JP4793713B2 - Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film - Google Patents

Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film Download PDF

Info

Publication number
JP4793713B2
JP4793713B2 JP2004246544A JP2004246544A JP4793713B2 JP 4793713 B2 JP4793713 B2 JP 4793713B2 JP 2004246544 A JP2004246544 A JP 2004246544A JP 2004246544 A JP2004246544 A JP 2004246544A JP 4793713 B2 JP4793713 B2 JP 4793713B2
Authority
JP
Japan
Prior art keywords
inorganic
organic
organic composite
nanosheet
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246544A
Other languages
Japanese (ja)
Other versions
JP2006069802A5 (en
JP2006069802A (en
Inventor
和子 藤井
武敏 藤田
伸夫 井伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004246544A priority Critical patent/JP4793713B2/en
Publication of JP2006069802A publication Critical patent/JP2006069802A/en
Publication of JP2006069802A5 publication Critical patent/JP2006069802A5/ja
Application granted granted Critical
Publication of JP4793713B2 publication Critical patent/JP4793713B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は、無機/有機複合ナノシートその製造方法、コーティング剤、フィラー、層状無機/有機複合体及び薄膜に関するものである。
The present invention, no machine / organic composite nanosheet, manufacturing method thereof, a coating agent, a filler, to a layered inorganic / organic composite and the thin film.

粘土鉱物をはじめとする無機の層状化合物の層間に有機物をインターカレーション反応により導入した層間化合物が多数報告されている Many intercalation compounds in which an organic substance is introduced by intercalation reaction between layers of inorganic layered compounds such as clay minerals have been reported .

また、層状チタン酸塩などの層状化合物を剥離させてナノシートを製造する方法は既に知られている(例えば、特許文献3,4、非特許文献1)。ナノシートを用いた新規材料の開発が広く期待されていることなどから、近年多数の層状酸化物のナノシートについて開発が進められている。   In addition, a method for producing a nanosheet by peeling a layered compound such as a layered titanate is already known (for example, Patent Documents 3 and 4 and Non-Patent Document 1). In recent years, development of a large number of layered oxide nanosheets has been promoted due to the widespread expectation of development of new materials using nanosheets.

層状の無機/有機複合体を無機の層状化合物と同様にナノシート化させられれば、新規な材料開発に大きな波及効果を及ぼすと期待できる。また、有機系の汎用樹脂や塗料等のフィラーとしての用途や親油性基板上の薄膜の作製などの目的には、親油性のナノシートの開発が待たれていた。If the layered inorganic / organic composite can be made into a nanosheet in the same manner as the inorganic layered compound, it can be expected to exert a great ripple effect on the development of new materials. In addition, development of lipophilic nanosheets has been awaited for purposes such as use as a filler for organic general-purpose resins and paints, and for the production of thin films on lipophilic substrates.

しかしながら、前述の無機の層状化合物からナノシートを得る方法を単純に無機/有機複合ナノシートの製造に応用しようとしても無駄である。何故ならば、層状無機/有機複合体を剥離し、ナノレベルにまで分離していき、ついに単一層にまで分離されると、当然のことながら無機物と有機物に分離してしまい、得られた生成物はもはや無機/有機複合ナノシートではなく、無機ナノシートと有機物の単なる混合物でしかない。However, it is useless to simply apply the above-described method for obtaining nanosheets from inorganic layered compounds to the production of inorganic / organic composite nanosheets. This is because when the layered inorganic / organic composite is peeled off and separated to the nano level, and finally separated into a single layer, it is naturally separated into an inorganic substance and an organic substance. The object is no longer an inorganic / organic composite nanosheet, but merely a mixture of inorganic nanosheet and organic material.

特開平06−200034号公報Japanese Patent Laid-Open No. 06-200034 特開2004−107494号公報JP 2004-107494 A 特開平09−175816号公報JP 09-175816 A 特開平10−087320号公報Japanese Patent Laid-Open No. 10-087320 J.Am.Chem.Soc.,1996,118,8329J. et al. Am. Chem. Soc. , 1996, 118, 8329

そこで、本発明は、上記のとおりの従来技術の問題点を解消し、仮に単層化されても、無機/有機複合ナノシートとして存続できるようにするとともに、その製造方法を提供することを課題としている。 The present invention, problems to solve the problems of the prior art as described above, be provisionally monolayered, as well as to be able to continue as inorganic / organic composite nano-sheet, a Rukoto Kyosu Hisage its manufacturing method It is said.

有機部分と無機部分が共有結合などの堅牢な接合部を介して複合化している層状有機ケイ素系ポリマー(特許文献1)や本発明者らが発明した熱可塑性層状アルキルシロキサン(特許文献2)も公知である。A layered organosilicon polymer (Patent Document 1) in which an organic part and an inorganic part are combined through a strong joint such as a covalent bond, and a thermoplastic layered alkylsiloxane invented by the present inventors (Patent Document 2) It is known.
かかる課題を解決すべく鋭意検討した結果、本発明者らは有機部分と無機部分が共有結合などの堅牢な接合部を介して複合化している層状無機/有機複合体を応用する方法が有効であることを見い出した。すなわち、前述したように層状無機/有機複合体の多くは無機ナノシートを得る方法を応用しても、ついには無機ナノシートと有機物の単なる混合物になってしまうが、両者が共有結合等を介した堅牢な界面を持つ複合体はこの限りではないことに気付いた。該当する共有結合を介した複合体は前記のとおり既に複数の化合物が公知となっている。As a result of intensive studies to solve such problems, the present inventors have found that a method of applying a layered inorganic / organic composite in which an organic part and an inorganic part are combined through a strong joint such as a covalent bond is effective. I found something. In other words, as described above, most of the layered inorganic / organic composites, even if the method of obtaining the inorganic nanosheet is applied, eventually becomes a simple mixture of the inorganic nanosheet and the organic material, but both are robust through covalent bonds. I realized that this is not the case for composites with complex interfaces. As described above, a plurality of compounds are already known as the complex via the corresponding covalent bond.

本発明に用いる複合体の条件としては、1.有機部分と無機部分が共有結合を介した堅牢な界面を持つ、2.ナノシート化に用いる溶剤に対する親和性が高い、3.ナノシート化操作条件下で安定である、等が挙げられる。これらの条件を満たす層状無機/有機複合体として本発明者らが既に開発した複合体(例えば、特許文献2;特開2004−107494号公報)を用いることが最適であることを見い出した。   The conditions for the complex used in the present invention are as follows. 1. The organic part and the inorganic part have a robust interface through a covalent bond. 2. High affinity for the solvent used for nanosheet formation. It is stable under nanosheet forming operation conditions. It has been found that it is optimal to use a composite (for example, Patent Document 2; JP-A-2004-107494) already developed by the present inventors as a layered inorganic / organic composite satisfying these conditions.

ナノシート化の方法としては、1.より簡便で、2.高価な装置を用いず、3.室温近傍、常圧、活性の高い試薬を用いない等の穏やかな条件で、行えばより応用範囲の広いナノシート化方法が提供できると考えた。   As a method for forming a nanosheet, 1. 1. It is simpler. 2. No expensive equipment is used. It was considered that a nanosheet forming method with a wider application range can be provided if it is performed under mild conditions such as near room temperature, normal pressure, and not using a highly active reagent.

また、膨潤処理法としては、ナノシート化と連続的に行える方法がより望ましい。例えば同一の溶剤、容器で溶剤の混合割合を変化させるだけで、膨潤状態からナノシート化までの処理を一連の処理として行えれば非常に便利である。   Further, as the swelling treatment method, a method that can be continuously performed with nanosheets is more desirable. For example, it is very convenient if the process from the swollen state to the nanosheet can be carried out as a series of processes only by changing the mixing ratio of the solvent in the same solvent and container.

上記の条件を満足する方法で、下記に示すように無機/有機複合ナノシートを得ることに成功し、また層状ケイ酸塩/有機複合体及び層状オルガノシロキサンの無機部分と有機部分の結合を保ちつつ膨潤せしめることに成功したものである。   The method satisfying the above conditions succeeded in obtaining an inorganic / organic composite nanosheet as shown below, while maintaining the bond between the inorganic part and the organic part of the layered silicate / organic composite and the layered organosiloxane. It has succeeded in swelling.

発明1の無機/有機複合ナノシートは、無機珪素化合物よりなるナノシートに有機基が付加されてなる無機/有機複合ナノシートであって、前記無機/有機複合ナノシートは3辺の内2辺が0.1〜2μmであり、残る1辺である厚さが1〜3nmであり、前記無機珪素化合物を構成する珪素の結合子と前記有機基の結合子とが共有結合されてなり、前記無機珪素化合物よりなるナノシートは、四面体シートを有していることを特徴とする。
The inorganic / organic composite nanosheet of the invention 1 is an inorganic / organic composite nanosheet in which an organic group is added to a nanosheet made of an inorganic silicon compound , and two of the three sides are 0.1 a ~2Myuemu, a thickness of one side remains is 1 to 3 nm, the inorganic silicon compound Ri name combinators of silicon constituting and the coupling element of the organic groups are covalently bonded to the inorganic silicon compound The nanosheet is characterized by having a tetrahedral sheet .

発明は、発明の無機/有機複合ナノシートにおいて、無機シートは、二枚の四面体シート間に無機化合物からなる八面体シートが挟み込まれた構造を有することを特徴とする。
Invention 2 is an inorganic / organic composite nanosheet of Invention 1 , wherein the inorganic sheet has a structure in which an octahedral sheet made of an inorganic compound is sandwiched between two tetrahedral sheets.

発明は、発明の無機/有機複合ナノシートにおいて、その組成が、一般式R6/iSi(OH)(ここで、Rは有機基、MはMg,Al,Feのうちの少なくとも1種の元素を示し、0.1≦h≦1、iは元素Mの価数を、2≦j≦4、6≦k≦10、2≦l≦6を示す。)で表されることを特徴とする。
Invention 3 is the inorganic / organic composite nanosheet of Invention 2 , the composition of which is represented by the general formula R h M 6 / i Si j O k (OH) l (where R is an organic group, M is Mg, Al, Fe At least one element among them, 0.1 ≦ h ≦ 1, i represents the valence of the element M, 2 ≦ j ≦ 4, 6 ≦ k ≦ 10, 2 ≦ l ≦ 6). It is characterized by being expressed.

発明は、発明の一般式R6/iSi(OH)のMの一部をアルカリ金属のうち少なくとも1種の元素で置換した、組成が、R(M 6/i−m )Si(OH)(ここで、Lはアルカリ金属のうち少なくとも1種の元素を示し、0.005≦m≦1)で表されることを特徴とする。
The invention 4 has a composition in which a part of M in the general formula R h M 6 / i Si j O k (OH) 1 of the invention 3 is substituted with at least one element among alkali metals, and the composition is R h (M ( 6 / i-m) L m ) Si j O k (OH) l ( where, L is at least one element among alkali metals, characterized by being represented by 0.005 ≦ m ≦ 1) And

発明は、発明の無機/有機複合ナノシートにおいて、その有機基がプロピルオクタデシルジメチルアンモニウム基であることを特徴とする。
Invention 5 is characterized in that in the inorganic / organic composite nanosheet of Invention 4 , the organic group is a propyloctadecyldimethylammonium group .

発明は、発明の無機/有機複合ナノシートにおいて、組成が一般式[R’Si(O(ここで、R’は有機基を示し、JはH、Si、又は溶液中や懸濁液中で容易にOJ基がOH基に変化しうる基を示し、0.5≦n≦2、1.5≦p≦3、2.5≦q≦4、1≦r≦2.5、2≦s≦200を示す)で表されることを特徴とする。
発明は、発明の無機/有機複合ナノシートにおいて、上記R’がオクタデシル基又はヘキサデシル基であることを特徴とする。
Invention 6 is an inorganic / organic composite nanosheet according to Invention 1 , wherein the composition is represented by the general formula [R ′ n Si p O q (O J ) r ] s (where R ′ represents an organic group, J represents H, Si Or a group in which an OJ group can be easily changed to an OH group in a solution or suspension, 0.5 ≦ n ≦ 2, 1.5 ≦ p ≦ 3, 2.5 ≦ q ≦ 4, 1 ≦ r ≦ 2.5, 2 ≦ s ≦ 200)).
Invention 7 is the inorganic / organic composite nanosheet of Invention 6 , wherein R ′ is an octadecyl group or a hexadecyl group.

発明は、発明1からの何れかの無機/有機複合ナノシートの製造方法であって、無機珪素化合物よりなるナノシートに対しその珪素の結合子と有機基の結合子とが共有結合されてなる層状の無機/有機複合体に有機溶剤を作用させて剥離することを特徴とする。
発明は、発明の無機/有機複合ナノシートの製造方法であって、層状のケイ酸塩/有機複合体に有機溶剤を作用させて剥離する前に、有機溶剤を作用させて層状ケイ酸塩/有機複合体を膨潤させることを特徴とする。
Invention 8 is a method for producing an inorganic / organic composite nanosheet according to any one of Inventions 1 to 7 , wherein a silicon bond and an organic group bond are covalently bonded to a nanosheet made of an inorganic silicon compound. The layered inorganic / organic composite material is peeled off by applying an organic solvent.
Invention 9 is a method for producing an inorganic / organic composite nanosheet of Invention 8 , wherein the layered silicate / organic composite is acted on with an organic solvent before the layered silicate / organic composite is peeled off to form a layered silicate. / Swelling of organic complex.

発明10のコーティング剤は、発明1ないしのいずれかの無機/有機複合ナノシートを有効成分として含有していることを特徴とする。
The coating agent of the invention 10 contains the inorganic / organic composite nanosheet of any of the inventions 1 to 7 as an active ingredient.

発明11のフィラーは、発明1ないしのいずれかの無機/有機複合ナノシートを用いて少なくともその一部を構成したことを特徴とする。
The filler of the invention 11 is characterized in that at least a part thereof is constituted by using the inorganic / organic composite nanosheet of any of the inventions 1 to 7 .

発明12の層状無機/有機複合体は、発明1ないしのいずれかの無機/有機複合ナノシートが少なくともその一部を構成しており、当該する無機/有機複合ナノシートを用いて構築されたことを特徴とする。
The layered inorganic / organic composite of the invention 12 is that the inorganic / organic composite nanosheet of any one of the inventions 1 to 7 constitutes at least a part thereof, and is constructed using the inorganic / organic composite nanosheet. Features.

発明13の薄膜は、発明1ないしのいずれかの無機/有機複合ナノシートを基板上に整列させることにより得られたことを特徴とする。
The thin film of the invention 13 is obtained by aligning the inorganic / organic composite nanosheet of any one of the inventions 1 to 7 on a substrate.

本発明の上記第9、第10の発明の方法により、無機/有機複合ナノシートが形成される理由は次のように考えられる。有機溶剤分子と有機部分の親和性により、有機溶剤分子が複合体の層間に取り込まれ、複合体が膨潤する。さらに、有機溶剤の混合割合を増やして系中に過剰の有機溶剤が存在するとき、有機部分と有機溶剤の親和性が強く、かつ層状複合体と有機溶剤の親和性が適度な組み合わせであれば、有機溶剤が複合体の有機部分を溶媒和し、層状複合体が剥離する。有機溶剤と有機部分の親和性は主にファン・デル・ワールス力であると考えられる。有機溶剤と複合体全体の間には双極子−双極子間引力も働いていると考えられる。 The reason why the inorganic / organic composite nanosheet is formed by the methods of the ninth and tenth aspects of the present invention is considered as follows. Due to the affinity between the organic solvent molecules and the organic portion, the organic solvent molecules are taken in between the layers of the composite, and the composite swells. Furthermore, when the mixing ratio of the organic solvent is increased and an excess organic solvent is present in the system, the affinity between the organic part and the organic solvent is strong, and the affinity between the layered composite and the organic solvent is an appropriate combination. The organic solvent solvates the organic portion of the composite, and the layered composite peels. The affinity between the organic solvent and the organic part is thought to be mainly due to van der Waals forces. It is thought that dipole-dipole attractive force also works between the organic solvent and the whole complex.

本発明の解決手段は、以上の通りであるが、これらの解決手段によって無機/有機複合ナノシートの製造が可能となった。また、ナノシートを単一種で用いるのではなく、有機部分又は無機部分あるいはその両方が異なる化学種である、異なる複数種の複合ナノシートを組み合わせて再構築することで多数の層状無機/有機複合体の製造が可能となる。これにより、例えば異なる2種以上の有機部分が同一の2次元場(1対の隣り合うシート状の無機部分が形成する層間)に存在できる。インターカレーション反応等により得られる従来の層状ケイ酸塩/有機複合体で問題となっていたsegregationも解決できる可能性が有る。   The solving means of the present invention is as described above, and the inorganic / organic composite nanosheet can be produced by these solving means. Also, instead of using nanosheets as a single species, multiple layered inorganic / organic composites can be reconstructed by combining and recombining multiple different types of composite nanosheets in which the organic and / or inorganic portions are different chemical species. Manufacture is possible. Thereby, for example, two or more different organic portions can exist in the same two-dimensional field (interlayer formed by a pair of adjacent sheet-like inorganic portions). There is a possibility that segregation, which has been a problem with conventional layered silicate / organic composites obtained by an intercalation reaction or the like, can also be solved.

さらに、この発明は共有結合により無機部分と有機部分が結合した層状ケイ素化合物/有機複合体の膨潤処理法も提供しているので、層状ケイ素化合物からその膨潤状態を経て無機/有機複合ナノシートまで広い範囲にわたって本発明の手法を用いて形成することが出来る。   Furthermore, since the present invention also provides a swelling treatment method for a layered silicon compound / organic composite in which an inorganic part and an organic part are bonded by a covalent bond, a wide range from a layered silicon compound to an inorganic / organic composite nanosheet through its swelling state It can be formed using the technique of the present invention over a range.

本発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。発明者らは、ナノレベルまで細分化することと、無機/有機の接合を両立することが無機/有機複合ナノシートを得るために、最も重要であることに着目した。そして、これを両立しうる複合ナノシートを与える出発物質である層状複合体として、1.無機部分と有機部分が共有結合を介した堅牢な界面を持ち、2.比較的穏やかな条件でナノレベルにまで細分化でき、3.ナノレベルに細分化しても猶、無機部分の2次元方向の構造が安定である、すなわち一方向(積層方向)の結合は弱いが、残る2方向(層内)の結合は堅牢である様な特徴を持ち、4.ナノシート化操作を経ても安定である、ものが望ましい。
このような知見からは、本発明者らによって先に開発した層状ケイ素化合物/有機物複合体(例えば、特許文献2;特開2004−107494号公報)が最適である。
The present invention has the features as described above, and an embodiment thereof will be described below. The inventors focused on the importance of refining to the nano level and achieving both inorganic / organic bonding in order to obtain an inorganic / organic composite nanosheet. As a layered composite that is a starting material that gives a composite nanosheet that can achieve both, 1. 1. The inorganic part and the organic part have a robust interface through a covalent bond; 2. It can be subdivided to nano level under relatively mild conditions. Even if it is subdivided to the nano level, the structure in the two-dimensional direction of the inorganic part is stable, that is, the bond in one direction (stacking direction) is weak, but the bond in the remaining two directions (in the layer) seems to be robust. 3. It has characteristics. Those that are stable even after the nanosheeting operation are desirable.
From such knowledge, the layered silicon compound / organic compound complex previously developed by the present inventors (for example, Patent Document 2; JP-A-2004-107494) is optimal.

すなわち、本出願の第1並びに第2の発明が提供する無機/有機複合ナノシートは、前記の通り、3辺の内2辺が0.1〜2μmであり、残る1辺が1〜3nmの、ナノオーダーの厚みのシート状であるが、無機部分と有機部分が共有結合しているのでナノレベルにまで溶剤に取り囲まれることにより細分化されても無機/有機の界面は保たれ、ナノレベルの複合体を製造することに成功した。   That is, the inorganic / organic composite nanosheet provided by the first and second inventions of the present application is, as described above, two of the three sides are 0.1 to 2 μm and the remaining one side is 1 to 3 nm. Although it is a nano-order thick sheet, since the inorganic part and the organic part are covalently bonded, the inorganic / organic interface is maintained even if it is subdivided by being surrounded by the solvent to the nano level, and the nano level Succeeded in producing the composite.

また、無機/有機複合ナノシートの組成は、一般式R 6/i Si (OH) (ここで、Rは有機基、MはMg,Al,Feのうちの少なくとも1種の元素を示し、0.1≦h≦1、iは元素Mの価数を、2≦j≦4、6≦k≦10、2≦l≦6を示す。)で表されるが、ここで、無機部分は、元素Mが八面体シートを形成し、その八面体シートがSiが形成する2枚の四面体シートで挟みこまれた、2:1型の層状粘土鉱物と類似の構造を持つので、ナノレベルにまで細分化しても層内の構造は安定なまま保持され、2方向のサイズが0.1〜2μmと厚み方向に対して比較的大きいためシート状の形態を持つ。また、この様な無機部分、有機部分及び無機/有機界面は、本発明で提供したナノシート化操作後も安定である。
The composition of the inorganic / organic composite nano-sheets by the general formula R h M 6 / i Si j O k (OH) l ( wherein, R represents an organic radical, M is Mg, Al, at least one of Fe 0.1 ≦ h ≦ 1, i represents the valence of the element M, 2 ≦ j ≦ 4, 6 ≦ k ≦ 10, 2 ≦ l ≦ 6). The inorganic part has a structure similar to a 2: 1 type layered clay mineral in which the element M forms an octahedral sheet, and the octahedral sheet is sandwiched between two tetrahedral sheets formed by Si. Therefore, even if it is subdivided to the nano level, the structure in the layer is kept stable, and the size in the two directions is 0.1 to 2 μm, which is relatively large in the thickness direction, and thus has a sheet-like form. Also, such inorganic part, organic part and inorganic / organic interface are stable after the nanosheeting operation provided in the present invention.

また、本発明が提供するように、八面体シートを形成する元素Mが元素Lで一部置換された無機/有機複合ナノシートを得ることも可能である。ここで、Lは前述の様にアルカリ金属の内少なくとも1種の元素を示す。様々なアルカリ金属を含み、さらに無機部分の電荷を変化させることが出来るため、用途に合わせた自在なナノシートの設計の可能性がある。 Further, as the onset bright provided, it is possible to obtain a partially substituted inorganic / organic composite nano-sheet with the element M is the element L forming the octahedral sheet. Here, L represents at least one element of alkali metal as described above. Since various alkali metals are included and the charge of the inorganic portion can be changed, there is a possibility of designing a nanosheet that can be freely adapted to the application.

本発明で有機基Rの係数hは0より大きくなければならず、理論的には4まで許される。しかしながら、無機ケイ酸塩部分の構造上の安定性から、より実際的には1以下とした。   In the present invention, the coefficient h of the organic group R must be greater than 0, theoretically up to 4. However, in view of the structural stability of the inorganic silicate portion, it is more practically set to 1 or less.

本発明で有機基Rとしては、アルキル基やアルキルアンモニウム基等が、比較的安定で親油性の基であるため特に便利であると考えられるが、いうまでもなくこの限りではない。本発明で提供する無機/有機複合ナノシートの無機部分は、二次元的な広がりを持つシロキサンシートでも可能である。 The organic group R in the onset bright, such as an alkyl group or an alkyl ammonium group, are considered to be particularly because it is relatively stable and lipophilic groups useful, of course not limited thereto. The inorganic portion of the inorganic / organic composite nanosheet provided in the present invention can be a siloxane sheet having a two-dimensional extension.

無機/有機複合ナノシートの製造方法としては、本発明が提供するように、目的の無機/有機複合ナノシートと類似の組成式で表せ、目的のナノシートが積み重なった様な構造である層状ケイ素化合物/有機複合体に有機溶剤を作用させるのが最も利便性が高く、広く応用可能である。また、有機溶剤を作用させて剥離する前に、有機溶剤を作用させて膨潤させることもできる。 Inorganic / As a method for producing an organic composite nanosheet, as the onset bright provides, represented by the composition formula similar to the inorganic / organic composite nanosheet purposes, layered silicon compound is a structure as stacked is nanosheets object / An organic solvent is allowed to act on the organic composite because it is the most convenient and widely applicable. Further, prior to peeling by acting organic solvents may be swollen by the action of an organic solvent.

また、用いる有機溶剤は、1.用いる層状無機/有機複合体との親和性、特に有機部分との親和性が高く、2.用いる層状無機/有機複合体や目的の無機/有機複合ナノシートを分解しない、ものでなければならない。また、室温近傍の穏やかな条件で操作出来ることが望ましいので、室温近傍で液体であるものが良い。また、揮発性は高すぎるとナノシート化操作に特別な環境を要するし、低すぎると得られた目的の複合ナノシートの精製処理等が面倒となる。例えば、トルエン、キシレン等を用い、室温で有機溶剤を作用させると非常に容易である。 The organic solvent used is: 1. High affinity with the layered inorganic / organic composite to be used, particularly with the organic moiety; The layered inorganic / organic composite to be used and the target inorganic / organic composite nanosheet must not be decomposed. Moreover, since it is desirable that the operation can be performed under a mild condition near room temperature, a liquid which is liquid near room temperature is preferable. Further, if the volatility is too high, a special environment is required for the nanosheet forming operation, and if it is too low, the purification treatment of the intended composite nanosheet obtained becomes troublesome. For example, using a toluene and xylene, is very easy when the action of organic solvents at room temperature.

次に、層状ケイ素化合物/有機複合体の膨潤処理法を説明する。これにより、固体の層状ケイ素化合物/有機複合体、その膨潤状態、複合ナノシートに亘る様々な状態の複合体を連続的に用いることが出来、実用上大変便利である。例えば、粘性調整剤として用いる場合、目的の粘性に応じて層状ケイ素化合物/有機複合体を膨潤状態で添加することができる。 Next, a method for swelling the layered silicon compound / organic composite will be described . As a result, the solid layered silicon compound / organic composite, its swollen state, and composites in various states ranging from composite nanosheets can be used continuously, which is very convenient in practice. For example, when used as a viscosity modifier, the layered silicon compound / organic composite can be added in a swollen state according to the target viscosity.

発明の無機/有機複合ナノシートには様々な用途が考えられるが、コーティング剤並びにフィラーとして、あるいはそれらの一部の構成剤として用いることが出来る。 The inorganic / organic composite nanosheet of the present invention are conceivable variety of applications but, as a co computing agents and fillers, or can be used as part of their construction material.

また、本発明の無機/有機複合ナノシートを用いると前述の様な様々な新規の材料の設計が可能となる。複合ナノシートの再構築により得られる新規層状無機/有機複合体や、薄膜も新規材料の一つである。 In addition, when the inorganic / organic composite nanosheet of the present invention is used, various new materials as described above can be designed . And new layered inorganic / organic composite obtained by the rebuild double focus nanosheet thin film is one of the new material.

以下に実施例を示し、この発明の実施の形態について更に詳しく説明する。
シリカゾル9.13g、オクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライドの50wt%メタノール溶液45.26g、水酸化マグネシウム3.50g、フッ化リチウム0.31gを秤量しイオン交換水に充分分散させて反応液を調製した。この反応液を、200℃で3日間保持し、生成物をろ別した後、メタノールで、続いてイオン交換水で洗浄した。得られた試料を乾燥し粉末を得た。
Examples will be shown below, and the embodiments of the present invention will be described in more detail.
9.13 g of silica sol, 45.26 g of 50 wt% methanol solution of octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride, 3.50 g of magnesium hydroxide and 0.31 g of lithium fluoride were weighed and sufficiently dispersed in ion-exchanged water. A reaction solution was prepared. The reaction solution was kept at 200 ° C. for 3 days, and the product was filtered off, and then washed with methanol and then with ion-exchanged water. The obtained sample was dried to obtain a powder.

この粉末は、無機部分がヘクトライト類似の2:1構造、すなわち1枚の八面体シートが2枚のSi四面体シートで挟み込まれた構造を持つ層がさらに積層した構造、を持ち、有機部分が脂肪族4級アンモニウム基であり、有機部分が無機部分の層間に存在し、さらに共有結合を介して複合化している、組成をR 0.43 Li 0.009 (Mg 2.99 Li 0.009 )Si 3.22 (OH) で表せる層状ケイ酸塩/アルキルアンモニウム複合体であった。この粉末を出発材料として用いた。層状ケイ酸塩/アルキルアンモニウム複合体の粉末200mgをトルエン1mlに添加し、室温で約30分撹拌したところコロイド状の混合溶液(混合溶液A)が得られた。
This powder has a 2: 1 structure in which the inorganic part is similar to hectorite, that is, a structure in which one octahedron sheet is sandwiched between two Si tetrahedron sheets and a layer is further laminated. Is an aliphatic quaternary ammonium group, the organic part is present between the layers of the inorganic part, and is further complexed via a covalent bond. The composition is R 0.43 Li 0.009 (Mg 2.99 Li 0. 009 ) Si 3.22 O k (OH) 1 and was a layered silicate / alkylammonium complex. This powder was used as starting material. When 200 mg of the powder of the layered silicate / alkylammonium complex was added to 1 ml of toluene and stirred for about 30 minutes at room temperature, a colloidal mixed solution (mixed solution A) was obtained.

さらに、この混合物をトルエンで10倍に薄めた濃度20mg/1mlの混合コロイド溶液のX線回折パターンを測定した(図1(a))。低角側に4.4nmのd値に相当する反射が見られた。2.3nmに相当する反射は2次反射であると考えられる。出発材料である層状ケイ酸塩/アルキルアンモニウム複合体の面間隔は約2.3nmであるので、トルエンを作用させることにより複合体が膨潤したことがわかる。   Further, an X-ray diffraction pattern of a mixed colloid solution having a concentration of 20 mg / 1 ml, which was obtained by diluting the mixture 10 times with toluene, was measured (FIG. 1 (a)). Reflection corresponding to a d value of 4.4 nm was observed on the low angle side. The reflection corresponding to 2.3 nm is considered to be secondary reflection. Since the interplanar spacing of the layered silicate / alkylammonium complex, which is the starting material, is about 2.3 nm, it can be seen that the complex was swollen by the action of toluene.

ここで議論している面間隔は、積層方向の面間隔であり、1つの2:1層の厚みと層と層の間の距離の和である。この混合コロイド溶液を基板上に滴下し、乾燥させた後、走査電子顕微鏡(SEM)観察を行った。図2(a)に示すように、積層した層状の像が観察された。   The interplanar spacing discussed here is the interplanar spacing and is the sum of the thickness of one 2: 1 layer and the distance between layers. The mixed colloidal solution was dropped on the substrate and dried, and then observed with a scanning electron microscope (SEM). As shown in FIG. 2A, a laminated layered image was observed.

実施例1で得られたコロイド状の混合溶液(混合溶液A)に、さらに、トルエンを加え混合溶液Aの約67倍に希釈して濃度3mg/1mlの混合コロイド溶液とした。こうして得られた試料でも同様にXRDパターンを測定したが、図1(b)に示すように、反射が見られなくなり、ナノシート化が示唆された。   To the colloidal mixed solution (mixed solution A) obtained in Example 1, toluene was further added to dilute the mixed solution A by about 67 times to obtain a mixed colloidal solution having a concentration of 3 mg / 1 ml. The XRD pattern was measured in the same manner for the sample thus obtained, but as shown in FIG. 1B, no reflection was observed, suggesting the formation of a nanosheet.

さらに100倍に希釈し濃度3×10 −2 mg/1mlとした試料を基板上に滴下し、乾燥させた後、SEM観察を行ったところ、図2(b)に示すように、様々な大きさのナノシートが異なる方向で分散、凝集した像が見られ、10倍希釈の試料(図2(a))とは非常に異なる像が見られた。混合溶液中でトルエン分子が複合体の層間に過剰にインターカレートされ、さらには有機部分(アルキルアンモニウム基)を溶媒和し、ついには層と層を剥離すると考えられる。剥離することによりナノシート化した無機/有機複合ナノシートが、基板上での乾燥過程で基板上に降り積もった結果であると考えられる。これらの結果から、トルエン溶液中で、親油性の無機/有機複合ナノシートが得られることが示された。
Further, a sample diluted to 100 times to a concentration of 3 × 10 −2 mg / 1 ml was dropped on the substrate, dried, and then subjected to SEM observation. As shown in FIG. the variance in different people direction nanosheets, observed aggregated image, very different image is observed with the 10-fold dilution of the sample (FIG. 2 (a)). It is considered that toluene molecules are excessively intercalated between the layers of the composite in the mixed solution, further solvate the organic part (alkyl ammonium group), and finally peel off the layers. It is considered that the inorganic / organic composite nanosheet formed into a nanosheet by peeling off was deposited on the substrate during the drying process on the substrate. From these results, it was shown that a lipophilic inorganic / organic composite nanosheet can be obtained in a toluene solution.

実施例1と同じく層状ケイ酸塩/アルキルアンモニウム複合体を出発材料として用いた。層状ケイ酸塩/アルキルアンモニウム複合体の粉末200mgを1−オクタノール1mlに添加し、室温で約1時間撹拌したところ、コロイド状の混合溶液が得られた。混合溶液のXRDパターンを測定したところ、約4nmに相当する反射が見られ、層状複合体の膨潤が示唆された。この膨潤状態は非常に安定であり、スライドガラス上で、乾燥窒素雰囲気下で丸1日乾燥させても膨潤状態を保った。図3に、乾燥過程のXRDパターンを示す。図3(a)は、滴下直後(膨潤状態)、図3(b)は1日乾燥後、図3(c)は2日乾燥後を示している。
As in Example 1, a layered silicate / alkylammonium complex was used as a starting material. When 200 mg of powder of the layered silicate / alkylammonium complex was added to 1 ml of 1-octanol and stirred at room temperature for about 1 hour, a colloidal mixed solution was obtained. When the XRD pattern of the mixed solution was measured, reflection corresponding to about 4 nm was observed, suggesting swelling of the layered composite. This swollen state was very stable, and the swollen state was maintained even if it was dried on a slide glass in a dry nitrogen atmosphere for a whole day. FIG. 3 shows an XRD pattern of the drying process. FIG. 3 (a) shows immediately after dropping (swelled state), FIG. 3 (b) shows after drying for 1 day, and FIG. 3 (c) shows after 2 days of drying.

以上詳しく説明した通り、本発明によって、無機ケイ素化合物と有機物の特徴をあわせ持つ、無機/有機複合ナノシートを提供することが出来る。すなわち、無機と有機の特徴をあわせ持ち、かつナノレベルのサイズを持つ全く新しい複合材料を得ることが可能となった。これにより、親油性のナノシート、すなわち親油性溶媒中で存在可能なナノシートが製造可能なのであるから、コーティング剤やフィラー、粘稠性調整剤として広い範囲で用いることが出来る。   As described above in detail, according to the present invention, an inorganic / organic composite nanosheet having both the characteristics of an inorganic silicon compound and an organic substance can be provided. In other words, it has become possible to obtain a completely new composite material having both inorganic and organic characteristics and a nano-level size. Thereby, since the lipophilic nanosheet, ie, the nanosheet which can exist in the lipophilic solvent, can be produced, it can be used in a wide range as a coating agent, a filler and a viscosity modifier.

実施例1及び2において、層状ケイ酸塩/アルキルアンモニウム複合体とトルエンの混合溶液のXRDパターン。(a)20mg/1ml、(b)3mg/1ml。In Example 1 and 2, the XRD pattern of the mixed solution of a layered silicate / alkyl ammonium complex and toluene. (A) 20 mg / 1 ml, (b) 3 mg / 1 ml. 実施例1及び2において、層状ケイ酸塩/アルキルアンモニウム複合体とトルエンの混合溶液を滴下、乾燥させて得られた観察試料の図面代用SEM像。(a)20mg/1ml、(b)3×10 −2 mg/1ml。In Example 1 and 2, the drawing substitute SEM image of the observation sample obtained by dripping and drying the mixed solution of a layered silicate / alkylammonium complex and toluene. (A) 20 mg / 1 ml, (b) 3 × 10 −2 mg / 1 ml. 実施例3において、1−オクタノールにより膨潤した層状ケイ酸塩/アルキルアンモニウム複合体の乾燥過程のXRDパターン。(a)滴下直後(膨潤状態)、(b)1日乾燥後、(c)2日乾燥後。In Example 3, the XRD pattern of the drying process of the layered silicate / alkyl ammonium complex swollen with 1-octanol. (A) Immediately after dropping (swelled state), (b) after drying for 1 day, (c) after drying for 2 days.

Claims (13)

無機珪素化合物よりなるナノシートに有機基が付加されてなる無機/有機複合ナノシートであって、
前記無機/有機複合ナノシートは3辺の内2辺が0.1〜2μmであり、残る1辺である厚さが1〜3nmであり、
前記無機珪素化合物を構成する珪素の結合子と前記有機基の結合子とが共有結合されてなり、
前記無機珪素化合物よりなるナノシートは、四面体シートを有していることを特徴とする無機/有機複合ナノシート。
An inorganic / organic composite nanosheet obtained by adding an organic group to a nanosheet made of an inorganic silicon compound,
In the inorganic / organic composite nanosheet, two of the three sides are 0.1 to 2 μm, and the remaining one side is 1 to 3 nm in thickness,
Ri name and combinators of the organic group as connectives silicon constituting the inorganic silicon compound is covalently bonded,
The nanosheet made of an inorganic silicon compound has a tetrahedral sheet, and is an inorganic / organic composite nanosheet.
請求項に記載の無機/有機複合ナノシートにおいて、前記無機珪素化合物よりなるナノシートは、二枚の四面体シート間に無機化合物からなる八面体シートが挟み込まれた構造を有することを特徴とする無機/有機複合ナノシート。 Inorganic / organic composite nanosheet according to claim 1, nanosheet consisting said inorganic silicon compound is characterized by having an octahedral sheet is sandwiched structure consisting of an inorganic compound between a two tetrahedral sheets Inorganic / organic composite nanosheet. 請求項に記載の無機/有機複合ナノシートにおいて、その組成が、一般式R6/iSi(OH)(ここで、Rは有機基、MはMg,Al,Feのうちの少なくとも1種の元素を示し、0.1≦h≦1、iは元素Mの価数を、2≦j≦4、6≦k≦10、2≦l≦6を示す。)で表されることを特徴とする無機/有機複合ナノシート。 Inorganic / organic composite nanosheet according to claim 2, the composition, in the general formula R h M 6 / i Si j O k (OH) l ( wherein, R represents an organic radical, M is Mg, Al, the Fe At least one of these elements, 0.1 ≦ h ≦ 1, i represents the valence of the element M, 2 ≦ j ≦ 4, 6 ≦ k ≦ 10, 2 ≦ l ≦ 6) An inorganic / organic composite nanosheet characterized by the above. 請求項に記載の一般式R6/iSi(OH)のMの一部をアルカリ金属のうち少なくとも1種の元素で置換した、組成が、R(M 6/i−m )Si(OH)(ここで、Lはアルカリ金属のうち少なくとも1種の元素を示し、0.005≦m≦1)で表される無機/有機複合ナノシート。 The composition in which a part of M in the general formula R h M 6 / i Si j O k (OH) 1 according to claim 3 is substituted with at least one element among alkali metals is R h (M ( 6 / i-m) L m) Si j O k (OH) l ( where, L is at least one element among alkali metals, inorganic / organic composite represented by 0.005 ≦ m ≦ 1) Nanosheet. 請求項に記載の無機/有機複合ナノシートにおいて、その有機基がプロピルオクタデシルジメチルアンモニウム基であることを特徴とする無機/有機複合ナノシート。 The inorganic / organic composite nanosheet according to claim 4 , wherein the organic group is a propyloctadecyldimethylammonium group . 請求項に記載の無機/有機複合ナノシートにおいて、組成が一般式[R’Si(O(ここで、R’は有機基を示し、JはH、Si、又は溶液中や懸濁液中で容易にOJ基がOH基に変化しうる基を示し、0.5≦n≦2、1.5≦p≦3、2.5≦q≦4、1≦r≦2.5、2≦s≦200を示す)で表されることを特徴とする無機/有機複合ナノシート。 Inorganic / organic composite nanosheet according to claim 1, composition formula [R 'n Si p O q (O J) r] s ( where, R' represents an organic group, J is H, Si, Or a group in which an OJ group can be easily changed to an OH group in a solution or suspension, 0.5 ≦ n ≦ 2, 1.5 ≦ p ≦ 3, 2.5 ≦ q ≦ 4, 1 ≦ r ≦ 2.5, 2 ≦ s ≦ 200)). 請求項に記載の無機/有機複合ナノシートにおいて、上記R’がオクタデシル基又はヘキサデシル基であることを特徴とする無機/有機複合ナノシート。 The inorganic / organic composite nanosheet according to claim 6 , wherein R 'is an octadecyl group or a hexadecyl group. 請求項1からの何れかに記載の無機/有機複合ナノシートの製造方法であって、無機珪素化合物よりなるナノシートに対しその珪素の結合子と有機基の結合子とが共有結合されてなる層状の無機/有機複合体に有機溶剤を作用させて剥離することを特徴とする無機/有機複合ナノシートの製造方法。 The method for producing an inorganic / organic composite nanosheet according to any one of claims 1 to 7 , wherein the silicon binder and the organic group binder are covalently bonded to the nanosheet made of an inorganic silicon compound. A method for producing an inorganic / organic composite nanosheet, characterized in that an organic solvent is allowed to act on the inorganic / organic composite of the material to separate it. 請求項に記載の無機/有機複合ナノシートの製造方法であって、層状のケイ酸塩/有機複合体に有機溶剤を作用させて剥離する前に、有機溶剤を作用させて層状ケイ酸塩/有機複合体を膨潤させることを特徴とする無機/有機複合ナノシートの製造方法。 9. The method for producing an inorganic / organic composite nanosheet according to claim 8 , wherein an organic solvent is allowed to act on the layered silicate / organic composite to cause release of the layered silicate / organic composite. A method for producing an inorganic / organic composite nanosheet characterized by swelling an organic composite. 請求項1ないしのいずれかの無機/有機複合ナノシートを有効成分として含有していることを特徴とするコーティング剤。 Coating agent characterized by containing as an active ingredient one of the inorganic / organic composite nanosheet of claims 1 to 7. 請求項1ないしのいずれかの無機/有機複合ナノシートを用いて少なくともその一部を構成したことを特徴とするフィラー。 Fillers, characterized by being configured at least partially with one of the inorganic / organic composite nanosheet of claims 1 to 7. 請求項1ないしのいずれかの無機/有機複合ナノシートが少なくともその一部を構成しており、当該する無機/有機複合ナノシートを用いて構築された層状無機/有機複合体。 Either inorganic / organic composite nanosheets constitutes at least a part, said to inorganic / organic composite nanosheet layered inorganic / organic composite constructed using of claims 1 to 7. 請求項1ないしのいずれかの無機/有機複合ナノシートを基板上に整列させることにより得られた薄膜。
Either inorganic / organic thin film obtained by the composite nanosheet is aligned on the substrate of claims 1 to 7.
JP2004246544A 2004-08-26 2004-08-26 Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film Expired - Fee Related JP4793713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246544A JP4793713B2 (en) 2004-08-26 2004-08-26 Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246544A JP4793713B2 (en) 2004-08-26 2004-08-26 Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film

Publications (3)

Publication Number Publication Date
JP2006069802A JP2006069802A (en) 2006-03-16
JP2006069802A5 JP2006069802A5 (en) 2007-10-11
JP4793713B2 true JP4793713B2 (en) 2011-10-12

Family

ID=36150804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246544A Expired - Fee Related JP4793713B2 (en) 2004-08-26 2004-08-26 Inorganic / organic composite nanosheet, manufacturing method thereof, coating agent, filler, layered inorganic / organic composite, and thin film

Country Status (1)

Country Link
JP (1) JP4793713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085436B2 (en) * 2012-09-10 2017-02-22 株式会社Kri Layered clay mineral composite, process for producing the same, film-forming composition and film using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952482B2 (en) * 1992-12-28 2007-08-01 株式会社豊田中央研究所 Layered organosilicon polymer, molded product thereof, and production method thereof
JP3899546B2 (en) * 1996-03-11 2007-03-28 株式会社豊田中央研究所 Layered organic titanosilicate and molded body of layered organic titanosilicate
JP2004107494A (en) * 2002-09-18 2004-04-08 National Institute For Materials Science Thermoplastic lamellar alkylsiloxane and its manufacturing process

Also Published As

Publication number Publication date
JP2006069802A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
Putz et al. High‐nanofiller‐content graphene oxide–polymer nanocomposites via vacuum‐assisted self‐assembly
Stöter et al. Tunable exfoliation of synthetic clays
De Leon et al. Distinct chemical and physical properties of Janus nanosheets
Tang et al. The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites
US8709213B2 (en) Composite graphene oxide-polymer laminate and method
Whitby Chemical control of graphene architecture: tailoring shape and properties
Aboutalebi et al. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions
JP6502474B2 (en) Incorporation of graphite oxide into cement and asphalt composites
Hao et al. Bridged Ti3C2T x MXene film with superior oxidation resistance and structural stability for high-performance flexible supercapacitors
Hu et al. Effect of interfacial interaction between graphene oxide derivatives and poly (vinyl chloride) upon the mechanical properties of their nanocomposites
Weng et al. Selective distribution of surface-modified TiO2 nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer
Guan et al. Ecofriendly fabrication of modified graphene oxide latex nanocomposites with high oxygen barrier performance
Jiang et al. One-pot controlled synthesis of homopolymers and diblock copolymers grafted graphene oxide using couplable RAFT agents
Paszkiewicz et al. Graphene-based nanomaterials and their polymer nanocomposites
Kovtyukhova et al. Atomically thin layers of graphene and hexagonal boron nitride made by solvent exfoliation of their phosphoric acid intercalation compounds
Hosseini et al. Tunable, multifunctional ceramic composites via intercalation of fused graphene boron nitride nanosheets
Kim et al. Nanocomposite films derived from exfoliated functional aluminosilicate through electrostatic layer-by-layer assembly
Zhao et al. Natural amino acids: High-efficiency intercalants for graphene exfoliation
Kim et al. Mosaic-like monolayer of graphene oxide sheets decorated with tetrabutylammonium ions
Daab et al. Two-step delamination of highly charged, vermiculite-like layered silicates via ordered heterostructures
Zulfiqar et al. Influence of interlayer functionalization of kaolinite on property profile of copolymer nanocomposites
Ohno et al. Polymer-brush-decorated graphene oxide: precision synthesis and liquid-crystal formation
Dudko et al. Repulsive osmotic delamination: 1D dissolution of 2D materials
Inman et al. Shear delamination of multilayer MXenes
Mali et al. Thermal, mechanical and morphological properties of surface‐modified montmorillonite‐reinforced Viton rubber nanocomposites

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Ref document number: 4793713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees