JP4799378B2 - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP4799378B2
JP4799378B2 JP2006315604A JP2006315604A JP4799378B2 JP 4799378 B2 JP4799378 B2 JP 4799378B2 JP 2006315604 A JP2006315604 A JP 2006315604A JP 2006315604 A JP2006315604 A JP 2006315604A JP 4799378 B2 JP4799378 B2 JP 4799378B2
Authority
JP
Japan
Prior art keywords
sewage treatment
tank
sludge
pipe
treatment plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006315604A
Other languages
Japanese (ja)
Other versions
JP2008126169A (en
Inventor
康二郎 藤井
哲次郎 亀井
Original Assignee
旭化成クリーン化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成クリーン化学株式会社 filed Critical 旭化成クリーン化学株式会社
Priority to JP2006315604A priority Critical patent/JP4799378B2/en
Publication of JP2008126169A publication Critical patent/JP2008126169A/en
Application granted granted Critical
Publication of JP4799378B2 publication Critical patent/JP4799378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、一般家庭の生活排水や一部事業所の事業所排水等の下水に対する下水処理場を用いた下水処理方法に関し、特に、下水処理場等で発生する腐敗臭気等を改善でき、かつ下水処理場の処理負荷を低減できる下水処理方法に関する。   The present invention relates to a sewage treatment method using a sewage treatment plant for sewage, such as domestic household wastewater and business effluents of some business establishments, and in particular, can improve the septic odor generated at the sewage treatment plant, etc. The present invention relates to a sewage treatment method that can reduce the treatment load of a sewage treatment plant.

一般の家庭排水や、一部事業所の有機物を含む事業排水等の排水(いわゆる下水)は、管渠を経由して下水処理場等に集められ、微生物による好気的酸化処理をされて浄化放流されるのが通常である。また一般の家庭が分散している農村や漁村の集落の家庭排水も、やはり管渠を経由して同様な処理設備に集められて、微生物による好気的酸化処理で浄化されることが多い。   Wastewater (so-called sewage) such as general household wastewater and business wastewater containing organic substances from some business establishments is collected in sewage treatment plants via pipes and purified by aerobic oxidation treatment by microorganisms. Usually released. In addition, household wastewater from villages and fishing villages in which ordinary households are dispersed is often collected through similar pipes to similar treatment facilities and purified by aerobic oxidation treatment with microorganisms.

この下水処理場等では、嫌気性雰囲気である沈砂池や最初の沈殿槽(初沈槽)や重力濃縮槽での、下水含有物の腐敗による生物化学的酸素要求量(BOD)の増加や臭気の発生等の問題が知られており、さらに、初沈槽等における沈殿物の腐敗に起因する重力沈降効率の悪化や、返流水による初沈槽の水質悪化等の問題点もある。   In this sewage treatment plant, etc., an increase in biochemical oxygen demand (BOD) and odor due to decay of sewage contents in an anaerobic basin, initial sedimentation tank (primary sedimentation tank) and gravity concentration tank In addition, there are problems such as deterioration of the gravity sedimentation efficiency due to the decay of sediment in the initial sedimentation tank and the like, and deterioration of the water quality of the initial sedimentation tank due to the return water.

しかしながら、現在の下水処理場の管理においては、これらの問題点は下水というものの性質上やむを得ないものと考えられており、腐敗や臭気の発生原因等にメスが入れられることもなく、何らかの根本的な改善を行おうとする観点はほとんど持たれていないのが実情である。そのため、臭気に対する対策として、臭気用ダクト施設の強化、密閉用め張りの強化や消臭剤の使用等がなされているに過ぎない。   However, in the current management of sewage treatment plants, these problems are considered to be unavoidable due to the nature of sewage. The fact is that there is almost no point of view to make such improvements. Therefore, as countermeasures against odors, odor duct facilities are strengthened, sealing tents are strengthened, and deodorants are used.

現状の流入下水のBOD値と初沈槽の入口または出口のBOD値とを比べれば、初沈槽入口や出口のBOD値がしばしば高くなっており、このBOD値の増加が、下水入り口から初沈槽出口間のプロセスで腐敗が起ったり、沈降した懸濁成分(SS)が可溶化したりした結果であることは明らかである。また、腐敗した返流水によってもBODが増加するため、これらのBOD増加分に対応する曝気量の増加が必要になり、曝気槽の負荷増加を招いている。また、初沈汚泥の腐敗進行の結果、凝集剤の多用や消臭剤の使用が必要となっている。ちなみに、沈砂池や初沈槽は当該物を沈降させる設備であるから、好気的に腐敗防止対策を打つことは困難である。   Comparing the current BOD value of the inflowing sewage with the BOD value at the inlet or outlet of the first settling tank, the BOD values at the first sinking tank inlet and outlet are often high, and this increase in BOD value is the first from the sewage inlet. It is clear that this is a result of rot in the process between the settling tank outlets or solubilization of the suspended suspended component (SS). Further, since the BOD increases due to the spoiled return water, it is necessary to increase the amount of aeration corresponding to the increase in the BOD, resulting in an increase in the load on the aeration tank. In addition, as a result of the progress of the decay of the first settling sludge, the use of a flocculant and the use of a deodorant are necessary. By the way, the sand basin and the first settling tank are facilities for sinking the object, so it is difficult to take aerobic anti-corruption measures.

ところで、従来より活性汚泥法における浄化促進のための種々の方法が提案されている。例えば、汚泥中のバチルス菌以外の微生物群を選択的に死滅させることで、生物処理槽内でバチルス菌を優占化させる有機性排水の処理方法が開示されている(特許文献1参照)。また、あらかじめ有機性廃水にバチルス菌などの内生胞子形成細菌を含む汚泥を混合し、内生胞子形成細菌の胞子を発芽させて栄養細胞に転換し、その栄養細胞を含む混合液を曝気槽に投入する方法が開示されている(特許文献2参照)。また、複数の微生物反応槽を設け、微生物栄養源含有液が、複数の反応槽の間を交互に移動する微生物反応方法等が開示されている(特許文献3参照)。   By the way, conventionally, various methods for promoting purification in the activated sludge method have been proposed. For example, a method for treating organic wastewater that predominates Bacillus bacteria in a biological treatment tank by selectively killing a group of microorganisms other than Bacillus bacteria in sludge has been disclosed (see Patent Document 1). In addition, sludge containing endospore-forming bacteria such as Bacillus bacteria is mixed with organic wastewater in advance, the spores of endospore-forming bacteria are germinated and converted to vegetative cells, and the mixed solution containing vegetative cells is aerated Is disclosed (see Patent Document 2). In addition, a microbial reaction method in which a plurality of microbial reaction tanks are provided and a microbial nutrient source-containing liquid moves alternately between the plurality of reaction tanks is disclosed (see Patent Document 3).

しかし、これら従来の方法はいずれも、好気性雰囲気である曝気槽以降の工程で有効に作用する方法にすぎず、その前段に設けられている嫌気性雰囲気の沈砂池や初沈槽あるいは重力濃縮槽等で生じる上述の問題点を解決しようとする視点は、先行文献には開示されていない。
特開2004−275960号公報 特開2001−162297号公報 特開2003−71479号公報
However, these conventional methods are only effective methods in the steps after the aeration tank, which is an aerobic atmosphere, and an anaerobic atmosphere settling basin, initial settling tank, or gravity concentrator provided in the preceding stage. A viewpoint to solve the above-described problems occurring in a tank or the like is not disclosed in the prior literature.
JP 2004-275960 A JP 2001-162297 A JP 2003-71479 A

本発明は、下水処理場の沈砂池から重力濃縮槽までの、曝気槽の前段に位置する処理工程における排水含有有機物の腐敗を防止して、硫化水素等の臭気の発生を抑え、さらに余剰汚泥を減量化して処理負担を軽減化できる下水処理方法を提供することを課題とする。   The present invention prevents the decay of organic matter containing wastewater in the treatment process located in the preceding stage of the aeration tank from the sand basin of the sewage treatment plant to the gravity concentration tank, suppresses the generation of odors such as hydrogen sulfide, and surplus sludge It is an object to provide a sewage treatment method capable of reducing the amount of wastewater and reducing the treatment burden.

上記課題解決のために本発明者らは鋭意検討した結果、以下の方法に到達した。即ち、本発明は、排水を、管渠と中継ポンプ場とを介して下水処理場に送って生物処理する下水処理方法であって、前記管渠内に前記排水中の有機物を分解する機能を有する微生物を含む微生物製剤を前記中継ポンプ場から投入し、前記中継ポンプ場から前記下水処理場までの前記管渠内において、前記微生物製剤から生じた微生物により、前記有機物の少なくとも一部を分解することを特徴とする下水処理方法である。   As a result of intensive studies to solve the above problems, the present inventors have reached the following method. That is, the present invention is a sewage treatment method for biologically treating wastewater by sending it to a sewage treatment plant via a pipe culvert and a relay pump station, and has a function of decomposing organic matter in the effluent in the pipe culm. A microorganism preparation containing microorganisms is introduced from the relay pump station, and at least a part of the organic matter is decomposed by the microorganisms generated from the microorganism preparation in the pipe tube from the relay pump station to the sewage treatment plant. This is a method for treating sewage.

ここで、前記中継ポンプ場から前記下水処理場までの前記管渠の長さが、5km以上あることは好ましい。また、前記の微生物が、前記有機物の分解能を持ち芽胞を形成するグラム陽性菌であることは好ましい。また、前記微生物製剤を前記管渠内に投入するにあたり、前記微生物製剤をあらかじめ水に分散してから、もしくはあらかじめ水に分散して曝気し栄養細胞としてから、投入することは好ましい。また、前記微生物が、前記有機物の分解能を持ち芽胞を形成しないグラム陰性菌であり、前記微生物製剤は、前記グラム陰性菌が米ぬかまたは麦ぬかを用いて固形化された固体微生物剤であることは好ましい。また、前記微生物製剤が、グラム陽性菌とグラム陰性菌とを含んだ固体微生物製剤であることは好ましい。また、前記の微生物が、バチルス属であることは好ましい。また、前記の微生物が、バチルス・トヨイ菌であることは好ましい。また、前記の投入にあたり、前記排水1ml中の前記微生物の菌数が、前記排水中に元々存在する1mlあたりの菌数の1/1000以上となるように、前記の微生物製剤を投入することは好ましい。   Here, it is preferable that the length of the pipe rod from the relay pump station to the sewage treatment plant is 5 km or more. In addition, it is preferable that the microorganism is a Gram-positive bacterium having a resolution of the organic matter and forming a spore. In addition, when the microbial preparation is introduced into the tube, it is preferably introduced after the microbial preparation is dispersed in water in advance, or dispersed in water in advance and aerated to form vegetative cells. Further, the microorganism is a Gram-negative bacterium that has the ability to decompose the organic matter and does not form spores, and the microbial preparation is a solid microbial agent that is solidified by using rice bran or wheat bran. preferable. The microbial preparation is preferably a solid microbial preparation containing gram positive bacteria and gram negative bacteria. Moreover, it is preferable that the microorganism is a genus Bacillus. Moreover, it is preferable that the microorganism is Bacillus toyoi. In addition, in introducing the microorganism preparation, the microorganism preparation is introduced so that the number of microorganisms in 1 ml of the wastewater is 1/1000 or more of the number of bacteria per ml originally present in the wastewater. preferable.

中継ポンプ場から管渠内に投入された微生物が、意外にも管渠内で有機物の分解作用を発揮することができ、下水処理場内の沈砂池、初沈槽、重力濃縮槽における腐敗が抑制される。その結果、硫化水素等の臭気が押さえられる。また、沈砂池への返流水の腐敗も押さえられ、その結果、沈砂池の下流に位置する初沈槽の水質も改善され、BODの低下した生物排水が曝気槽へ流入するから、曝気槽の処理負担が軽減される。さらに、曝気槽では管渠に投入され流下してきた微生物が増殖できるため、安定な水処理が可能となり、余剰汚泥も減量化される。   Microorganisms that are introduced into the pipe tank from the relay pump station can surprisingly demonstrate the decomposition of organic matter in the pipe tank, and prevent decay in the sand basin, first settling tank, and gravity concentration tank in the sewage treatment plant. Is done. As a result, odors such as hydrogen sulfide are suppressed. In addition, the return water to the settling basin is prevented from being spoiled. As a result, the water quality of the first settling tank located downstream of the settling pond is improved, and biological wastewater with a low BOD flows into the aeration tank. The processing burden is reduced. Furthermore, in the aeration tank, microorganisms that have been thrown into the pipe can be propagated, so that stable water treatment is possible and excess sludge is reduced.

本発明の実施の形態例を図面も引用しながら説明する。図1は、本発明の方法を現在用いられている一般的な下水処理フロー全体を用いて実施する場合を説明する概念図である。住宅やマンションの生活排水1や食品製造工場のごとき事業所からの事業排水2が含まれる排水は、管渠3を経て集水され、中継ポンプ場5、6に集まる。続いて中継ポンプ場5、6から口径の比較的大きな管渠7、8を経由して下水処理場9の沈砂池10へ流入し、下水処理される。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram illustrating a case where the method of the present invention is carried out using the entire general sewage treatment flow currently used. Wastewater including domestic wastewater 1 of houses and condominiums and business wastewater 2 from establishments such as food manufacturing factories is collected via pipes 3 and collected at relay pump stations 5 and 6. Then, it flows into the sand basin 10 of the sewage treatment plant 9 via the pipe rods 7 and 8 having a relatively large diameter from the relay pump stations 5 and 6, and is treated for sewage treatment.

ここにいう管渠とは、下水道の一部で、下水を住宅、工場などから排除して、中継ポンプ場を経由して下水処理場等に送るための通路であり、暗渠とされるのが通常である。管渠は、断面が円形(特に下水管と呼ばれる)、半円形、卵形、馬蹄形、長方形等のものであり、管径が15cm程度以上のものをいう。また、雨水を合流させる合流式の管渠を含めても良いが、菌の環境を一定に保つためには、雨水を合流させない分流式の管渠とするのが好ましい。   The pipe pipe here is a part of the sewer, which is a passage for removing sewage from houses, factories, etc., and sending it to a sewage treatment plant etc. via a relay pump station. It is normal. The tube rod has a circular cross section (in particular, called a sewer pipe), a semicircular shape, an oval shape, a horseshoe shape, a rectangular shape, etc., and has a tube diameter of about 15 cm or more. In addition, a combined pipe tube that joins rainwater may be included, but in order to keep the environment of the bacteria constant, it is preferable to use a divided pipe tube that does not join rainwater.

中でも、中継ポンプ場から下水処理場までつながる管渠では、管渠は下水量の7〜5倍程度の管径となるように設計されるのが通常であり、管体積の2割程度に下水が流れ、残りの8割程度は空気となる。このような管渠内では、管渠内に十分な空気量があるため、管渠内が好気性雰囲気となる。   In particular, pipes connected from the relay pump station to the sewage treatment plant are usually designed to have a pipe diameter that is about 7 to 5 times the amount of sewage, and the sewage is about 20% of the pipe volume. The remaining 80% becomes air. In such a pipe casing, since there is a sufficient amount of air in the pipe casing, the inside of the pipe casing becomes an aerobic atmosphere.

また、中継ポンプ場とは、ある下水の排水区の下水を、下水処理場が有る排水区に送入するためや、管渠の埋設深さや勾配の関係で下水を中継するために、専用用地内に設けられたポンプ場を言う。中継ポンプ場は、市街地に設けられることが多い。   In addition, a relay pump station is a dedicated site for sending sewage from a certain sewage drainage area to a drainage area where a sewage treatment plant is located, or for relaying sewage due to the depth and slope of pipes. Says the pumping station provided inside. Relay pump stations are often installed in urban areas.

この中継ポンプ場において、排水中の有機物を分解する機能を有する微生物を含む微生物製剤を管渠内に投入する。これにより、排水が管渠内を流下する間に、管渠内の好気性雰囲気を利用して微生物製剤から発生する微生物を増殖せしめ、下水処理場における腐敗の原因となる有機物をできるだけ分解することが可能であることを見出した。   In this relay pump station, a microbial preparation containing microorganisms having a function of decomposing organic matter in the waste water is put into the tube. As a result, the microorganisms generated from the microbial preparation are propagated using the aerobic atmosphere in the pipe while the drainage flows down the pipe, and the organic matter that causes rot in the sewage treatment plant is decomposed as much as possible. Found that is possible.

微生物製剤の投入は、住宅等の生物排水の発生現場で行ったり、道路の地下に設けられているマンホールポンプ場で行ったりすることも考えられるが、比較的高価なバチルス属の菌等を含む微生物製剤を効率よく投入するには、投入量や投入頻度の管理がしやすく、かつその後の管渠の管径が比較的大きくて、微生物の増殖に好適な環境となりやすい中継ポンプ場で投入するのがよい。排水の発生現場から下水処理場までの間に複数の中継ポンプ場が有る場合は、全部の中継ポンプ場で投入するようにしても良いが、微生物の増殖にとってもっとも好ましいと思われる中継ポンプ場を少なくとも一ヶ所選択して、投入するのが効率的で低コストとなり好ましい。   Microbial preparations can be introduced at the site of the generation of biological wastewater in houses, etc., or at the manhole pumping station installed in the basement of the road, but contain relatively expensive Bacillus spp. In order to efficiently inject microbial preparations, use a relay pump station where the amount and frequency of injection are easy to manage, and the tube diameter of the tube is relatively large, making it a suitable environment for microbial growth. It is good. If there are multiple relay pump stations between the site where the wastewater is generated and the sewage treatment plant, all of the relay pump stations may be used. It is preferable to select at least one place and input it because it is efficient and low cost.

ところで、元々多くの菌が存在する管渠内に、有機物分解機能に優れる後述のバチルス属の菌のような微生物を投入しても、菌濃度が低下することによって菌の活力が低下し、微生物本来の分解性能を発揮することが難しいと予想された。さらに、微生物は水温や溶存酸素などの適した環境、好む餌などが満たされないと増殖・優占化しないため、バチルス属の菌が優占化していない条件の管渠に菌を投入しても、増殖・優占化させることは難しいと考えるのが常識で、目的とする効果が発揮できないと考えられた。しかし、意外にも微生物の投入により管渠内で微生物の増殖が見られ、下水処理場での臭気の低減化等の効果が得られる結果となった。   By the way, even if a microorganism such as a Bacillus genus described later that excels in organic matter decomposition function is introduced into the tube that originally contains many bacteria, the activity of the bacteria decreases due to a decrease in the concentration of the bacteria. It was expected that it would be difficult to demonstrate the original decomposition performance. In addition, since microorganisms do not grow or dominate unless they are filled with a suitable environment such as water temperature and dissolved oxygen, and preferred foods, even if they are put into tube tubs under conditions where Bacillus bacteria do not dominate It was common sense that it was difficult to proliferate and dominate, and it was thought that the intended effect could not be demonstrated. However, unexpectedly, the growth of microorganisms was observed in the pipe tubs due to the introduction of microorganisms, resulting in the effect of reducing the odor at the sewage treatment plant.

このような結果が得られた理由は不明であるが、管渠内は、酸素の溶解作用と流れによる攪拌作用とが生じる一種の好気性生物反応槽と考えることができること、また、管渠の比較的長い流下距離が、生物反応時間(HRT)を稼ぐところとなったことも一因と考えられる。この結果、投入された微生物が管渠内の有機物を食べながら増殖しつつ流下する過程において、腐敗の原因となる易分解性有機物が処理され、下流にある下水処理場の沈砂槽、初沈槽及び重力沈殿槽における、易分解性有機物の腐敗を防止する効果が得られた。また、これらの槽内においても、先に投入された微生物が増殖することができ、続く活性汚泥槽での有力な有機物分解微生物種となり、ひいては余剰汚泥も減容される効果が得られる。   The reason why such a result was obtained is unknown, but the inside of the tube can be considered as a kind of aerobic bioreactor in which the dissolving action of oxygen and the stirring action by the flow occur. One reason may be that the relatively long flow-down distance is the place to earn biological reaction time (HRT). As a result, in the process in which the input microorganisms flow while growing while eating the organic matter in the tube, the easily decomposable organic matter that causes rot is treated, and the sand settling tank and the first settling tank in the downstream sewage treatment plant And the effect which prevents the decay of the easily decomposable organic substance in the gravity settling tank was acquired. Also, in these tanks, the previously introduced microorganisms can grow and become an effective organic matter-decomposing microbial species in the subsequent activated sludge tank. As a result, the effect of reducing excess sludge can be obtained.

中継ポンプ場から下水処理場までの管渠の流下長さは、5km以上あることが好ましい。このように距離を持たせることにより、排水が管渠内を流下するのに短くとも5〜7時間程度を要するようになり、この間に排水内の有機物が分解される時間をより稼ぐことができる。中継ポンプ場から下水処理場までの流下長さは、下水処理場の設置場所にもよるが通常およそ5〜40kmはあり、排水は数時間から半日の時間を要して下水処理場へ達する。この時間は下水処理場の曝気槽における滞留時間(HRT)にほぼ対応するかそれ以上の管渠内滞留時間であるから、管渠を生物反応槽として利用するのに十分な時間となる。より好ましくは7km以上あることであり、さらに好ましくは10km以上である。   The flow length of the pipe dredging from the relay pump station to the sewage treatment plant is preferably 5 km or more. By providing such a distance, it takes about 5 to 7 hours at least for the drainage to flow down the pipe, and during this time, more time can be taken for the organic matter in the drainage to decompose. . The length of flow from the relay pump station to the sewage treatment plant is usually about 5 to 40 km depending on the location of the sewage treatment plant, and the drainage takes several hours to half a day to reach the sewage treatment plant. This time corresponds to the residence time (HRT) in the aeration tank of the sewage treatment plant or substantially equal to or longer than the residence time in the pipe tank, so that it is sufficient to use the pipe tank as a biological reaction tank. More preferably, it is 7 km or more, and further preferably 10 km or more.

管渠内に投入する微生物製剤としては、製剤から得られる微生物が、管渠内で排水内に含まれる有機物を有効に分解できる微生物であればよいが、管渠内で増殖できて優占種となり得る微生物であることはより好ましい。   As the microorganism preparation to be introduced into the tube, the microorganism obtained from the preparation may be any microorganism that can effectively decompose the organic matter contained in the wastewater in the tube, but it can grow in the tube and be the dominant species. More preferably, it is a microorganism that can be.

微生物製剤の形状は管理上、長期安定に保存できる芽胞が好ましい。例えば、芽胞をつくるグラム陽性菌が取り扱いやすく好適である。菌自身が芽胞で安定であり、固体の混合物の状態で1年以上安定に生育できる。一方、芽胞にならない栄養細胞であるグラム陰性菌は麦ぬかや米ぬかと混合し固体化すると良い。グラム陰性菌の栄養細胞は麦ぬかや米ぬか等での混合物で乾燥させ固体の微生物製剤とすることができ、製剤としての保存期間が短いものの有効に使用できる。   The shape of the microbial preparation is preferably a spore that can be stored stably for a long period of time. For example, Gram-positive bacteria that produce spores are preferable because they are easy to handle. The fungus itself is stable in the spore and can grow stably for more than one year in a solid mixture. On the other hand, Gram-negative bacteria, which are vegetative cells that do not become spores, should be solidified by mixing with wheat bran or rice bran. Gram-negative vegetative cells can be dried with a mixture of wheat bran, rice bran, etc. to give a solid microbial preparation, which can be used effectively even though it has a short shelf life as a preparation.

芽胞菌としては、バチルス属が有機物分解能が高く、また嫌気性菌の活動も押さえ臭気を少なくすることが出来、好適である。芽胞菌は長い下水管渠を流下して行く間に周囲の下水成分から栄養を得て、栄養細胞となり管渠内流下や管渠内壁に付着して、下水中の有機物分解を行い、また自らは分裂し増殖をしていく。   As the spore bacterium, Bacillus is preferable because it has a high organic matter resolving power and can suppress the activity of anaerobic bacteria to reduce odor. Spore bacteria obtain nutrients from the surrounding sewage components while flowing down the long sewage pipes, become nutrient cells, adhere to the pipe sap and the inner wall of the tub, decompose organic matter in the sewage, and themselves Divides and grows.

中でもバチルス・トヨイ菌は、家畜の腸内で整腸効果をもたらす微生物として動物製薬としても使用されており、有機物の分解能が高く、しかも嫌気性状態でも活性が高く、増殖もし、管渠中は活動のための酸素濃度が必ずしも十分ではないが、動物腸内の状況に比較的類似した条件でも活性を保ち、活性汚泥菌としての活性が高くてもっとも好適な微生物である。   Among them, Bacillus toyoi is also used as an animal pharmaceutical as a microorganism that produces an intestinal regulating effect in the intestines of livestock, has high organic matter resolution, is highly active even in anaerobic conditions, and proliferates. Although the oxygen concentration for activity is not necessarily sufficient, it is the most suitable microorganism that maintains activity even under conditions relatively similar to the situation in the animal intestine and has high activity as an activated sludge fungus.

ところで、排水中に元々存在する微生物の一般的な菌数は、105〜106個/ml程度であるが、管渠内に投入すべき微生物の量としては、排水中の投入微生物の菌数が1mlあたり103個以上となるように設定することが好ましい。つまり、一般的な排水中に元々存在していた微生物数の約1000分の1以上とするのが好ましい。この範囲となる微生物製剤の量比であれば、投入された微生物は、管渠内で十分に活動できて増殖を続けることができる。微生物製剤の投入量が多い程その効果は確実であるが、製剤の費用と得られる汚泥減量や電気代削減の効果のバランスから、適切な投入量には自ずと上限がある。管渠流下中での投入微生物の増殖の結果、さらには沈砂池、初沈槽を経て、1mlあたり108から109個程度の微生物が存在する曝気槽内でも、投入微生物が水処理性能を発揮できる活動を示すことができる。より好ましくは500分の1以上である。 By the way, the general number of microorganisms originally present in the wastewater is about 10 5 to 10 6 cells / ml. It is preferable to set the number to be 10 3 or more per ml. That is, it is preferable to set it to about 1/1000 or more of the number of microorganisms originally present in general waste water. When the amount ratio of the microbial preparation is within this range, the introduced microorganism can sufficiently act in the tube and continue to grow. The effect is more certain as the input amount of the microbial preparation is larger, but there is an upper limit to the appropriate input amount due to the balance between the cost of the preparation and the effect of reducing sludge and electricity costs. As a result of the growth of the input microorganisms under the flow of the pipe, the input microorganisms have water treatment performance even in the aeration tank where about 10 8 to 10 9 microorganisms per ml exist after passing through the sand basin and the initial sedimentation tank. Demonstrate activities that can be demonstrated. More preferably, it is 1/500 or more.

微生物等の投入法は、中継ポンプ場の管理状態に合った投入法を、投入箇所と管理の状況により適宜決めればよい。規定量の粉体をそのまま投入しても、粉体をあらかじめ水に分散させてからポンプ注入してもよいが、水に分散してからポンプ注入するのが簡便で好ましい。芽胞を形成するグラム陽性菌を用いる場合は、グラム陽性菌を含む微生物製剤をあらかじめ水に分散させ、さらに曝気して栄養細胞としてから投入するのが、有機物の分解効果が高くなり好ましい。   As a method for introducing microorganisms or the like, an injection method suitable for the management state of the relay pump station may be appropriately determined depending on the input location and the management status. The specified amount of powder may be added as it is, or the powder may be dispersed in water before pumping, but it is convenient and preferable to disperse in water before pumping. In the case of using Gram-positive bacteria that form spores, it is preferable to disperse a microbial preparation containing Gram-positive bacteria in water in advance, and aerate and add them as vegetative cells because the organic matter decomposition effect is high.

また、排水は常時流下していくので、微生物製剤は連続して管渠内に投入するのが好ましいが、毎日一回や三日に一回のごときペースで間欠的に投入するなどの投入方法でも良い。管渠内にある期間投入され続けた微生物が、十分管渠内で馴養され管渠壁等に増殖するようになれば、投入間隔を広げるようにしてもよい。例えば、中継ポンプ場の管理者のいない休日等は、休日前に通常の量より多い量を投入するなどの方法を採ってもよい。   In addition, since the drainage always flows down, it is preferable to continuously put the microbe preparation into the tube. However, it is possible to insert it intermittently at a pace of once every day or once every three days. But it ’s okay. The introduction interval may be increased if the microorganisms that have been introduced into the tube for a certain period are sufficiently acclimatized in the tube and grow on the tube wall. For example, on holidays where there is no manager of the relay pump station, a method may be employed in which an amount larger than the normal amount is input before the holidays.

管渠中で有機物の少なくとも一部が分解された排水は、下水処理場9の沈砂池10に流入し、一定時間、沈砂池に滞留する。この間に、排水中に含まれる大きなゴミや砂などが沈降除去される。砂などが除去された排水は、沈砂池10から配管12を経て初沈槽13に移動する。初沈槽13では、排水をさらにゆっくり流し、沈砂池10で取り除けなかったゴミや泥等を沈降・除去する。   The wastewater in which at least a part of the organic matter is decomposed in the pipe dredes flows into the sand basin 10 of the sewage treatment plant 9 and stays in the sand basin for a certain time. During this time, large dust or sand contained in the waste water is settled and removed. The drainage from which the sand and the like have been removed moves from the settling basin 10 to the initial settling tank 13 via the pipe 12. In the initial settling tank 13, the drainage is made to flow more slowly to settle and remove dust, mud, etc. that could not be removed in the sand basin 10.

初沈槽13で泥などを除かれた排水は、配管18を経由して曝気槽20に移動する。また、初沈槽13で沈降した汚泥14は、初沈槽13から引き抜かれて配管15で重力濃縮槽16に移送される。重力濃縮槽16では、引き抜かれた汚泥を貯めてさらに汚泥成分を沈澱させて濃縮する。重力濃縮槽16で濃縮された初沈汚泥28は、汚泥貯留槽30に送られる。一方、重力濃縮槽16で汚泥を除かれた残りの排水は、返流水17として沈砂池10に返される。返流水17の量は、下水処理場に流入する排水の約5〜10%である。   The waste water from which mud and the like have been removed in the initial settling tank 13 moves to the aeration tank 20 via the pipe 18. Further, the sludge 14 that has settled in the initial settling tank 13 is drawn out of the initial settling tank 13 and transferred to the gravity concentration tank 16 through the pipe 15. In the gravity concentration tank 16, the extracted sludge is stored and further sludge components are precipitated and concentrated. The initially settled sludge 28 concentrated in the gravity concentration tank 16 is sent to the sludge storage tank 30. On the other hand, the remaining waste water from which the sludge has been removed in the gravity concentration tank 16 is returned to the sand basin 10 as return water 17. The amount of the return water 17 is about 5 to 10% of the waste water flowing into the sewage treatment plant.

上記の沈砂池10、初沈槽13、重力濃縮槽16で構成される一連の処理工程は、曝気槽20の前段に位置し、沈降により汚泥などを除去する機能を発揮させるため、曝気や攪拌などの処理を行うことができない。そのため、好気性処理ができない嫌気性雰囲気となっており、従来、排水に含有される有機物の腐敗が生じやすかった。そのうえ、腐敗した有機物を含有する排水が返流水17として沈砂池10に戻り、以下、初沈槽13〜重力濃縮槽16〜沈砂池10を循環するため、さらに腐敗が進みやすかった。なお、後述する脱水機32からの返流水33も量は少ないがBOD値が高く、沈砂池10の水質悪化に輪をかけていた。   A series of processing steps composed of the sand basin 10, the initial sedimentation tank 13, and the gravity concentration tank 16 are located in the front stage of the aeration tank 20, and exhibit a function of removing sludge by sedimentation. Such processing cannot be performed. Therefore, it has become an anaerobic atmosphere in which aerobic treatment cannot be performed, and conventionally, organic matter contained in wastewater has been easily rotted. In addition, the wastewater containing the rotted organic matter returns to the settling basin 10 as the return water 17 and circulates through the initial settling tank 13 to the gravity concentration tank 16 to the settling basin 10, so that the rot easily proceeds. In addition, although the amount of the return water 33 from the dehydrator 32 described later is small, the BOD value is high, and the water quality of the sand basin 10 is deteriorated.

しかし、中継ポンプ場から管渠内に微生物製剤が投入されることで、沈砂池10に流入する排水中の有機物量が減少し、沈砂池10での腐敗が生じにくくなる。そのため、初沈槽13や重力濃縮槽16でも腐敗が生じにくくなり、返流水17もBOD値が上昇しにくくなる。すなわち、沈砂池10〜初沈槽13〜重力濃縮槽16で構成される循環サイクル全体で腐敗が生じにくくなり、臭気の発生も抑えられることになる。さらに、返流水33のBOD値も改善されるから、循環サイクル全体でかなりの改善が生じる。   However, when the microorganism preparation is introduced into the pipe tub from the relay pump station, the amount of organic matter in the wastewater flowing into the sand basin 10 is reduced, and the septic in the sand basin 10 is less likely to occur. For this reason, it is difficult for the initial settling tank 13 and the gravity concentration tank 16 to be spoiled, and the return water 17 is also less likely to increase the BOD value. That is, it becomes difficult to produce rot in the entire circulation cycle composed of the sand basin 10 to the initial sedimentation tank 13 to the gravity concentration tank 16, and the generation of odor is also suppressed. Furthermore, since the BOD value of the return water 33 is also improved, a considerable improvement occurs throughout the circulation cycle.

なお、沈砂池10から初沈槽13を経て最も腐敗の進行する重力濃縮槽16に至る工程は、いずれもSS成分を沈降させるための設備であり、かつ水中の酸素は全て消費されて酸化還元電位(ORP)はマイナスの状態である。従って、従来のこの状態で有機物の腐敗を抑えることは常識的に不可能である。ちなみに、沈砂池10に腐敗防止用の好気性微生物製剤を投入して初沈槽13以降の腐敗抑制を行うことも考えられるが、ORPがマイナスの状況で好気性菌を投入しても、腐敗防止の効果はないのが実情である。   The steps from the sand basin 10 through the initial settling tank 13 to the gravity concentrating tank 16 where the decay is most advanced are facilities for settling SS components, and all oxygen in the water is consumed and redox. The potential (ORP) is in a negative state. Therefore, it is not common sense to suppress the decay of organic matter in this conventional state. By the way, it is conceivable that aerobic microorganism preparation for preventing corruption is introduced into the sand basin 10 to suppress corruption after the first sedimentation tank 13, but even if aerobic bacteria are introduced in a situation where ORP is negative, The fact is that there is no prevention effect.

初沈槽13から曝気槽20に移動した排水は、曝気槽20の好気性雰囲気下で活性汚泥により生物処理され、活性汚泥が排水中に溶け込んだ汚れを栄養として吸収または吸着して分解または沈降しやすい汚泥に変化させる。この際、曝気槽20に流入する排水内の有機物含量が減少しているから、曝気槽20における空気量が減少し、また処理に必要な活性汚泥量も減容する。   The wastewater moved from the initial settling tank 13 to the aeration tank 20 is biologically treated with activated sludge in the aerobic atmosphere of the aeration tank 20, and the sludge dissolved in the wastewater is absorbed or adsorbed as nutrients to decompose or settle. Change to easy-to-use sludge. At this time, since the organic matter content in the waste water flowing into the aeration tank 20 is reduced, the amount of air in the aeration tank 20 is reduced and the amount of activated sludge necessary for the treatment is also reduced.

曝気槽20で処理された排水は、配管21を経由して終沈槽22に移動し、活性汚泥23が沈降処理される。活性汚泥が沈降除去された上澄み液は、配管40を経由して塩素消毒された後、河川や湖などの公共水域に放流される。一方、終沈槽22で沈降除去された活性汚泥23は、配管24を介して一部が曝気槽20に返送汚泥25として戻され、残りは、余剰汚泥として余剰汚泥機械濃縮槽26に送られる。あらかじめ管渠内に微生物製剤が投入されることで、曝気槽20の負担が減少した結果、余剰汚泥機械濃縮槽26に移動する余剰汚泥の量も減少し、曝気槽20以降の汚泥処理の負荷が全体的に軽減される効果が得られる。   The wastewater treated in the aeration tank 20 moves to the final settling tank 22 via the pipe 21, and the activated sludge 23 is settled. The supernatant liquid from which the activated sludge has been settled and removed is sterilized via the pipe 40 and then discharged into public water areas such as rivers and lakes. On the other hand, a part of the activated sludge 23 settled and removed in the final settling tank 22 is returned to the aeration tank 20 as a return sludge 25 via a pipe 24, and the rest is sent to a surplus sludge machine concentration tank 26 as surplus sludge. . As a result of reducing the burden on the aeration tank 20 by introducing the microorganism preparation into the tube beforehand, the amount of excess sludge moving to the excess sludge machine concentration tank 26 also decreases, and the sludge treatment load after the aeration tank 20 is reduced. Can be reduced overall.

余剰汚泥機械濃縮槽26では、機械で遠心力が加えられ汚泥濃度が上昇し、汚泥はさらに汚泥貯留槽30に送られる。汚泥貯留槽30では、重力濃縮槽16から送られた初沈汚泥28と合わせて貯留する。あらかじめ管渠内に微生物製剤を投入することにより、初沈汚泥28、余剰汚泥27のいずれも減少する。これらの汚泥は、一定量が貯まると汚泥貯留槽30から配管31を介して脱水機32に送られ、必要により凝集剤を添加して、遠心力により脱水されて脱水ケーキ35となる。脱水ケーキは場外に搬出され、焼却処分等の最終処分がなされる。   In the excess sludge machine concentration tank 26, centrifugal force is applied by the machine to increase the sludge concentration, and the sludge is further sent to the sludge storage tank 30. In the sludge storage tank 30, it stores together with the first sedimentation sludge 28 sent from the gravity concentration tank 16. By introducing the microbial preparation into the tube beforehand, both the initial settling sludge 28 and the excess sludge 27 are reduced. When a certain amount of the sludge is stored, it is sent from the sludge storage tank 30 to the dehydrator 32 via the pipe 31, and if necessary, a flocculant is added and dehydrated by centrifugal force to become a dehydrated cake 35. The dehydrated cake is taken out of the hall, and finally disposed of by incineration.

一方、脱水機32で汚泥から分離された絞り水は、量は少ないものの返流水33として沈砂池10に戻される。あらかじめ管渠内に微生物製剤が投入されているため、この返流水33でも腐敗が生じた状態になりにくく、比較的良好な水質の返流水33が沈砂池10に返されることになる。これにより、さらに沈砂池10における腐敗が防止され、臭気の発生も生じにくくなる。   On the other hand, the squeezed water separated from the sludge by the dehydrator 32 is returned to the settling basin 10 as return water 33 although the amount is small. Since the microorganism preparation has been put in the pipe in advance, the return water 33 is not easily spoiled, and the return water 33 with relatively good water quality is returned to the sand basin 10. Thereby, the decay in the sand basin 10 is further prevented, and the generation of odor is less likely to occur.

なお、腐敗により発生する臭気の程度の測定は、下水処理場に従来から設けられている脱臭設備の臭気ダクトの測定口で行えばよい。また、排水などの水質の測定は、通常のサンプリングにより随時行えばよい。例えば、沈砂池10の排水の流入口や、返流水34や初沈槽出口の配管18等で測定し管理すればよい。さらに、微生物製剤を投入することによる効果の程度は、各測定値の前年同月比などで確認することができる。   In addition, what is necessary is just to perform the measurement of the grade of the odor which generate | occur | produces by decay at the measurement port of the odor duct of the deodorizing equipment conventionally provided in the sewage treatment plant. In addition, water quality such as drainage may be measured at any time by normal sampling. For example, it may be measured and managed at the drainage inlet of the settling basin 10, the return water 34, the pipe 18 at the initial settling tank outlet, or the like. Furthermore, the degree of the effect by introducing the microbial preparation can be confirmed by comparing each measured value with the same month last year.

以上説明したように、投入された微生物製剤が、従来考えられてきた常識に反して管渠内で増殖して排水内の有機物を分解するように機能でき、その結果として下水処理場における腐敗が減少し、臭気の発生が減少し、さらに後工程で処理すべき汚泥の減容が生じるという画期的な効果が得られる。このような生物処理プロセスは、上記したようなBODを分解するための好気性処理を用いる場合だけではなく、脱窒のための嫌気−好気法または嫌気−無酸素−好気などの、嫌気性処理を組み合わせた処理法のプロセスにおいても有効である。また、汚泥処理工程などの曝気槽以降の処理工程を変型することもできる。以下、実施例をもって本発明をより具体的に説明する。   As explained above, the introduced microbial preparation can function to proliferate in the pipes and decompose the organic matter in the wastewater against the common sense that has been considered in the past, and as a result, spoilage in the sewage treatment plant is prevented. As a result, the odor generation is reduced and the volume of sludge to be treated in the subsequent process is reduced. Such a biological treatment process is not limited to the case where an aerobic treatment for decomposing BOD as described above is used, but also an anaerobic method such as an anaerobic-aerobic method or anaerobic-anoxic-aerobic for denitrification. It is also effective in the process of processing methods that combine sex processing. Moreover, the process process after an aeration tank, such as a sludge process process, can also be changed. Hereinafter, the present invention will be described more specifically with reference to examples.

図1に示したものと同じ処理工程を有するA下水処理場を用いて試験を行った。A下水処理場の排水の処理能力は13,500m3/日であり、現流入量は12,000m3/日であり、活性汚泥の処理方法は機械濃縮方式であり、汚泥濃縮槽から脱水機に掛けられた脱水ケーキは場外搬出されている。微生物製剤を投入する予定の中継ポンプ場から下水処理場までは約15kmの距離であり、これが管渠の流下長さにほぼ等しい。 The test was conducted using the A sewage treatment plant having the same treatment process as shown in FIG. The wastewater treatment capacity of the A sewage treatment plant is 13,500 m 3 / day, the current inflow is 12,000 m 3 / day, and the activated sludge treatment method is a mechanical concentrating method. The dehydrated cake hung on is taken off-site. The distance from the relay pump station where the microbial preparation is to be introduced to the sewage treatment plant is about 15 km, which is almost equal to the flow length of the pipe.

微生物製剤として、バチルス・トヨイ菌と、グルコース、炭酸マグネシウム、アミノ酸とが均一分散された粉体を用意し、この製剤を投入直前に水に分散させて、バチルス・トヨイ菌の濃度が6×109個/mlとなるように調整し、投入用の本液とした。 As a microbial preparation, a powder in which Bacillus toyoi, glucose, magnesium carbonate, and amino acid are uniformly dispersed is prepared, and this preparation is dispersed in water immediately before charging, so that the concentration of Bacillus toyoi is 6 × 10. It adjusted so that it might become 9 piece / ml, and it was set as the main liquid for injection | throwing-in.

投入方法は以下の通りとした。まず初日に本液を60L、中継ポンプ場に設けられた投入孔から投入する。2日目には同様にして12Lの本液を投入する。以降、毎日本液を12Lずつ投入する。排水12,000m3に対して本液12Lの投入で、本液の生物排水中の比率は約1ppmとなるから、バチルス・トヨイ菌の排水中の定常的な菌体濃度は、計算上6×103個/mlとなる。 The charging method was as follows. First, 60 L of this liquid is introduced on the first day from the introduction hole provided in the relay pump station. On the second day, 12 L of this solution is introduced in the same manner. Thereafter, 12 L of this liquid is added every day. In introduction of the liquid 12L relative drainage 12,000 m 3, since the ratio in biological waste water of the present solution is about 1 ppm, steady cell concentration in the waste water of Bacillus Toyoi bacteria, calculated on 6 × 10 3 pieces / ml.

水質の効果判定用の分析項目は、沈砂池入り口の排水の性状としてのSS濃度及びBOD値と、重力濃縮槽からの返流水を循環して均質化された初沈槽出口水の透視度、pH、SS濃度及びBOD値とし、微生物製剤投入後のこれらの測定値の月毎の平均値を求めた。そして、これらと前年、前々年の各測定値の月毎の平均値とをそれぞれ対比して、効果を判定した。また下水処理後の水質は、終沈槽の出口水の透視度、SS濃度及びBOD値を測定して、微生物製剤投入前と対比した。   The analysis items for judging the effect of water quality are SS concentration and BOD value as the drainage properties at the entrance of the sedimentation basin, and the transparency of the initial sedimentation tank outlet water that is homogenized by circulating the return water from the gravity concentration tank, As the pH, SS concentration and BOD value, the monthly average of these measured values after the introduction of the microorganism preparation was determined. And the effect was judged by contrasting these with the average value for every month of each measured value of the previous year and the year before last. The water quality after the sewage treatment was measured by measuring the transparency, SS concentration, and BOD value of the outlet water of the final settling tank, and compared with that before the introduction of the microorganism preparation.

曝気槽入り口前までの排水の腐敗に関しては、曝気槽入り口前に設けられている脱臭設備のサンプリング孔から気体サンプルを採取し、これの硫化水素とメチルメルカプタンとの濃度を測定することで判定した。また、重力濃縮槽に貯留される汚泥の高さを、汚泥と上澄みとの界面の位置で測定して対比した。   Regarding the decay of drainage before the entrance of the aeration tank, a gas sample was taken from the sampling hole of the deodorization equipment provided in front of the entrance of the aeration tank, and the concentration of hydrogen sulfide and methyl mercaptan was measured. . In addition, the height of the sludge stored in the gravity concentration tank was measured at the interface between the sludge and the supernatant and compared.

曝気槽における評価は、曝気槽中のSS成分、MLSS濃度、及びVSS率、曝気量及び曝気倍率、返送汚泥濃度、返送汚泥のドライスラッジ(DS)量及び返送汚泥量をそれぞれ測定し、これらの経時変化を観察して行った。余剰汚泥の評価に関しては、微生物製剤の投入後の余剰汚泥の終沈槽からの引抜き量、余剰汚泥の濃度及びDS量を測定し、微生物製剤投入前の測定値と対比した。   Evaluation in the aeration tank is to measure the SS component, MLSS concentration, VSS rate, aeration amount and aeration ratio, return sludge concentration, return sludge dry sludge (DS) amount and return sludge amount in the aeration tank, respectively. The change with time was observed. Regarding the evaluation of surplus sludge, the amount of surplus sludge extracted from the final settling tank after the introduction of the microorganism preparation, the concentration of surplus sludge and the DS amount were measured and compared with the measured values before the introduction of the microorganism preparation.

A下水処理場における、平成15年から微生物製剤の投入評価を行った平成17年までの実績排水の流入水量を表1に示す。微生物製剤の投入は、平成17年3月20日にスタートし、9月20日までの6ヶ月間、毎日投入を実行した。3月、4月を管渠内及び下水処理場内の沈砂池、初沈槽、初沈重力濃縮槽及び曝気槽での馴養期間とした。   Table 1 shows the amount of inflow of actual wastewater from the A sewage treatment plant up to 2005, when the microbial preparation was evaluated from 2003. The injection of the microbial preparation started on March 20, 2005 and was carried out every day for 6 months until September 20. March and April were acclimatized periods in the sand basin, the initial sedimentation tank, the primary sedimentation gravity concentration tank and the aeration tank in the pipe dredger and sewage treatment plant.

Figure 0004799378
Figure 0004799378

平成14年から17年までの3月、4月の下水処理場への流入水のSS濃度及びBOD値と、各年の4月から8月までのSS濃度及びBOD値の平均値とをそれぞれ測定し、表2に示した。表2から、微生物製剤の投入前後でSS濃度の変化はほぼないが、BOD値は平成17年の4月から8月までの平均が115ppmであり、それ以前の3年間と比較して明らかに低下しているのが確認できる。念のため、平成17年の投入開始前の3月と開始後の4月から9月までの流入水性状の詳しい評価結果を表3に示す。投入後はいずれの月においてもBOD値が平均して低下していることがわかる。このことから、微生物製剤の投入により管渠中で排水に含まれる有機物の一部が分解されて、浄化が行われていることがわかる。   The SS concentration and BOD value of the inflow water to the sewage treatment plant in March and April from 2002 to 2017, and the average value of SS concentration and BOD value from April to August of each year, respectively. Measured and shown in Table 2. From Table 2, there is almost no change in the SS concentration before and after the introduction of the microbial preparation, but the average BOD value from April to August in 2005 is 115 ppm, clearly compared with the previous three years It can be confirmed that it has decreased. As a reminder, Table 3 shows the detailed evaluation results of the influent water condition in March before the start of introduction in 2005 and from April to September after the start. It can be seen that the BOD value has decreased on average in any month after the introduction. From this, it can be seen that the purification is carried out by decomposing a part of the organic matter contained in the wastewater in the pipe by introducing the microbial preparation.

Figure 0004799378
Figure 0004799378

Figure 0004799378
Figure 0004799378

管渠から下水処理場に流入した排水は、まず沈砂池10に流入する。沈砂池10には下水処理場内の循環水であるところの、重力濃縮槽16からの返流水17と、脱水機32からの絞り水である返流水33とが合わさった合計の返流水34が流入する。ちなみに合計の返流水34の量は、下水処理場へ流入した排水量の5〜10%程度となる。   The wastewater that has flowed into the sewage treatment plant from the pipe first flows into the sand basin 10. The settling basin 10 is supplied with the total return water 34, which is the return water 17 from the gravity concentration tank 16 and the return water 33, which is the squeezed water from the dehydrator 32, which is the circulating water in the sewage treatment plant. To do. By the way, the total amount of the return water 34 is about 5 to 10% of the amount of waste water flowing into the sewage treatment plant.

沈砂池10を出た排水は、配管12を介して初沈槽13に移り、ここでSS成分が沈降し、その上澄水が初沈槽13から配管18を介して曝気槽20に流入し、ここで活性汚泥処理を受ける。初沈槽出口水のSS濃度やBOD値についての、馴養前の平成17年3月と4月の測定結果と、馴養後の同年5月から9月までの測定結果と平均値とを表4に示した。この表4から明らかなように、馴養前後でSS値には明確な差異は見られないが、BOD値の平均値は馴養後に平均88ppmとなり、それ以前と比較して明らかに低下しており、微生物製剤の投入による初沈槽での効果が読み取れる。   The drainage discharged from the settling basin 10 is transferred to the initial settling tank 13 through the pipe 12, where the SS component settles, and the supernatant water flows from the initial settling tank 13 into the aeration tank 20 through the pipe 18, It receives activated sludge treatment here. Table 4 shows the measurement results for the SS concentration and BOD value of the initial sedimentation tank in March and April 2005 before acclimatization, and the measurement results and average values from May to September after acclimatization. It was shown to. As is clear from Table 4, there is no clear difference in the SS value before and after the acclimatization, but the average value of the BOD value is 88 ppm after the acclimatization, which is clearly lower than before, The effect in the first sedimentation tank by the introduction of the microbial preparation can be read.

Figure 0004799378
Figure 0004799378

次に、初沈槽13から汚泥が移動する重力濃縮槽16の、脱臭設備の排気ダクトにおける臭気ガス濃度を測定した結果を表5に示した。測定対象ガスは硫化水素とメチルメルカプタンとした。馴養期間の3月から4月中は、硫化水素濃度は10〜15ppmの濃度であり、メチルメルカプタンは定量下限値以下の濃度ではあるが、定性的には存在することがガス検知管法で確認できた。一方、馴養後の5月から9月の間は、硫化水素は0〜2ppm程度まで下がり、メチルメルカプタンは定性的にも検出できなかった。管渠への微生物製剤の投入により、重力濃縮槽16における腐敗進行が抑制されていることがわかる。   Next, Table 5 shows the results of measuring the odor gas concentration in the exhaust duct of the deodorization equipment in the gravity concentration tank 16 in which the sludge moves from the initial settling tank 13. The gas to be measured was hydrogen sulfide and methyl mercaptan. During the acclimatization period from March to April, the hydrogen sulfide concentration is 10 to 15 ppm, and methyl mercaptan is below the lower limit of quantification, but it is confirmed by the gas detector tube method that it exists qualitatively. did it. On the other hand, from May to September after the acclimatization, hydrogen sulfide decreased to about 0 to 2 ppm, and methyl mercaptan could not be detected qualitatively. It can be seen that the rot progression in the gravity concentration tank 16 is suppressed by the introduction of the microorganism preparation into the tube.

Figure 0004799378
Figure 0004799378

さらに重力濃縮槽16の汚泥界面の高さを測定して、汚泥量を評価した。結果を表6に示した。微生物製剤投入当初は汚泥界面はおよそ1mと高く、かつ表5のガス測定結果に示したように硫化水素が10ppm以上有り腐敗発酵している状況であった。投入微生物の馴養が進んだ5月から汚泥界面は降下して、40cm弱で安定した。同時に硫化水素の発生が抑えられた。微生物製剤の投入により、沈砂池10、初沈槽13、重力濃縮槽16において発生する汚泥の量が減少していることがわかる。   Furthermore, the height of the sludge interface of the gravity concentration tank 16 was measured, and the amount of sludge was evaluated. The results are shown in Table 6. At the beginning of the introduction of the microbial preparation, the sludge interface was as high as about 1 m, and as shown in the gas measurement results in Table 5, there was 10 ppm or more of hydrogen sulfide, and the septic fermentation was in progress. The sludge interface dropped from May, when the acclimatization of the input microorganisms progressed, and stabilized at less than 40 cm. At the same time, the generation of hydrogen sulfide was suppressed. It can be seen that the amount of sludge generated in the settling basin 10, the initial settling tank 13, and the gravity concentration tank 16 is reduced by the introduction of the microorganism preparation.

Figure 0004799378
Figure 0004799378

次に、初沈槽13から曝気槽15に流入した排水は、ここで活性汚泥処理を受けるので、この曝気槽15における処理条件と活性汚泥槽の改善効果及び生物処理された水質を表7に示した。あらかじめ定めた所定の水質を得るために、曝気空気量を変化させて運転するのであるが、生物排水の流入量に対する曝気空気量の体積倍率を意味する各月の曝気倍率は、3月、4月に比較して5月から下がりはじめ、9月では4.6倍まで低下している。   Next, since the waste water which flowed into the aeration tank 15 from the first settling tank 13 is subjected to the activated sludge treatment here, the treatment conditions in the aeration tank 15, the improvement effect of the activated sludge tank, and the biologically treated water quality are shown in Table 7. Indicated. In order to obtain a predetermined predetermined water quality, operation is performed with the aeration air amount changed, but the aeration magnification of each month, which means the volume ratio of the aeration air amount to the inflow amount of biological wastewater, is March, 4 Compared to the moon, it began to drop in May and dropped to 4.6 times in September.

また、曝気槽15のMLSSは、3月、4月は1700から1800程度であったが、馴養が十分に終了した時点では1500から1400台へと徐々に低下してきた。これは曝気倍率が馴養の進行と共に低下することとも整合する。さらに、活性汚泥槽のVSS率も約2%低下しており、汚泥中の有機物量(活性汚泥菌の量)も減っていることがわかる。以上のことから、明らかに曝気槽15における処理負荷が減少していることがわかる。このことは、表7に併わせて記載した、曝気槽15に続く終沈槽22の出口から得られた放流水の透視度、SS濃度及びBOD値が、馴養前の3月と比較して、馴養後の5〜9月ではかなり改善されていることからもわかる。このように曝気槽20においても、投入微生物製剤の効果により、低いMLSS値で所定の水質を保持でき、しかも曝気量が少なくなって曝気倍率が低下することがわかる。この結果、曝気槽15の運転電気代が約20%削減できた。   The MLSS of the aeration tank 15 was about 1700 to 1800 in March and April, but gradually decreased from 1500 to 1400 when the acclimatization was sufficiently completed. This is consistent with the fact that the aeration rate decreases with the progress of habituation. Furthermore, the VSS rate of the activated sludge tank is also reduced by about 2%, and it can be seen that the amount of organic matter in the sludge (the amount of activated sludge bacteria) is also reduced. From the above, it can be seen that the processing load in the aeration tank 15 is clearly reduced. This means that the transparency, SS concentration, and BOD value of the effluent water obtained from the outlet of the final sedimentation tank 22 following the aeration tank 15 described in Table 7 are compared with March before acclimatization. It can also be seen from the fact that it has improved considerably in May to September after the acclimatization. Thus, it can be seen that also in the aeration tank 20, due to the effect of the input microorganism preparation, a predetermined water quality can be maintained with a low MLSS value, and the aeration amount is reduced to reduce the aeration magnification. As a result, the operating electricity cost of the aeration tank 15 was reduced by about 20%.

Figure 0004799378
Figure 0004799378

次に、微生物製剤の投入による汚泥の減容について説明する。重力濃縮槽16及び機械濃縮槽26で処理される各月の汚泥量を表8に示す。重力濃縮槽16の汚泥量の馴養前後における変化は特に見られないが、機械濃縮槽26で処理される余剰汚泥に関しては事情が異なる。余剰汚泥の濃度は4.1から4.5%とほぼ一定であるが、各月の汚泥量は漸次低下傾向にある。そのため、汚泥をドライスラッジ化した量の月毎量は、馴養前の3月は36トン/月程度であったが、馴養後は約15%減の31トン/月前後で安定している。この結果は、管渠内に投入されたバチルス・トヨイ菌が管渠内で増殖を始め、初沈槽等を経て曝気槽20内まで達し、曝気槽20で有効な生物処理機能を発揮した結果であると考えられる。   Next, the volume reduction of sludge by inputting a microbial preparation will be described. Table 8 shows the amount of sludge processed each month in the gravity concentration tank 16 and the mechanical concentration tank 26. Although there is no particular change in the amount of sludge in the gravity concentration tank 16 before and after acclimatization, the situation is different with respect to the excess sludge processed in the mechanical concentration tank 26. The concentration of excess sludge is almost constant from 4.1 to 4.5%, but the amount of sludge in each month is gradually decreasing. Therefore, the monthly amount of sludge converted into dry sludge was about 36 tons / month in March before acclimatization, but is stable at around 31 tons / month, a decrease of about 15% after acclimatization. This result is that Bacillus toyoi introduced into the tube begins to grow in the tube, reaches the inside of the aeration tank 20 through the initial settling tank, etc., and exhibits an effective biological treatment function in the aeration tank 20 It is thought that.

Figure 0004799378
Figure 0004799378

さらに余剰汚泥の削減効果を微生物製剤の投入を行っていない平成15年及び16年の6月から9月の4ヶ月間と、投入を行った平成17年の同期間とで比較した結果を表9に示す。生物排水の下水処理場への流入量は年々増加しており、余剰汚泥量も流入量に比例して増加するはずであるが、平成17年の余剰汚泥量の実績値は、それ以前の流入水量と余剰汚泥量とから推定された余剰汚泥量よりも低く、しかも前年の値さえ下回る値であった。   The table also shows the results of comparing the effect of reducing excess sludge between the four months from June to September 2003 and the same period in 2005 when the microbe preparation was not introduced. 9 shows. The amount of inflow to biological wastewater sewage treatment plants has been increasing year by year, and the amount of surplus sludge should increase in proportion to the amount of inflow. However, the actual amount of surplus sludge in 2005 is the previous inflow. It was lower than the amount of excess sludge estimated from the amount of water and the amount of excess sludge, and was even lower than the previous year.

Figure 0004799378
Figure 0004799378

本発明の方法を実施する際の全体処理フローを示した概念図である。It is the conceptual diagram which showed the whole processing flow at the time of implementing the method of this invention.

符号の説明Explanation of symbols

1 生活排水
2 事業排水
3 排水発生点から中継ポンプ場までの管渠
5、6 中継ポンプ場
7、8 中継ポンプ場から下水処理場までの管渠
9 下水処理場
10 沈砂池
12 沈砂池から初沈槽までの送液配管
13 初沈槽
14 初沈汚泥
15 初沈槽から重力濃縮槽までの汚泥送液配管
16 重力濃縮槽
17 返流水
18 初沈槽から曝気槽までの送液配管
20 曝気槽
21 曝気槽から終沈槽までの送液配管
22 終沈槽
23 沈降汚泥
24 汚泥送液配管
25 返送汚泥
26 余剰汚泥機械濃縮槽
27 余剰濃縮汚泥
28 初沈濃縮汚泥
30 濃縮汚泥貯留槽
31 汚泥送液配管
32 脱水機
33 返流水
34 返流水
35 脱水ケーキ
36 凝集剤
40 下水処理水
41 消毒放流
50、51 微生物製剤投入
1 Domestic wastewater 2 Business drainage 3 Pipe dredging from drainage point to relay pumping station 5, 6 Relay pumping station 7, 8 Pipe dredging from relay pumping station to sewage treatment plant 9 Sewage treatment plant 10 Sedimentation basin 12 First from sedimentation basin Liquid feed pipe 13 to the settling tank Initial settling tank 14 Initial settling sludge 15 Sludge liquid feed pipe 16 from the initial settling tank to the gravity concentration tank Gravity concentration tank 17 Return water 18 Liquid supply pipe 20 from the first settling tank to the aeration tank 20 Aeration Tank 21 Liquid feed pipe from aeration tank to final sedimentation tank 22 Final sedimentation tank 23 Sediment sludge 24 Sludge liquid feed pipe 25 Return sludge 26 Surplus sludge machine thickener 27 Surplus concentrated sludge 28 Primary sedimentation sludge 30 Concentrated sludge storage tank 31 Sludge Liquid feed pipe 32 Dehydrator 33 Return water 34 Return water 35 Dehydrated cake 36 Coagulant 40 Sewage treated water 41 Disinfection discharge 50, 51 Microbial preparation input

Claims (4)

排水を、管渠と中継ポンプ場とを介して下水処理場に送って生物処理する下水処理方法であって、前記管渠内に前記排水中の有機物を分解する機能を有するバチルス属バチルス・トヨイ菌を含む微生物製剤を前記中継ポンプ場から投入し、前記中継ポンプ場から前記下水処理場までの前記管渠内において、前記微生物製剤から生じた微生物により、前記有機物の少なくとも一部を分解することを特徴とする下水処理方法。   A sewage treatment method for sending wastewater to a sewage treatment plant via a pipe culvert and a relay pump station, and biologically treating the sewage treatment plant, and having the function of decomposing organic matter in the effluent in the pipe culm A microorganism preparation containing bacteria is introduced from the relay pump station, and at least a part of the organic matter is decomposed by microorganisms generated from the microorganism preparation in the pipe tube from the relay pump station to the sewage treatment plant. A sewage treatment method. 前記中継ポンプ場から前記下水処理場までの前記管渠の長さが、5km以上あることを特徴とする請求項1に記載の下水処理方法。   2. The sewage treatment method according to claim 1, wherein a length of the pipe culvert from the relay pump station to the sewage treatment plant is 5 km or more. 前記の微生物が、前記有機物の分解能を持ち芽胞を形成するグラム陽性菌であることを特徴とする請求項1または2に記載の下水処理方法。   The sewage treatment method according to claim 1 or 2, wherein the microorganism is a Gram-positive bacterium having a resolution of the organic matter and forming a spore. 前記微生物製剤を前記管渠内に投入するにあたり、前記微生物製剤をあらかじめ水に分散してから、もしくはあらかじめ水に分散して曝気し栄養細胞としてから、投入することを特徴とする請求項1〜3のいずれかに記載の下水処理方法。   When the microbial preparation is introduced into the tube, the microbial preparation is dispersed in water in advance, or dispersed in water in advance and aerated to form vegetative cells. 4. The sewage treatment method according to any one of 3.
JP2006315604A 2006-11-22 2006-11-22 Sewage treatment method Expired - Fee Related JP4799378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315604A JP4799378B2 (en) 2006-11-22 2006-11-22 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315604A JP4799378B2 (en) 2006-11-22 2006-11-22 Sewage treatment method

Publications (2)

Publication Number Publication Date
JP2008126169A JP2008126169A (en) 2008-06-05
JP4799378B2 true JP4799378B2 (en) 2011-10-26

Family

ID=39552543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315604A Expired - Fee Related JP4799378B2 (en) 2006-11-22 2006-11-22 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP4799378B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645215B2 (en) * 2010-12-13 2014-12-24 幹 佐藤 Scum thickening prevention method in sewage treatment tank
JP2016195997A (en) * 2016-05-11 2016-11-24 ジー・ロバート・ホワイトマンG.Robert WHITEMAN System and method for reducing sludge produced by wastewater treatment facility
JP6490774B1 (en) * 2017-10-16 2019-03-27 日鉄住金環境株式会社 Method of treating organic wastewater and method of producing immobilized microorganism preparation
JP7299176B2 (en) * 2017-12-28 2023-06-27 ジー・ロバート・ホワイトマン Systems and methods for reducing sludge produced in wastewater treatment plants
JP6777336B2 (en) * 2018-12-17 2020-10-28 株式会社京玉エンジニアリング Sewage treatment system
JP6692974B1 (en) * 2018-11-07 2020-05-13 株式会社京玉エンジニアリング Sewage treatment system
CN114867845A (en) * 2019-12-24 2022-08-05 住友化学株式会社 Bacteria for sludge degradation, microorganism-degrading bacteria, microorganism preparation, method for sludge degradation, and sludge degradation apparatus
JP2021109154A (en) * 2020-01-14 2021-08-02 株式会社クリーン・アース・バイオ Water treatment additive and water treatment system

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122098A (en) * 1983-12-02 1985-06-29 Kenji Ichikawa Microorganism tabelt
JPH0691797B2 (en) * 1985-12-10 1994-11-16 旭化成工業株式会社 Feed additives for aquaculture
JP2608459B2 (en) * 1988-05-20 1997-05-07 豊秋 久保田 Waste liquid treatment method
JPH0646556Y2 (en) * 1988-09-06 1994-11-30 充弘 藤原 Sludge activation device in sewage treatment system
JPH0761255B2 (en) * 1990-10-31 1995-07-05 旭化成工業株式会社 Method for producing stabilized spore-forming viable cell preparation
JPH05260953A (en) * 1992-03-17 1993-10-12 Shikoku Chem Corp Production of dried microorganism preparation
JP3459837B2 (en) * 1992-05-12 2003-10-27 太陽化学株式会社 Live bacteria powder
JP2595080Y2 (en) * 1992-05-14 1999-05-24 充弘 藤原 Water purification device
JP3357924B2 (en) * 1992-09-26 2002-12-16 充弘 藤原 Water quality improvement device
JPH08182923A (en) * 1994-12-28 1996-07-16 Mitsuhiro Fujiwara Device for mixing air into inside pipe
KR960041354A (en) * 1995-05-09 1996-12-19 강병준 Microbial preparations containing new microorganisms, preparation methods thereof, sewage treatment and deodorization methods using the same
JPH10128306A (en) * 1996-11-01 1998-05-19 Nippon Electric Ind Co Ltd Wastewater purifying system
JPH10272480A (en) * 1997-03-31 1998-10-13 Nippon Electric Ind Co Ltd Waste water cleaning system
JPH11243873A (en) * 1998-03-03 1999-09-14 Kyokuto Internatl Corp Viable bacterium composition
JP2000000591A (en) * 1998-06-17 2000-01-07 Mitsuhiro Fujiwara Method for purifying sewage of sewerage or the like
JP2000015274A (en) * 1998-07-04 2000-01-18 Mitsuhiro Fujiwara Sewage purifying method
JP2000246279A (en) * 1999-03-04 2000-09-12 Aqua Soken:Kk Sewage treatment method
JP2001286884A (en) * 2000-04-04 2001-10-16 Mitsui Eng & Shipbuild Co Ltd Device and process for treating organic wastewater
JP4038808B2 (en) * 2001-08-14 2008-01-30 エースバイオプロダクト株式会社 Purifying agent for septic tank using butyric acid bacteria, septic tank, and purification method thereof
JP4183952B2 (en) * 2002-03-01 2008-11-19 日本曹達株式会社 Coating booth circulating water treatment method
JP4176370B2 (en) * 2002-04-04 2008-11-05 東郎 船戸 Sewage treatment equipment
JP4351439B2 (en) * 2002-08-21 2009-10-28 日本曹達株式会社 Wet painting booth and operation method of wet painting booth
JP2004344791A (en) * 2003-05-22 2004-12-09 Harurou Funato Sewage passage washing method and sewage passage washing apparatus
JP4417826B2 (en) * 2004-12-27 2010-02-17 東郎 船戸 Sewage treatment equipment

Also Published As

Publication number Publication date
JP2008126169A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4799378B2 (en) Sewage treatment method
Orhon Evolution of the activated sludge process: the first 50 years
US7361268B2 (en) Waste treatment systems
Bani Wastewater management
CN102775025B (en) Municipal life wastewater treatment system with high efficiency and low energy consumption
EA024049B1 (en) Sludge treatment method and apparatus and application of said method and apparatus for wastewater bio-treatment
TW200927677A (en) Treatment of wastewater
CN102515430A (en) Live pig slaughtering wastewater treating method
CN106116031A (en) A kind of efficient treatment process of slaughtering wastewater
Huynh et al. Application of CANON process for nitrogen removal from anaerobically pretreated husbandry wastewater
Nasr et al. Environmental consideration of dairy wastewater treatment using hybrid sequencing batch reactor
CN105565614A (en) Method and system for treating toluene nitrification wastewater
CN106430847A (en) Intensive swine wastewater treating equipment
CN205398371U (en) Rural miniaturized integration sewage treatment unit
CN105585210A (en) Novel technology for treating aquaculture wastewater of fungus-aquatic plant symbiotic system
CN107381962A (en) Efficient domestic sewage treatment device
CN211005018U (en) Efficient culture sewage treatment system
CN202945124U (en) Urban sewage treatment system with high efficiency and low energy consumption
CN105523634B (en) A kind of multistage contact oxidation device and method to the synchronous carbon and nitrogen removal of waste water
Moir et al. An experimental plant for testing methods of treating dilute farm effluents and dirty water
CN110818185A (en) Efficient culture sewage treatment system
JP2008006351A (en) Method for treating sewage and treatment facility
JP2006212612A (en) Method for decomposing and extinguishing excrement and urine of hog raising using composite fermentation method in composite microorganism dynamic system analysis of composite microorganism system
CN107840534B (en) A kind of odorless extruding liquor treating process without solid waste discharge of refuse transfer station
CN207159042U (en) Sewage reuse device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees