JP4791018B2 - Polyolefin resin expanded particles and in-mold molded product thereof - Google Patents

Polyolefin resin expanded particles and in-mold molded product thereof Download PDF

Info

Publication number
JP4791018B2
JP4791018B2 JP2004308585A JP2004308585A JP4791018B2 JP 4791018 B2 JP4791018 B2 JP 4791018B2 JP 2004308585 A JP2004308585 A JP 2004308585A JP 2004308585 A JP2004308585 A JP 2004308585A JP 4791018 B2 JP4791018 B2 JP 4791018B2
Authority
JP
Japan
Prior art keywords
adhesive resin
zinc oxide
expanded particles
polyolefin resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004308585A
Other languages
Japanese (ja)
Other versions
JP2006117842A (en
Inventor
聖一朗 原田
智幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004308585A priority Critical patent/JP4791018B2/en
Publication of JP2006117842A publication Critical patent/JP2006117842A/en
Application granted granted Critical
Publication of JP4791018B2 publication Critical patent/JP4791018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、帯電防止性能を有するポリオレフィン系樹脂発泡粒子およびその型内成形体に関する。   The present invention relates to a polyolefin resin foamed particle having antistatic performance and an in-mold molded product thereof.

近年、電子、電気関連機器、特にパーソナルコンピューターおよびその周辺機器である液晶表示装置や記憶装置は、インターネットに代表される情報文化の発達と共に急激な勢いで成長し続けている分野である。これらの機器は、LSI等の半導体製品が組み込まれていて、静電気破壊を生じやすいために、これらの輸送用緩衝包装材料には、帯電防止性能を有すポリオレフィン系樹脂型内発泡成形体の緩衝材料が必要とされ、その重要性がますます高まりつつあるのが現状である。
特許文献1、特許文献2では、ポリオレフィン系樹脂発泡粒子及びその型内成形体において、導電性カーボンブラックを添加する事により、導電性能を発現させている。しかしながら、導電性カーボンブラックを使用した場合、導電性カーボンブラックの脱落による被包装物への電気障害、汚れの発見が難しい、表面抵抗率1010〜1012Ωという帯電防止性能レベルでのコントロールが難しいなどの問題がある。また特許文献2では、界面活性剤を添加する事により、導電性能を発現させている。しかしながら界面活性剤型帯電防止剤を使用した場合、脱落の問題はないが被包装物に界面活性剤が転写される可能性がある。また、界面活性剤型帯電防止剤は高温環境下で性能劣化がおきたり、湿度により大きく性能が変化したりしてしまう。
特開平4−118224号公報 特開2002−3634号公報
2. Description of the Related Art In recent years, electronic and electrical equipment, particularly personal computers and peripheral devices such as liquid crystal display devices and storage devices have been growing rapidly with the development of information culture represented by the Internet. Since these devices incorporate semiconductor products such as LSIs and are susceptible to electrostatic breakdown, these transport cushioning packaging materials contain cushioning for polyolefin resin-in-mold foam moldings that have antistatic properties. The current situation is that materials are needed and their importance is increasing.
In Patent Document 1 and Patent Document 2, the conductive performance is expressed by adding conductive carbon black to the polyolefin resin foamed particles and the in-mold molded product thereof. However, when conductive carbon black is used, it is difficult to find an electrical failure or dirt on the package due to the removal of the conductive carbon black, and control at an antistatic performance level of 10 10 to 10 12 Ω is possible. There are problems such as difficulties. Moreover, in patent document 2, electroconductive performance is expressed by adding surfactant. However, when a surfactant type antistatic agent is used, there is no problem of dropping off, but the surfactant may be transferred to the package. Further, the surfactant type antistatic agent deteriorates in performance under a high temperature environment, or the performance greatly changes depending on humidity.
Japanese Patent Laid-Open No. 4-118224 JP 2002-3634 A

本発明は、被包装物への転写(汚染)現象がなく、脱落による被包装物への電気障害が無く、表面抵抗率1010〜1012Ωという帯電防止性能レベルを安定して、かつ永久的に有するポリオレフィン系樹脂発泡粒子を提供することを目的とする。 The present invention does not cause a transfer (contamination) phenomenon to a packaged object, does not cause an electrical failure to the packaged product due to dropping, has a stable antistatic performance level of 10 10 to 10 12 Ω, and is permanent. An object of the present invention is to provide foamed polyolefin resin particles.

本発明者は、上記課題を解決するため、鋭意検討を重ねた結果、特定の導電性酸化亜鉛と樹脂を配合する事によって目的を達成しうることを見出し、本発明をなすに至った。
すなわち本発明は、下記の通りである。
(1)粒子径が0.01〜0.1μmである導電性酸化亜鉛と直鎖状低密度ポリエチレンからなる接着性樹脂を含む接着性樹脂層で全表面が被覆されていることを特徴とするポリオレフィン系樹脂発泡粒子。
(2)導電性酸化亜鉛と接着性樹脂との質量比が20:80〜80:20であることを特徴とする(1)に記載のポリオレフィン系樹脂発泡粒子。
(3)(1)または(2)に記載のポリオレフィン系樹脂発泡粒子を用いて得られることを特徴とする型内発泡成形体。
As a result of intensive studies in order to solve the above-mentioned problems, the present inventor has found that the object can be achieved by blending a specific conductive zinc oxide and a resin, and has reached the present invention.
That is, the present invention is as follows.
(1) The entire surface is covered with an adhesive resin layer containing an adhesive resin composed of conductive zinc oxide having a particle diameter of 0.01 to 0.1 μm and linear low-density polyethylene. Polyolefin resin foam particles.
(2) The polyolefin resin expanded particles according to (1), wherein the mass ratio of the conductive zinc oxide to the adhesive resin is 20:80 to 80:20.
(3) An in-mold foam molded article obtained by using the polyolefin resin foamed particles according to (1) or (2).

本発明のポリオレフィン系樹脂発泡粒子およびその型内成形体は、被包装物への転写(汚染)現象がなく、脱落による被包装物への電気障害が無く、表面抵抗率1010〜1012Ωという帯電防止性能レベルを安定してかつ永久的に有する。 The polyolefin-based resin foamed particles and the in-mold molded product of the present invention have no transfer (contamination) phenomenon to the package, no electrical obstacles to the package due to dropping, and a surface resistivity of 10 10 to 10 12 Ω. The antistatic performance level is stable and permanent.

以下、本発明の各構成を項分けし、詳細に説明する。
「ポリオレフィン系樹脂発泡粒子」
ポリオレフィン系樹脂発泡粒子とは、架橋型および無架橋型のポリオレフィン系樹脂発泡粒子を総称する。
ポリオレフィン系樹脂としては、低、中、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高密度ポリエチレン、メタロセン触媒のポリエチレン、エチレン−酢酸ビニル共重合体で代表されるエチレン系樹脂、ポリプロピレン、共重合成分が、エチレン、ブテン−1,4−メチルペンテンなどから選ばれる1種以上とプロピレンとのランダムまたはブロック共重合樹脂、又はこれらの2種類以上が配合された混合樹脂等が挙げられる。
発泡前のポリオレフィン系樹脂平均粒子の大きさは、直径0.2〜3.0mmであることが好ましい。発泡前のポリオレフィン系樹脂粒子の大きさが、直径0.2mm以上であると発泡の際、ガスが逸散しにくく正常に発泡し、直径3.0mm以下であると高発泡化した時の発泡粒子径が小さくなり、微細形状の型成形体が得られる。
ポリオレフィン系樹脂発泡粒子の発泡倍率は、2cm/g〜40cm/gが好ましく、より好ましくは2cm/g〜30cm/gである。発泡倍率が2cm/g以上であれば、型内成形(高倍率)に用いるための逐次高発泡化作業が容易となり発泡成形の生産工程が経済的である。また、発泡倍率が40cm/g以下だと、導電性酸化亜鉛を含む接着性樹脂量が少量ですみ、経済的であると共に加工性が良好になる。
ポリオレフィン系樹脂発泡粒子は、ポリオレフィン系樹脂に揮発性発泡剤を含浸させた後、発泡適正温度において加熱発泡させたものが好ましい。
Hereinafter, each configuration of the present invention will be described in detail.
"Polyolefin resin foamed particles"
The polyolefin resin expanded particles are a general term for crosslinked and non-crosslinked polyolefin resin expanded particles.
Polyolefin resins include low, medium and high density polyethylene, linear low density polyethylene, ultra high density polyethylene, metallocene-catalyzed polyethylene, ethylene resin represented by ethylene-vinyl acetate copolymer, polypropylene, and copolymer. Examples thereof include random or block copolymer resins of one or more components selected from ethylene, butene-1,4-methylpentene, and the like, and propylene, or a mixed resin in which two or more of these components are blended.
The average size of the polyolefin-based resin average particle before foaming is preferably 0.2 to 3.0 mm in diameter. When the foamed polyolefin resin particles before foaming have a diameter of 0.2 mm or more, the foaming is normally difficult to escape during foaming, and when the diameter is 3.0 mm or less, foaming occurs when the foam is highly foamed. The particle size is reduced, and a finely shaped molded product is obtained.
Expansion ratio of the polyolefin resin expanded particles is preferably from 2cm 3 / g~40cm 3 / g, more preferably 2cm 3 / g~30cm 3 / g. If the expansion ratio is 2 cm 3 / g or more, the sequential high foaming operation for use in in-mold molding (high magnification) is facilitated, and the foam molding production process is economical. On the other hand, when the expansion ratio is 40 cm 3 / g or less, the amount of the adhesive resin containing conductive zinc oxide is small, which is economical and has good processability.
The polyolefin resin foamed particles are preferably those obtained by impregnating a polyolefin resin with a volatile foaming agent and then heating and foaming at an appropriate foaming temperature.

「導電性酸化亜鉛」
導電性酸化亜鉛は、酸化亜鉛の結晶格子中に異種金属をドーピングすることにより導電化した白色粉末である。
導電性酸化亜鉛は粒子径が0.01〜0.2μmが好ましく、より好ましくは0.01〜0.1μmである。押出機やニーダー等を用いた接着性樹脂との溶融混練加工性の観点から粒子径は0.01μm以上であることが好ましい。導電性酸化亜鉛の添加量が多くなり不経済になる、また加工性の観点から粒子径が0.2μm以下であることが好ましい。
"Conductive zinc oxide"
Conductive zinc oxide is a white powder made conductive by doping a different metal in the crystal lattice of zinc oxide.
The conductive zinc oxide preferably has a particle size of 0.01 to 0.2 μm, more preferably 0.01 to 0.1 μm. From the viewpoint of melt kneading processability with an adhesive resin using an extruder, a kneader, or the like, the particle diameter is preferably 0.01 μm or more. The amount of conductive zinc oxide added is uneconomical, and the particle size is preferably 0.2 μm or less from the viewpoint of workability.

「接着性樹脂」
接着性樹脂は、導電性酸化亜鉛を一次発泡粒子の表面に堅固に接着するためにバインダーの役目をする。接着性樹脂としては、低、中、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高密度ポリエチレン、メタロセン触媒のポリエチレン、エチレン−酢酸ビニル共重合体で代表されるエチレン系樹脂、ポリプロピレン、共重合成分が、エチレン、ブテン−1,4−メチルペンテンなどから選ばれる1種以上とプロピレンとのランダムまたはブロック共重合樹脂、又はこれらの2種類以上が配合された混合樹脂等が挙げられる。
接着性樹脂はポリオレフィン系樹脂発泡粒子が発泡する際に追従して伸びる必要があり、そのために必要な特性を有する樹脂として、好ましくは直鎖状低密度ポリエチレン、より好ましくはMFR2〜50g/10min、密度0.930g/cm以下である直鎖状低密度ポリエチレンである。
"Adhesive resin"
The adhesive resin serves as a binder to firmly adhere the conductive zinc oxide to the surface of the primary expanded particles. Adhesive resins include low, medium and high density polyethylene, linear low density polyethylene, ultra high density polyethylene, metallocene-catalyzed polyethylene, ethylene resin represented by ethylene-vinyl acetate copolymer, polypropylene, and copolymer. Examples thereof include random or block copolymer resins of one or more components selected from ethylene, butene-1,4-methylpentene, and the like, and propylene, or a mixed resin in which two or more of these components are blended.
The adhesive resin needs to extend following the expansion of the polyolefin resin foamed particles, and as a resin having the necessary properties for that purpose, it is preferably linear low density polyethylene, more preferably MFR 2-50 g / 10 min, It is a linear low-density polyethylene having a density of 0.930 g / cm 3 or less.

「接着性樹脂層」
接着性樹脂層は、厚み1〜400μmで均一に被覆されることが好ましい。
接着性樹脂層は、発泡粒子の質量に対して1〜15質量%が好ましく、より好ましくは1.5〜10質量%である。発泡粒子の質量に対して1質量%以上であると、発泡粒子の全表面に渡って被覆でき均一であり、15質量%以下だと、発泡粒子の流動混合性が良くなる。
"Adhesive resin layer"
The adhesive resin layer is preferably uniformly coated with a thickness of 1 to 400 μm.
1-15 mass% is preferable with respect to the mass of an expanded particle, and, as for an adhesive resin layer, More preferably, it is 1.5-10 mass%. When the content is 1% by mass or more with respect to the mass of the expanded particles, the entire surface of the expanded particles can be coated uniformly.

導電性酸化亜鉛と接着性樹脂との質量比は好ましくは20:80〜80:20、より好ましくは30:70〜70:30である。質量比が20:80以上では、帯電防止性能が発現しやすく、質量比が80:20以下だと、表面への定着性が良好である。
導電性酸化亜鉛は、前もって接着性樹脂と押出機やニーダー等で溶融混練されている事が好ましく、これにより以下に記載の効果が期待できる。
1)分散が高度で然も均一である。
2)効果の発現が容易且つ安定的に得られる。
3)発泡粒子への定着工程が一段階で済む。
接着性樹脂層を形成させるためには、高速剪断型混合機を使用すると混合時間が短く、生産性が高いため経済的で好ましい。
The mass ratio between the conductive zinc oxide and the adhesive resin is preferably 20:80 to 80:20, more preferably 30:70 to 70:30. When the mass ratio is 20:80 or more, antistatic performance is easily exhibited, and when the mass ratio is 80:20 or less, the fixing property to the surface is good.
The conductive zinc oxide is preferably melt kneaded with an adhesive resin in advance using an extruder, a kneader, or the like, whereby the effects described below can be expected.
1) The dispersion is high and uniform.
2) The effect can be easily and stably obtained.
3) The fixing process to the expanded particles is completed in one stage.
In order to form an adhesive resin layer, it is economical and preferable to use a high-speed shear mixer because the mixing time is short and the productivity is high.

以下、本発明の内容を実施例を用いて詳述する。
本発明で使用する物性値および評価方法を以下に示す。
1)発泡倍率;質量(g)既知の発泡粒子の体積(cm)を水没法で測定し、その体積を質量で除した値を発泡倍率(cm/g)とする。
2)型内成形体倍率;質量(g)既知の型内成形体の体積(cm)を水没法で測定し、その体積を質量で除した値を型内成形体倍率(cm/g)とする。
3)表面抵抗率;温度20℃、相対湿度65%に制御されている室内に、24時間放置して状態調整された型内成形体の表面を、JISK6911の試験法5.13項に規定する電極間にセットし、成形スキン面の表面抵抗を抵抗計(商品名:SME−8220、東亜電波工業株式会社製、印加電圧500V)で測定し、JISに規定する計算式から表面抵抗率を算出し評価する。
4)転写(汚染)性評価;温度20℃、相対湿度65%に制御されている室内に、型内成形体表面に清浄なガラス基板を載せ24時間放置後、ガラス基板表面を観察し評価する。
5)強制転写(汚染)性評価;温度70℃、相対湿度90%に制御されている恒温恒湿槽内に、型内成形体表面に清浄なガラス基板を載せ24時間放置後、ガラス基板表面を観察し評価する。
6)温度依存性;湿度を65%に固定し、温度20、50、70℃の環境下に30日間保管後、湿度65%、温度20℃に制御された室内に24時間放置した後、表面抵抗率を測定し温度依存性を評価する。
7)湿度依存性;温度を20℃に固定し、湿度20、65、90%の環境下で表面抵抗率を測定し、湿度依存性を評価する。
8)電気障害の可能性;体積抵抗率の低いものは脱落時に液晶回路間の短絡を生じさせる。体積抵抗率から電気障害の可能性を評価した。
9)導電性酸化亜鉛粒子径の測定;迅速表面測定装置(商品名;SA−1000、柴田化学機器工業(株)製)を使用して粉体の比表面積をBET法により測定し、得られた比表面積から粉体を球形と仮定して以下の式により換算粒子径を計算した。
d=6/(ρ・S)
d:粒子径(μm)、S:比表面積(m/g)、ρ:試料密度(g/cm
10)発泡前のポリオレフィン系樹脂粒子径の測定;ノギスにより測定し、n=5の平均値を算出した。
11)接着性樹脂膜層厚みの測定;発泡粒子の断面を光学顕微鏡(商品名;PCS−81X、稲畑産業(株)製)および電子顕微鏡(商品名;JSM−5600LV、日本電子(株))により観察し、目視にて接着性樹脂層の厚みを測定した。
Hereinafter, the contents of the present invention will be described in detail using examples.
The physical property values and evaluation methods used in the present invention are shown below.
1) Foaming ratio: Mass (g) The volume (cm 3 ) of a known foamed particle is measured by a submersion method, and the value obtained by dividing the volume by the mass is taken as the foaming ratio (cm 3 / g).
2) Molded body magnification: Mass (g) The volume (cm 3 ) of a known molded body is measured by a submersion method, and the value obtained by dividing the volume by the mass is the molding body magnification (cm 3 / g). ).
3) Surface resistivity: The surface of an in-mold molded product that has been conditioned for 24 hours in a room controlled at a temperature of 20 ° C. and a relative humidity of 65% is defined in JIS K6911 test method 5.13. Set between electrodes, measure the surface resistance of the molded skin surface with a resistance meter (trade name: SME-8220, manufactured by Toa Denpa Kogyo Co., Ltd., applied voltage: 500 V), and calculate the surface resistivity from the formula specified in JIS. And evaluate.
4) Evaluation of transfer (contamination) property; a clean glass substrate is placed on the surface of the molded body in the mold in a room controlled at a temperature of 20 ° C. and a relative humidity of 65%, and after standing for 24 hours, the surface of the glass substrate is observed and evaluated. .
5) Forced transfer (contamination) evaluation: Place a clean glass substrate on the surface of the molded body in the mold in a constant temperature and humidity chamber controlled at a temperature of 70 ° C. and a relative humidity of 90%. Observe and evaluate.
6) Temperature dependence; after fixing the humidity to 65%, storing it in an environment of temperature 20, 50, 70 ° C for 30 days, leaving it in a room controlled at 65% humidity, temperature 20 ° C for 24 hours, Measure resistivity and evaluate temperature dependence.
7) Humidity dependence: The temperature is fixed at 20 ° C., and the surface resistivity is measured in an environment of humidity of 20, 65, 90% to evaluate the humidity dependence.
8) Possibility of electrical failure; those with low volume resistivity cause a short circuit between the liquid crystal circuits when dropped. The possibility of electrical failure was evaluated from the volume resistivity.
9) Measurement of conductive zinc oxide particle diameter; obtained by measuring the specific surface area of the powder by the BET method using a rapid surface measuring device (trade name; SA-1000, manufactured by Shibata Chemical Instruments Co., Ltd.) From the specific surface area, assuming that the powder was spherical, the converted particle size was calculated by the following formula.
d = 6 / (ρ · S)
d: particle diameter (μm), S: specific surface area (m 2 / g), ρ: sample density (g / cm 3 )
10) Measurement of polyolefin resin particle diameter before foaming; Measured with calipers and calculated an average value of n = 5.
11) Measurement of thickness of adhesive resin film layer; cross section of expanded particle was measured with optical microscope (trade name; PCS-81X, manufactured by Inabata Sangyo Co., Ltd.) and electron microscope (trade name; JSM-5600LV, JEOL Ltd.) The thickness of the adhesive resin layer was measured visually.

[実施例1]
高速流動型混合機(商品名;スーパーミキサSMV?500、(株)カワタ製、回転数:インバーター制御無断変速100−900rpm、温度検出端:案内板下部にJ型φ1mm取り付け、ジャケット:30℃水を循環通水)の槽内に架橋型ポリエチレン発泡粒子(商品名;メフLD、旭化成ライフ&リビング(株)製、融点117℃、倍率2.7cm/g、発泡前のポリエチレン樹脂平均粒子1.2mm)を嵩体積で0.4m投入し、回転数を900rpmにして高速回転の混合翼と発泡粒子との流動摩擦熱で発泡粒子の表面温度が110℃に到達するまで混合を続けた後、直ちに回転数を400rpmに減速すると同時に、下記に示すところの導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体を上記発泡粒子の質量に対して4質量%量を4分かけて少しずつ供給し、供給開始から7分間混合して発泡粒子の表面に接着性樹脂の粉砕粉体を溶融被覆した。尚、混合中は発泡粒子の表面温度が110℃を越えないように混合機本体の蓋部に設けられた送風口より送風調温した。
[Example 1]
High-speed fluid mixer (trade name: Supermixer SMV? 500, manufactured by Kawata Co., Ltd., rotation speed: inverter-controlled non-transmission 100-900 rpm, temperature detection end: J-type φ1 mm attached to the lower part of the guide plate, jacket: 30 ° C water In the tank of the circulating water) (trade name; Mef LD, manufactured by Asahi Kasei Life & Living Co., Ltd., melting point 117 ° C., magnification 2.7 cm 3 / g, polyethylene resin average particle 1 before foaming) .2 mm) in a bulk volume of 0.4 m 3 , the rotation speed was set to 900 rpm, and the mixing was continued until the surface temperature of the foamed particles reached 110 ° C. due to fluid frictional heat between the high speed rotating mixing blade and the foamed particles. Thereafter, the rotational speed was immediately reduced to 400 rpm, and at the same time, the pulverized powder of the adhesive resin obtained by melting and kneading the conductive zinc oxide described below was reduced to 4 with respect to the mass of the expanded particles. Fed portionwise over the amount% of 4 minutes, the pulverized powder of the adhesive resin was melt coated on the surface of the mixture to foam particles from the start of the supply 7 minutes. During mixing, the temperature of the foamed particles was controlled from the air outlet provided in the lid of the mixer main body so that the surface temperature of the foamed particles did not exceed 110 ° C.

その後、回転数を200rpmに減速し、然も断続的な混合下で、蓋部送風口より連続送風して、発泡粒子の表面温度が100℃に降温するまで冷却して取り出し発泡粒子を得た。得られた発泡粒子の表面状態を光学顕微鏡および電子顕微鏡で観察した結果、本発明の導電性酸化亜鉛と接着性樹脂との質量比が50:50の粉体が溶融被覆された発泡粒子(実施例1)は、粒子表面全体に渡って接着性樹脂が均一に被覆(接着性樹脂層厚み100μm)されていた。
(導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体の作製)
二軸押出機による樹脂ペレット製造装置を使用して、接着性樹脂は、直鎖状低密度ポリエチレン(商品名;ニポロン−Z、8P06A、東ソー(株)製)とし、このポリエチレンに導電性酸化亜鉛(商品名;パゼット−CK、ハクスイテック(株)製、体積抵抗率10Ω・cm、粒子径0.03μm)を質量比50:50のペレットを作製した。尚、着色剤として赤顔料(商品名;Fastogen Super Magenta RE−03、大日本インキ化学工業(株)製、0.06質量%)を同時に添加した。このペレットを常温粉砕機で粉砕して、60メッシュ篩い(パス)の粉体を得た。
Thereafter, the number of rotations was reduced to 200 rpm, and continuously blown from the lid part air outlet under intermittent mixing, and cooled until the surface temperature of the foamed particles decreased to 100 ° C., and taken out foamed particles were obtained. . As a result of observing the surface state of the obtained expanded particles with an optical microscope and an electron microscope, the expanded particles were obtained by melt-coating a powder having a mass ratio of the conductive zinc oxide and the adhesive resin of the present invention of 50:50 (implemented) In Example 1), the adhesive resin was uniformly coated over the entire particle surface (adhesive resin layer thickness 100 μm).
(Preparation of ground powder of adhesive resin in which conductive zinc oxide is melt-kneaded)
Using a resin pellet manufacturing apparatus with a twin screw extruder, the adhesive resin is linear low density polyethylene (trade name; Nipolon-Z, 8P06A, manufactured by Tosoh Corporation), and conductive polyethylene oxide is added to this polyethylene. (Product name: Pasette-CK, manufactured by Hakusuitec Co., Ltd., volume resistivity of 10 4 Ω · cm, particle size of 0.03 μm) was prepared in a mass ratio of 50:50 pellets. In addition, a red pigment (trade name; Fastogen Super Magenta RE-03, manufactured by Dainippon Ink & Chemicals, Inc., 0.06% by mass) was simultaneously added as a colorant. The pellets were pulverized by a room temperature pulverizer to obtain a 60 mesh sieve (pass) powder.

[実施例2]
実施例1で得られた発泡粒子を、加圧(高圧空気)・加温装置を有するオートクレーブ内に収容し、80℃の温度下で1時間かけて昇圧し、圧力1.0MPa(ゲージ圧)で8時間保持して発泡粒子の内圧を高める再膨張能処理を行った後、発泡装置に収容して圧力が0.06MPa(ゲージ圧)の加熱水蒸気で15秒間加熱発泡し、発泡倍率が7.7cm/gの二次発泡粒子とした。更にこの二次発泡粒子を上記と同様にして、加熱水蒸気圧力を0.04〜0.065MPa(ゲージ圧)の範囲で調整しながら発泡倍率が23、35cm/gの三次発泡粒子とした。二次発泡粒子の接着性樹脂層厚みは20±5μm、三次発泡粒子の接着性樹脂層厚みは3±2μmであった。この二次、三次発泡粒子をそれぞれ水蒸気孔を有する型内成形金型内(内寸法;30cm×30cm×2.5cmt)に型開き充填(注)(型開き幅;8.3〜14.7mm)し、圧力0.11MPa(ゲージ圧)の加熱水蒸気で加熱した後、冷却し金型内から取り出し、室温が80℃の乾燥室に12時間放置して20、30cm/gの型内成形体を得た。〔(注):発泡粒子間の空隙部体積に相当する量だけ型を開いた状態で発泡粒子を型内充填し、充填完了後に正規の位置まで型閉めを行う充填方法〕
[Example 2]
The expanded particles obtained in Example 1 were accommodated in an autoclave having a pressurizing (high pressure air) / heating device, and the pressure was increased over 1 hour at a temperature of 80 ° C., and the pressure was 1.0 MPa (gauge pressure). For 8 hours to increase the internal pressure of the expanded particles, and then accommodated in a foaming apparatus and heated and foamed with heated steam at a pressure of 0.06 MPa (gauge pressure) for 15 seconds. It was set as a secondary expanded particle of 0.7 cm 3 / g. Further, the secondary foamed particles were made into the tertiary foamed particles having a foaming ratio of 23 and 35 cm 3 / g while adjusting the heating steam pressure in the range of 0.04 to 0.065 MPa (gauge pressure) in the same manner as described above. The adhesive resin layer thickness of the secondary expanded particles was 20 ± 5 μm, and the adhesive resin layer thickness of the tertiary expanded particles was 3 ± 2 μm. The secondary and tertiary expanded particles are each filled in an in-mold mold (internal dimensions: 30 cm × 30 cm × 2.5 cmt) having water vapor holes (note) (mold open width: 8.3 to 14.7 mm) ), Heated with heated steam at a pressure of 0.11 MPa (gauge pressure), cooled, removed from the mold, and left in a drying room at room temperature of 80 ° C. for 12 hours to be molded at 20, 30 cm 3 / g. Got the body. [(Note): Filling method in which the foamed particles are filled in the mold with the mold opened in an amount corresponding to the void volume between the foamed particles, and the mold is closed to the proper position after filling]

比較例3]
実施例1の「導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体の作製」に於いて、接着性樹脂を、低密度ポリエチレン(商品名;サンテック−LD、Mグレード、旭化成ケミカルズ(株)製)とした他は実施例1と同様に発泡粒子を得た後、実施例2と同様にして、型内成形体とした。
[ Comparative Example 3]
In Example 1 “Preparation of ground powder of adhesive resin in which conductive zinc oxide is melt-kneaded”, the adhesive resin is low-density polyethylene (trade name; Suntech-LD, M grade, Asahi Kasei Chemicals Corporation The foamed particles were obtained in the same manner as in Example 1 except that the product was manufactured in the same manner as in Example 2, and an in-mold molded product was obtained.

比較例4]
実施例1の「導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体の作製」に於いて、導電性酸化亜鉛を粒子径の異なる導電性酸化亜鉛(商品名;23K、ハクスイテック(株)製、体積抵抗率10Ω・cm、粒子径0.18μm)とした他は実施例1と同様にして発泡粒子を得た後、実施例2と同様にして型内成形体とした。
[ Comparative Example 4]
In Example 1 “Preparation of ground powder of adhesive resin in which conductive zinc oxide is melt-kneaded”, conductive zinc oxide is converted into conductive zinc oxide having a different particle diameter (trade name; 23K, Hakusuitec Co., Ltd.). The foamed particles were obtained in the same manner as in Example 1 except that the volume resistivity was 10 2 Ω · cm and the particle diameter was 0.18 μm.

[比較例1]
実施例1の「導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体の作製」に於いて、導電性酸化亜鉛を、界面活性剤型帯電防止剤(商品名;エレクトロストリッパーTS−13B、花王(株)製)とし20質量%含有させ、また接着性樹脂を低密度ポリエチレン(商品名;サンテック−LD、Mグレード、旭化成ケミカルズ(株)製)とした他は実施例1と同様にして発泡粒子を得た後、実施例2と同様にして型内成形体とした。
[Comparative Example 1]
In Example 1 “Preparation of ground powder of adhesive resin in which conductive zinc oxide was melt-kneaded”, conductive zinc oxide was converted into a surfactant type antistatic agent (trade name; Electro Stripper TS-13B, Kao Co., Ltd.) is contained in an amount of 20% by mass, and the adhesive resin is low density polyethylene (trade name; Suntec-LD, M grade, Asahi Kasei Chemicals Co., Ltd.). After obtaining the expanded particles, an in-mold molded product was obtained in the same manner as in Example 2.

[比較例2]
実施例1の「導電性酸化亜鉛を溶融混練した接着性樹脂の粉砕粉体の作製」に於いて、導電性酸化亜鉛を、導電性カーボンブラック(商品名;ケッチェンブラックEC−600JD、ライオン(株)製)とし8質量%含有させ、また接着性樹脂を低密度ポリエチレン(商品名;サンテック−LD、Mグレード、旭化成ケミカルズ(株)製)とし、導電性カーボンブラックの添加量を発泡粒子に対して3質量%とした他は実施例1と同様にして発泡粒子を得た後、実施例2と同様にして型内成形体とした。
得られた型内成形体(実施例2、比較例3、比較例4、比較例1、比較例2)について、本文記載の評価方法によりコーティング帯電防止性能、転写性を評価し、その結果を表1及び2に示す。
[Comparative Example 2]
In Example 1 “Preparation of ground powder of adhesive resin in which conductive zinc oxide is melt-kneaded”, conductive zinc oxide is mixed with conductive carbon black (trade name: Ketjen Black EC-600JD, Lion ( 8% by mass), and the adhesive resin is low density polyethylene (trade name: Suntech-LD, M grade, manufactured by Asahi Kasei Chemicals), and the amount of conductive carbon black added to the expanded particles The foamed particles were obtained in the same manner as in Example 1 except that the amount was 3% by mass.
About the obtained in-mold molded product (Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 1, Comparative Example 2), the coating antistatic performance and transferability were evaluated by the evaluation method described in the text, and the results were obtained. Tables 1 and 2 show.

Figure 0004791018
Figure 0004791018

Figure 0004791018
Figure 0004791018

本発明の帯電防止性能を有するポリオレフィン系樹脂発泡粒子およびその型内成形体は、電子部品とりわけ光学系部品を内蔵した電子部品の緩衝包装材として好適に利用できる。   The foamed polyolefin resin particles having antistatic properties of the present invention and in-mold molded articles thereof can be suitably used as buffer packaging materials for electronic parts, particularly electronic parts incorporating optical parts.

Claims (3)

粒子径が0.01〜0.1μmである導電性酸化亜鉛と直鎖状低密度ポリエチレンからなる接着性樹脂を含む接着性樹脂層で全表面が被覆されていることを特徴とするポリオレフィン系樹脂発泡粒子。 A polyolefin resin characterized in that the entire surface is covered with an adhesive resin layer containing an adhesive resin composed of conductive zinc oxide having a particle size of 0.01 to 0.1 μm and linear low-density polyethylene. Expanded particles. 導電性酸化亜鉛と接着性樹脂との質量比が20:80〜80:20であることを特徴とする請求項1に記載のポリオレフィン系樹脂発泡粒子。2. The polyolefin-based resin expanded particles according to claim 1, wherein the mass ratio of the conductive zinc oxide to the adhesive resin is 20:80 to 80:20. 請求項1または2に記載のポリオレフィン系樹脂発泡粒子を用いて得られることを特徴とする型内発泡成形体。An in-mold foam molded article obtained by using the polyolefin resin foamed particles according to claim 1 or 2.
JP2004308585A 2004-10-22 2004-10-22 Polyolefin resin expanded particles and in-mold molded product thereof Active JP4791018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308585A JP4791018B2 (en) 2004-10-22 2004-10-22 Polyolefin resin expanded particles and in-mold molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308585A JP4791018B2 (en) 2004-10-22 2004-10-22 Polyolefin resin expanded particles and in-mold molded product thereof

Publications (2)

Publication Number Publication Date
JP2006117842A JP2006117842A (en) 2006-05-11
JP4791018B2 true JP4791018B2 (en) 2011-10-12

Family

ID=36536022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308585A Active JP4791018B2 (en) 2004-10-22 2004-10-22 Polyolefin resin expanded particles and in-mold molded product thereof

Country Status (1)

Country Link
JP (1) JP4791018B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088800A1 (en) * 2014-12-02 2016-06-09 株式会社クレハ Heat-expanding microspheres having adhesive properties, and method for producing same
EP3437820A4 (en) 2016-03-29 2019-10-16 Kaneka Corporation Method for manufacturing foaming composite molding, in-mold foaming molding unit, foaming composite molding, and mold for foaming composite molding
EP3437819B1 (en) 2016-03-29 2022-09-21 Kaneka Corporation Foamed composite molding and method for manufacturing foamed composite molding
EP3560391B1 (en) 2016-12-21 2021-10-27 Kaneka Corporation In-mold foamed molding unit and method for producing in-mold foamed molding unit
JP6765000B2 (en) 2017-03-23 2020-10-07 株式会社カネカ Manufacturing method of vehicle seat core material, molding mold for vehicle seat core material, and vehicle seat core material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020942A (en) * 1983-07-14 1985-02-02 Sanwa Kako Kk Production of electrically conductive crosslinked polyolefin foam
JPS6232130A (en) * 1985-08-05 1987-02-12 Shinto Paint Co Ltd Expanded plastic bead
JPH08205694A (en) * 1995-02-07 1996-08-13 Mitsui Toatsu Chem Inc Film for plant culture and culture of plant
JPH10151682A (en) * 1996-11-22 1998-06-09 Sekisui Chem Co Ltd Production of coated formed resin tube fitted with patterns
JP4789307B2 (en) * 2000-06-23 2011-10-12 旭化成ケミカルズ株式会社 Functional polyolefin resin expanded particles and in-mold molded articles thereof
JP2003039565A (en) * 2001-08-03 2003-02-13 Mitsubishi Kagaku Form Plastic Kk Foamed particle molded object

Also Published As

Publication number Publication date
JP2006117842A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1369452B1 (en) Synthetic resin composition
Walker et al. Polyethylene/starch blends with enhanced oxygen barrier and mechanical properties: Effect of granule morphology damage by solid-state shear pulverization
WO1983003610A1 (en) Conductive thermoplastic resin foam and process for its production
Kazakova et al. Comparative study of multiwalled carbon nanotube/polyethylene composites produced via different techniques
JP4791018B2 (en) Polyolefin resin expanded particles and in-mold molded product thereof
KR101451691B1 (en) Fluororesin composition
JP2004331929A (en) Method of compounding a nanocarbon
WO2002036667A1 (en) Conductive polypropylene resin foam sheet and receptacle
JP4264804B2 (en) Conductive resin composition
JP4789307B2 (en) Functional polyolefin resin expanded particles and in-mold molded articles thereof
JP3553325B2 (en) Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article
Davis et al. Cure temperature influences composite electrical properties by carbon nanotube-rich domain formation
JP2011141322A (en) Conductive rubber roller
CN101784608B (en) Conductive resin composite material
JP2009203256A (en) Crosslinked polyolefin resin foam
CN113930001B (en) Low-odor polyethylene foam material with thermal bonding performance and preparation method thereof
JPH05247351A (en) Resin composition for slidable member having static electricity diffusing property
JP2010196052A (en) Polyolefin resin film and laminated sheet
TWI816861B (en) Sealing material
JP2021091220A (en) Resin molded body and electrostatic protection component
JP2004046052A (en) Electrically conductive roll
JP2004207097A (en) Conductive resin composition
JP5129561B2 (en) Antistatic resin composition
JP5025048B2 (en) Semiconductive resin composition and power cable using the same
JPH08333474A (en) Semiconductive resin composite

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350