JP4796802B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4796802B2
JP4796802B2 JP2005235306A JP2005235306A JP4796802B2 JP 4796802 B2 JP4796802 B2 JP 4796802B2 JP 2005235306 A JP2005235306 A JP 2005235306A JP 2005235306 A JP2005235306 A JP 2005235306A JP 4796802 B2 JP4796802 B2 JP 4796802B2
Authority
JP
Japan
Prior art keywords
group
layer
carbon atoms
derivatives
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005235306A
Other languages
Japanese (ja)
Other versions
JP2007053132A (en
Inventor
俊大 伊勢
聡 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005235306A priority Critical patent/JP4796802B2/en
Publication of JP2007053132A publication Critical patent/JP2007053132A/en
Application granted granted Critical
Publication of JP4796802B2 publication Critical patent/JP4796802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Description

本発明は、電気エネルギーを光に変換して発光する有機電界発光素子に関する。   The present invention relates to an organic electroluminescence device that emits light by converting electric energy into light.

有機電界発光素子は、低電圧駆動で高輝度の発光が得られることから活発に研究開発が行われている。有機電界発光素子は、一対の電極間に有機層を有し、陰極から注入された電子と陽極から注入された正孔とが有機層において再結合し、生成した励起子のエネルギーを発光に利用するものである。   Organic electroluminescence devices have been actively researched and developed because they can emit light with high brightness when driven at a low voltage. An organic electroluminescent element has an organic layer between a pair of electrodes, and electrons injected from the cathode and holes injected from the anode recombine in the organic layer, and the generated exciton energy is used for light emission. To do.

有機電界発光素子用材料として非イオン性の金錯体を含有する有機電界発光素子が開示されている(例えば、特許文献1参照)。しかしながら、さらなる発光効率及び耐久性の少なくとも一方に優れる金錯体が望まれている。
特開2004−158297号公報
An organic electroluminescent element containing a nonionic gold complex is disclosed as a material for an organic electroluminescent element (for example, see Patent Document 1). However, a gold complex that is excellent in at least one of further luminous efficiency and durability is desired.
JP 2004-158297 A

本発明の目的は、発光効率及び耐久性の少なくとも一方に優れる有機電界発光素子の提供にある。また、有機電界発光素子に好適な錯体化合物(有機電界発光素子用材料)の提供も目的とする。   An object of the present invention is to provide an organic electroluminescent device excellent in at least one of luminous efficiency and durability. Another object of the present invention is to provide a complex compound (material for an organic electroluminescent element) suitable for an organic electroluminescent element.

本発明は、下記<1>項に関するものであるが、その他の事項についても参考のために記載した。
<1>
一対の電極間に少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を有機層に含有することを特徴とする有機電界発光素子。

Figure 0004796802
(一般式(I)中、X 11 、X 12 、及びX 13 はフェニル基を表す。Y 11 はピリジル基を表す。L 1 、L 2 及びL 4 は単結合を表し、L 3 はジメチルメチレン基又はジフェニルメチレン基を表す。n 1 は0を表し、n 2 、n 3 、及びn 4 は1を表す。ここで、n 1 が0であるとは、X 11 とX 12 の間が連結されていないことを表す。)
本発明者らは、上記課題を解決すべく検討した結果、特定の構造を有する四座配位子の三価の金錯体を有機層に含有する有機EL素子が、上記課題を解決することを見出した。すなわち、本発明は下記の手段により達成された。
〔1〕一対の電極間に少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を有機層に含有することを特徴とする有機電界発光素子。 The present invention relates to the following item <1>, but other matters are also described for reference.
<1>
An organic electroluminescent device having at least one organic layer between a pair of electrodes, wherein the organic layer contains at least one compound represented by the following general formula (I).
Figure 0004796802
(In the general formula (I), X 11 , X 12 and X 13 represent a phenyl group. Y 11 represents a pyridyl group. L 1 , L 2 and L 4 represent a single bond, and L 3 represents dimethylmethylene. Represents a group or a diphenylmethylene group, n 1 represents 0, and n 2 , n 3 , and n 4 represent 1. Here, n 1 is 0 when X 11 and X 12 are connected. It means not being done.)
As a result of investigations to solve the above problems, the present inventors have found that an organic EL element containing a trivalent gold complex of a tetradentate ligand having a specific structure in an organic layer solves the above problems. It was. That is, the present invention has been achieved by the following means.
[1] An organic electroluminescence device having at least one organic layer between a pair of electrodes, wherein the organic layer contains at least one compound represented by the following general formula (I): Light emitting element.

Figure 0004796802
Figure 0004796802

(一般式(I)中、X11、X12、及びX13は、それぞれ独立に、アニオン性の配位部位を表す。Y11は中性の配位部位を表す。L1、L2、L3、及びL4は、それぞれ独立に、単結合または連結基を表す。n1、n2、n3、及びn4は、それぞれ独立に、1または0を表し、n1+n3≠0及びn2+n4≠0を同時に満たす。ここで、n1、n2、n3、及びn4が0であるとは、それぞれ、X11とX12、X12とX13、X13とY11、及びY11とX11の間が連
結されていないことを表す。)
(In the general formula (I), X 11 , X 12 and X 13 each independently represent an anionic coordination site. Y 11 represents a neutral coordination site. L 1 , L 2 , L 3 and L 4 each independently represents a single bond or a linking group, n 1 , n 2 , n 3 and n 4 each independently represents 1 or 0, and n 1 + n 3 ≠ 0 And n 2 + n 4 ≠ 0 at the same time, where n 1 , n 2 , n 3 , and n 4 are 0 means that X 11 and X 12 , X 12 and X 13 , X 13 and Y 11 and Y 11 and X 11 are not linked.)

〔2〕一般式(I)で表される化合物が、下記一般式(II)で表される化合物であることを特徴とする上記〔1〕に記載の有機電界発光素子。 [2] The organic electroluminescent element as described in [1] above, wherein the compound represented by the general formula (I) is a compound represented by the following general formula (II).

Figure 0004796802
Figure 0004796802

(一般式(II)中、X11、X12、及びX13は、それぞれ独立に、アニオン性の配位部位を表す。L1、L2、L3、及びL4は、それぞれ独立に、単結合または連結基を表す。n1、n2、n3、及びn4は、それぞれ独立に、1または0を表し、n1+n3≠0及びn2+n4≠0を同時に満たす。ここで、n1、n2、n3、及びn4が0であるとは、それぞれ、X11とX12、X12とX13、X13と一般式(I)のY11に相当するピリジン環、及びピリジン環とX11の間が連結されていないことを表す。R21、R22、及びR23は、それぞれ独立に、水素原子または置換基を表す。) (In the general formula (II), X 11 , X 12 and X 13 each independently represents an anionic coordination site. L 1 , L 2 , L 3 and L 4 are each independently .n 1 represents a single bond or a linking group, n 2, n 3, and n 4 each independently represent 1 or 0, satisfy n 1 + n 3 ≠ 0 and n 2 + n 4 ≠ 0 at the same time. here N 1 , n 2 , n 3 , and n 4 are 0, X 11 and X 12 , X 12 and X 13 , X 13 and pyridine corresponding to Y 11 in the general formula (I), respectively. This represents that the ring and the pyridine ring and X 11 are not linked. R 21 , R 22 and R 23 each independently represents a hydrogen atom or a substituent.)

本発明の一般式(I)及び(II)で表される錯体(本明細書において「本発明の錯体」と同義で用いる。)を有機層に含有することにより、高い発光効率(例えば外部量子効率)及び高耐久の少なくとも一つに優れる有機電界発光素子(本明細書において「本発明の素子」と同義で用いる)が提供できる。   By containing the complex represented by the general formulas (I) and (II) of the present invention (used herein in the same meaning as the “complex of the present invention”) in the organic layer, high luminous efficiency (for example, external quantum) It is possible to provide an organic electroluminescent element (used synonymously with “the element of the present invention” in the present specification) which is excellent in at least one of efficiency and high durability.

本明細書において置換基群Aとは以下のように定義される。   In this specification, the substituent group A is defined as follows.

(置換基群A)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、
アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基
、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、アゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)。
(Substituent group A)
An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n- Decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, For example, vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, For example, propargyl, 3-pentynyl, etc.), aryl groups (preferably having 6 to 30 carbon atoms, more preferably Prime 6-20, particularly preferably 6 to 12 carbon atoms, such as phenyl, p- methylphenyl, naphthyl, anthranyl.),
An amino group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino; And alkoxy groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy) An aryloxy group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2- Naphthyloxy, etc.), heterocyclic oxy groups (preferably having 1 to 30 carbon atoms, more preferred) Has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, and the like, and acyl groups (preferably having 1 to 30 carbon atoms, more preferably carbon numbers). 1 to 20, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxycarbonyl groups (preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms). , Particularly preferably having 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group (preferably having 7 to 30 carbon atoms, more preferably having 7 to 20 carbon atoms, particularly preferably). It has 7 to 12 carbon atoms, such as phenyloxycarbonyl ), An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy and benzoyloxy), an acylamino group (preferably Has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino, benzoylamino, and the like, and an alkoxycarbonylamino group (preferably having 2 carbon atoms). To 30, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino, and the like, an aryloxycarbonylamino group (preferably 7 to 30 carbon atoms, more preferably Has 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl And ruamino. ), A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino), sulfamoyl. Group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl, etc. ), A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl and the like. ), An alkylthio group (preferably having 1 to 30 carbon atoms). More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methylthio, ethylthio etc. are mentioned, for example, An arylthio group (Preferably C6-C30, More preferably C6-C20 In particular, it has 6 to 12 carbon atoms, and examples thereof include phenylthio.), A heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to carbon atoms). 12 and examples thereof include pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio, and the like, and sulfonyl groups (preferably having 1 to 30 carbon atoms, more preferably carbon numbers). 1 to 20, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), sulfinyl group (preferably C1-C30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methanesulfinyl, benzenesulfinyl etc. are mentioned), a ureido group (preferably C1-C30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, ureido, methylureido, phenylureido etc. are mentioned), phosphoric acid amide groups (preferably C1-C30, more preferably). Has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom) Bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfur An inino group, a hydrazino group, an imino group, a heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, Specific examples include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group and the like. ), A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyl, triphenylsilyl, etc.), a silyloxy group (preferably Is a carbon number of 3 to 40, more preferably a carbon number of 3 to 30, and particularly preferably a carbon number of 3 to 24. Examples thereof include trimethylsilyloxy and triphenylsilyloxy.

本発明の素子について詳細に説明する。本発明の素子は一対の電極間に少なくとも一層の有機層を有する。本発明の素子は基板上に一対の電極(陰極と陽極)を有し、両電極の間に有機層を有する。素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。   The device of the present invention will be described in detail. The element of the present invention has at least one organic layer between a pair of electrodes. The element of the present invention has a pair of electrodes (a cathode and an anode) on a substrate, and an organic layer between both electrodes. In view of the properties of the element, at least one of the anode and the cathode is preferably transparent.

本発明の素子は、有機層に特定の構造を有する四座配位子の三価の金錯体を含有することを特徴とする。上記少なくとも一層の有機層の機能は、特に限定されないが、発光層の他に正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔ブロック層、電子ブロック層、励起子ブロック層、保護層などであってもよい。また本発明の素子では、該少なくとも一層の有機層のほかに、正孔注入層、正孔輸送層、電子注入層、電子輸送層、正孔ブロック層、電子ブロック層、励起子ブロック層、保護層などを有してもよい。またこれらの各層は、それぞれ他の機能を兼備していても良い。   The element of the present invention is characterized by containing a trivalent gold complex of a tetradentate ligand having a specific structure in the organic layer. The function of the at least one organic layer is not particularly limited, but in addition to the light-emitting layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole block layer, an electron block layer, and an exciton block It may be a layer, a protective layer, or the like. In the element of the present invention, in addition to the at least one organic layer, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a hole block layer, an electron block layer, an exciton block layer, a protection You may have a layer. Each of these layers may have other functions.

本発明における有機層の積層の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。尚、各層は複数の二次層に分かれていてもよい。   As an aspect of lamination of the organic layer in the present invention, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers.

本発明の錯体は、有機層が複数の層からなる場合、いずれの層にも含有することができる。本発明の錯体は、発光層に含有されることが好ましく、発光材料として発光層に含有されることがさらに好ましく、少なくとも一種のホスト材料と共に発光層に含有されることが特に好ましい。   The complex of the present invention can be contained in any layer when the organic layer is composed of a plurality of layers. The complex of the present invention is preferably contained in the light emitting layer, more preferably contained in the light emitting layer as a light emitting material, and particularly preferably contained in the light emitting layer together with at least one kind of host material.

本発明の錯体の含有量は、発光層に発光材料として含有される場合、該層の総質量に対して、0.1質量%以上50質量%以下の範囲が好ましく、0.2質量%以上30質量%以下の範囲がより好ましく、0.3質量%以上20質量%以下の範囲がさらに好ましく、0.5質量%以上15質量%以下の範囲が最も好ましい。   The content of the complex of the present invention, when contained in the light emitting layer as a light emitting material, is preferably in the range of 0.1% by mass or more and 50% by mass or less, and 0.2% by mass or more with respect to the total mass of the layer. A range of 30% by mass or less is more preferable, a range of 0.3% by mass or more and 20% by mass or less is further preferable, and a range of 0.5% by mass or more and 15% by mass or less is most preferable.

ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。本明細書において「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下であることをいう。   The host material is a compound mainly responsible for charge injection and transport in the light emitting layer, and itself is a compound that does not substantially emit light. In this specification, “substantially no light emission” means that the light emission amount from the substantially non-light emitting compound is preferably 5% or less, more preferably 3% or less of the total light emission amount of the entire device. More preferably, it means 1% or less.

発光層中のホスト材料の濃度は、特に限定されないが、発光層中において主成分(含有量が一番多い成分)であることが好ましく、50質量%以上99.9質量%以下がより好ましく、70質量%以上99.8質量%以下がさらに好ましく、80質量%以上99.7質量%以下が特に好ましく、90質量%以上99.5質量%以下が最も好ましい。   The concentration of the host material in the light emitting layer is not particularly limited, but is preferably the main component (the component having the largest content) in the light emitting layer, more preferably 50% by mass or more and 99.9% by mass or less, 70 mass% or more and 99.8 mass% or less are more preferable, 80 mass% or more and 99.7 mass% or less are especially preferable, and 90 mass% or more and 99.5 mass% or less are the most preferable.

前記ホスト材料のガラス転移点は、100℃以上500℃以下であることが好ましく、110℃以上300℃以であることがより好ましく、120℃以上250℃以下であることがさらに好ましい。   The glass transition point of the host material is preferably 100 ° C. or higher and 500 ° C. or lower, more preferably 110 ° C. or higher and 300 ° C. or lower, and further preferably 120 ° C. or higher and 250 ° C. or lower.

本発明の発光層に含まれるホスト材料の膜状態での蛍光波長は、400nm以上650nm以下の範囲であることが好ましく、420nm以上600nm以下の範囲であることがより好ましく、440nm以上550nm以下の範囲であることがさらに好ましい。   The fluorescence wavelength in the film state of the host material contained in the light emitting layer of the present invention is preferably in the range of 400 nm to 650 nm, more preferably in the range of 420 nm to 600 nm, and in the range of 440 nm to 550 nm. More preferably.

本発明に用いるホスト材料としては、特開2002−100476号公報の段落0113〜0161に記載の化合物及び特開2004−214179号公報の段落0087〜0098に記載の化合物を好適に用いることができるが、これらに限定されることはない。   As the host material used in the present invention, the compounds described in paragraphs 0113 to 0161 of JP-A No. 2002-1000047 and the compounds described in paragraphs 0087 to 0098 of JP-A No. 2004-214179 can be suitably used. However, it is not limited to these.

一般式(I)で表される錯体について説明する。一般式(I)中、X11、X12、X13は、それぞれ独立に、アニオン性の配位部位として金イオンに結合する基を表す。X11、X12、X13は、それぞれ独立に、金イオンに炭素原子で結合する基、窒素原子で結合する基、珪素原子で結合する基、リン原子で結合する基、酸素原子で結合する基、硫黄原子で結合する基が好ましく、炭素原子、窒素原子、酸素原子、硫黄原子で結合する基がより好ましく、炭素原子、窒素原子、酸素原子で結合する基がさらに好ましく、炭素原子、窒素原子で結合する基がさらに好ましく、炭素原子で結合する基が特に好ましい。 The complex represented by the general formula (I) will be described. In the general formula (I), X 11 , X 12 and X 13 each independently represent a group that binds to a gold ion as an anionic coordination site. X 11 , X 12 and X 13 are each independently bonded to a gold ion by a carbon atom, a nitrogen atom, a silicon atom, a phosphorus atom, or an oxygen atom. A group bonded by a sulfur atom is preferable, a group bonded by a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom is more preferable, a group bonded by a carbon atom, a nitrogen atom or an oxygen atom is more preferable, and a carbon atom or nitrogen is more preferable. A group bonded by an atom is more preferable, and a group bonded by a carbon atom is particularly preferable.

金イオンに炭素原子で結合するX11、X12、X13としては、アリール基、ヘテロアリール基が好ましく、具体的には、フェニル基、ピリジル基、ピリミジニル基、ピラジニル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基などが挙げられる。これらの基は、可能であれば置換基を有していても、さらに他の環が縮環していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。また縮環する環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。
金イオンに窒素原子で結合するX11、X12、X13としては、含窒素へテロアリール基、アミノ基が好ましく、具体的には、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、アルキルアミノ基、アリールアミノ基、ヘテロアリールアミノ基等が挙げられる。これらの基は、可能であれば置換基を有していても、他の環が縮環していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。また縮環する環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。
X 11 , X 12 , and X 13 bonded to a gold ion by a carbon atom are preferably an aryl group or a heteroaryl group. Specifically, a phenyl group, a pyridyl group, a pyrimidinyl group, a pyrazinyl group, a thienyl group, or a furyl group Pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group and the like. These groups may have a substituent, if possible, or may be condensed with another ring. As the substituent, those exemplified as the substituent group A can be applied. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole ring.
X 11 , X 12 , and X 13 bonded to a gold ion with a nitrogen atom are preferably nitrogen-containing heteroaryl groups and amino groups. Specifically, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, alkylamino group , Arylamino group, heteroarylamino group and the like. These groups may have a substituent, if possible, or other rings may be condensed. As the substituent, those exemplified as the substituent group A can be applied. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole ring.

金イオンに酸素原子で結合するX11、X12、X13としては、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、カルボキシル基、シリルオキシ基が好ましい。これらの基は、可能であれば置換基を有していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。
金イオンに硫黄原子で結合するX11、X12、X13としては、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、チオカルボキシル基が好ましい。これらの基は、可能であれば置換基を有していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。
金イオンに珪素原子で結合するするX11、X12、X13としては、置換または無置換のシリル基が挙げられる。置換基としては前記置換基群Aとして挙げたものが適用できる。
金イオンに燐原子で結合するX11、X12、X13としては、置換または無置換のホスフィ
ノ基が挙げられる。置換基としては前記置換基群Aとして挙げたものが適用できる。
As X 11 , X 12 , and X 13 bonded to the gold ion with an oxygen atom, an alkoxy group, an aryloxy group, a heteroaryloxy group, a carboxyl group, and a silyloxy group are preferable. These groups may have a substituent if possible. As the substituent, those exemplified as the substituent group A can be applied.
X 11 , X 12 , and X 13 bonded to a gold ion with a sulfur atom are preferably an alkylthio group, an arylthio group, a heteroarylthio group, or a thiocarboxyl group. These groups may have a substituent if possible. As the substituent, those exemplified as the substituent group A can be applied.
Examples of X 11 , X 12 and X 13 bonded to the gold ion with a silicon atom include a substituted or unsubstituted silyl group. As the substituent, those exemplified as the substituent group A can be applied.
Examples of X 11 , X 12 and X 13 bonded to the gold ion with a phosphorus atom include a substituted or unsubstituted phosphino group. As the substituent, those exemplified as the substituent group A can be applied.

11、X12、X13のうち、少なくとも一つは炭素原子で結合する基であることが好ましく、より好ましくはフェニル基であることが好ましい。 Of X 11 , X 12 and X 13 , at least one is preferably a group bonded by a carbon atom, and more preferably a phenyl group.

一般式(I)中、Y11は中性の配位部位を表す。Y11は金イオンに窒素原子で配位する基、酸素原子で配位する基、硫黄原子で配位する基、燐原子で配位する基であることが好ましく、窒素原子、酸素原子で配位する基であることがより好ましく、窒素原子で配位する基であることがさらに好ましい。 In general formula (I), Y 11 represents a neutral coordination site. Y 11 is preferably a group coordinated to a gold ion by a nitrogen atom, a group coordinated by an oxygen atom, a group coordinated by a sulfur atom, or a group coordinated by a phosphorus atom, and coordinated by a nitrogen atom or an oxygen atom. Is more preferably a group that coordinates with a nitrogen atom.

金イオンに窒素原子で配位するY11として好ましくは、含窒素ヘテロアリール基、置換または無置換のアミノ基であり、具体的にはピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアジニル基、ピラゾリル基、イミダゾリル基、トリアゾリル基、オキサゾリル基、チアゾリル基、フェニルアミノ基等が挙げられる。これらの基は、可能であれば置換基を有していても、他の環が縮環していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。また縮環する環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。 Y 11 coordinated to a gold ion by a nitrogen atom is preferably a nitrogen-containing heteroaryl group, a substituted or unsubstituted amino group, specifically a pyridyl group, a pyrimidyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, Examples include a pyrazolyl group, an imidazolyl group, a triazolyl group, an oxazolyl group, a thiazolyl group, and a phenylamino group. These groups may have a substituent, if possible, or other rings may be condensed. As the substituent, those exemplified as the substituent group A can be applied. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole ring.

金イオンに酸素原子で配位するY11として好ましくは、含酸素ヘテロアリール基、エーテル基であり、オキサゾリル基、ジアルキルエーテル、ジアリールエーテル等が挙げられる。これらの基は、可能であれば置換基を有していても、他の環が縮環していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。また縮環する環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。 Y 11 that coordinates to the gold ion with an oxygen atom is preferably an oxygen-containing heteroaryl group or an ether group, and examples thereof include an oxazolyl group, a dialkyl ether, and a diaryl ether. These groups may have a substituent, if possible, or other rings may be condensed. As the substituent, those exemplified as the substituent group A can be applied. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole ring.

金イオンに硫黄原子で配位するY11として好ましくは、含硫黄ヘテロアリール基、チオエーテル基であり、チアゾリル基、ジアルキルチオエーテル、ジアリールチオエーテル等が挙げられる。これらの基は、可能であれば置換基を有していても、他の環が縮環していても良い。置換基としては前記置換基群Aとして挙げたものが適用できる。また縮環する環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、チオフェン環、フラン環、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環等が挙げられる。
金イオンに燐原子で配位するY11として好ましくは、置換または無置換のホスフィン、ホスフィンオキシドが挙げられる。置換基としては前記置換基群Aとして挙げたものが適用できる。
Y 11 that coordinates to a gold ion with a sulfur atom is preferably a sulfur-containing heteroaryl group or a thioether group, and examples thereof include a thiazolyl group, a dialkylthioether, and a diarylthioether. These groups may have a substituent, if possible, or other rings may be condensed. As the substituent, those exemplified as the substituent group A can be applied. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a thiophene ring, a furan ring, a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, and a thiazole ring.
Y 11 coordinated to a gold ion by a phosphorus atom is preferably a substituted or unsubstituted phosphine or phosphine oxide. As the substituent, those exemplified as the substituent group A can be applied.

11として好ましくは、置換または無置換のピリジル基、ピラジニル基であり、より好ましくは、置換または無置換のピリジル基である。 Y 11 is preferably a substituted or unsubstituted pyridyl group or pyrazinyl group, and more preferably a substituted or unsubstituted pyridyl group.

1、L2、L3、L4は、それぞれ独立に、単結合または二価の連結基を表す。二価の連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子またはケイ素原子を含んでなる連結基が好ましい。下記に二価の連結基の具体例を示すが、本発明はこれらに限定されることはない。 L 1 , L 2 , L 3 and L 4 each independently represents a single bond or a divalent linking group. Although it does not specifically limit as a bivalent coupling group, The coupling group which contains a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, or a silicon atom is preferable. Specific examples of the divalent linking group are shown below, but the present invention is not limited thereto.

Figure 0004796802
Figure 0004796802

これらの連結基は可能であればさらに置換基を有していてもよく、導入可能な置換基としては、置換基群Aとして挙げたものが適用できる。   These linking groups may further have a substituent if possible, and the substituents that can be introduced include those listed as the substituent group A.

1として好ましくはジアルキルメチレン基、ジアリールメチレン基、ジヘテロアリールメチレン基であり、より好ましくはジメチルメチレン基、ジフェニルメチレン基であり、さらに好ましくはジメチルメチレン基である。 L 1 is preferably a dialkylmethylene group, a diarylmethylene group or a diheteroarylmethylene group, more preferably a dimethylmethylene group or a diphenylmethylene group, and still more preferably a dimethylmethylene group.

1、n2、n3、n4は、それぞれ独立に、1または0を表し、n1+n3≠0、n2+n4≠0を同時に満たす。ここで、n1、n2、n3、n4が0であるとは、それぞれ、X11とX12、X12とX13、X13とY11、Y11とX11の間が連結されていないことを表す。n1+n3≠0、n2+n4≠0を同時に満たすことにより、一般式(I)で表される化合物は、四座の配位子を有する金錯体を表す。 n 1 , n 2 , n 3 , and n 4 each independently represent 1 or 0, and satisfy n 1 + n 3 ≠ 0 and n 2 + n 4 ≠ 0 at the same time. Here, n 1 , n 2 , n 3 , and n 4 are 0 when X 11 and X 12 , X 12 and X 13 , X 13 and Y 11 , and Y 11 and X 11 are connected. It means not being done. By simultaneously satisfying n 1 + n 3 ≠ 0 and n 2 + n 4 ≠ 0, the compound represented by the general formula (I) represents a gold complex having a tetradentate ligand.

一般式(I)で表される錯体のうち、より好ましくは一般式(II)で表される錯体である。一般式(II)中、X11、X12、X13、L1、L2、L3、L4、n1、n2、n3、n4は一般式(I)中のそれらと同義であり、また好ましい範囲も同様である。R21、R22、R23は水素原子または置換基を表す。R21、R22、R23で表される置換基としては、置換基群Aとして挙げたものが適用できる。R21、R22、R23は可能であれば互いに結合して環を
形成していても良い。
前記R21及びR23として好ましくは、水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アルキルチオ基、スルホニル基、ヒドロキシ基、ハロゲン原子、シアノ基、ニトロ基、ヘテロ環基であり、より好ましくは、水素原子、アルキル基、アリール基、ハロゲン原子、シアノ基、ヘテロ環基であり、さらに好ましくは、水素原子、メチル基、t-ブチル基、トリフルオロメチル基、フェニル基、フッ素原子、シアノ基、ピリジル基であり、さらに好ましくは、水素原子、メチル基、フッ素原子であり、特に好ましくは水素原子である。
前記R22として好ましくは、水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ハロゲン原子、シアノ基、ヘテロ環基であり、より好ましくは、水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環基であり、さらに好ましくは、水素原子、アルキル基、アミノ基、アルコキシ基、ヘテロ環基であり、さらに好ましくは、水素原子、メチル基、t-ブチル基、ジメチルアミノ基、ジフェニルアミノ基、メトキシ基、カルバゾリル基であり、特に好ましくは水素原子である。
Of the complexes represented by the general formula (I), a complex represented by the general formula (II) is more preferable. In the general formula (II), X 11 , X 12 , X 13 , L 1 , L 2 , L 3 , L 4 , n 1 , n 2 , n 3 , n 4 are the same as those in the general formula (I). The preferred range is also the same. R 21 , R 22 and R 23 represent a hydrogen atom or a substituent. As the substituents represented by R 21 , R 22 and R 23 , those exemplified as the substituent group A can be applied. R 21 , R 22 and R 23 may be bonded to each other to form a ring, if possible.
R 21 and R 23 are preferably a hydrogen atom, alkyl group, aryl group, amino group, alkoxy group, aryloxy group, acyl group, alkoxycarbonyl group, alkylthio group, sulfonyl group, hydroxy group, halogen atom, cyano group. , A nitro group, a heterocyclic group, more preferably a hydrogen atom, an alkyl group, an aryl group, a halogen atom, a cyano group, or a heterocyclic group, still more preferably a hydrogen atom, a methyl group, a t-butyl group, A trifluoromethyl group, a phenyl group, a fluorine atom, a cyano group, and a pyridyl group are more preferable, and a hydrogen atom, a methyl group, and a fluorine atom are more preferable.
R 22 is preferably a hydrogen atom, alkyl group, aryl group, amino group, alkoxy group, aryloxy group, alkylthio group, arylthio group, halogen atom, cyano group, or heterocyclic group, more preferably a hydrogen atom. , An alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, and a heterocyclic group, more preferably a hydrogen atom, an alkyl group, an amino group, an alkoxy group, and a heterocyclic group, and more preferably a hydrogen atom. An atom, a methyl group, a t-butyl group, a dimethylamino group, a diphenylamino group, a methoxy group, and a carbazolyl group, particularly preferably a hydrogen atom.

以下に、本発明における一般式(I)で表される錯体の具体例を例示するが、本発明はこれらに限定されるものではない(なお、Phはフェニル基を表し、tBuはターシャリーブチル基を表す)。 Specific examples of the complex represented by the general formula (I) in the present invention are illustrated below, but the present invention is not limited thereto (Ph represents a phenyl group, and t Bu represents a tertiary group. Represents a butyl group).

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

Figure 0004796802
Figure 0004796802

本発明の素子を構成する各要素について詳細に説明する。   Each element constituting the element of the present invention will be described in detail.

<基板>
本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオ
ンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer. Specific examples include zirconia-stabilized yttrium (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Organic materials such as norbornene resin and poly (chlorotrifluoroethylene).
For example, when glass is used as the substrate, alkali-free glass is preferably used as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method. When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

<陽極>
陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<Anode>
The anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   Suitable examples of the material for the anode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof. Specific examples of the anode material include conductive metals such as tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができるが、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element, but it is preferably formed on the substrate. In this case, the anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフ
トオフ法や印刷法によって行ってもよい。
The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、103Ω/□以下が好ましく、102Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is described in detail in the book “New Development of Transparent Electrode Films” published by CMC (1999), supervised by Yutaka Sawada, and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

<陰極>
陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element. The electrode material can be selected as appropriate.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、Li、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium. -Rare earth metals such as silver alloys, indium, ytterbium, and the like. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01 to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy, etc.) Say.

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの公報に記載の材料は、本発明においても適用することができる。   The cathode materials are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these publications can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。   There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out. For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印
刷法によって行ってもよい。
Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
In the present invention, the cathode forming position is not particularly limited, and may be formed on the entire organic layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic layer with a thickness of 0.1 to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

<有機層>
本発明における有機層について説明する。本発明の素子は、発光層を含む少なくとも一層の有機層を有しており、有機発光層以外の他の有機層としては、前述したごとく、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
<Organic layer>
The organic layer in the present invention will be described. The element of the present invention has at least one organic layer including a light emitting layer, and the organic layer other than the organic light emitting layer includes a hole transport layer, an electron transport layer, and a hole block layer as described above. , Electron blocking layer, hole injection layer, electron injection layer and the like.

−有機層の形成−
本発明の有機電界発光素子において、有機層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等いずれによっても好適に形成することができる。
-Formation of organic layer-
In the organic electroluminescent element of the present invention, each layer constituting the organic layer can be suitably formed by any of a dry film forming method such as a vapor deposition method and a sputtering method, a transfer method, and a printing method.

−発光層−
発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光材料の混合層とした構成でも良い。発光材料は蛍光発光材料でも燐光発光材料であっても良く、ドーパントは一種であっても二種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は一種であっても二種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。発光層としては、発光材料として本発明の錯体を用いたものが好ましく、少なくとも一種のホスト材料と本発明の錯体により構成されていることがより好ましい。
また、発光層は一層であっても二層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
-Light emitting layer-
The light-emitting layer receives holes from the anode, the hole injection layer, or the hole transport layer when an electric field is applied, receives electrons from the cathode, the electron injection layer, or the electron transport layer, and recombines holes and electrons. It is a layer which has the function to provide and to emit light.
The light emitting layer in the present invention may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material. The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one kind or two or more kinds. The host material is preferably a charge transport material. The host material may be one kind or two or more kinds, and examples thereof include a configuration in which an electron transporting host material and a hole transporting host material are mixed. Further, the light emitting layer may include a material that does not have charge transporting properties and does not emit light. The light emitting layer is preferably one using the complex of the present invention as a light emitting material, and more preferably composed of at least one kind of host material and the complex of the present invention.
In addition, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors.

本発明に使用できる蛍光発光材料の例としては、例えば、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8−キノリノール誘導体の錯体やピロメテン誘導体の錯体に代表される各種錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙
げられる。
Examples of fluorescent light-emitting materials that can be used in the present invention include, for example, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives. , Condensed aromatic compounds, perinone derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyralidine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazolopyridine derivatives, cyclopentadiene derivatives, styryl Complexes of amine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds, 8-quinolinol derivatives and pyromethene derivatives Various complexes represented, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.

また、本発明に使用できる燐光発光材料は、本発明の錯体の他に、例えば、遷移金属原子又はランタノイド原子を含む錯体が挙げられる。
遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金である。
ランタノイド原子としては、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
In addition to the complex of the present invention, examples of the phosphorescent material that can be used in the present invention include complexes containing transition metal atoms or lanthanoid atoms.
Although it does not specifically limit as a transition metal atom, Preferably, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum are mentioned, More preferably, they are rhenium, iridium, and platinum.
Examples of lanthanoid atoms include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.

錯体の配位子としては、例えば、G. Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H. Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer-Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
Examples of the ligand of the complex include, for example, G. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H. Yersin, “Photochemistry and Photophysics of Coordination Compounds”, Springer-Verlag, 1987, Akio Yamamoto Examples of the ligands described in the book “Organic Metal Chemistry-Fundamentals and Applications-” published in 1982 by Hankabosha.
Specific ligands are preferably halogen ligands (preferably chlorine ligands), nitrogen-containing heterocyclic ligands (eg, phenylpyridine, benzoquinoline, quinolinol, bipyridyl, phenanthroline, etc.), diketones Ligand (for example, acetylacetone), carboxylic acid ligand (for example, acetic acid ligand), carbon monoxide ligand, isonitrile ligand, cyano ligand, more preferably nitrogen-containing Heterocyclic ligand. The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

燐光発光材料は、発光層中に、0.1〜40質量%含有されることが好ましく、0.5〜20質量%含有されることがより好ましい。   The phosphorescent material is preferably contained in the light emitting layer in an amount of 0.1 to 40% by mass, and more preferably 0.5 to 20% by mass.

また、本発明における発光層に含有されるホスト材料としては、本発明の錯体の他に、例えば、カルバゾール骨格を有するもの、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの及びアリールシラン骨格を有するものや、後述の正孔注入層、正孔輸送層、電子注入層、電子輸送層の項で例示されている材料が挙げられる。   In addition to the complex of the present invention, the host material contained in the light emitting layer in the present invention includes, for example, those having a carbazole skeleton, those having a diarylamine skeleton, those having a pyridine skeleton, those having a pyrazine skeleton Examples thereof include those having a triazine skeleton and those having an arylsilane skeleton, and materials exemplified in the sections of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer described later.

発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。   Although the thickness of a light emitting layer is not specifically limited, Usually, it is preferable that they are 1 nm-500 nm, it is more preferable that they are 5 nm-200 nm, and it is still more preferable that they are 10 nm-100 nm.

−正孔注入層、正孔輸送層−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。正孔注入層、正孔輸送層は、具体的には、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、カーボン等を含有する層であることが好ましい。
-Hole injection layer, hole transport layer-
The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. Specifically, the hole injection layer and the hole transport layer are carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamines. Derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, porphyrin compounds, organosilane derivatives, carbon And the like.

正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the hole injection layer is preferably 0.1 nm to 200 nm, more preferably 0.5 nm to 100 nm, and still more preferably 1 nm to 100 nm.
The hole injection layer and the hole transport layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.

−電子注入層、電子輸送層−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。電子注入層、電子輸送層は、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする錯体に代表される各種錯体、有機シラン誘導体、等を含有する層であることが好ましい。
-Electron injection layer, electron transport layer-
The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. Specifically, the electron injection layer and the electron transport layer are triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, Carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, aromatic tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, 8-quinolinol derivative complexes, metal phthalocyanines, benzoxazoles and benzothiazoles as ligands It is preferably a layer containing various complexes typified by the complex to be prepared, an organosilane derivative, and the like.

電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the electron injection layer and the electron transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and still more preferably 0.5 nm to 50 nm.
The electron injection layer and the electron transport layer may have a single-layer structure made of one or more of the materials described above, or may have a multilayer structure made up of a plurality of layers having the same composition or different compositions.

−正孔ブロック層−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する有機化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
-Hole blocking layer-
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
Examples of the organic compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.

<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属、MgO、SiO、SiO2、Al23、GeO、NiO、CaO、BaO、Fe23、Y23、TiO2等の金属酸化物、SiNx、SiNxy等の金属窒化物、MgF2、LiF、AlF3、CaF2等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状
構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
<Protective layer>
In the present invention, the entire organic EL element may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2 O. 3 , metal oxides such as Y 2 O 3 and TiO 2 , metal nitrides such as SiN x and SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 , polyethylene, polypropylene, polymethyl Monomer mixture containing methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer A copolymer obtained by copolymerization of a copolymer having a cyclic structure in the copolymer main chain. Copolymer, 1% by weight of the water absorbing water absorption material, water absorption of 0.1% or less of moisture-proof material, and the like.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。   The method for forming the protective layer is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, transfer method can be applied.

<封止>
本発明の素子は、封止容器を用いて素子全体を封止してもよい。封止容器と素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
<Sealing>
The element of this invention may seal the whole element using a sealing container. You may enclose a water | moisture-content absorber or an inert liquid in the space between a sealing container and an element. Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide and the like. The inert liquid is not particularly limited, and examples thereof include fluorinated solvents such as paraffins, liquid paraffins, perfluoroalkanes, perfluoroamines, perfluoroethers, chlorinated solvents, and silicone oils. It is done.

本発明の素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)を印加、又は直流電流を通電することにより、発光を得ることができる。   The element of the present invention obtains light emission by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or applying a direct current between the anode and the cathode. be able to.

本発明の素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。   Regarding the driving method of the element of the present invention, JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234665, and JP-A-8-214447, The driving methods described in Japanese Patent No. 2784615, US Pat. Nos. 5,828,429 and 6023308, etc. can be applied.

本発明の素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。   The element of the present invention can be suitably used for display elements, displays, backlights, electrophotography, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, optical communications, and the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<有機電界発光素子>
(比較例1)
洗浄したITO基板を蒸着装置に入れ、下記構造のNPDを50nm蒸着し、この上に下記構造のCBP及びPtOEP(米国特許6303238号明細書に記載の化合物)を10:1の質量比で40nm蒸着し、さらにこの上に下記構造のBAlqを10nm、さらにこの上に下記構造のAlqを30nm蒸着した。得られた有機薄膜上にパターニングしたマスク(発光面積が4mm×5mmとなる)を設置し、フッ化リチウムを3nm蒸着した後アルミニウムを60nm蒸着して比較例1の有機EL素子を作製した。得られた有機EL素子に直流定電圧を印加したところ、赤色の発光が観測された。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<Organic electroluminescent device>
(Comparative Example 1)
The cleaned ITO substrate is put in a vapor deposition apparatus, and NPD having the following structure is vapor-deposited by 50 nm, and CBP and PtOEP (compound described in US Pat. No. 6,303,238) having the following structure are vapor-deposited by 40 nm at a mass ratio of 10: 1. Further, 10 nm of BAlq having the following structure was deposited thereon, and 30 nm of Alq having the following structure was further deposited thereon. A patterned mask (with a light emission area of 4 mm × 5 mm) was placed on the obtained organic thin film, and after 3 nm of lithium fluoride was deposited, 60 nm of aluminum was deposited to prepare an organic EL device of Comparative Example 1. When a direct current voltage was applied to the obtained organic EL element, red light emission was observed.

Figure 0004796802
Figure 0004796802

(実施例1)
PtOEPに代えて、本発明の例示化合物1を用いた以外は比較例1と同様にして実施例1の有機EL素子を作製した。得られた有機EL素子に直流定電圧を印加したところ、青緑色の発光が観測された。実施例1の素子の外部量子効率は、比較例1の素子の2倍であった。また、実施例1の素子を10Vで駆動した後の輝度半減時間は、比較例1の素子の1.5倍であった。
(Example 1)
An organic EL device of Example 1 was produced in the same manner as Comparative Example 1 except that Exemplified Compound 1 of the present invention was used in place of PtOEP. When a DC constant voltage was applied to the obtained organic EL element, blue-green light emission was observed. The external quantum efficiency of the device of Example 1 was twice that of the device of Comparative Example 1. The luminance half time after driving the device of Example 1 at 10 V was 1.5 times that of the device of Comparative Example 1.

上記実施例により、本発明の化合物を用いることにより、高効率かつ高耐久性の有機EL素子が得られることが明らかになった。   From the above examples, it became clear that a highly efficient and highly durable organic EL device can be obtained by using the compound of the present invention.

Claims (1)

一対の電極間に少なくとも一層の有機層を有する有機電界発光素子であって、下記一般式(I)で表される化合物の少なくとも一種を有機層に含有することを特徴とする有機電界発光素子。
Figure 0004796802
(一般式(I)中、X 11 、X 12 、及びX 13 はフェニル基を表す。Y 11 はピリジル基を表す。L 1 、L 2 及びL 4 は単結合を表し、L 3 はジメチルメチレン基又はジフェニルメチレン基を表す。n 1 は0を表し、n 2 、n 3 、及びn 4 は1を表す。ここで、n 1 が0であるとは、X 11 とX 12 の間が連結されていないことを表す。)
An organic electroluminescent device having at least one organic layer between a pair of electrodes, wherein the organic layer contains at least one compound represented by the following general formula (I).
Figure 0004796802
(In the general formula (I), X 11 , X 12 and X 13 represent a phenyl group. Y 11 represents a pyridyl group. L 1 , L 2 and L 4 represent a single bond, and L 3 represents dimethylmethylene. Represents a group or a diphenylmethylene group, n 1 represents 0, and n 2 , n 3 , and n 4 represent 1. Here, n 1 is 0 when X 11 and X 12 are connected. It means not being done.)
JP2005235306A 2005-08-15 2005-08-15 Organic electroluminescence device Active JP4796802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235306A JP4796802B2 (en) 2005-08-15 2005-08-15 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235306A JP4796802B2 (en) 2005-08-15 2005-08-15 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2007053132A JP2007053132A (en) 2007-03-01
JP4796802B2 true JP4796802B2 (en) 2011-10-19

Family

ID=37917396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235306A Active JP4796802B2 (en) 2005-08-15 2005-08-15 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4796802B2 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118026A2 (en) 2009-04-06 2010-10-14 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
KR20130067276A (en) 2010-04-30 2013-06-21 아리조나 보드 오브 리젠츠 퍼 앤 온 비하프 오브 아리조나 스테이트 유니버시티 Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
TWI541247B (en) 2011-02-18 2016-07-11 美國亞利桑那州立大學董事會 Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
WO2014031977A1 (en) 2012-08-24 2014-02-27 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds and methods and uses thereof
WO2014047616A1 (en) 2012-09-24 2014-03-27 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US20150274762A1 (en) 2012-10-26 2015-10-01 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
JP6804823B2 (en) 2013-10-14 2020-12-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University Platinum complex and device
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
WO2015131158A1 (en) * 2014-02-28 2015-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9502671B2 (en) 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
WO2016025921A1 (en) * 2014-08-15 2016-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
KR20180109950A (en) * 2016-01-29 2018-10-08 더 유니버시티 오브 홍콩 Luminescent tetradentate gold (III) compound for organic light emitting device and its manufacture
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
KR20210083134A (en) 2016-10-12 2021-07-06 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 Narrowband red phosphorescent tetradentate platinum(II) complexes
CN109790183A (en) * 2016-12-13 2019-05-21 广州华睿光电材料有限公司 Metal organic complex and its application, mixture, organic electronic device
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
WO2018140765A1 (en) 2017-01-27 2018-08-02 Jian Li Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
KR20200065064A (en) * 2017-10-17 2020-06-08 지안 리 Phosphorescent excimer with desirable molecular orientation, as a monochromatic emitter for display and lighting applications
WO2019134651A1 (en) * 2018-01-02 2019-07-11 The University Of Hong Kong Luminescent gold (iii) compounds with thermally stimulated delayed phosphorescence (tsdp) property for organic light-emitting devices and their preparation
WO2020125484A1 (en) * 2018-12-21 2020-06-25 The University Of Hong Kong Luminescent tetradentate ligand-containing gold (iii) compounds for organic light-emitting devices and their preparation
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924190B (en) * 2000-08-11 2012-07-04 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
JP2004158297A (en) * 2002-11-06 2004-06-03 Canon Inc Electroluminescent element using metal coordination compound
JP2005332747A (en) * 2004-05-21 2005-12-02 Canon Inc Light emitting device
US7572912B2 (en) * 2004-10-29 2009-08-11 University Of Hong Kong Luminescent gold (III) compounds, their preparation, and light-emitting devices containing same
JP2006152101A (en) * 2004-11-29 2006-06-15 Konica Minolta Holdings Inc Organic electroluminescent element material, organic electroluminescent element, displaying device and lighting device
CN102617614A (en) * 2004-12-28 2012-08-01 住友化学株式会社 Polymer compound and device using the same
JP5124942B2 (en) * 2005-01-14 2013-01-23 住友化学株式会社 Metal complexes and devices

Also Published As

Publication number Publication date
JP2007053132A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4796802B2 (en) Organic electroluminescence device
JP4533796B2 (en) Organic electroluminescence device
JP5144034B2 (en) Organic electroluminescence device
JP4399382B2 (en) Organic electroluminescence device
JP5282260B2 (en) Organic electroluminescence device
JP4399429B2 (en) Organic electroluminescence device
JP5484690B2 (en) Organic electroluminescence device
JP4792262B2 (en) Organic electroluminescent device and complex compound
JP4871607B2 (en) Organic electroluminescence device
JP2008108617A (en) Organic electroluminescent element
JP2009267244A (en) Organic electroluminescent element
JP2008270737A (en) Organic electroluminescent element
JP2007088164A (en) Organic electroluminescence element
JP2009004753A (en) Organic electroluminescent device
JP2009267176A (en) Organic electroluminescent element
JP4741920B2 (en) Organic electroluminescence device
JP4871689B2 (en) Organic electroluminescence device
JP4909695B2 (en) Organic electroluminescence device
JP2007194505A (en) Organic electroluminescence element
JP2007194506A (en) Organic electroluminescence element
JP2006278781A (en) Organic electric field light-emitting element
JP2007081050A (en) Organic electroluminescence element
JP2006278782A (en) Organic electric field light-emitting element
JP2006269836A (en) Organic electroluminescent element
JP2007096102A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250