JP4797812B2 - Manufacturing method of aluminum electrolytic capacitor - Google Patents

Manufacturing method of aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4797812B2
JP4797812B2 JP2006153389A JP2006153389A JP4797812B2 JP 4797812 B2 JP4797812 B2 JP 4797812B2 JP 2006153389 A JP2006153389 A JP 2006153389A JP 2006153389 A JP2006153389 A JP 2006153389A JP 4797812 B2 JP4797812 B2 JP 4797812B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
metal case
capacitor element
aluminum electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006153389A
Other languages
Japanese (ja)
Other versions
JP2007324392A (en
Inventor
朋幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006153389A priority Critical patent/JP4797812B2/en
Publication of JP2007324392A publication Critical patent/JP2007324392A/en
Application granted granted Critical
Publication of JP4797812B2 publication Critical patent/JP4797812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、各種電子機器や車両用回路に使用されるアルミ電解コンデンサにおける電解液の供給方法及びアルミ電解コンデンサの製造方法に関するものである。   The present invention relates to an electrolytic solution supply method and an aluminum electrolytic capacitor manufacturing method in an aluminum electrolytic capacitor used in various electronic devices and vehicle circuits.

図4は従来のアルミ電解コンデンサにおけるコンデンサ素子に電解液を真空含浸させる含浸装置の概略図であり、陽極箔と陰極箔との間にセパレータを介在させて巻回することにより構成され、陽極箔と陰極箔に夫々リード線を接続したコンデンサ素子41を、真空槽48に設けた固定部42に配置し、真空槽48内を真空ポンプ47により真空にしたのち、コンデンサ素子41に電解液44を含浸させるものである。   FIG. 4 is a schematic view of an impregnation apparatus for vacuum impregnating a capacitor element in a conventional aluminum electrolytic capacitor with a separator interposed between an anode foil and a cathode foil. The capacitor element 41 having lead wires connected to the cathode foil and the cathode foil is disposed in a fixing portion 42 provided in the vacuum chamber 48. After the vacuum chamber 48 is evacuated by a vacuum pump 47, the electrolytic solution 44 is applied to the capacitor element 41. It is impregnated.

このように構成された従来の含浸装置は、真空圧経路を開閉するバルブ45を開き、真空槽48内を真空ポンプ47により減圧し、所定の真空圧に到達後、電解液44を貯留した収容槽43を駆動装置により直接上昇させコンデンサ素子41を電解液44に浸漬させ、所定時間その状態を保持する。続いて、大気圧経路の開閉バルブ46を開放し大気圧へ戻し、収容槽43を下降させて、コンデンサ素子41を取り出すという含浸装置であった(特許文献1参照)。   The conventional impregnation apparatus configured in this manner opens the valve 45 that opens and closes the vacuum pressure path, depressurizes the inside of the vacuum chamber 48 by the vacuum pump 47, and stores the electrolytic solution 44 after reaching a predetermined vacuum pressure. The tank 43 is directly raised by the driving device, the capacitor element 41 is immersed in the electrolytic solution 44, and the state is maintained for a predetermined time. Subsequently, the impregnation apparatus was configured to open the opening / closing valve 46 in the atmospheric pressure path to return to the atmospheric pressure, lower the storage tank 43, and take out the capacitor element 41 (see Patent Document 1).

また、電解液の供給方法において、電極を缶内に収納した後、電解液を定量ポンプにより所定量を分割して注入する方法が提案されている(特許文献2参照)。
特開2003−217991号公報 特開平09−050801号公報
In addition, as a method for supplying an electrolytic solution, a method has been proposed in which, after an electrode is accommodated in a can, a predetermined amount of the electrolytic solution is divided and injected by a metering pump (see Patent Document 2).
JP 2003-217991 A Japanese Patent Laid-Open No. 09-050801

しかしながら、上記従来の含浸装置では、収容槽43を上下させる駆動系のばらつきを直接受けるため、コンデンサ素子41に対する浸漬時の液面位置がばらつき、液面位置が高いとコンデンサ素子41に接続されたリード線のアルミ丸棒部に電解液44が付着する、また、液面位置が低いと含浸性を損なうという課題があった。   However, since the conventional impregnation apparatus directly receives variations in the drive system that moves the storage tank 43 up and down, the liquid level position during immersion in the capacitor element 41 varies, and if the liquid level position is high, the capacitor element 41 is connected. There has been a problem that the electrolytic solution 44 adheres to the aluminum round bar portion of the lead wire and impregnation is impaired when the liquid surface position is low.

また、多数のコンデンサ素子41を一度に浸漬させるため、コンデンサ素子41に含浸される電解液44の量を定量化することができないことから、必要以上の電解液44を含浸させなければならず、電解液44の消費量が多くなるという課題があった。   In addition, since a large number of capacitor elements 41 are immersed at a time, the amount of the electrolyte solution 44 impregnated in the capacitor element 41 cannot be quantified. There was a problem that the consumption of the electrolytic solution 44 increased.

また、電解液を定量ポンプにより所定量を分割して注入する方法においては、電解液がリード線に付着しやすくなり、封口体とのシール性が悪くなる問題や、電解液供給装置が大掛かりになり、装置が高額になる課題を有している。さらには、電解液の液量を1ml以下をコントロールしようとすると、気泡などが介在して正確な液量にすることが難しいという課題があった。   In addition, in the method of injecting a predetermined amount of the electrolytic solution by dividing it with a metering pump, the electrolytic solution is likely to adhere to the lead wire, and the sealing performance with the sealing body is deteriorated, and the electrolytic solution supply device is large. Therefore, there is a problem that the apparatus becomes expensive. Furthermore, when trying to control the amount of the electrolytic solution to 1 ml or less, there is a problem that it is difficult to obtain an accurate amount due to the presence of bubbles and the like.

本発明はこのような従来の課題を解決し、設備投資を抑制し、容易に電解液の所定量を確実に供給することができるとともに、金属ケース内に注入された所定量の電解液をコンデンサ素子に確実に含浸させ、アルミ電解コンデンサの特性ばらつきの低減を図ることができる電解液の供給方法及びアルミ電解コンデンサの製造方法を提供することを目的とするものである。   The present invention solves such a conventional problem, suppresses capital investment, can easily supply a predetermined amount of the electrolytic solution reliably, and can also supply a predetermined amount of the electrolytic solution injected into the metal case to the capacitor. An object of the present invention is to provide an electrolytic solution supply method and an aluminum electrolytic capacitor manufacturing method capable of impregnating the element with certainty and reducing variations in characteristics of the aluminum electrolytic capacitor.

上記課題を解決するために本発明は、電解液を充填した容器のフタ部に電解液を吸い上げる複数のT形ホースを配設し、このT形ホースの一方に電解液の気泡を取り除く空気溜め部と電解液を安定して注入するための液溜め部が一緒になった貯蔵部を設け、T形ホースの他方と定量ポンプをチューブで接続して定量ポンプで電解液を吸引して一定量の電解液を金属ケースに注入する工程と、外部引き出しリード線に封口体を装着したコンデンサ素子を前記金属ケースに挿入する工程と、この金属ケース内を減圧することによりコンデンサ素子に電解液を含浸させる工程と、前記金属ケースの開口部を封口体で封止する工程とを備えたアルミ電解コンデンサの製造方法とするものである。 Air present invention in order to solve the above problems, arranged a plurality of T-shaped hose to suck the electrolyte solution in the lid portion of the container filled with electrolyte solution, to remove one bubbles electrolyte of the T-shaped hose A storage part is provided with a reservoir part and a reservoir part for stably injecting electrolyte, and the other part of the T -hose and the metering pump are connected by a tube, and the electrolyte is sucked by the metering pump and fixed. A step of injecting an amount of electrolyte into the metal case, a step of inserting a capacitor element having a sealing body attached to an external lead wire into the metal case, and reducing the pressure inside the metal case to thereby add the electrolyte to the capacitor element. The method of manufacturing an aluminum electrolytic capacitor includes a step of impregnating and a step of sealing the opening of the metal case with a sealing body .

また、T形ホースの電解液の吸口部にフィルターを配置したものであり、さらには、容器の電解液の残量を検出する液体検出棒を配置し、電解液の残量が所定量より少なくなったときにコントローラにより定量ポンプを停止するようにした電解液の供給方法とするものである。   In addition, a filter is disposed at the electrolyte suction port of the T-type hose, and a liquid detection rod for detecting the remaining amount of the electrolyte in the container is further disposed so that the remaining amount of the electrolyte is less than a predetermined amount. In this case, the electrolytic solution supply method is such that the metering pump is stopped by the controller when it becomes.

本発明は、T形ホースの一方に電解液の気泡を取り除く空気溜め部と電解液を安定して注入するための液溜め部が一緒になった貯蔵部を配設した構成とすることにより、定量ポンプから吸引された際、電解液側と液溜め部側とがT形ホースでバランスが保たれることにより、電解液に気泡が介在することなく、少量(1ml以下)の電解液を絶えず一定量排出することができる。 This onset Ming, with the structure which is disposed a reservoir for the liquid reservoir for injecting stably the air reservoir portion and the electrolyte solution to remove bubbles of the electrolytic solution in one of the T-shaped hose taken together When aspirating from the metering pump, the electrolyte side and the liquid reservoir side are balanced by a T-type hose, so that a small amount (1 ml or less) of the electrolyte can be obtained without any bubbles in the electrolyte. A constant amount can be discharged continuously.

また、供給装置の構造がシンプルであるため、設備費用が安く、故障率も低くなりメンテナンスも容易である。   Moreover, since the structure of the supply device is simple, the equipment cost is low, the failure rate is low, and maintenance is easy.

また、本発明のアルミ電解コンデンサの製造方法により、金属ケース内に一定量の電解液を注入することができるので、コンデンサ特性のばらつきを低減することができ、品質の良い製品を安定に生産することができる。   In addition, since a certain amount of electrolyte can be injected into the metal case by the method for manufacturing an aluminum electrolytic capacitor of the present invention, variation in capacitor characteristics can be reduced, and high-quality products can be stably produced. be able to.

また、駆動装置を用いることがないので電解液の液面位置をコントロールすることがないので、コンデンサ素子に接続したリード線に電解液が余分に付着することなく、コンデンサ素子の内部まで電解液を充分に含浸できるという効果が得られるものである。   In addition, since the driving device is not used, the liquid level position of the electrolytic solution is not controlled, so that the electrolytic solution does not adhere excessively to the lead wire connected to the capacitor element, and the electrolytic solution reaches the inside of the capacitor element. The effect that it can be sufficiently impregnated is obtained.

図1は一実施の形態における電解液の供給装置の概念図で、図2はフタ部の斜視図、図3はフィルタの断面図である。図1において、11は容器で電解液12が充填される。13は容器11の上部に配設したフタ部で、図2に示すようにフタ部13に容器11の電解液12を吸い上げるホース14と電解液12の残存量を検出する液面検出棒15が配設される。また、前記ホース14の上部にT形ホース16が接続され、一方が電解液12を補充したときなどに混在する空気を除去する空気溜め部17と電解液を安定して注入するための液溜め部18が一緒になった貯蔵部19が接続され、他方を電解液12を吸引する定量ポンプ21に接続したチューブ20が接続される。   FIG. 1 is a conceptual diagram of an electrolytic solution supply apparatus according to an embodiment, FIG. 2 is a perspective view of a lid portion, and FIG. 3 is a sectional view of a filter. In FIG. 1, reference numeral 11 denotes a container filled with an electrolytic solution 12. Reference numeral 13 denotes a lid portion disposed on the top of the container 11, and as shown in FIG. Arranged. Also, a T-type hose 16 is connected to the upper part of the hose 14, one of which is a reservoir 17 for removing mixed air when the electrolyte 12 is replenished, and a reservoir for stably injecting the electrolyte. The storage part 19 which the part 18 united together is connected, and the tube 20 which connected the metering pump 21 which attracts | sucks the electrolyte solution 12 to the other is connected.

前記ホース14の下部には電解液12に混入した異物を取り除くためのフィルター22が配設される。このフィルター22は例えば図3に示すように、ステンレスの焼結体31の上部にホース14をOリングを用いた接続部33で接続するような構成からなり、電解液12に混入した異物を完全に取り除くことができる。   A filter 22 for removing foreign matter mixed in the electrolyte 12 is disposed below the hose 14. For example, as shown in FIG. 3, the filter 22 has a configuration in which the hose 14 is connected to the upper portion of a stainless sintered body 31 by a connecting portion 33 using an O-ring, and foreign matter mixed in the electrolyte 12 is completely removed. Can be removed.

前記定量ポンプ21はコントローラ23より制御することにより、容器11の電解液12を金属ケース24に所定量を注入することができる。   When the metering pump 21 is controlled by the controller 23, a predetermined amount of the electrolytic solution 12 in the container 11 can be injected into the metal case 24.

前記電解液12はエチレングリコールやγ−ブチロラクトン、水等の有機溶媒と、マレイン酸、安息香酸、フタル酸等の有機カルボン酸やホウ酸等の無機酸からなる電解質とから構成され、粘度は1〜40mPa・sと比較的高範囲の粘性を有している。   The electrolyte 12 is composed of an organic solvent such as ethylene glycol, γ-butyrolactone, and water, and an electrolyte composed of an organic carboxylic acid such as maleic acid, benzoic acid, and phthalic acid, or an inorganic acid such as boric acid, and has a viscosity of 1 It has a relatively high viscosity of ˜40 mPa · s.

この粘性のある電解液12は、定量ポンプ21から吸引されることによりフィルター22を介在してホース14からT形ホース16を通って定量ポンプ21により比較的少量(0.1〜1.0ml)でも容易に液量を正確にコントロールすることができる。   The viscous electrolyte solution 12 is sucked from the metering pump 21 so that a relatively small amount (0.1 to 1.0 ml) is obtained by the metering pump 21 through the filter 22 and the hose 14 through the T-type hose 16. However, the liquid volume can be easily controlled accurately.

なお、前記ホース14及びチューブ20は電解液の液量が1ml以下と少量の場合も考慮すると、その内径は10mm以下のものが好ましく、チューブの内径はホースの内径よりも小さい方が気泡が介在しにくく、少量の電解液を正確にコントロールすることができる。   The hose 14 and the tube 20 preferably have an inner diameter of 10 mm or less in consideration of a small amount of electrolyte solution of 1 ml or less, and the tube has an inner diameter smaller than the inner diameter of the hose. It is difficult to control and a small amount of electrolyte can be accurately controlled.

また、電解液12の液面がフィルター22の焼結体31までに達したときは液面検出棒15で検出してコントローラ23より定量ポンプ21の動作を停止させる。液面をフィルター22の焼結体31の途中まで下げると電解液12に気泡が多く存在するようになり、空気溜め部17だけで取り除くことができなくなり、所定量の電解液12を金属ケース24に注入することができなくなる。   When the liquid level of the electrolytic solution 12 reaches the sintered body 31 of the filter 22, it is detected by the liquid level detection rod 15 and the operation of the metering pump 21 is stopped by the controller 23. If the liquid level is lowered to the middle of the sintered body 31 of the filter 22, many bubbles are present in the electrolyte 12, and cannot be removed only by the air reservoir 17, and a predetermined amount of the electrolyte 12 is removed from the metal case 24. Can not be injected into.

なお、電解液12を注入された金属ケース24は、陽極箔と陰極箔とをセパレータを介して巻回されたコンデンサ素子が挿入され、金属ケース内を減圧させてコンデンサ素子に電解液12を含浸させ、その後、金属ケース24の開放端を封口体で封止することにより電解コンデンサを得ることができる。   In the metal case 24 injected with the electrolytic solution 12, a capacitor element in which an anode foil and a cathode foil are wound through a separator is inserted, and the inside of the metal case is decompressed to impregnate the capacitor element with the electrolytic solution 12. Then, an electrolytic capacitor can be obtained by sealing the open end of the metal case 24 with a sealing body.

このように電解液の供給経路において電解液の吸引に起因する気泡の移動経路と電解液の供給経路が分かれるように分岐部(T形ホース16)を設けることで気泡が介在しない電解液を金属ケース24に注入することができる。   In this way, by providing a branching portion (T-shaped hose 16) so that the movement path of bubbles caused by suction of the electrolyte and the supply path of the electrolyte are separated in the supply path of the electrolyte, the electrolyte containing no bubbles is metalized. The case 24 can be injected.

以下、具体的な実施例を用いて説明する。   Hereinafter, a specific example will be described.

(実施例)
前記一実施の形態の電解液の供給装置において、下記(表1)に示す組成(粘度:10mPa・s)の電解液を容器に充填し、金属ケース内に0.2mlの電解液を注入した。なお、ホース14は内径が6mmのもの、チューブは内径3mmのものを使用した。また、金属ケースは20個用意した。
(Example)
In the electrolytic solution supply apparatus according to the embodiment, an electrolytic solution having the composition (viscosity: 10 mPa · s) shown in the following (Table 1) was filled in a container, and 0.2 ml of the electrolytic solution was injected into the metal case. . The hose 14 had an inner diameter of 6 mm, and the tube had an inner diameter of 3 mm. In addition, 20 metal cases were prepared.

Figure 0004797812
Figure 0004797812

前記金属ケース内に、陽極箔と陰極箔とをセパレータを介して巻回されたコンデンサ素子を挿入し、金属ケース内を減圧させてコンデンサ素子に電解液を含浸させた後、金属ケースの開放端を封口体で封止することによりアルミ電解コンデンサを作製した(定格電圧16V 100μF φ8×16mm)。   A capacitor element in which an anode foil and a cathode foil are wound through a separator is inserted into the metal case, and after the pressure inside the metal case is reduced and the capacitor element is impregnated with an electrolytic solution, the open end of the metal case Was sealed with a sealing body to produce an aluminum electrolytic capacitor (rated voltage 16V 100 μF φ8 × 16 mm).

(比較例)
前記図4に示す従来の含浸装置において、(表1)に示す電解液を含浸装置の収容槽43内に貯留し、前記実施例と同様のコンデンサ素子を真空槽48に設けた固定部42に配置した後、真空圧経路を開閉するバルブ45を開き、真空槽48内を真空ポンプ47により減圧し、所定の真空圧に到達後、電解液を貯留した収容槽43を駆動装置により直接上昇させコンデンサ素子41を電解液に浸漬させ、所定時間その状態を保持する。続いて、大気圧経路の開閉バルブ46を開放し大気圧へ戻し、収容槽43を下降させて、コンデンサ素子41を取り出す。次に、前記実施例と同様にしてアルミ電解コンデンサを作製した(定格電圧16V 100μF φ8×16mm)。
(Comparative example)
In the conventional impregnation apparatus shown in FIG. 4, the electrolytic solution shown in (Table 1) is stored in the storage tank 43 of the impregnation apparatus, and the capacitor element similar to that of the above embodiment is attached to the fixing portion 42 provided in the vacuum tank 48. After the arrangement, the valve 45 for opening and closing the vacuum pressure path is opened, the inside of the vacuum chamber 48 is depressurized by the vacuum pump 47, and after reaching a predetermined vacuum pressure, the storage tank 43 storing the electrolyte is directly raised by the driving device. The capacitor element 41 is immersed in the electrolytic solution, and the state is maintained for a predetermined time. Subsequently, the opening / closing valve 46 of the atmospheric pressure path is opened to return to the atmospheric pressure, the storage tank 43 is lowered, and the capacitor element 41 is taken out. Next, an aluminum electrolytic capacitor was produced in the same manner as in the previous example (rated voltage 16V 100 μF φ8 × 16 mm).

前記実施例及び比較例のアルミ電解コンデンサについて、それぞれ50個用意し、その初期特性及び105℃で寿命試験を行った。その結果を(表2)に示す。なお、値は50個の平均値を表す。   About 50 pieces of the aluminum electrolytic capacitors of the examples and comparative examples were prepared, and the initial characteristics and life test were conducted at 105 ° C. The results are shown in (Table 2). The value represents an average value of 50 pieces.

Figure 0004797812
Figure 0004797812

(表2)から明らかなように、実施例のアルミ電解コンデンサの初期特性において、静電容量が比較例よりも高い値を得ることができ、その容量ばらつきも比較例に比べて約半分以下に低減することができる。また、実施例のアルミ電解コンデンサは105℃の寿命試験を行っても、液漏れやパンクするといった不具合を発生することはなかった。   As is apparent from Table 2, the initial characteristics of the aluminum electrolytic capacitors of the examples can obtain a higher value of capacitance than the comparative example, and the capacitance variation is about half or less than that of the comparative example. Can be reduced. In addition, the aluminum electrolytic capacitor of the example did not cause a problem such as liquid leakage or puncture even when a life test at 105 ° C. was performed.

このように、本発明の電解液の供給方法により、定量ポンプから吸引された際、電解液側と液溜め部側とがT形ホースでバランスが保たれることにより、電解液に気泡が介在することなく、0.2mlとごくわずかな電解液でも絶えず一定量排出することができるので、コンデンサ特性のばらつきを低減することができ、品質の良い製品を安定に生産することができる。   As described above, bubbles are interposed in the electrolytic solution by maintaining the balance between the electrolytic solution side and the liquid reservoir side by the T-type hose when sucked from the metering pump by the electrolytic solution supply method of the present invention. Therefore, even a very small amount of electrolyte of 0.2 ml can be discharged constantly, so that variations in capacitor characteristics can be reduced, and high-quality products can be stably produced.

本発明による電解液の供給方法は、電解液の気泡を簡単に取り除くことができるので一定量の電解液を金属ケース内に注入することができる。また、供給装置の構造がシンプルであるため、設備費用が安く、故障率も低くなりメンテナンスも容易であり、液体の定量制御が必要な分野に有用である。   In the method of supplying the electrolytic solution according to the present invention, bubbles of the electrolytic solution can be easily removed, so that a certain amount of electrolytic solution can be injected into the metal case. Further, since the structure of the supply device is simple, the equipment cost is low, the failure rate is low, the maintenance is easy, and it is useful in the field where the liquid quantitative control is necessary.

本発明の一実施の形態による電解液の供給装置の概略図1 is a schematic view of an electrolytic solution supply apparatus according to an embodiment of the present invention. 同フタ部の構成を示す斜視図The perspective view which shows the structure of the cover part 同フィルタの構成を示す断面図Sectional drawing which shows the structure of the filter 従来の構成を示す電解液の含浸装置の概略図Schematic of an electrolytic solution impregnation device showing a conventional configuration

符号の説明Explanation of symbols

11 容器
12 電解液
13 フタ部
14 ホース
15 液面検出棒
16 T形ホース
17 空気溜め部
18 液溜め部
19 貯蔵部
20 チューブ
21 定量ポンプ
22 フィルター
23 コントローラ
24 金属ケース
31 焼結体
33 接続部
DESCRIPTION OF SYMBOLS 11 Container 12 Electrolyte 13 Cover part 14 Hose 15 Liquid level detection rod 16 T-type hose 17 Air reservoir 18 Liquid reservoir 19 Storage part 20 Tube 21 Metering pump 22 Filter 23 Controller 24 Metal case 31 Sintered body 33 Connection part

Claims (2)

電解液を充填した容器のフタ部に電解液を吸い上げる複数のT形ホースを配設し、このT形ホースの一方に電解液の気泡を取り除く空気溜め部と電解液を安定して注入するための液溜め部が一緒になった貯蔵部を設け、T形ホースの他方と定量ポンプをチューブで接続して定量ポンプで電解液を吸引して一定量の電解液を金属ケースに注入する工程と、外部引き出しリード線に封口体を装着したコンデンサ素子を前記金属ケースに挿入する工程と、この金属ケース内を減圧することによりコンデンサ素子に電解液を含浸させる工程と、前記金属ケースの開口部を封口体で封止する工程とを備えたアルミ電解コンデンサの製造方法。 To place a plurality of T-type hoses for sucking the electrolyte in the lid of the container filled with the electrolyte, and to stably inject the electrolyte into one of the T-type hoses and an air reservoir for removing bubbles of the electrolyte Providing a storage part in which the liquid reservoir part is combined, connecting the other of the T-type hose and the metering pump with a tube, sucking the electrolyte with the metering pump, and injecting a certain amount of electrolyte into the metal case; A step of inserting a capacitor element having a sealing body attached to an external lead wire into the metal case, a step of depressurizing the inside of the metal case to impregnate the capacitor element with an electrolyte, and an opening of the metal case. The manufacturing method of the aluminum electrolytic capacitor provided with the process sealed with a sealing body. T形ホースの電解液の吸い上げ部にフィルターを配設した請求項1に記載のアルミ電解コンデンサの製造方法。 The method for producing an aluminum electrolytic capacitor according to claim 1, wherein a filter is disposed at the electrolyte suction part of the T-type hose.
JP2006153389A 2006-06-01 2006-06-01 Manufacturing method of aluminum electrolytic capacitor Active JP4797812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153389A JP4797812B2 (en) 2006-06-01 2006-06-01 Manufacturing method of aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153389A JP4797812B2 (en) 2006-06-01 2006-06-01 Manufacturing method of aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2007324392A JP2007324392A (en) 2007-12-13
JP4797812B2 true JP4797812B2 (en) 2011-10-19

Family

ID=38856912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153389A Active JP4797812B2 (en) 2006-06-01 2006-06-01 Manufacturing method of aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4797812B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219730A (en) * 1982-06-16 1983-12-21 シ−ケ−デイ株式会社 Method of immersing electrolyte of condenser
JPH0497511A (en) * 1990-08-14 1992-03-30 Ckd Corp Method and equipment of impregnating capacitor with electrolyte
JP2722137B2 (en) * 1991-03-11 1998-03-04 ジェーシーシーエンジニアリング株式会社 Method and apparatus for vacuum impregnation of electrolytic capacitor element with electrolytic solution
JP3895405B2 (en) * 1996-09-11 2007-03-22 有限会社イー・エム・エム Injection device
JP3179379B2 (en) * 1997-08-06 2001-06-25 富山日本電気株式会社 Immersion apparatus and immersion method
JP2000156220A (en) * 1998-11-18 2000-06-06 Sanoh Industrial Co Ltd Electrolyte filling method and device for secondary battery
JP2002274504A (en) * 2001-03-14 2002-09-25 Awa Eng Co Method and device for filling liquid filler in sealed case

Also Published As

Publication number Publication date
JP2007324392A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5331946B1 (en) Electrolytic solution pouring method and pouring device
JP2004247120A (en) Electrolyte liquid injection method and electrolyte liquid injection device
CN106784594B (en) Linear cylindrical battery vacuum liquid injection mechanism
US8623465B2 (en) Coat film forming method and coat film forming apparatus
JP4797812B2 (en) Manufacturing method of aluminum electrolytic capacitor
KR101729382B1 (en) Method of manufacturing aluminium foil, aluminium foil having high dielectric constant, electrolytic capacitor having the aluminium foil and apparatus for manufacturing aluminium foil
TWI396777B (en) Electrolyte impregnation device and impregnation method
JP2722137B2 (en) Method and apparatus for vacuum impregnation of electrolytic capacitor element with electrolytic solution
JP5292058B2 (en) Electrolytic capacitor manufacturing method, electrolytic capacitor impregnation device, and electrolytic capacitor assembly machine
JP4617784B2 (en) Electrolyte injection method and apparatus for electric double layer capacitor
KR101503263B1 (en) Apparatus for injecting electrolyte into battery
JP4202933B2 (en) Electrolyte injection device and battery manufacturing method
CN114865248A (en) Lithium ion battery liquid injection machine
JP2002274504A (en) Method and device for filling liquid filler in sealed case
JP6134531B2 (en) Fixed dispensing system
US20200256830A1 (en) Microchip electrophoresis apparatus and microchip electrophoresis method
CN201226299Y (en) Dipping apparatus for aluminum electrolysis capacitor
CN107731575A (en) A kind of solid-state capacitor production dipping device and impregnation method
JPH0782973B2 (en) Method and apparatus for vacuum impregnation of electrolytic solution of electrolytic capacitor element
JP2000357639A (en) Method and system for impregnating electrolytic capacitor element
CN217022180U (en) Medium-pressure-resistant plastic oil tank
CN204011088U (en) A kind of ultracapacitor priming device
CN216354670U (en) Battery cell fluid infusion device
JP3939820B2 (en) Electrolyte filling method and filling device
CN217424668U (en) Hydraulic pressure oil return filter core gas tightness detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3