精度が悪化する虞があった。また、内燃機関の運転状態に関わらず強制的に空燃比制御を実行するとドライバビリティが悪化する虞もあった。
特開平6−74025号公報 特開2006−275007号公報 特許第2557477号公報 特開2005−98205号公報 特開2005−140011号公報 特開2002−188436号公報
However, since the operation state of the internal combustion engine changes according to the driver's request even during the air-fuel ratio control, the change in the operation state may affect the air-fuel ratio control. That is, there is a possibility that the determination accuracy related to the catalyst deterioration determination control is deteriorated. In addition, drivability may be deteriorated if the air-fuel ratio control is forcibly executed regardless of the operating state of the internal combustion engine.
JP-A-6-74025 JP 2006-275007 A Japanese Patent No. 2557477 JP-A-2005-98205 JP-A-2005-140011 JP 2002-188436 A

本発明は、上記従来技術に鑑みてなされたものであり、その目的とするところは、排気浄化触媒の劣化度合いを精度良く判定するとともに、劣化度合いの判定を行う際に内燃機関の運転状態に影響を及ぼすことに起因してドライバビリティが悪化することを抑制できる技術を提供することである。   The present invention has been made in view of the above-described prior art, and an object of the present invention is to accurately determine the degree of deterioration of the exhaust purification catalyst and to determine the state of operation of the internal combustion engine when determining the degree of deterioration. It is to provide a technology capable of suppressing deterioration of drivability due to influence.

上記課題を達成するために本発明における内燃機関の触媒劣化判定システムは、以下の
手段を採用した。即ち、
内燃機関の排気通路に設けられ酸素吸蔵能を有する排気浄化触媒と、
前記排気浄化触媒内がリッチ雰囲気であって前記内燃機関のフューエルカットが実行された場合に、前記排気浄化触媒の触媒床温を測定し、排気中の酸素が該排気浄化触媒に吸蔵される時に発生する吸蔵反応熱を検出する吸蔵反応熱検出手段と、
前記吸蔵反応熱検出手段による前記吸蔵反応熱の検出時期に基づいて前記排気浄化触媒の劣化度合いを判定する劣化度合い判定手段と、
を備えることを特徴とする。
To achieve the above object, the internal combustion engine catalyst deterioration determination system according to the present invention employs the following means. That is,
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine and having an oxygen storage capacity;
When the exhaust purification catalyst has a rich atmosphere and the fuel cut of the internal combustion engine is executed, the catalyst bed temperature of the exhaust purification catalyst is measured, and oxygen in the exhaust is stored in the exhaust purification catalyst Occlusion reaction heat detection means for detecting the generated occlusion reaction heat;
A deterioration degree determination means for determining a deterioration degree of the exhaust purification catalyst based on a detection timing of the storage reaction heat by the storage reaction heat detection means;
It is characterized by providing.

本発明においては、排気浄化触媒内がリッチ雰囲気にある状態においてフューエルカット(燃料カット)が実行される際に、排気浄化触媒の劣化度合いが判定される。ここで、排気浄化触媒内がリッチ雰囲気にあるとは、排気浄化触媒の内部がリッチ雰囲気になっている状態を意味しており、例えば内燃機関の負荷(トルク)の増大等に伴ってリッチ空燃比の排気が排気浄化触媒に流入することにより、排気浄化触媒に吸蔵されていた酸素が放出され、酸素吸蔵量が略零になっている状態が例示できる。また、排気浄化触媒の劣化度合いとは、排気浄化触媒の劣化の程度を意味する。   In the present invention, when the fuel cut (fuel cut) is executed in a state where the exhaust purification catalyst is in a rich atmosphere, the degree of deterioration of the exhaust purification catalyst is determined. Here, the inside of the exhaust purification catalyst being in a rich atmosphere means a state in which the inside of the exhaust purification catalyst is in a rich atmosphere. For example, when the load (torque) of the internal combustion engine increases, the rich purification atmosphere A state in which the oxygen stored in the exhaust purification catalyst is released by the flow of the exhaust gas at the fuel ratio into the exhaust purification catalyst, and the oxygen storage amount is substantially zero can be exemplified. The degree of deterioration of the exhaust purification catalyst means the degree of deterioration of the exhaust purification catalyst.

このような状態で、例えば内燃機関に減速要求がなされる場合等、フューエルカットが実行されると、排気浄化触媒には空気と略同等な酸素濃度の排気が流入することになる。そして、排気浄化触媒に対し、リッチ空燃比の排気が流入していた状態から、過剰酸素をより多く含んだ排気が流入する状態に移行することで、排気に含まれる過剰酸素が排気浄化触媒において吸蔵される酸素吸蔵反応が起こる。   In this state, for example, when a fuel cut is performed, such as when a deceleration request is made to the internal combustion engine, exhaust having an oxygen concentration substantially equal to air flows into the exhaust purification catalyst. Then, by shifting from the state where the rich air-fuel ratio exhaust gas flows into the exhaust purification catalyst to the state where exhaust gas containing more excess oxygen flows, excess oxygen contained in the exhaust gas is reduced in the exhaust purification catalyst. Oxygen storage reaction occurs.

ここで、上記の酸素吸蔵反応は発熱反応であるため、排気浄化触媒において酸素吸蔵反応が発生した位置における触媒床温が上昇する。本発明では、フューエルカットの実行前においては、排気浄化触媒内がリッチ雰囲気になっている状態であるため、先ず同触媒の前端部近傍のみにおいて酸素吸蔵反応が発生することになる。   Here, since the oxygen storage reaction is an exothermic reaction, the catalyst bed temperature at the position where the oxygen storage reaction occurs in the exhaust purification catalyst increases. In the present invention, before the fuel cut is performed, the exhaust purification catalyst is in a rich atmosphere, so an oxygen storage reaction first occurs only in the vicinity of the front end of the catalyst.

そして、前端部近傍における酸素吸蔵量が増大すると、前端部近傍のみでは酸素をそれ以上吸蔵することが困難となる。その結果、過剰酸素を含んだ状態の排気が前端部近傍の領域を下流側にすり抜け、排気浄化触媒内のより下流側の領域において酸素吸蔵反応が生じるようになる。つまり、酸素吸蔵反応の発生箇所が経時とともに排気浄化触媒の上流側から下流側に向かって移行することになる。   When the oxygen storage amount in the vicinity of the front end portion increases, it becomes difficult to store more oxygen only in the vicinity of the front end portion. As a result, the exhaust gas containing excess oxygen passes through the region in the vicinity of the front end portion to the downstream side, and an oxygen storage reaction occurs in a more downstream region in the exhaust purification catalyst. That is, the location where the oxygen storage reaction occurs shifts from the upstream side to the downstream side of the exhaust purification catalyst with time.

ここで、排気浄化触媒の酸素吸蔵能とは、同触媒における酸素吸蔵能力の高さを表す概念である。また、本発明における酸素吸蔵能は、排気浄化触媒の全体に係る酸素吸蔵能を意味していても良いし、同触媒の部分的な領域に係る酸素吸蔵能を意味していても良い。そして、排気浄化触媒の酸素吸蔵能が高いほど、酸素吸蔵反応の発生箇所が下流側に移行する速さが遅くなる。そこで、本発明においては、吸蔵反応熱検出手段によって上記の吸蔵反応熱を検出し、この吸蔵反応熱の検出時期に基づいて排気浄化触媒の劣化度合いを判定することとした。   Here, the oxygen storage capacity of the exhaust purification catalyst is a concept representing the high oxygen storage capacity of the catalyst. Further, the oxygen storage capacity in the present invention may mean the oxygen storage capacity related to the entire exhaust purification catalyst, or may mean the oxygen storage capacity related to a partial region of the catalyst. And the higher the oxygen storage capacity of the exhaust purification catalyst is, the slower the speed at which the location where the oxygen storage reaction occurs is shifted to the downstream side. Therefore, in the present invention, the above-described occlusion reaction heat is detected by the occlusion reaction heat detection means, and the degree of deterioration of the exhaust purification catalyst is determined based on the detection timing of this occlusion reaction heat.

ここで、排気浄化触媒の劣化度合いが高いほど酸素吸蔵能が低下する傾向がある。そこで、本発明においては、吸蔵反応熱の検出時期が遅くなるほど排気浄化触媒の酸素吸蔵能が高いと判断される。すなわち、排気浄化触媒の劣化度合いが低いと判定される。一方、吸蔵反応熱の検出時期が速いほど排気浄化触媒の酸素吸蔵能が低く、排気浄化触媒の劣化度合いが高いと判定される。つまり、本発明によれば、排気浄化触媒の劣化度合いを好適に判定することができる。   Here, the oxygen storage capacity tends to decrease as the degree of deterioration of the exhaust purification catalyst increases. Therefore, in the present invention, it is determined that the oxygen storage capacity of the exhaust purification catalyst is higher as the detection time of the heat of storage reaction is delayed. That is, it is determined that the degree of deterioration of the exhaust purification catalyst is low. On the other hand, it is determined that the earlier the detection timing of the occlusion reaction heat is, the lower the oxygen storage capacity of the exhaust purification catalyst is, and the higher the degree of deterioration of the exhaust purification catalyst is. That is, according to the present invention, the degree of deterioration of the exhaust purification catalyst can be suitably determined.

本発明においては、内燃機関の運転状態が変更されることに伴い、リッチ空燃比の排気
が排気浄化触媒に流入している状態から、過剰酸素を多く含んだ排気が流入する状態に移行するタイミングを利用して触媒の劣化度合いを判定するため、わざわざ排気空燃比に係る制御を実行する必要がない。従って、排気浄化触媒の劣化度合いを判定する際に、内燃機関の運転状態に影響を及ぼす虞がなく、ドライバビリティが悪化することを抑制できる。
In the present invention, when the operating state of the internal combustion engine is changed, the timing at which the rich air-fuel ratio exhaust gas flows into the exhaust gas purification catalyst shifts to a state where exhaust gas containing a large amount of excess oxygen flows. Therefore, it is not necessary to execute the control related to the exhaust air-fuel ratio. Therefore, when determining the degree of deterioration of the exhaust purification catalyst, there is no possibility of affecting the operating state of the internal combustion engine, and deterioration of drivability can be suppressed.

また、本発明者等の鋭意研究によって上記の酸素吸蔵反応の発生時期は内燃機関にフューエルカットが実行されてから概ね1秒程度の範囲に収まることが解っている。つまり、本発明によれば、運転状態がフューエルカット状態から復帰するまでの短期間に劣化度合いに係る判定を完了することができる。従って、内燃機関の運転状態の影響を受けることなく触媒の劣化度合いを判定できるので、判定精度が悪化することを抑制できる。   Further, it has been found from the earnest research by the present inventors that the generation timing of the oxygen storage reaction falls within the range of about 1 second after the fuel cut is performed on the internal combustion engine. That is, according to the present invention, the determination relating to the degree of deterioration can be completed in a short period of time until the operating state returns from the fuel cut state. Therefore, since the degree of deterioration of the catalyst can be determined without being affected by the operating state of the internal combustion engine, it is possible to prevent the determination accuracy from deteriorating.

ここで、本発明における劣化度合い判定手段は、吸蔵反応熱の検出時期に基づいて排気浄化触媒の酸素吸蔵能を推定しても良い。例えば、排気浄化触媒の排気流れ方向における吸蔵反応熱の検出位置(吸蔵反応熱検出手段の配置位置)毎に、吸蔵反応熱の検出時期と排気浄化触媒の酸素吸蔵能との関係を予め実験的に求めておき、吸蔵反応熱の検出時期に基づいて排気浄化触媒の酸素吸蔵能を推定しても良い。   Here, the deterioration degree determination means in the present invention may estimate the oxygen storage capacity of the exhaust purification catalyst based on the detection time of the storage reaction heat. For example, for each detection position of the occlusion reaction heat in the exhaust flow direction of the exhaust purification catalyst (position of the occlusion reaction heat detection means), the relationship between the detection timing of the occlusion reaction heat and the oxygen storage capacity of the exhaust purification catalyst is experimentally determined in advance. The oxygen storage capacity of the exhaust purification catalyst may be estimated based on the detection timing of the storage reaction heat.

そして、本発明においては、推定された酸素吸蔵能に基づいて該排気浄化触媒の劣化度合いを判定しても良い。つまり、例えば排気浄化触媒の酸素吸蔵能が所定の閾値以下である場合に同触媒が劣化していると判定しても良い。ここでの閾値は、排気浄化触媒における触媒機能が低下するほど劣化度合いが高くなるときの酸素吸蔵能であり、予め実験的に求めておいても良い。また、触媒が劣化しているか否かだけの判定ではなく、複数の閾値を設定することによって排気浄化触媒の劣化度合いをより詳細に判定しても良い。   In the present invention, the degree of deterioration of the exhaust purification catalyst may be determined based on the estimated oxygen storage capacity. That is, for example, when the oxygen storage capacity of the exhaust purification catalyst is not more than a predetermined threshold value, it may be determined that the catalyst has deteriorated. The threshold here is the oxygen storage capacity when the degree of deterioration increases as the catalytic function of the exhaust purification catalyst decreases, and may be obtained experimentally in advance. Further, instead of determining whether or not the catalyst has deteriorated, the degree of deterioration of the exhaust purification catalyst may be determined in more detail by setting a plurality of threshold values.

ここで、排気浄化触媒の酸素吸蔵能は同触媒の触媒床温の違いによって影響を受けると考えられる。例えば、触媒床温が低い場合(例えば、400℃)に比べて高い場合(例えば、600℃)の方が排気浄化触媒の酸素吸蔵能は高くなる。そこで、本発明における劣化度合い判定手段は、更に、吸蔵反応熱検出手段により測定された触媒床温に基づいて排気浄化触媒の劣化度合いを判定しても良い。   Here, it is considered that the oxygen storage capacity of the exhaust purification catalyst is affected by the difference in the catalyst bed temperature of the catalyst. For example, the oxygen storage capacity of the exhaust purification catalyst is higher when the catalyst bed temperature is higher (for example, 600 ° C.) than when the catalyst bed temperature is lower (for example, 400 ° C.). Therefore, the deterioration degree determination means in the present invention may further determine the deterioration degree of the exhaust purification catalyst based on the catalyst bed temperature measured by the occlusion reaction heat detection means.

例えば、吸蔵反応熱の検出時期に基づいて酸素吸蔵能を推定する場合には、触媒床温に応じて酸素吸蔵能を補正しても良い。本発明によれば、排気浄化触媒の触媒床温が大きく相違しても同触媒の劣化度合いをより精度良く推定することができる。   For example, when the oxygen storage capacity is estimated based on the detection timing of the heat of storage reaction, the oxygen storage capacity may be corrected according to the catalyst bed temperature. According to the present invention, the degree of deterioration of the exhaust purification catalyst can be estimated more accurately even if the catalyst bed temperature of the exhaust purification catalyst is greatly different.

また、本発明においては、流入排気空燃比がリーン空燃比か否かを判定するリーン判定手段を更に備えても良い。これにより、排気浄化触媒の前端部における酸素吸蔵反応が開始するタイミングを精度良く把握することができる。そして、劣化度合い判定手段は、流入排気空燃比がリーン空燃比であると判定されてから吸蔵反応熱が検出されるまでの反応熱検出期間に基づいて排気浄化触媒の劣化度合いを判定しても良い。   In the present invention, a lean determination means for determining whether or not the inflow exhaust air-fuel ratio is a lean air-fuel ratio may be further provided. Thereby, it is possible to accurately grasp the timing at which the oxygen storage reaction starts at the front end portion of the exhaust purification catalyst. The deterioration degree determination means may determine the deterioration degree of the exhaust purification catalyst based on a reaction heat detection period from when it is determined that the inflow exhaust air-fuel ratio is a lean air-fuel ratio until the occlusion reaction heat is detected. good.

すなわち、反応熱検出期間は、排気浄化触媒の前端部と吸蔵反応熱検出手段の配置位置とにおける酸素吸蔵反応が発生する時期の差を意味する。従って、反応熱検出期間が長いほど吸蔵反応熱検出手段の配置位置よりも上流側の領域における酸素吸蔵量(以下、「上流部吸蔵量」ともいう。)が多いことを意味する。そこで本発明では、上流部吸蔵量に閾値を設定し、閾値との大小関係によって排気浄化触媒の劣化度合いを判定しても良い。   That is, the reaction heat detection period means a difference in the timing at which the oxygen storage reaction occurs between the front end portion of the exhaust purification catalyst and the position where the storage reaction heat detection means is disposed. Therefore, it means that the longer the reaction heat detection period, the greater the oxygen storage amount (hereinafter also referred to as “upstream storage amount”) in the region upstream of the position at which the storage reaction heat detection means is disposed. Therefore, in the present invention, a threshold value may be set for the upstream storage amount, and the degree of deterioration of the exhaust purification catalyst may be determined based on the magnitude relationship with the threshold value.

また、上流部吸蔵量と排気浄化触媒の酸素吸蔵能は相関があるため、上流部吸蔵量に基づいて酸素吸蔵能を推定し、推定された酸素吸蔵能に基づいて劣化度合いを判定しても良い。そこで、本発明においては、上記反応熱検出期間に基づいて上流部吸蔵量を算出する
上流部吸蔵量算出手段を、更に備えても良い。例えば、反応熱検出期間において排気浄化触媒に流入した排気に含まれる酸素量の積分値に基づいて上流部吸蔵量を算出しても良い。
Further, since the upstream storage amount and the oxygen storage capacity of the exhaust purification catalyst are correlated, the oxygen storage capacity is estimated based on the upstream storage amount, and the deterioration degree is determined based on the estimated oxygen storage capacity. good. Therefore, in the present invention, an upstream storage amount calculating means for calculating the upstream storage amount based on the reaction heat detection period may be further provided. For example, the upstream storage amount may be calculated based on the integrated value of the oxygen amount contained in the exhaust gas flowing into the exhaust purification catalyst during the reaction heat detection period.

そして、本発明における劣化度合い判定手段は、排気浄化触媒全体に対する触媒前端部から前記配置位置までの容積比および上流部吸蔵量に基づいて前記排気浄化触媒の全体に係る酸素吸蔵能を推定しても良い。すなわち、上流部吸蔵量を上記容積比で除すことによって排気浄化触媒全体に係る酸素吸蔵能を精度良く推定できる。これにより、排気浄化触媒の劣化度合いを好適に判定することができる。   The deterioration degree determining means in the present invention estimates the oxygen storage capacity of the exhaust purification catalyst as a whole based on the volume ratio from the front end of the catalyst to the arrangement position and the upstream storage amount with respect to the entire exhaust purification catalyst. Also good. That is, the oxygen storage capacity of the entire exhaust purification catalyst can be accurately estimated by dividing the upstream storage amount by the volume ratio. Thereby, the deterioration degree of the exhaust purification catalyst can be suitably determined.

また、本発明において、吸蔵反応熱検出手段は、排気浄化触媒における排気流れ方向に複数設けられても良い。そして、劣化度合い判定手段は、複数のうち選択された二の吸蔵反応熱検出手段によって検出された吸蔵反応熱の検出時期の差である反応熱検出遅れ期間に基づいて排気浄化触媒の劣化度合いを判定しても良い。なお、上記二の吸蔵反応熱検出手段は、複数のうちから任意に選択することができる。   In the present invention, a plurality of occlusion reaction heat detection means may be provided in the exhaust flow direction of the exhaust purification catalyst. The deterioration degree determination means determines the deterioration degree of the exhaust purification catalyst based on a reaction heat detection delay period that is a difference in the detection timing of the occlusion reaction heat detected by the two selected occlusion reaction heat detection means. You may judge. The two occlusion reaction heat detection means can be arbitrarily selected from a plurality.

ここで、反応熱検出遅れ期間が長いほど、上記二の吸蔵反応熱検出手段によって挟まれた領域(以下、「検出位置中間部」ともいう。)における酸素吸蔵量(以下、「中間部吸蔵量」ともいう。)が多いことを意味する。そこで本発明では、中間部吸蔵量に閾値を設定し、この閾値との大小関係によって排気浄化触媒の劣化度合いを判定しても良い。   Here, as the reaction heat detection delay period is longer, the oxygen storage amount (hereinafter referred to as “intermediate portion storage amount”) in the region sandwiched between the two storage reaction heat detection means (hereinafter also referred to as “detection position intermediate portion”). "Also means"). Therefore, in the present invention, a threshold value may be set for the intermediate storage amount, and the degree of deterioration of the exhaust purification catalyst may be determined based on the magnitude relationship with this threshold value.

また、中間部吸蔵量と排気浄化触媒の酸素吸蔵能は相関があるため、中間部吸蔵量に基づいて排気浄化触媒の酸素吸蔵能を推定し、推定された酸素吸蔵能に基づいて劣化度合いを判定しても良い。そこで本発明においては、検出遅れ期間に基づいて上記中間部吸蔵量を算出する中間部吸蔵量算出手段を、更に備えても良い。例えば、検出遅れ期間において排気浄化触媒に流入した排気に含まれる酸素量の積分値と検出遅れ期間とを乗じることによって精度良く中間部吸蔵量を算出することができる。   In addition, since the intermediate storage amount and the oxygen storage capacity of the exhaust purification catalyst are correlated, the oxygen storage capacity of the exhaust purification catalyst is estimated based on the intermediate storage amount, and the degree of deterioration is determined based on the estimated oxygen storage capacity. You may judge. Therefore, in the present invention, an intermediate storage amount calculating means for calculating the intermediate storage amount based on the detection delay period may be further provided. For example, the intermediate storage amount can be calculated with high accuracy by multiplying the integral value of the amount of oxygen contained in the exhaust gas flowing into the exhaust purification catalyst during the detection delay period and the detection delay period.

そして、劣化度合い判定手段は、排気浄化触媒全体に対する検出位置中間部の容積比および中間部吸蔵量に基づいて排気浄化触媒の全体に係る酸素吸蔵能を推定しても良い。すなわち、中間部吸蔵量を上記容積比で除すことによって排気浄化触媒の全体に係る酸素吸蔵能を算出することができる。これにより、排気浄化触媒の劣化度合いを好適に判定することができる。   Then, the deterioration degree determination means may estimate the oxygen storage capacity of the entire exhaust purification catalyst based on the volume ratio of the detection position intermediate portion relative to the entire exhaust purification catalyst and the intermediate storage amount. That is, the oxygen storage capacity of the entire exhaust purification catalyst can be calculated by dividing the intermediate storage amount by the volume ratio. Thereby, the deterioration degree of the exhaust purification catalyst can be suitably determined.

また、本発明においては、検出位置中間部毎に中間部吸蔵量を算出しても良い。これによれば、各中間部吸蔵量を和算することによって排気浄化触媒の全体に係る酸素吸蔵能を算出し、排気浄化触媒の劣化度合いを好適に判定することができる。また、検出位置中間部毎の劣化度合いを判定できるので、排気浄化触媒の排気流れ方向における劣化度合いの分布を取得することができる。   In the present invention, the intermediate storage amount may be calculated for each intermediate detection position. According to this, it is possible to calculate the oxygen storage capacity related to the entire exhaust purification catalyst by adding up the storage amounts of the respective intermediate portions, and to suitably determine the degree of deterioration of the exhaust purification catalyst. Further, since the degree of deterioration for each detection position intermediate portion can be determined, the distribution of the degree of deterioration of the exhaust purification catalyst in the exhaust flow direction can be acquired.

本発明にあっては、排気浄化触媒の劣化度合いを精度良く判定することができる。また、劣化度合いの判定を行う際に内燃機関の運転状態に影響を及ぼすことに起因してドライバビリティが悪化することを抑制できる。   In the present invention, the degree of deterioration of the exhaust purification catalyst can be accurately determined. Further, it is possible to suppress the deterioration of drivability due to the influence on the operation state of the internal combustion engine when determining the degree of deterioration.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。尚、本実施の形態に記載されている構成要素の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are intended to limit the technical scope of the invention only to those unless otherwise specified. is not.

ここでは、本発明を車両駆動用のガソリンエンジンに適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関1と、その吸排気系および制御系の概略構成を示す図である。図1においては、内燃機関1の内部は省略されている。   Here, the case where the present invention is applied to a gasoline engine for driving a vehicle will be described as an example. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 according to the present embodiment, and its intake / exhaust system and control system. In FIG. 1, the inside of the internal combustion engine 1 is omitted.

内燃機関1には、該内燃機関1に流入する吸気が流通する吸気通路2が接続されている。また、内燃機関1には、該内燃機関1からの排気が流通する排気通路3が接続され、この排気通路3は下流にて図示しないマフラーに接続されている。排気通路3の途中には、内燃機関1からの排気を浄化する三元触媒4が設けられている。排気通路3における三元触媒4よりも上流側には、三元触媒4に流入する排気の空燃比(以下、「流入排気空燃比」という。)AFinと、該三元触媒4をから流出した排気の空燃比(以下、「流出排気空燃比」という。)AFoutを検出する上流空燃比センサ5および下流空燃比センサ6が設けられている。また、三元触媒4には該三元触媒4の触媒床温を検出する熱電対7が設けられている。   An intake passage 2 through which intake air flowing into the internal combustion engine 1 flows is connected to the internal combustion engine 1. The internal combustion engine 1 is connected to an exhaust passage 3 through which exhaust from the internal combustion engine 1 flows, and the exhaust passage 3 is connected downstream to a muffler (not shown). In the middle of the exhaust passage 3, a three-way catalyst 4 for purifying exhaust from the internal combustion engine 1 is provided. Upstream of the three-way catalyst 4 in the exhaust passage 3, the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 4 (hereinafter referred to as “inflow exhaust air-fuel ratio”) AFin and the three-way catalyst 4 flowed out. An upstream air-fuel ratio sensor 5 and a downstream air-fuel ratio sensor 6 are provided for detecting an air-fuel ratio of exhaust (hereinafter referred to as “outflow exhaust air-fuel ratio”) AFout. The three-way catalyst 4 is provided with a thermocouple 7 that detects the catalyst bed temperature of the three-way catalyst 4.

上記の三元触媒4は、セリア(CeO)等を成分とした酸素吸蔵能(OSC:Oxygen
Storage Capacity)を有しており、排気中の酸素を吸蔵・放出する性質を有している。
すなわち、流入排気空燃比AFinがリッチ空燃比である場合には三元触媒4に吸蔵されている酸素が放出されることで排気中のHCやCOが酸化される。一方、流入排気空燃比AFinがリーン空燃比である場合には三元触媒4に酸素が吸蔵されることでNOxが還元される。本実施例においては三元触媒4が本発明における排気浄化触媒に相当する。
The three-way catalyst 4 has an oxygen storage capacity (OSC: Oxygen) containing ceria (CeO 2 ) or the like as a component.
Storage capacity), and has the property of storing and releasing oxygen in the exhaust.
That is, when the inflowing exhaust air-fuel ratio AFin is a rich air-fuel ratio, oxygen stored in the three-way catalyst 4 is released, so that HC and CO in the exhaust are oxidized. On the other hand, when the inflowing exhaust air-fuel ratio AFin is a lean air-fuel ratio, NOx is reduced by storing oxygen in the three-way catalyst 4. In this embodiment, the three-way catalyst 4 corresponds to the exhaust purification catalyst in the present invention.

上記構成の排気浄化システムにおいては、内燃機関1から排出された排気は三元触媒4において排気中の有害物質(CO、HC、NOx)が浄化された後、マフラーを介して大気中に放出される。   In the exhaust purification system configured as described above, the exhaust discharged from the internal combustion engine 1 is discharged into the atmosphere through the muffler after the three-way catalyst 4 purifies the harmful substances (CO, HC, NOx) in the exhaust. The

以上述べたように構成された内燃機関1には、該内燃機関1及び吸排気系を制御するための電子制御ユニット(ECU:Electronic Control Unit)10が併設されている。こ
のECU10は、内燃機関1の運転状態等を制御するほか、後述する三元触媒4の劣化度合いを判定する劣化度合い判定制御を行うユニットである。
The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 10 for controlling the internal combustion engine 1 and the intake / exhaust system. The ECU 10 is a unit that controls the operating state of the internal combustion engine 1 and performs deterioration degree determination control for determining the deterioration degree of the three-way catalyst 4 described later.

ECU10には、図示しないクランクポジションセンサや、アクセルポジションセンサなどの内燃機関1の運転状態の制御に係るセンサ類のほか、上流空燃比センサ5、下流空燃比センサ6、熱電対7が電気配線を介して接続され、これらの出力信号がECU10に入力されるようになっている。   In addition to sensors related to control of the operating state of the internal combustion engine 1 such as a crank position sensor and an accelerator position sensor (not shown), the upstream air / fuel ratio sensor 5, the downstream air / fuel ratio sensor 6, and the thermocouple 7 are electrically connected to the ECU 10. These output signals are input to the ECU 10.

また、ECU10には、CPU、ROM、RAM等が備えられており、ROMには、内燃機関1の種々の制御を行うためのプログラムや、データを格納したマップが記憶されている。   The ECU 10 includes a CPU, a ROM, a RAM, and the like. The ROM stores a program for performing various controls of the internal combustion engine 1 and a map storing data.

次に、本実施例における劣化度合い判定制御について説明する。三元触媒4における酸素吸蔵能は、触媒の劣化度合いが高くなると低下することが知られている。そして、三元触媒4は排気中の酸素の吸蔵・放出作用によって該排気に含まれる有害物質を浄化するため、酸素吸蔵能が低下すると排気の浄化性能が悪化してしまう。そこで、本実施例において、三元触媒4に対する劣化度合い判定制御を実行することとした。   Next, the deterioration degree determination control in this embodiment will be described. It is known that the oxygen storage capacity of the three-way catalyst 4 decreases as the degree of deterioration of the catalyst increases. Since the three-way catalyst 4 purifies harmful substances contained in the exhaust gas by the oxygen storage / release action in the exhaust gas, the exhaust gas purifying performance deteriorates when the oxygen storage capacity decreases. Therefore, in this embodiment, the deterioration degree determination control for the three-way catalyst 4 is executed.

本実施例においては、三元触媒4内がリッチ雰囲気にある状態であって且つ内燃機関1にフューエルカットF/Cが実行される際に劣化度合い判定制御が実施される。図2は、本実施例における劣化度合い判定制御が実施される際の触媒内部の雰囲気状態および触媒
に流出入する排気空燃比の説明図である。
In the present embodiment, the deterioration degree determination control is performed when the internal combustion engine 1 is subjected to the fuel cut F / C when the three-way catalyst 4 is in a rich atmosphere. FIG. 2 is an explanatory diagram of the atmosphere state inside the catalyst and the exhaust air / fuel ratio flowing into and out of the catalyst when the deterioration degree determination control in the present embodiment is performed.

図2(a)は、内燃機関1の負荷(トルク)の増大等に伴い燃料噴射量が増量され、流入排気空燃比AFinがリッチ空燃比AFrichに維持されている状態を表している。この状態においては三元触媒4に吸蔵されている酸素が排気中に放出され、この状態が維持されると触媒全体における吸蔵酸素量Coが略零になる。その結果、三元触媒4内の全域がリッチ雰囲気(図中、ハッチングにより図示)となり、三元触媒4からはリッチ空燃比AFrichの排気が流出することになる。   FIG. 2A shows a state in which the fuel injection amount is increased as the load (torque) of the internal combustion engine 1 increases, and the inflow exhaust air-fuel ratio AFin is maintained at the rich air-fuel ratio AFrich. In this state, oxygen stored in the three-way catalyst 4 is released into the exhaust gas, and when this state is maintained, the stored oxygen amount Co in the entire catalyst becomes substantially zero. As a result, the entire area in the three-way catalyst 4 becomes a rich atmosphere (illustrated by hatching in the figure), and the exhaust of the rich air-fuel ratio AFrich flows out from the three-way catalyst 4.

図2(b)は、内燃機関1にフューエルカットF/Cが実行されることにより流入排気空燃比AFinがリッチ空燃比AFrichからリーン空燃比AFleanに移行した後の状態を表す。本実施例において、リーン空燃比AFleanにおける排気の酸素濃度は空気の酸素濃度と略同等であっても良い。流入排気空燃比AFinがリーン空燃比AFleanとなると、排気中の過剰酸素は先ず三元触媒4の前端部において吸蔵される。   FIG. 2B shows a state after the inflow exhaust air-fuel ratio AFin has shifted from the rich air-fuel ratio AFrich to the lean air-fuel ratio AFlean by executing the fuel cut F / C in the internal combustion engine 1. In the present embodiment, the oxygen concentration of the exhaust gas at the lean air-fuel ratio AFlean may be substantially equal to the oxygen concentration of air. When the inflowing exhaust air-fuel ratio AFin becomes the lean air-fuel ratio AFlean, excess oxygen in the exhaust is first stored in the front end portion of the three-way catalyst 4.

しかしながら、三元触媒4の前端部のみでは排気中の過剰酸素を吸蔵することが困難となると、三元触媒4の排気流れ方向におけるより下流側の部分にて酸素が吸蔵されるようになる。ここで、酸素吸蔵反応の発生箇所をX1により図示すると、位置X1より上流側の領域および下流側の領域においては酸素吸蔵反応が殆ど生じない。すなわち、位置X1よりも上流側の領域(以下、「上流側領域」という。)Aupにおいては、既に吸蔵できる限界まで酸素が吸蔵されており、これ以上の酸素を上流側領域Aupにおいて吸蔵することができない。また、位置X1よりも下流側の領域(以下、「下流側領域」という。)Alowにおいては、位置X1において排気中の過剰酸素が吸蔵されてしまうため、酸素吸蔵反応が生じない。   However, if it becomes difficult to store excess oxygen in the exhaust only with the front end portion of the three-way catalyst 4, oxygen is stored in the downstream portion of the three-way catalyst 4 in the exhaust flow direction. Here, when the occurrence location of the oxygen storage reaction is illustrated by X1, the oxygen storage reaction hardly occurs in the upstream region and the downstream region from the position X1. That is, in the region upstream of the position X1 (hereinafter referred to as “upstream region”) Aup, oxygen has already been stored to the limit where it can be stored, and more oxygen is stored in the upstream region Aup. I can't. Further, in the region downstream of the position X1 (hereinafter referred to as “downstream region”) Allow, excess oxygen in the exhaust gas is stored at the position X1, so that no oxygen storage reaction occurs.

その結果、三元触媒4は下流側領域Alowにおいてリッチ雰囲気に維持されるとともに、流出排気空燃比AFoutが依然リッチ空燃比AFrichに維持される。そして、更に時間が経過して図2(c)の状態に移行すると、酸素吸蔵反応の発生箇所がより下流側のX2に移行する。その結果、リッチ雰囲気に維持される領域が図2(b)の状態に比べて縮小することになる。そして、最終的に三元触媒4全体で吸蔵可能な最大酸素吸蔵量Comaxの酸素が吸蔵された後は、図2(d)に示すように流出排気空燃比AFoutはリッチ空燃比AFrichからリーン空燃比AFleanに移行する。   As a result, the three-way catalyst 4 is maintained in a rich atmosphere in the downstream region Alow, and the outflow exhaust air-fuel ratio AFout is still maintained at the rich air-fuel ratio AFrich. And when time passes further and it transfers to the state of FIG.2 (c), the generation | occurrence | production location of oxygen storage reaction will transfer to X2 more downstream. As a result, the region maintained in the rich atmosphere is reduced as compared with the state of FIG. Then, after the oxygen of the maximum oxygen storage amount Comax that can be stored by the whole of the three-way catalyst 4 is finally stored, as shown in FIG. 2 (d), the outflow exhaust air-fuel ratio AFout becomes lean from the rich air-fuel ratio AFrich. Transition to the fuel ratio AFlean.

ここで、三元触媒4の触媒床温THcに着目すると、酸素吸蔵反応は発熱反応であるため、酸素吸蔵反応が発生した箇所において触媒床温THcが上昇する。より詳しくは、酸素吸蔵反応によって発生した熱量は排気によって奪われるので、触媒床温THcは短時間だけ上昇することになる。酸素吸蔵反応の発生箇所は三元触媒4の上流側から下流側の方向に次第に移行するため、三元触媒4において吸蔵反応熱THcaの発生する箇所も上流側から下流側に向かって移行することになる。   Here, paying attention to the catalyst bed temperature THc of the three-way catalyst 4, since the oxygen storage reaction is an exothermic reaction, the catalyst bed temperature THc increases at the location where the oxygen storage reaction occurs. More specifically, since the amount of heat generated by the oxygen storage reaction is taken away by the exhaust, the catalyst bed temperature THc increases only for a short time. Since the location where the oxygen storage reaction occurs gradually shifts from the upstream side to the downstream side of the three-way catalyst 4, the location where the storage reaction heat THca occurs in the three-way catalyst 4 also shifts from the upstream side toward the downstream side. become.

そこで、本実施例に係る劣化度合い判定制御では、三元触媒4内がリッチ雰囲気にある状態において内燃機関1にフューエルカットF/Cが実行された後、熱電対7の出力値に基づいて吸蔵反応熱THcaを検出する。そして、吸蔵反応熱THcaの検出時期に基づいて最大酸素吸蔵量Comaxを推定し、三元触媒4の劣化度合いを判定することとした。本実施例においては熱電対7が本発明における吸蔵反応熱検出手段に相当する。   Therefore, in the deterioration degree determination control according to the present embodiment, after the fuel cut F / C is performed on the internal combustion engine 1 in a state where the three-way catalyst 4 is in a rich atmosphere, the occlusion is performed based on the output value of the thermocouple 7. The heat of reaction THca is detected. The maximum oxygen storage amount Comax is estimated based on the detection timing of the storage reaction heat THca, and the degree of deterioration of the three-way catalyst 4 is determined. In this embodiment, the thermocouple 7 corresponds to the occlusion reaction heat detection means in the present invention.

ここで、図3は、本実施例における劣化度合い判定制御を実施するときのフューエルカットF/CのON−OFF(a)、流入排気空燃比AFin(b)、触媒床温THc(c)の時間推移を例示したタイムチャートである。   Here, FIG. 3 shows ON / OFF (a) of the fuel cut F / C, the inflow exhaust air-fuel ratio AFin (b), and the catalyst bed temperature THc (c) when performing the deterioration degree determination control in the present embodiment. It is a time chart which illustrated time transition.

図3(a)に示すように、時間t0においてフューエルカットF/CがONの状態、つまりフューエルカットF/Cが実行される。ここで、時間t0前においては図2(a)で示した状態であることを前提とする。つまり、三元触媒4全体がリッチ雰囲気であり、流入排気空燃比AFinおよび流出排気空燃比AFoutがリッチ空燃比AFrichに維持されている。   As shown in FIG. 3A, at time t0, the fuel cut F / C is ON, that is, the fuel cut F / C is executed. Here, it is assumed that the state shown in FIG. That is, the entire three-way catalyst 4 has a rich atmosphere, and the inflow exhaust air-fuel ratio AFin and the outflow exhaust air-fuel ratio AFout are maintained at the rich air-fuel ratio AFrich.

時点t0においてフューエルカットF/Cが実行されると、ECU10は上流空燃比センサ5の出力値に基づいて流入排気空燃比AFinを検出し、該流入排気空燃比AFinがリーン空燃比AFleanであるか否かを判定する。本実施例においてはECU10が本発明におけるリーン判定手段に相当する。   When fuel cut F / C is executed at time t0, the ECU 10 detects the inflow exhaust air-fuel ratio AFin based on the output value of the upstream air-fuel ratio sensor 5, and whether the inflow exhaust air-fuel ratio AFin is the lean air-fuel ratio AFlean. Determine whether or not. In this embodiment, the ECU 10 corresponds to the lean determination means in the present invention.

そして時点t1において、ECU10によって流入排気空燃比AFinがリーン空燃比AFleanに移行したと判定されると、ECU10は熱電対7の出力値に基づいて吸蔵反応熱THcaを検出する。そして、流入排気空燃比AFinがリーン空燃比AFleanに移行したと判定された時点t1から吸蔵反応熱THcaが検出される時点t2までの期間に相当する反応熱検出期間Δtが計測される。   At time t1, when the ECU 10 determines that the inflow exhaust air-fuel ratio AFin has shifted to the lean air-fuel ratio AFlean, the ECU 10 detects the occlusion reaction heat THca based on the output value of the thermocouple 7. Then, a reaction heat detection period Δt corresponding to a period from time t1 when it is determined that the inflow exhaust air-fuel ratio AFin has shifted to the lean air-fuel ratio AFlean to time t2 when the occlusion reaction heat THca is detected is measured.

ここで、図4は、本実施例における劣化度合い判定制御を実行する時の反応熱検出期間Δtと最大酸素吸蔵量Comaxとの関係を例示した図である。本実施例においては、図示のような反応熱検出期間Δtと最大酸素吸蔵量Comaxとの関係が格納されたマップを参照して、最大酸素吸蔵量Comaxを推定することとした。本実施例では、反応熱検出期間Δtが長いほど最大酸素吸蔵量Comaxが多くなるように推定される。最大酸素吸蔵量Comaxは本発明における酸素吸蔵能に相当する。   Here, FIG. 4 is a diagram illustrating the relationship between the reaction heat detection period Δt and the maximum oxygen storage amount Comax when the deterioration degree determination control in the present embodiment is executed. In this embodiment, the maximum oxygen storage amount Comax is estimated with reference to a map storing the relationship between the reaction heat detection period Δt and the maximum oxygen storage amount Comax as shown in the figure. In the present embodiment, it is estimated that the maximum oxygen storage amount Comax increases as the reaction heat detection period Δt increases. The maximum oxygen storage amount Comax corresponds to the oxygen storage capacity in the present invention.

ここで、三元触媒4の排気流れ方向における熱電対7の配置位置によって反応熱検出期間Δtと最大酸素吸蔵量Comaxとの関係が異なるため、熱電対7の配置位置に応じて予め上記マップを実験的に構築しておく。本実施例においては反応熱検出期間Δtが本発明における反応熱検出期間に相当する。   Here, since the relationship between the reaction heat detection period Δt and the maximum oxygen storage amount Comax is different depending on the arrangement position of the thermocouple 7 in the exhaust flow direction of the three-way catalyst 4, the above map is previously set according to the arrangement position of the thermocouple 7. Build experimentally. In this embodiment, the reaction heat detection period Δt corresponds to the reaction heat detection period in the present invention.

また、三元触媒4の触媒床温THcの違いにより最大酸素吸蔵量Comaxは異なると考えられる。触媒床温THcが低い場合(例えば、400℃)に比べて高い場合(例えば、600℃)の方が三元触媒4の最大酸素吸蔵量Comaxが多くなる。   Further, it is considered that the maximum oxygen storage amount Comax varies depending on the difference in the catalyst bed temperature THc of the three-way catalyst 4. When the catalyst bed temperature THc is low (for example, 400 ° C.), the maximum oxygen storage amount Comax of the three-way catalyst 4 increases when the catalyst bed temperature THc is high (for example, 600 ° C.).

そこで、本実施例においては、劣化度合い判定制御を実行したときにおける触媒床温THcよって最大酸素吸蔵量Comaxを補正しても良い。具体的には、反応熱検出期間Δtと触媒床温THcと最大酸素吸蔵量Comaxとの関係を予め実験的に求めておき、反応熱検出期間Δtと触媒床温THcとに基づいて最大酸素吸蔵量Comaxを推定しても良い。これにより、劣化度合い判定制御を実行するごとに三元触媒4の触媒床温THcが相違しても、触媒床温THcに応じて最大酸素吸蔵量Comaxを精度良く推定できる。   Therefore, in this embodiment, the maximum oxygen storage amount Comax may be corrected based on the catalyst bed temperature THc when the deterioration degree determination control is executed. Specifically, the relationship between the reaction heat detection period Δt, the catalyst bed temperature THc, and the maximum oxygen storage amount Comax is experimentally obtained in advance, and the maximum oxygen storage is based on the reaction heat detection period Δt and the catalyst bed temperature THc. The quantity Comax may be estimated. Thereby, even if the catalyst bed temperature THc of the three-way catalyst 4 is different every time the deterioration degree determination control is executed, the maximum oxygen storage amount Comax can be accurately estimated according to the catalyst bed temperature THc.

上記のように、三元触媒4の最大酸素吸蔵量Comaxが推定されるとECU10は最大酸素吸蔵量Comaxが基準酸素吸蔵量Cob以下であるか否かを判定する。基準酸素吸蔵量Cobとは、三元触媒4の触媒機能が低下するほど劣化度合いが高くなるときの酸素吸蔵量であり、予め実験的に求めておく。そして、最大酸素吸蔵量Comaxが基準酸素吸蔵量Cob以下である場合には、三元触媒4が劣化していると判定される。その場合に、警告表示等によって運転者に報知しても良い。本実施例においては、上記劣化度合い判定制御を実行するECU10が本発明における劣化度合い判定手段に相当する。   As described above, when the maximum oxygen storage amount Comax of the three-way catalyst 4 is estimated, the ECU 10 determines whether or not the maximum oxygen storage amount Comax is equal to or less than the reference oxygen storage amount Cob. The reference oxygen storage amount Cob is an oxygen storage amount when the degree of deterioration increases as the catalytic function of the three-way catalyst 4 decreases, and is determined experimentally in advance. When the maximum oxygen storage amount Comax is equal to or less than the reference oxygen storage amount Cob, it is determined that the three-way catalyst 4 has deteriorated. In that case, the driver may be notified by a warning display or the like. In the present embodiment, the ECU 10 that executes the deterioration degree determination control corresponds to the deterioration degree determination means in the present invention.

既述したように、図4に示すようなマップに基づいて最大酸素吸蔵量Comaxを推定する例について説明したが、これに限定される趣旨ではない。例えば、反応熱検出期間Δ
tに基づいて最大酸素吸蔵量Comaxを算出しても良い。
As described above, the example in which the maximum oxygen storage amount Comax is estimated based on the map as shown in FIG. 4 has been described. However, the present invention is not limited to this. For example, reaction heat detection period Δ
The maximum oxygen storage amount Comax may be calculated based on t.

すなわち、本実施例における反応熱検出期間Δtは、熱電対7の配置位置よりも上流側の領域において酸素を吸蔵し続けることができた期間とみることができる。そこで、本実施例では、熱電対7の配置位置よりも上流側の領域において吸蔵された酸素量である上流部酸素吸蔵量Coupを反応熱検出期間Δtに基づいて算出する。より具体的には、反応熱検出期間Δtに亘り三元触媒4に流入した排気に含まれる酸素量の積分値に反応熱検出期間Δtを乗じて上流部酸素吸蔵量Coupが算出される。酸素量の積分値は図示しないエアフローメータの出力値に基づいて算出される。酸素量は吸入空気量に酸素分圧を乗じることにより求められる。   That is, the reaction heat detection period Δt in this example can be regarded as a period during which oxygen can be occluded in the region upstream of the position where the thermocouple 7 is arranged. Therefore, in this embodiment, the upstream oxygen storage amount Coup, which is the amount of oxygen stored in the region upstream of the arrangement position of the thermocouple 7, is calculated based on the reaction heat detection period Δt. More specifically, the upstream oxygen storage amount Coup is calculated by multiplying the integrated value of the oxygen amount contained in the exhaust gas flowing into the three-way catalyst 4 over the reaction heat detection period Δt by the reaction heat detection period Δt. The integrated value of the oxygen amount is calculated based on the output value of an air flow meter (not shown). The amount of oxygen is obtained by multiplying the amount of intake air by the oxygen partial pressure.

そして、上流部酸素吸蔵量Coupを三元触媒4全体に対する上流側領域Aupの容積比で除すことによって最大酸素吸蔵量Comaxが算出される。本実施例においては、上流部酸素吸蔵量Coupが本発明における上流部吸蔵量に相当し、上流部酸素吸蔵量Coupを算出するECU10が上流部吸蔵量算出手段に相当する。   Then, the maximum oxygen storage amount Comax is calculated by dividing the upstream oxygen storage amount Coup by the volume ratio of the upstream region Aup to the entire three-way catalyst 4. In this embodiment, the upstream oxygen storage amount Coup corresponds to the upstream storage amount in the present invention, and the ECU 10 for calculating the upstream oxygen storage amount Coup corresponds to the upstream storage amount calculation means.

また、本実施例においては、反応熱検出期間Δtに基づいて三元触媒4の酸素吸蔵能を推定、あるいは算出しているが、反応熱検出期間Δtの長さに基づいて三元触媒4の劣化度合いを判定しても良い。例えば、反応熱検出期間Δtが予め定められる閾値よりも短い場合に三元触媒4が劣化していると判定しても良い。   In this embodiment, the oxygen storage capacity of the three-way catalyst 4 is estimated or calculated based on the reaction heat detection period Δt. The degree of deterioration may be determined. For example, it may be determined that the three-way catalyst 4 has deteriorated when the reaction heat detection period Δt is shorter than a predetermined threshold.

以下、ECU10によって実行される触媒劣化判定制御について、図5のフローチャートを参照しながら説明する。図5は本実施例における劣化度合い判定制御ルーチンを示すフローチャートである。本ルーチンはECU10内のROMに記憶されたプログラムであり、所定期間毎に実行される。   Hereinafter, the catalyst deterioration determination control executed by the ECU 10 will be described with reference to the flowchart of FIG. FIG. 5 is a flowchart showing a deterioration degree determination control routine in this embodiment. This routine is a program stored in the ROM in the ECU 10, and is executed every predetermined period.

本ルーチンが実行されると、まずステップS101では、上流空燃比センサ5の出力値に基づいて流入排気空燃比AFinがリッチ空燃比AFrichであるか否か判定される。肯定判定された場合には、三元触媒4に吸蔵されている酸素が放出されているか、既に全ての酸素が放出された後であると判断され、ステップS102に進む。否定判定された場合には、三元触媒4に酸素が吸蔵されつつある状態であり、触媒の劣化度合いを判定する条件が整っていないと判断され、本ルーチンを一旦終了する。   When this routine is executed, first, in step S101, it is determined based on the output value of the upstream air-fuel ratio sensor 5 whether or not the inflow exhaust air-fuel ratio AFin is the rich air-fuel ratio AFrich. If the determination is affirmative, it is determined that the oxygen stored in the three-way catalyst 4 has been released or that all the oxygen has already been released, and the process proceeds to step S102. If a negative determination is made, it is determined that oxygen is being occluded in the three-way catalyst 4, and it is determined that the condition for determining the degree of deterioration of the catalyst is not satisfied, and this routine is temporarily terminated.

ステップS102では、下流空燃比センサ6の出力値に基づいて流出排気空燃比AFoutがリッチ空燃比AFrichであるか否か判定される。本ステップにおいて肯定判定された場合には、三元触媒4の内部全体がリッチ雰囲気であると判断され、ステップS103に進む。一方、否定判定された場合には、三元触媒4に吸蔵されている酸素が残存していると判断され、本ルーチンを一旦終了する。   In step S102, it is determined based on the output value of the downstream air-fuel ratio sensor 6 whether or not the outflow exhaust air-fuel ratio AFout is the rich air-fuel ratio AFrich. If an affirmative determination is made in this step, it is determined that the entire interior of the three-way catalyst 4 has a rich atmosphere, and the process proceeds to step S103. On the other hand, if a negative determination is made, it is determined that the oxygen stored in the three-way catalyst 4 remains, and this routine is temporarily terminated.

ステップS103では、内燃機関1にフューエルカットF/Cが実行されたか否か判定される。本ステップにおいて肯定判定された場合には、ステップS014に進む。一方、否定判定された場合には、フューエルカットF/Cが実行されるまで本ステップの処理を繰り返し実行する。あるいは、本ステップで否定判定された場合に、本ルーチンを一旦抜けるようにしても良い。   In step S103, it is determined whether or not a fuel cut F / C has been performed on the internal combustion engine 1. If a positive determination is made in this step, the process proceeds to step S014. On the other hand, if a negative determination is made, the process of this step is repeatedly executed until the fuel cut F / C is executed. Alternatively, when a negative determination is made in this step, this routine may be temporarily exited.

ステップS104では、上流空燃比センサ5の出力値に基づいて流入排気空燃比AFinがリッチ空燃比AFrichからリーン空燃比AFleanに移行したか否か判定される。本ステップで肯定判定された場合には、三元触媒4に酸素が吸蔵され始めたと判断され、ステップS105に進む。一方、否定判定された場合には、肯定判定されるまで本ステップの処理を繰り返し実行する。   In step S104, it is determined based on the output value of the upstream air-fuel ratio sensor 5 whether or not the inflow exhaust air-fuel ratio AFin has shifted from the rich air-fuel ratio AFrich to the lean air-fuel ratio AFlean. If an affirmative determination is made in this step, it is determined that oxygen has begun to be stored in the three-way catalyst 4, and the process proceeds to step S105. On the other hand, if a negative determination is made, the process of this step is repeatedly executed until an affirmative determination is made.

ステップS105では、熱電対7からの出力信号に基づいて触媒床温THcの検出が開始されるとともに、反応熱検出期間Δtの計測が開始される。本ステップの処理が終わるとステップS106に進む。   In step S105, detection of the catalyst bed temperature THc is started based on an output signal from the thermocouple 7, and measurement of the reaction heat detection period Δt is started. When the process of this step is finished, the process proceeds to step S106.

ステップS106では、熱電対7からの出力信号に基づいて吸蔵反応熱THcaが検出されたか否か判定される。本ステップにおいて肯定判定された場合には、ステップS107に進む。一方、否定判定された場合には、ステップS105の処理に戻り、反応熱検出期間Δtの計測が継続される。   In step S106, it is determined whether or not the occlusion reaction heat THca is detected based on the output signal from the thermocouple 7. If a positive determination is made in this step, the process proceeds to step S107. On the other hand, if a negative determination is made, the process returns to step S105, and measurement of the reaction heat detection period Δt is continued.

ステップS107では反応熱検出期間Δtの計測を終了するとともに、ステップS105から本ステップにおいて取得した反応熱検出期間Δtに基づいて最大酸素吸蔵量Comaxが算出される。最大酸素吸蔵量Comaxの算出については既述のため、詳しい説明を割愛する。   In step S107, the measurement of the reaction heat detection period Δt ends, and the maximum oxygen storage amount Comax is calculated based on the reaction heat detection period Δt acquired in step S105 in this step. Since the calculation of the maximum oxygen storage amount Comax is already described, a detailed description is omitted.

ステップS108では、算出された最大酸素吸蔵量Comaxに基づいて三元触媒4の劣化度合いが判定される。すなわち、最大酸素吸蔵量Comaxが基準酸素吸蔵量Cob以下であるか否かにより上記判定が行われる。最大酸素吸蔵量Comaxが基準酸素吸蔵量Cob以下である場合には、三元触媒4が劣化していると判定され、劣化していることが警告灯等により運転者に報知される。一方、最大酸素吸蔵量Comaxが基準酸素吸蔵量Cobよりも多い場合には三元触媒4は劣化していないと判定される。本ステップの処理が終わると本ルーチンを一旦終了する。   In step S108, the degree of deterioration of the three-way catalyst 4 is determined based on the calculated maximum oxygen storage amount Comax. That is, the above determination is made based on whether or not the maximum oxygen storage amount Comax is equal to or less than the reference oxygen storage amount Cob. When the maximum oxygen storage amount Comax is equal to or less than the reference oxygen storage amount Cob, it is determined that the three-way catalyst 4 has deteriorated, and the driver is notified of the deterioration by a warning light or the like. On the other hand, when the maximum oxygen storage amount Comax is larger than the reference oxygen storage amount Cob, it is determined that the three-way catalyst 4 has not deteriorated. When the processing of this step is finished, this routine is once ended.

以上のように、本実施例における劣化度合い判定制御によれば、反応熱検出期間Δtに基づいて最大酸素吸蔵量Comaxを精度良く算出できるので、三元触媒4が劣化しているか否かを好適に判定することができる。ここで、本実施例では、反応熱検出期間Δtを複数回に亘って計測し、これらの値の平均化処理を実行しても良い。そして、この反応熱検出期間Δtの平均値に基づいて三元触媒4が劣化しているか否かを判定しても良い。   As described above, according to the deterioration degree determination control in the present embodiment, the maximum oxygen storage amount Comax can be accurately calculated based on the reaction heat detection period Δt, so it is preferable whether or not the three-way catalyst 4 is deteriorated. Can be determined. Here, in this embodiment, the reaction heat detection period Δt may be measured a plurality of times, and the averaging process of these values may be executed. And based on the average value of this reaction heat detection period (DELTA) t, you may determine whether the three-way catalyst 4 has deteriorated.

また、本発明者等の鋭意研究によって反応熱検出期間Δtは概ね1秒程度の範囲に収まることが解っている。つまり、本実施例における劣化度合い判定制御によれば、内燃機関1の運転状態がフューエルカット状態から復帰するまでの短期間に触媒の劣化判定を完了することができる。つまり、内燃機関1の運転状態の影響を受けないで、上記判定制御の精度を高めることができる。   Further, it has been found by the present inventors' extensive research that the reaction heat detection period Δt is approximately in the range of about 1 second. That is, according to the deterioration degree determination control in the present embodiment, the catalyst deterioration determination can be completed in a short period of time until the operating state of the internal combustion engine 1 returns from the fuel cut state. That is, the accuracy of the determination control can be improved without being affected by the operating state of the internal combustion engine 1.

また、内燃機関1の運転状態の変更に伴い、流入排気空燃比AFinがリッチ空燃比AFrichからリーン空燃比AFleanに移行するタイミングを利用するため、わざわざ空燃比に係る制御を行う必要がない。つまり、劣化度合い判定制御を実施する際にドライバビリティが悪化する虞がない。   In addition, since the inflowing exhaust air-fuel ratio AFin shifts from the rich air-fuel ratio AFrich to the lean air-fuel ratio AFlean as the operating state of the internal combustion engine 1 changes, it is not necessary to perform control related to the air-fuel ratio. That is, there is no possibility that drivability deteriorates when performing the deterioration degree determination control.

次に、図6、図7を参照して実施例2について説明する。本実施例における内燃機関の触媒劣化判定システムのハード構成は、熱電対が三元触媒4の排気流れ方向に複数設けられている点で実施例1と相違しており、その他の構成は同様である。   Next, Example 2 will be described with reference to FIGS. The hardware configuration of the catalyst deterioration determination system for the internal combustion engine in the present embodiment is different from that in the first embodiment in that a plurality of thermocouples are provided in the exhaust flow direction of the three-way catalyst 4, and the other configurations are the same. is there.

図6は、本実施例に係る三元触媒4における熱電対の第1の配置例を示した図である。第1の配置例では、三元触媒4の排気流れ方向における上流側、中央部、下流側に配置されている。上流側から上流熱電対7a、中央熱電対7b、下流熱電対7cと称し、排気流れ方向における位置をそれぞれY1、Y2、Y3により図中に示す。これらの熱電対(7a〜7c)はECU10に電気配線を介して接続され、これらの出力信号がECU10に
入力される。
FIG. 6 is a diagram illustrating a first arrangement example of thermocouples in the three-way catalyst 4 according to the present embodiment. In the first arrangement example, the three-way catalyst 4 is arranged on the upstream side, the central part, and the downstream side in the exhaust flow direction. The upstream thermocouple 7a, the central thermocouple 7b, and the downstream thermocouple 7c are referred to from the upstream side, and their positions in the exhaust flow direction are indicated by Y1, Y2, and Y3 in the figure. These thermocouples (7a to 7c) are connected to the ECU 10 via electric wiring, and these output signals are input to the ECU 10.

実施例1において説明したように、酸素吸蔵反応は三元触媒4の上流側から下流側に向かって移行するため、吸蔵反応熱THcaの検出時期がそれぞれの熱電対で相違する。具体的には、上流熱電対7a、中央熱電対7b、下流熱電対7cの順に吸蔵反応熱THcaが検出される。   As described in Example 1, since the oxygen storage reaction shifts from the upstream side to the downstream side of the three-way catalyst 4, the detection timing of the storage reaction heat THca is different for each thermocouple. Specifically, the occlusion reaction heat THca is detected in the order of the upstream thermocouple 7a, the central thermocouple 7b, and the downstream thermocouple 7c.

本実施例に係る劣化度合い判定制御では、上流熱電対7a、中央熱電対7b、下流熱電対7cのうち任意に選択される二の熱電対によって検出される吸蔵反応熱THcaの検出時期の差である反応熱検出遅れ期間Δtdに基づいて、三元触媒4の劣化度合いが判定される。   In the deterioration degree determination control according to the present embodiment, the difference in detection timing of the occlusion reaction heat THca detected by two thermocouples arbitrarily selected from the upstream thermocouple 7a, the central thermocouple 7b, and the downstream thermocouple 7c. Based on a certain reaction heat detection delay period Δtd, the degree of deterioration of the three-way catalyst 4 is determined.

なお、本実施例に係る劣化度合い判定制御においても、三元触媒4内がリッチ雰囲気となっている状態であって、且つ内燃機関1にフューエルカットF/Cが実行された場合に、吸蔵反応熱THcaが検出される点は実施例1と同様である。ここで、例示的に中央熱電対7bに対する下流熱電対7cについて考えると、ECU10は、少なくとも中央熱電対7bおよび下流熱電対7cの出力値に基づき、それぞれの位置で発生する吸蔵反応熱THcaを検出する。中央熱電対7bおよび下流熱電対7cが、複数のうち選択された二の吸蔵反応熱検出手段に相当する。   In the deterioration degree determination control according to the present embodiment, the occlusion reaction is performed when the inside of the three-way catalyst 4 is in a rich atmosphere and the fuel cut F / C is executed on the internal combustion engine 1. The point that the heat THca is detected is the same as that in the first embodiment. Here, considering the downstream thermocouple 7c with respect to the central thermocouple 7b as an example, the ECU 10 detects the occlusion reaction heat THca generated at each position based on at least the output values of the central thermocouple 7b and the downstream thermocouple 7c. To do. The central thermocouple 7b and the downstream thermocouple 7c correspond to two occlusion reaction heat detection means selected from the plurality.

そして、中央熱電対7bの位置において吸蔵反応熱THcaが検出されてから下流熱電対7cの位置において吸蔵反応熱THcaが検出されるまでの期間を求め、反応熱検出遅れ期間Δtdとする。本実施例においては反応熱検出遅れ期間Δtdが本発明における反応熱検出遅れ期間に相当する。   A period from when the occlusion reaction heat THca is detected at the position of the central thermocouple 7b to when the occlusion reaction heat THca is detected at the position of the downstream thermocouple 7c is obtained as a reaction heat detection delay period Δtd. In this embodiment, the reaction heat detection delay period Δtd corresponds to the reaction heat detection delay period in the present invention.

ここで、反応熱検出遅れ期間Δtdは、中央熱電対7bおよび下流熱電対7cに挟まれた領域(以下、「下流側熱電対間領域」という。)Amidlowで酸素を吸蔵し続けることができた期間を意味する。そして、反応熱検出遅れ期間Δtdが長いほど下流側熱電対間領域Amidlowにおける酸素吸蔵量Coが多くなるため、三元触媒4全体の最大酸素吸蔵量Comaxも多くなると判断される。   Here, the reaction heat detection delay period Δtd was able to continue occlusion of oxygen in the region sandwiched between the central thermocouple 7b and the downstream thermocouple 7c (hereinafter referred to as “region between the downstream thermocouples”) Amidlow. Means period. Then, it is determined that the maximum oxygen storage amount Comax of the three-way catalyst 4 as a whole increases because the oxygen storage amount Co in the downstream thermocouple region Amidlow increases as the reaction heat detection delay period Δtd increases.

本実施例においては、反応熱検出遅れ期間Δtdと最大酸素吸蔵量Comaxの関係を予め実験的に求めておき、反応熱検出遅れ期間Δtdに基づいて最大酸素吸蔵量Comaxを推定することとした。すなわち、反応熱検出遅れ期間Δtdが長いほど最大酸素吸蔵量Comaxが多くなるように推定される。そして、最大酸素吸蔵量Comaxが基準酸素吸蔵量Cob以下であるか否か判定され、肯定判定された場合に三元触媒4が劣化していると判定される。   In this embodiment, the relationship between the reaction heat detection delay period Δtd and the maximum oxygen storage amount Comax is experimentally obtained in advance, and the maximum oxygen storage amount Comax is estimated based on the reaction heat detection delay period Δtd. That is, it is estimated that the maximum oxygen storage amount Comax increases as the reaction heat detection delay period Δtd increases. Then, it is determined whether or not the maximum oxygen storage amount Comax is equal to or less than the reference oxygen storage amount Cob. If the determination is affirmative, it is determined that the three-way catalyst 4 has deteriorated.

ここで、本実施例においては、下流側熱電対間領域Amidlowにおいて吸蔵された酸素量である下流側熱電対間吸蔵量Comidlowを算出し、下流側熱電対間吸蔵量Comidlowに基づいて最大酸素吸蔵量Comaxを算出しても良い。   In this embodiment, the downstream thermocouple storage amount Comidlow, which is the amount of oxygen stored in the downstream thermocouple region Amidlow, is calculated, and the maximum oxygen storage amount is calculated based on the downstream thermocouple storage amount Comidlow. The amount Comax may be calculated.

より具体的には、反応熱検出遅れ期間Δtdに亘り三元触媒4に流入した排気に含まれる酸素量の積分値に反応熱検出遅れ期間Δtdを乗じて下流側熱電対間吸蔵量Comidlowが算出される。そして、下流側熱電対間吸蔵量Comidlowを三元触媒4全体に対する下流側熱電対間領域Amidlowの容積比
で除し、最大酸素吸蔵量Comaxが算出される。
More specifically, the downstream inter-thermocouple storage amount Comidlow is calculated by multiplying the integral value of the oxygen amount contained in the exhaust gas flowing into the three-way catalyst 4 over the reaction heat detection delay period Δtd by the reaction heat detection delay period Δtd. Is done. Then, the storage amount Comidlow between the downstream thermocouples is divided by the volume ratio of the downstream thermocouple region Amidlow with respect to the entire three-way catalyst 4 to calculate the maximum oxygen storage amount Comax.

本実施例においては、下流側熱電対間吸蔵量Comidlowが本発明における中間部吸蔵量に相当し、下流側熱電対間吸蔵量Comidlowを算出するECU10が中間部
吸蔵量算出手段に相当する。
In the present embodiment, the downstream-side thermocouple storage amount Comidlow corresponds to the intermediate storage amount in the present invention, and the ECU 10 that calculates the downstream-side thermocouple storage amount Comidlow corresponds to the intermediate storage amount calculation means.

また、上記の例では、反応熱検出遅れ期間Δtdは、下流側熱電対間領域Amidlowで吸蔵された下流側熱電対間吸蔵量Comidlowを算出しているが、これに限定される趣旨ではない。例えば、吸蔵反応熱THcaが、上流熱電対7aによって検出されてから中央熱電対7bによって検出されるまでの期間を求め、この期間を反応熱検出遅れ期間Δtdとしても良い。   In the above example, the reaction heat detection delay period Δtd is calculated as the downstream thermocouple storage amount Comidlow stored in the downstream thermocouple region Amidlow, but the present invention is not limited to this. For example, a period from when the occlusion reaction heat THca is detected by the upstream thermocouple 7a to when it is detected by the central thermocouple 7b is obtained, and this period may be used as the reaction heat detection delay period Δtd.

その場合には、上流熱電対7aと中央熱電対7bとに挟まれた領域(以下、「上流側熱電対間領域」という。)Aupmidにおいて吸蔵された酸素量である上流側熱電対間吸蔵量Coupmidを算出し、上流側熱電対間吸蔵量Coupmidと三元触媒4全体に対する上流側熱電対間領域Aupmidの容積比とに基づいて最大酸素吸蔵量Comaxを算出しても良い。あるいは、上流熱電対7aと下流熱電対7cで挟まれる領域において吸蔵された酸素量を算出するようにしても良く、様々なバリエーションを採用することができる。   In that case, the region between the upstream thermocouples 7a and the central thermocouple 7b (hereinafter referred to as “the region between the upstream thermocouples”) the amount of oxygen stored in the upstream thermocouple, which is the amount of oxygen stored in Aupmid. Coupmid may be calculated, and the maximum oxygen storage amount Comax may be calculated based on the upstream thermocouple storage amount Coupmid and the volume ratio of the upstream thermocouple region Aupmid to the entire three-way catalyst 4. Alternatively, the amount of oxygen stored in the region sandwiched between the upstream thermocouple 7a and the downstream thermocouple 7c may be calculated, and various variations can be employed.

また、本実施例における三元触媒4に配置される熱電対の数は複数であれば良く、図6で示した第1の配置例はあくまでも例示であり、本発明の本旨を逸脱しない範囲内において熱電対の数、配置位置は種々の変更を加え得る。   In addition, the number of thermocouples arranged in the three-way catalyst 4 in the present embodiment may be plural, and the first arrangement example shown in FIG. 6 is merely an example, and within the scope not departing from the gist of the present invention. The number of thermocouples and the arrangement position can be variously changed.

次に、図7を参照して、本実施例の劣化度合い判定制御の変形例について説明する。図7は、本実施例に係る三元触媒4における熱電対の第2の配置例を示した図である。第2の配置例では、三元触媒4の前端部、中間部、後端部に計4つの熱電対が配置されている。これらの熱電対を上流側から第1熱電対7d〜第4熱電対7gと称す。そして、第1熱電対7d〜第4熱電対7gの各熱電対によって挟まれる領域を、上流側から第1領域A1、第2領域A2、第3領域A3と称す。   Next, a modified example of the deterioration degree determination control of this embodiment will be described with reference to FIG. FIG. 7 is a diagram illustrating a second arrangement example of thermocouples in the three-way catalyst 4 according to the present embodiment. In the second arrangement example, a total of four thermocouples are arranged at the front end, the middle, and the rear end of the three-way catalyst 4. These thermocouples are referred to as a first thermocouple 7d to a fourth thermocouple 7g from the upstream side. And the area | region pinched | interposed by each thermocouple of the 1st thermocouple 7d-the 4th thermocouple 7g is called 1st area | region A1, 2nd area | region A2, and 3rd area | region A3 from the upstream.

本変形例においては、第1領域A1〜第3領域A3における酸素吸蔵量をそれぞれ算出し、これらの合算することによって最大酸素吸蔵量Comaxが算出される。すなわち、第1熱電対7d〜第4熱電対7gの各熱電対によって検出される吸蔵反応熱THcaの各検出時期に基づいて、各熱電対間における反応熱検出遅れ期間Δtdが取得され、第1領域A1、第2領域A2、第3領域A3における酸素吸蔵量が算出される。そして、各々の酸素吸蔵量を和算することによって最大酸素吸蔵量Comaxを算出することとした。これにより、三元触媒4の劣化度合いを好適に判定することができる。   In this modification, the oxygen storage amount in each of the first region A1 to the third region A3 is calculated, and the maximum oxygen storage amount Comax is calculated by adding them. That is, based on each detection time of the occlusion reaction heat THca detected by each thermocouple of the first thermocouple 7d to the fourth thermocouple 7g, a reaction heat detection delay period Δtd between the thermocouples is acquired, and the first The oxygen storage amounts in the region A1, the second region A2, and the third region A3 are calculated. Then, the maximum oxygen storage amount Comax is calculated by adding the respective oxygen storage amounts. Thereby, the deterioration degree of the three-way catalyst 4 can be determined suitably.

また、本変形例のように、三元触媒4を排気流れ方向において複数の領域に分割したときの、各領域(つまり、第1領域A1、第2領域A2、第3領域A3)毎における酸素吸蔵量を算出できるので、三元触媒4の排気流れ方向における劣化度合いの相違を取得することができる。例えば、各領域における単位容積当たりの酸素吸蔵量を対比することによって三元触媒4が部分的に劣化しているかを判断することもできる。これにより、より一層精度の良い劣化度合い判定制御を実施することができる。   Further, as in the present modification, the oxygen in each region (that is, the first region A1, the second region A2, and the third region A3) when the three-way catalyst 4 is divided into a plurality of regions in the exhaust flow direction. Since the amount of occlusion can be calculated, the difference in the degree of deterioration of the three-way catalyst 4 in the exhaust flow direction can be acquired. For example, it can be determined whether the three-way catalyst 4 is partially deteriorated by comparing the oxygen storage amount per unit volume in each region. Thereby, it is possible to carry out the deterioration degree determination control with higher accuracy.

実施例1に係る内燃機関と、その吸排気系および制御系の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to a first embodiment and its intake and exhaust systems and a control system. FIG. 実施例1における劣化度合い判定制御が実施される時の触媒内部の雰囲気状態および触媒に流出入する排気空燃比の説明図である。It is explanatory drawing of the exhaust gas air-fuel ratio which flows in and out of the atmosphere inside a catalyst when the deterioration degree determination control in Example 1 is implemented. 実施例1における劣化度合い判定制御を実施するときのフューエルカットF/CのON−OFF、流入排気空燃比AFin、触媒床温THcの時間推移を例示したタイムチャートである。6 is a time chart illustrating time transitions of fuel cut F / C ON-OFF, inflow exhaust air-fuel ratio AFin, and catalyst bed temperature THc when performing deterioration degree determination control in the first embodiment. 実施例1における劣化度合い判定制御を実行する時の反応熱検出期間Δtと最大酸素吸蔵量Comaxとの関係を例示した図である。It is the figure which illustrated the relationship between the reaction heat detection period (DELTA) t at the time of performing the deterioration degree determination control in Example 1, and the largest oxygen storage amount Comax. 実施例1における劣化度合い判定制御ルーチンを示すフローチャートである。6 is a flowchart illustrating a deterioration degree determination control routine in the first embodiment. 実施例2に係る三元触媒における熱電対の第1の配置例を示した図である。6 is a diagram illustrating a first arrangement example of thermocouples in a three-way catalyst according to Example 2. FIG. 実施例2に係る三元触媒における熱電対の第2の配置例を示した図である。6 is a diagram showing a second arrangement example of thermocouples in the three-way catalyst according to Example 2. FIG.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・吸気通路
3・・・排気通路
4・・・三元触媒
5・・・上流空燃比センサ
6・・・下流空燃比センサ
7・・・熱電対
10・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Intake passage 3 ... Exhaust passage 4 ... Three-way catalyst 5 ... Upstream air-fuel ratio sensor 6 ... Downstream air-fuel ratio sensor 7 ... Thermocouple 10 ... ECU

Claims (7)

内燃機関の排気通路に設けられ酸素吸蔵能を有する排気浄化触媒と、
前記排気浄化触媒内がリッチ雰囲気であって前記内燃機関のフューエルカットが実行された場合に、前記排気浄化触媒の触媒床温を測定し、排気中の酸素が該排気浄化触媒に吸蔵される時に発生する吸蔵反応熱を検出する吸蔵反応熱検出手段と、
前記吸蔵反応熱検出手段による前記吸蔵反応熱の検出時期に基づいて前記排気浄化触媒の劣化度合いを判定する劣化度合い判定手段と、
を備えることを特徴とする内燃機関の触媒劣化判定システム。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine and having an oxygen storage capacity;
When the exhaust purification catalyst has a rich atmosphere and the fuel cut of the internal combustion engine is executed, the catalyst bed temperature of the exhaust purification catalyst is measured, and oxygen in the exhaust is stored in the exhaust purification catalyst Occlusion reaction heat detection means for detecting the generated occlusion reaction heat;
A deterioration degree determination means for determining a deterioration degree of the exhaust purification catalyst based on a detection timing of the storage reaction heat by the storage reaction heat detection means;
A catalyst deterioration determination system for an internal combustion engine, comprising:
前記劣化度合い判定手段は、前記吸蔵反応熱の検出時期に基づいて前記排気浄化触媒の酸素吸蔵能を推定し、推定された酸素吸蔵能に基づいて該排気浄化触媒の劣化度合いを判定することを特徴とする請求項1に記載の内燃機関の触媒劣化判定システム。   The deterioration degree determining means estimates the oxygen storage capacity of the exhaust purification catalyst based on the detection timing of the storage reaction heat, and determines the deterioration degree of the exhaust purification catalyst based on the estimated oxygen storage capacity. The catalyst deterioration determination system for an internal combustion engine according to claim 1, characterized in that: 前記劣化度合い判定手段は、更に、前記吸蔵反応熱検出手段により測定された前記触媒床温に基づいて前記劣化度合いを判定することを特徴とする請求項1または2に記載の内燃機関の触媒劣化判定システム。   The catalyst deterioration of the internal combustion engine according to claim 1 or 2, wherein the deterioration degree determination means further determines the deterioration degree based on the catalyst bed temperature measured by the occlusion reaction heat detection means. Judgment system. 前記排気浄化触媒に流入する排気空燃比がリーン空燃比か否かを判定するリーン判定手段を更に備え、
前記劣化度合い判定手段は、前記流入する排気空燃比がリーン空燃比であると判定されてから前記吸蔵反応熱が検出されるまでの反応熱検出期間に基づいて前記排気浄化触媒の劣化度合いを判定することを特徴とする請求項1から3の何れか1項に記載の内燃機関の触媒劣化判定システム。
A lean determination means for determining whether or not the exhaust air-fuel ratio flowing into the exhaust purification catalyst is a lean air-fuel ratio;
The deterioration degree determination means determines the deterioration degree of the exhaust purification catalyst based on a reaction heat detection period from when it is determined that the inflowing exhaust air-fuel ratio is a lean air-fuel ratio until the occlusion reaction heat is detected. The catalyst deterioration determination system for an internal combustion engine according to any one of claims 1 to 3, wherein:
前記排気浄化触媒に流入する排気空燃比がリーン空燃比か否かを判定するリーン判定手段と、
前記流入する排気空燃比がリーン空燃比であると判定されてから前記吸蔵反応熱が検出されるまでの反応熱検出期間に基づいて、前記吸蔵反応熱検出手段の配置位置よりも上流側において吸蔵された上流部吸蔵量を算出する上流部吸蔵量算出手段と、
を更に備え、
前記劣化度合い判定手段は、排気浄化触媒全体に対する触媒前端部から前記配置位置までの容積比および前記上流部吸蔵量に基づいて前記排気浄化触媒の全体に係る酸素吸蔵能を推定することを特徴とする請求項2に記載の内燃機関の触媒劣化判定システム。
Lean determination means for determining whether or not the exhaust air-fuel ratio flowing into the exhaust purification catalyst is a lean air-fuel ratio;
Based on the reaction heat detection period from when it is determined that the inflowing exhaust air-fuel ratio is a lean air-fuel ratio until the occlusion reaction heat is detected, occlusion is performed on the upstream side of the arrangement position of the occlusion reaction heat detection means. Upstream portion storage amount calculating means for calculating the upstream portion stored amount,
Further comprising
The deterioration degree determining means estimates the oxygen storage capacity of the exhaust purification catalyst as a whole based on the volume ratio from the catalyst front end to the arrangement position with respect to the entire exhaust purification catalyst and the upstream storage amount. The catalyst deterioration determination system for an internal combustion engine according to claim 2.
前記吸蔵反応熱検出手段は、前記排気浄化触媒における排気流れ方向に複数設けられ、
前記劣化度合い判定手段は、前記複数のうち選択された二の吸蔵反応熱検出手段によって検出された前記吸蔵反応熱の検出時期の差である反応熱検出遅れ期間に基づいて前記排気浄化触媒の劣化度合いを判定することを特徴とする請求項1から3の何れか1項に記載の内燃機関の触媒劣化判定システム。
A plurality of the occlusion reaction heat detection means are provided in the exhaust flow direction in the exhaust purification catalyst,
The deterioration degree determination means is a deterioration of the exhaust purification catalyst based on a reaction heat detection delay period which is a difference in detection timing of the occlusion reaction heat detected by the second occlusion reaction heat detection means selected from the plurality. The catalyst deterioration determination system for an internal combustion engine according to any one of claims 1 to 3, wherein the degree is determined.
前記吸蔵反応熱検出手段は、前記排気浄化触媒における排気流れ方向に複数設けられ、
前記複数のうち選択された二の吸蔵反応熱検出手段によって検出された前記吸蔵反応熱の検出時期の差である反応熱検出遅れ期間に基づいて、前記二の吸蔵反応熱検出手段によって挟まれる領域において吸蔵された中間部吸蔵量を算出する中間部吸蔵量算出手段を、
更に備え、
前記劣化度合い判定手段は、排気浄化触媒全体に対する前記二の吸蔵反応熱検出手段によって挟まれる領域の容積比および前記中間部吸蔵量に基づいて前記排気浄化触媒の全体に係る酸素吸蔵能を推定することを特徴とする請求項2に記載の内燃機関の触媒劣化判定システム。
A plurality of the occlusion reaction heat detection means are provided in the exhaust flow direction in the exhaust purification catalyst,
A region sandwiched between the second occlusion reaction heat detection means based on a reaction heat detection delay period which is a difference in detection timing of the occlusion reaction heat detected by the two selected occlusion reaction heat detection means among the plurality An intermediate storage amount calculating means for calculating the intermediate storage amount stored in
In addition,
The deterioration degree determination means estimates the oxygen storage capacity of the exhaust purification catalyst as a whole based on the volume ratio of the region sandwiched by the second storage reaction heat detection means relative to the entire exhaust purification catalyst and the intermediate storage amount. The catalyst deterioration determination system for an internal combustion engine according to claim 2.
JP2007179376A 2007-07-09 2007-07-09 Internal combustion engine catalyst deterioration judgment system Expired - Fee Related JP4799495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179376A JP4799495B2 (en) 2007-07-09 2007-07-09 Internal combustion engine catalyst deterioration judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179376A JP4799495B2 (en) 2007-07-09 2007-07-09 Internal combustion engine catalyst deterioration judgment system

Publications (2)

Publication Number Publication Date
JP2009013945A JP2009013945A (en) 2009-01-22
JP4799495B2 true JP4799495B2 (en) 2011-10-26

Family

ID=40355121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179376A Expired - Fee Related JP4799495B2 (en) 2007-07-09 2007-07-09 Internal combustion engine catalyst deterioration judgment system

Country Status (1)

Country Link
JP (1) JP4799495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009004665T5 (en) 2009-04-16 2012-08-02 Toyota Jidosha K.K. KATALYSATORANORMALITÄTSDIAGNOSEVORRICHTUNG

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103379B2 (en) * 2001-11-30 2008-06-18 トヨタ自動車株式会社 Control device for internal combustion engine
JP3963130B2 (en) * 2002-06-27 2007-08-22 トヨタ自動車株式会社 Catalyst deterioration judgment device
JP4380574B2 (en) * 2005-03-30 2009-12-09 トヨタ自動車株式会社 Oxygen storage capacity calculation device
JP4513714B2 (en) * 2005-10-21 2010-07-28 トヨタ自動車株式会社 Catalyst degradation detection method
JP2008232103A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
JP2009013945A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4985849B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
JP4475271B2 (en) NOx sensor abnormality diagnosis device and abnormality diagnosis method
JP6350444B2 (en) Exhaust gas purification device for internal combustion engine
JP5170689B2 (en) Exhaust gas purification device for internal combustion engine
EP2878782B1 (en) Exhaust purification device of internal combustion engine
EP2772636A1 (en) Catalyst-degradation detection device
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
US20150167521A1 (en) Exhaust gas purification apparatus for internal combustion engine
US9594065B2 (en) Apparatus for detecting deterioration of NOx selective reduction catalyst
WO2019172356A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP5182200B2 (en) Catalyst deterioration determination device and catalyst deterioration determination method
EP3401522B1 (en) Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine
JP4799495B2 (en) Internal combustion engine catalyst deterioration judgment system
JP2013199913A (en) Exhaust emission control device for internal combustion engine
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
JP5895882B2 (en) Exhaust gas purification system for internal combustion engine
JP3969417B2 (en) An exhaust purification system for an internal combustion engine.
JP4193790B2 (en) Exhaust gas purification device for internal combustion engine
JP5093134B2 (en) Exhaust gas purification device for internal combustion engine
JP4650245B2 (en) Exhaust gas purification system for internal combustion engine
JP4665830B2 (en) Exhaust gas purification system for internal combustion engine
JP3412472B2 (en) Exhaust gas purification device for internal combustion engine
JP2012233463A (en) Device for detecting defect in exhaust purificastion system
JP2009287429A (en) Exhaust emission control device of internal combustion engine
JP2020045796A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees