JP4264804B2 - Conductive resin composition - Google Patents

Conductive resin composition Download PDF

Info

Publication number
JP4264804B2
JP4264804B2 JP2002351380A JP2002351380A JP4264804B2 JP 4264804 B2 JP4264804 B2 JP 4264804B2 JP 2002351380 A JP2002351380 A JP 2002351380A JP 2002351380 A JP2002351380 A JP 2002351380A JP 4264804 B2 JP4264804 B2 JP 4264804B2
Authority
JP
Japan
Prior art keywords
conductive resin
resin composition
film
conductive
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351380A
Other languages
Japanese (ja)
Other versions
JP2004185983A (en
Inventor
泰 相川
裕樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002351380A priority Critical patent/JP4264804B2/en
Publication of JP2004185983A publication Critical patent/JP2004185983A/en
Application granted granted Critical
Publication of JP4264804B2 publication Critical patent/JP4264804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導電性樹脂組成物に関する。より詳しくは、導電性繊維状フィラーと導電性樹脂を複合することにより導電性能において加成性以上の相乗効果を示す導電性樹脂組成物に関する。
【0002】
【従来の技術】
従来より静電気の発生は、日常生活、産業分野を問わず大きな問題であった。近年、コンピューターに代表されるエレクトロニクス産業の急激な進展に伴い、特にICやLSI、液晶表示装置等の半導体や集積回路等がますます高度化、微細化がすすむ中で、その製造工程、輸送工程あるいは実装工程等において、静電気に起因する塵埃吸着による不良品の発生、放電による回路破壊等の問題がクローズアップしてきており、その対策に大きなエネルギーが注力されている。該対策方法の一つに、関連する装置、作業者の作業服、包装袋や容器、キャリアーテープ等の補助材料等の帯電を抑制するために前記した物体の表面に導電性樹脂組成物をその表面に塗布する等の方法で複合する方法が知られている。
【0003】
近年、上記した導電性樹脂組成物の成分として、導電性繊維状フィラー、特にカーボンナノチューブに代表される導電性ナノファイバーが注目されており、特許第3308358号公報、特開平9−115334号公報、特開2001−11344号公報、特開2002−67209号公報、特開2002−194624号公報、特開2002−206054号公報等で開示されている。
【0004】
しかしながら、上記した公知の方法はいずれもが、導電性繊維状フィラーと非導電性樹脂との組成物よりなっており、所望の表面抵抗値を得るには、多量の導電性繊維状フィラーを配合する必要があり、組成物の透明性が低下し、かつ経済性の点でも不利であるという課題を有していた。
【0005】
【特許文献1】
特許第3308358号公報
【特許文献2】
特開平9−115334号公報
【特許文献3】
特開2001−11344号公報
【特許文献4】
特開2002−67209号公報
【特許文献5】
特開2002−194624号公報
【特許文献6】
特開2002−206054号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術の課題を解決し、導電性繊維状フィラーであるカーボンナノチューブ配合量を少なくしても表面抵抗値の低下が大きく、その効果により表面平滑性、透明性、経済性等に優れた、導電性樹脂組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の導電性樹脂組成物は、(A )カーボンナノチューブ、( B )ポリアニリン、および( C )ポリビニルアルコールからなる組成物であって、該組成物の組成が下記を満足することを特徴としている。
(A)が4.6〜9.1重量%、
(B)が15.4〜30.3重量%、
(C)が60.6〜80.0重量%、 である。
好ましい実施態様は、(A)カーボンナノチューブが、直径が100nm以下かつアスペクト比が5以上のカーボンナノチューブである。また、更に好ましい実施態様は、上記導電性樹脂組成物を厚さ2μmの塗膜にしたときの表面抵抗値が1011Ω/□以下である。
【0008】
【発明の実施の形態】
本発明において、 請求項2に記載のごとく直径が100nm以下かつアスペクト比が5以上のカーボンナノチューブを用いるのが好ましい実施態様である。該カーボンナノチューブは、製法は特に限定しないが、化学的蒸気堆積法、触媒気相成長法、アーク放電法、レーザー蒸発法などにより得られる、直径が100nm以下かつアスペクト比が5以上である多層もしくは単層中空炭素繊維である。
【0009】
単層カーボンナノチューブは一般に多層カーボンナノチューブより細く、均一に分散すれば単位体積当たりの導電経路数をより多く確保できると期待される反面、製法によっては半導体性のナノチューブが多くできる場合があり、その場合には導電性のものを選択的に製造するか選別する必要が生じる。多層カーボンナノチューブは一般に導電性を示すが、層数が多すぎると単位重量当たりの導電経路数が低下するので、直径100nm以下、好ましくは80nm以下、より好ましくは50nm以下のカーボンナノチューブが使用される。
【0010】
また、本発明で用いる導電性繊維状フィラーであるカーボンナノチューブは、直径が可視域の最少波長より小さい場合、例えば直径が100nm以下の場合、可視光線が吸収もしくは散乱されずに透過するので、2μm以下という薄い膜厚で使用すればこの導電性繊維状フィラーであるカーボンナノチューブの配合が膜の透明性を実質的に阻害しないので好適である。カーボンナノチューブの一般的な不純物として、触媒残査や触媒担持体およびまたは非晶質炭素などが直径400nm以上の粒状不純物として含まれる場合があるが、これらの存在は上記の理由から膜の透明性を損なう原因となる。本発明で使用されるカーボンナノチューブは前記粒状不純物の含有量が20体積%以下、好ましくは10体積%以下、より好ましくは5体積%以下である。
【0011】
本発明の導電性樹脂組成物においては、(A)カーボンナノチューブの量は導電性樹脂組成物の全重量に対して0.1〜30重量%であり、かつ(B)ポリアニリンは導電性樹脂組成物の全重量に対して15.4〜30.3重量%である。
導電性樹脂組成物は、厚さ2μmの塗膜の表面抵抗値が1011Ω/□以下であることが好ましい。
【0012】
カーボンナノチューブおよびポリビニルアルコールの割合が多すぎると塗膜にしたときの透明性が損なわれたり、極端に薄い塗膜にする必要が生じて膜の品位や均一性、連続生産性の低下を招きやすくなるといった問題が生じる。カーボンナノチューブに対してポリビニルアルコールの配合割合が多すぎるとカーボンナノチューブの添加効果が薄れ、高い導電性が得られなくなり、少なすぎるとカーボンナノチューブの分散不良となり透明性、表面平滑性、導電性の面で問題が生じる。
【0013】
本発明で(B)の導電性樹脂としては、ポリアニリン である。ポリアニリン 導電性を示し、極性 はカーボンナノチューブの分散能力を高める。
【0014】
本発明の導電性樹脂組成物は上記導電性樹脂であるポリアニリンと導電性繊維状フィラーであるカーボンナノチューブの他に 、(C)のポリビニルアルコールを併用する バインダーおよび 導電性樹脂に応じた適当な手段で塗膜を乾燥または硬化させることにより透明導電性皮膜を形成することができる。バインダーの配合割合は皮膜全体の重量に対して60.6〜80.0重量%、 少なすぎると皮膜形成性に問題を生じたり、必要な透明性を得るための皮膜厚みが薄くなりすぎて製膜工程上不安定要因となったり、経済的に不利となる場合がある。多すぎると必要な導電性が得られない場合が生じる。
【0015】
適当な有機のバインダーの例としては、ポリビニルアルコール、 ならびにこれらのポリマーの誘導体、共重合体、ブレンド がある。これらは単に溶剤の蒸発により、或いは熱硬化 による硬化により有機ポリマー系透明皮膜を形成することができる。
【0016】
本発明の導電性樹脂組成物は、一般に溶剤を使用するが、請求項6に記載のごとく水溶性およびまたは水分散系の水性組成物が好ましい。本実施態様により作業安全性、対環境性、廃棄物の処理性・安全性などが確保できる。
【0017】
(C)のポリビニルアルコールには必要に応じた溶剤を使用できる。溶剤はバインダーを溶解しうる任意の溶剤でよい。 炭化水素類(トルエン、キシレン、オクタン等)、塩素化炭化水素類(メチレンクロリド、エチレンクロリド、クロロベンゼン等)、エーテル類(ジオキサン、メチルセロソルブ等)、エーテルアルコール類(エトキシエタノール、テトラヒドロフラン類)、エステル類(酢酸メチル、酢酸エチル類)、ケトン類(シクロヘキサノン、メチルエチルケトン、アセトン等)、アルコール類(エタノール、イソプロピルアルコール、フェノール、クレゾール等)、酸類 (酢酸等) 、酸アミド類(ジメチルホルムアミド等)、硫黄化合物類 (ジメチルスルホキシド等) などがあり 水、アルコール類、アミン類などの極性溶媒使用される。
【0018】
本発明の導電性樹脂組成物は、上記のカーボンナノチューブポリアニリン、および ポリビニルアルコール、溶剤の他に、無機粒子、有機粒子、着色剤、接着性改善剤、濡れ性向上剤または濡れ性抑制剤、レベリング剤、滑剤、耐候性向上剤、耐光性向上剤、耐酸化性向上剤、分散剤(界面活性剤、カップリング剤)、架橋剤、安定剤、沈降防止剤、電荷調整剤、等の添加剤を配合することができ、それらの種類 については特に制限はない。
【0019】
本発明の導電性樹脂組成物は、上記成分を慣用の混合分散機(例えばボールミル、サンドミル、ロールミル、アトライター、デゾルバー、ペイントシェーカー、押出混合機、ホモジナイザー、超音波分散機等)を用いて混合することにより製造できる。この組成物を基材上に塗布し薄膜状で使用する際は、公知の塗布方法、例えばバーコート法、スプレー法、ロールコート法、スピン・コート法、ディップ法、エアナイフ法、グラビア印刷法、スクリーン印刷法などによって塗布することができる。
【0020】
基材は特に制限されないが、ガラス、透明プラスチックのように絶縁性で透明なものが好ましい。塗布後、必要により加熱して塗膜の乾燥ないしは焼付 (硬化) を行うが、加熱条件は、バインダー種に応じて適当に設定する。バインダーが光または放射線硬化性の場合には、加熱硬化ではなく、塗布後直ちに塗膜に光または放射線を照射することにより塗膜を硬化させてもよく、放射線としては電子線、紫外線、X線、ガンマー線等などのイオン化性放射線が使用でき、照射線量はバインダー種と要求特性に応じて決定する。
【0021】
本発明の導電性樹脂組成物の使用方法は制限なく任意であるが、フイルム、 の表面に前記した導電性樹脂組成物を積層し、それぞれの物品の表面に導電性を付与し、静電気の発生を防止する方法が好適な使用方法である。この場合の該導電性樹脂組成物積層膜の膜厚は特に制限されないが、通常は0.01〜2μm、好ましくは0.02〜1.5μm、より好ましくは0.05〜1μmである。0.01μm未満では導電性付与効果が不足し、逆に2μmを越えた場合は導電性付与効果が飽和し、かつ経済性が低下するので好ましくない。
【0022】
また、本発明の導電性樹脂組成物からは透明性が良好な導電膜が得られるので、本発明の導電性樹脂組成物を積層した場合、透明性や表面光沢が良好な上記フィルムを得ることができる。
【0023】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
樹脂組成物の性能は、樹脂組成物をポリエチレンテレフタレート(PET)フイルムに塗布し評価した。特性は、以下の方法で測定・評価したものである。
【0024】
(1)表面抵抗値
表面抵抗値は三菱油化製Hiresta表面抵抗測定器 Model HT-210(二点式)で印加電圧500V、17℃、55%RHの条件下で測定した。
【0025】
(2)全光線透過率および曇価
全光線透過率および曇価(Haze)は、日本電色社 Haze Meter NDH2000を用い、コーティングフィルムの塗布面側から光を入射させて測定した異なる二カ所の測定値の平均値とした。
【0026】
(3)フィルム厚さ
フィルム膜厚測定はピーコックデジタルゲージ(Okazaki MFG社製モデルD-10)を用いて5点平均法で求めた。
(4)コート膜厚
コート膜厚はコート液の固形分濃度とバーコーターの公称wet塗布量から塗布層の比重を1.0g/cm3として計算により求めた。
【0027】
材料は以下のものを用いた。
(1)導電性繊維状フィラー
カーボンナノチューブは平均直径が80nm、内部の中空部分の内径が平均20nm、平均層数が約10層、長さ分布の中心値が1μm以上の多層カーボンナノチューブを使用した。直径400nm以上の粒状不純物の含有量は15体積%であった。
【0028】
直径400nm以上の粒状不純物の含有量(V)はカーボンナノチューブサンプルの走査型電子顕微鏡(日立製作所製S-2500型SEM)の一万倍の写真から繊維状物の太さ(2r)と写っている面積(St)および直径400nm以上の粒状物の直径(2R)を読みとり、それぞれ円柱状および球状であるとして体積に換算し(Vt、Vs)、次式にて求めた。粒状不純物の含有量 V=Vs/(Vt+Vs)
Vt=Σ[πr2×(St/2r)] 写っている繊維状物全てについて総和をとる。
Vs=Σ[4πR3/3] 写っている粒状物全てについて総和をとる。
【0029】
(2)導電性樹脂
以下の実施例で導電性樹脂として用いたポリアニリンとは一般式(化1)で表わされるものである。
【化1】

Figure 0004264804
(式(1)中、R1、R2およびR3は水素原子または炭素数1〜4のアルキル基、xは50〜2000、好ましくは100〜1500の整数を示す。)
【0030】
一般式(化1)で表わされる化合物は、J.Am.Chem.Soc.,1991,113,2665−2666に記載の方法に従い製造することができる。本発明が適応しうる化合物は、スルホン酸基が芳香環に対して1/10〜4/5の割合、好ましくは2/5〜3/5の割合で導入させたものである。以下の実施例では、芳香環に対してスルホン酸基が1/2の割合で導入されたx=400のポリアニリンの5重量%水溶液(三菱レーヨン製「アクアパス」)を使用した。
【0031】
(3)非導電性樹脂バインダー
非導電性透明樹脂バインダーとしてポリビニルアルコール(PVA;クラレ製「ポバールRS117」)の8重量%水溶液を用いた。
【0032】
(4)塗布用基材
コーティング基材には易接着アンカーコート剤が塗布された厚さ188μmのポリエチレンテレフタレート(PET)フィルム(東洋紡績(株)製A4100)を使用し、易接着面に積層した。
【0033】
組成物の調製は以下の条件で行った。
(超音波分散処理)
超音波分散処理は、日本精機製作所製の超音波分散機US−300Tを用い、OUTPUT ADJ.=9、TUNING=3, 300±20μAの条件で、分散液の容器の周囲を氷冷しながら2時間処理した。カーボンナノチューブの分散能力が十分な樹脂を用いると、数日〜数週間経過しても沈降物や層分離の見られない均一な分散液が得られた。
【0034】
(塗工液の撹拌混合)
塗工液の撹拌混合は、キーエンス社製Hybrid Mixer HM-500を用い、室温下で撹拌2分、脱泡20秒の条件で行った。
【0035】
(実施例1)
カーボンナノチューブ0.3重量部をポリアニリンの5重量%水溶液20重量部に室温で加え、超音波分散処理し、PVAの8重量%水溶液25重量部と水320重量部を加えて撹拌し、実施例1の組成物の塗布液を得た。この液をバーコーターWB#5(公称wet塗布量=10g/m2)でハンドコートし、120℃で2分間熱風乾燥機で乾燥してコートフィルムサンプルを得た。得られたフィルムの評価結果を表1に示した。
【0036】
(実施例2)
カーボンナノチューブ0.3重量部をポリアニリンの5重量%水溶液20重量部に室温で加え、超音波分散し、PVAの8重量%水溶液65重量部を加えて撹拌して実施例2の組成物を得た。この液を基材フィルム上に薄く流延し、室温で6時間風乾後、100℃、1kPa(約1/100気圧)で18時間真空乾燥してコートフイルムサンプルを得た。得られたフィルムの評価結果を表1に示した。
【0037】
(比較例1)
カーボンナノチューブを添加しない以外は、実施例1と同様にして比較例1の組成物を得た。実施例1と同様にして得たコートフイルムの評価結果を表1に示した。
【0038】
(比較例2)
カーボンナノチューブ0.3重量部をPVAの8重量%水溶液33.75重量部に室温で加え、超音波分散して比較例2の組成物を得た。実施例1と同様にして得たコートフイルムの評価結果を表1に示した。
【0041】
【表1】
Figure 0004264804
【0042】
【発明の効果】
以上のとおり、本発明は特許請求項の範囲に記載のとおりの構成を採用することにより、導電性および透明性の優れた樹脂組成物が得られ、非導電性透明成型物の表面に薄膜として塗布することにより、表面抵抗値が低く、かつ透明性の高い導電層が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive resin composition. More specifically, the present invention relates to a conductive resin composition that exhibits a synergistic effect more than additivity in conductive performance by combining a conductive fibrous filler and a conductive resin.
[0002]
[Prior art]
Conventionally, the generation of static electricity has been a major problem regardless of daily life or industrial fields. In recent years, with the rapid development of the electronics industry represented by computers, semiconductors and integrated circuits such as ICs, LSIs, and liquid crystal display devices are becoming increasingly sophisticated and miniaturized. Or, in the mounting process, problems such as generation of defective products due to dust adsorption due to static electricity and circuit breakdown due to discharge have been highlighted, and great energy is focused on countermeasures. One of the countermeasures is to apply a conductive resin composition to the surface of the object in order to suppress charging of auxiliary equipment such as related equipment, workers' work clothes, packaging bags and containers, carrier tapes, etc. A method of combining by a method such as coating on the surface is known.
[0003]
In recent years, conductive fibrous fillers, particularly conductive nanofibers represented by carbon nanotubes have attracted attention as components of the conductive resin composition described above. Patent No. 3308358, JP-A-9-115334, JP-A-2001-11344, JP-A-2002-67209, JP-A-2002-194624, JP-A-2002-206054, and the like.
[0004]
However, each of the above known methods is composed of a composition of conductive fibrous filler and non-conductive resin, and a large amount of conductive fibrous filler is blended in order to obtain a desired surface resistance value. Therefore, there is a problem that the transparency of the composition is lowered and disadvantageous in terms of economy.
[0005]
[Patent Document 1]
Japanese Patent No. 3308358 [Patent Document 2]
JP-A-9-115334 [Patent Document 3]
JP 2001-11344 A [Patent Document 4]
JP 2002-67209 A [Patent Document 5]
JP 2002-194624 A [Patent Document 6]
Japanese Patent Laid-Open No. 2002-206054
[Problems to be solved by the invention]
The present invention solves the above-described problems of the prior art, and even if the amount of carbon nanotubes, which are conductive fibrous fillers, is reduced, the surface resistance value is greatly reduced. Due to the effects, surface smoothness, transparency, and economic efficiency are achieved. It aims at providing the conductive resin composition excellent in the above.
[0007]
[Means for Solving the Problems]
The conductive resin composition of the present invention is a composition comprising ( A ) carbon nanotubes, ( B ) polyaniline, and ( C ) polyvinyl alcohol , and the composition of the composition satisfies the following: .
(A) is 4.6 to 9.1 wt%,
(B) is 15.4-30.3 % by weight,
(C) is 60.6-80.0 wt%, It is.
In a preferred embodiment, (A) the carbon nanotube is a carbon nanotube having a diameter of 100 nm or less and an aspect ratio of 5 or more. In a more preferred embodiment, the surface resistance value when the conductive resin composition is formed into a coating film having a thickness of 2 μm is 10 11 Ω / □ or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, As described in claim 2, it is preferable to use carbon nanotubes having a diameter of 100 nm or less and an aspect ratio of 5 or more. The production method of the carbon nanotube is not particularly limited, but the carbon nanotube is obtained by a chemical vapor deposition method, a catalytic vapor deposition method, an arc discharge method, a laser evaporation method or the like, and has a diameter of 100 nm or less and an aspect ratio of 5 or more. Single-layer hollow carbon fiber.
[0009]
Single-walled carbon nanotubes are generally thinner than multi-walled carbon nanotubes, and if they are uniformly dispersed, it is expected that more conductive paths per unit volume can be secured.However, depending on the production method, there may be more semiconducting nanotubes. In some cases, it is necessary to selectively manufacture or select a conductive material. Multi-walled carbon nanotubes generally exhibit conductivity, but if the number of layers is too large, the number of conductive paths per unit weight decreases, so carbon nanotubes having a diameter of 100 nm or less, preferably 80 nm or less, more preferably 50 nm or less are used. .
[0010]
The carbon nanotubes , which are conductive fibrous fillers used in the present invention, have a diameter of less than the minimum wavelength in the visible range, for example, when the diameter is 100 nm or less, visible light is transmitted without being absorbed or scattered, so that 2 μm If it is used at a thin film thickness as described below, the blending of the carbon nanotubes , which are the conductive fibrous fillers , is suitable because it does not substantially impair the transparency of the film. As general impurities of carbon nanotubes, catalyst residue, catalyst support and / or amorphous carbon may be included as particulate impurities with a diameter of 400 nm or more. Cause damage. The carbon nanotubes used in the present invention have a particulate impurity content of 20% by volume or less, preferably 10% by volume or less, more preferably 5% by volume or less.
[0011]
In the conductive resin composition of the present invention, the amount of (A) carbon nanotubes is 0.1 to 30% by weight with respect to the total weight of the conductive resin composition, and (B) polyaniline is a conductive resin composition. It is 15.4 to 30.3 % by weight based on the total weight of the product .
The conductive resin composition preferably has a surface resistance value of 10 11 Ω / □ or less of a coating film having a thickness of 2 μm.
[0012]
If the ratio of carbon nanotubes and polyvinyl alcohol is too high, the transparency of the coating film will be lost, or it will be necessary to make the coating film extremely thin, which tends to cause deterioration in film quality, uniformity, and continuous productivity. Problem arises. If the blending ratio of polyvinyl alcohol is too large with respect to the carbon nanotube , the effect of adding the carbon nanotube is diminished and high conductivity cannot be obtained, and if it is too small, the dispersion of the carbon nanotube becomes poor and the transparency, surface smoothness, and conductivity are poor. The problem arises.
[0013]
In the present invention, the conductive resin (B) is polyaniline. It is. Polyaniline is Shows conductivity and polarity Increases the dispersion capacity of carbon nanotubes.
[0014]
The conductive resin composition of the present invention includes the above-mentioned conductive resin , polyaniline, and the carbon nanotubes , which are conductive fibrous fillers. , (C) polyvinyl alcohol is used in combination. Binder and A transparent conductive film can be formed by drying or curing the coating film by an appropriate means according to the conductive resin. The blending ratio of the binder is 60.6 to 80.0 % by weight with respect to the weight of the entire film, If the amount is too small, there may be a problem in the film forming property, the film thickness for obtaining the required transparency may be too thin, which may cause an unstable factor in the film forming process, and may be economically disadvantageous. If the amount is too large, necessary conductivity may not be obtained.
[0015]
Examples of suitable organic binders include polyvinyl alcohol, As well as derivatives, copolymers and blends of these polymers There is. These are simply solvent evaporation or thermosetting. An organic polymer transparent film can be formed by curing with.
[0016]
The conductive resin composition of the present invention generally uses a solvent. As described in claim 6, a water-soluble and / or water-dispersed aqueous composition is preferred. According to this embodiment, work safety, environmental friendliness, waste disposal and safety can be ensured.
[0017]
A solvent according to need can be used for the polyvinyl alcohol (C). The solvent may be any solvent that can dissolve the binder. Hydrocarbons (toluene, xylene, octane, etc.), chlorinated hydrocarbons (methylene chloride, ethylene chloride, chlorobenzene, etc.), ethers (dioxane, methyl cellosolve, etc.), ether alcohols (ethoxyethanol, tetrahydrofurans), esters (Methyl acetate, ethyl acetate), ketones (cyclohexanone, methyl ethyl ketone, acetone, etc.), alcohols (ethanol, isopropyl alcohol, phenol, cresol, etc.), acids (acetic acid, etc.), acid amides (dimethylformamide, etc.), It includes sulfur compounds (dimethyl sulfoxide, etc.), Polar solvents such as water, alcohols and amines are also used.
[0018]
The conductive resin composition of the present invention includes, in addition to the above-mentioned carbon nanotubes and polyaniline , and polyvinyl alcohol , a solvent, inorganic particles, organic particles, colorants, adhesion improvers, wettability improvers or wettability inhibitors, Addition of leveling agents, lubricants, weather resistance improvers, light resistance improvers, oxidation resistance improvers, dispersants (surfactants, coupling agents), crosslinkers, stabilizers, anti-settling agents, charge control agents, etc. Types of agents that can be formulated There are no particular restrictions on.
[0019]
In the conductive resin composition of the present invention, the above components are mixed using a conventional mixing and dispersing machine (for example, a ball mill, a sand mill, a roll mill, an attritor, a resolver, a paint shaker, an extrusion mixer, a homogenizer, an ultrasonic dispersing machine, etc.). Can be manufactured. When this composition is applied onto a substrate and used in a thin film form, a known coating method such as a bar coating method, a spray method, a roll coating method, a spin coating method, a dip method, an air knife method, a gravure printing method, It can be applied by a screen printing method or the like.
[0020]
The substrate is not particularly limited, but an insulating and transparent material such as glass and transparent plastic is preferable. After coating, if necessary, the coating film is dried or baked (cured), and the heating conditions are appropriately set according to the binder type. When the binder is light or radiation curable, the coating may be cured by irradiating the coating with light or radiation immediately after coating rather than heat curing. Ionizing radiation such as gamma rays can be used, and the irradiation dose is determined according to the binder type and required characteristics.
[0021]
The method of using the conductive resin composition of the present invention is optional without limitation, The method of laminating the above-described conductive resin composition on the surface of the substrate, imparting conductivity to the surface of each article, and preventing the generation of static electricity is a preferred method of use. The film thickness of the conductive resin composition laminated film in this case is not particularly limited, but is usually 0.01 to 2 μm, preferably 0.02 to 1.5 μm, more preferably 0.05 to 1 μm. If the thickness is less than 0.01 μm, the conductivity imparting effect is insufficient. Conversely, if it exceeds 2 μm, the conductivity imparting effect is saturated and the economy is reduced, which is not preferable.
[0022]
In addition, since the conductive resin composition of the present invention provides a conductive film having good transparency, when the conductive resin composition of the present invention is laminated, the above-mentioned film having good transparency and surface gloss can be obtained. Can do.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
The performance of the resin composition was evaluated by applying the resin composition to a polyethylene terephthalate (PET) film. The characteristics are measured and evaluated by the following methods.
[0024]
(1) Surface resistance value The surface resistance value was measured under the conditions of an applied voltage of 500 V, 17 ° C., and 55% RH using a Hiresta surface resistance measuring instrument Model HT-210 (two-point type) manufactured by Mitsubishi Oil Corporation.
[0025]
(2) Total light transmittance and haze The total light transmittance and haze (Haze) were measured at two different points measured by using Nippon Denshoku Haze Meter NDH2000 and making light incident from the coated surface side of the coating film. The average value of the measured values was used.
[0026]
(3) Film thickness The film thickness was measured by a five-point average method using a peacock digital gauge (Okazaki MFG model D-10).
(4) Coat thickness The coat thickness was determined by calculation from the solid content concentration of the coating solution and the nominal wet coating amount of the bar coater, with the specific gravity of the coating layer being 1.0 g / cm 3 .
[0027]
The following materials were used.
(1) Conductive fibrous filler The carbon nanotube used was a multi-walled carbon nanotube having an average diameter of 80 nm, an inner diameter of the inner hollow part of 20 nm, an average number of layers of about 10, and a center value of length distribution of 1 μm or more. . The content of particulate impurities having a diameter of 400 nm or more was 15% by volume.
[0028]
The content (V) of particulate impurities having a diameter of 400 nm or more is reflected in the thickness (2r) of the fibrous material from a 10,000 times photograph of a scanning electron microscope (S-2500 SEM manufactured by Hitachi, Ltd.) of the carbon nanotube sample. The area (St) and the diameter (2R) of the granular material having a diameter of 400 nm or more were read, converted into volumes (Vt, Vs) as being cylindrical and spherical, respectively, and obtained by the following formula. Content of particulate impurities V = Vs / (Vt + Vs)
Vt = Σ [πr 2 × (St / 2r)] The total sum is taken for all the fibrous objects shown.
Vs = Σ [4πR 3/3 ] for it are granules all reflected summing.
[0029]
(2) Conductive resin The polyaniline used as the conductive resin in the following examples is represented by the general formula (Formula 1).
[Chemical 1]
Figure 0004264804
(In the formula (1), R1, R2 and R3 represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and x represents an integer of 50 to 2000, preferably 100 to 1500.)
[0030]
The compound represented by the general formula (Formula 1) Am. Chem. Soc. 1991, 113, 2665-2666. The compound to which the present invention can be applied is one in which the sulfonic acid group is introduced at a ratio of 1/10 to 4/5, preferably 2/5 to 3/5, with respect to the aromatic ring. In the following examples, a 5% by weight aqueous solution of polyaniline with x = 400 having a sulfonic acid group introduced at a ratio of 1/2 to the aromatic ring (“Aquapass” manufactured by Mitsubishi Rayon) was used.
[0031]
(3) Non-conductive resin binder An 8 wt% aqueous solution of polyvinyl alcohol (PVA; "Poval RS117" manufactured by Kuraray) was used as the non-conductive transparent resin binder.
[0032]
(4) Substrate for application A 188 μm thick polyethylene terephthalate (PET) film (A4100 manufactured by Toyobo Co., Ltd.) coated with an easy-adhesion anchor coating agent was used as the coating substrate, and was laminated on the easy-adhesion surface. .
[0033]
The composition was prepared under the following conditions.
(Ultrasonic dispersion processing)
Ultrasonic dispersion treatment was performed using an ultrasonic dispersion machine US-300T manufactured by Nippon Seiki Seisakusho, with OUTPUT ADJ. = 9, TUNING = 3, 300 ± 20μA, and 2 Time processed. When a resin with sufficient carbon nanotube dispersion capability was used, a uniform dispersion with no sediment or layer separation was obtained even after several days to several weeks.
[0034]
(Agitation and mixing of coating solution)
The stirring and mixing of the coating solution was carried out using a hybrid mixer HM-500 manufactured by Keyence Corporation under the conditions of stirring for 2 minutes and defoaming for 20 seconds at room temperature.
[0035]
(Example 1)
Example: 0.3 parts by weight of carbon nanotubes were added to 20 parts by weight of a 5% by weight aqueous solution of polyaniline at room temperature, subjected to ultrasonic dispersion treatment, and 25 parts by weight of an 8% by weight aqueous solution of PVA and 320 parts by weight of water were added and stirred. A coating solution of composition 1 was obtained. This solution was hand-coated with a bar coater WB # 5 (nominal wet coating amount = 10 g / m 2 ), and dried with a hot air dryer at 120 ° C. for 2 minutes to obtain a coated film sample. The evaluation results of the obtained film are shown in Table 1.
[0036]
(Example 2)
0.3 parts by weight of carbon nanotubes are added to 20 parts by weight of a 5% by weight aqueous solution of polyaniline at room temperature, ultrasonically dispersed, and 65 parts by weight of an 8% by weight aqueous solution of PVA are added and stirred to obtain the composition of Example 2. It was. This solution was thinly cast on a substrate film, air-dried at room temperature for 6 hours, and then vacuum-dried at 100 ° C. and 1 kPa (about 1/100 atm) for 18 hours to obtain a coated film sample. The evaluation results of the obtained film are shown in Table 1.
[0037]
(Comparative Example 1)
A composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that no carbon nanotube was added. The evaluation results of the coated film obtained in the same manner as in Example 1 are shown in Table 1.
[0038]
(Comparative Example 2)
The composition of Comparative Example 2 was obtained by adding 0.3 parts by weight of carbon nanotubes to 33.75 parts by weight of an 8% by weight aqueous solution of PVA at room temperature and ultrasonically dispersing. The evaluation results of the coated film obtained in the same manner as in Example 1 are shown in Table 1.
[0041]
[Table 1]
Figure 0004264804
[0042]
【The invention's effect】
As described above, the present invention provides a resin composition having excellent conductivity and transparency by adopting the configuration as described in the scope of the claims, and a thin film is formed on the surface of the non-conductive transparent molded product. By applying, a conductive layer having a low surface resistance value and high transparency is provided.

Claims (3)

(A)カーボンナノチューブ、(B)ポリアニリン、および(C)ポリビニルアルコールからなる組成物であって、該組成物の組成が下記を満足することを特徴とする導電性樹脂組成物をポリエチレンテレフテレートフィルムに積層したフィルム。
(A)が4.6〜9.1重量%、
(B)が15.4〜30.3重量%、
(C)が60.6〜80.0重量%、
A conductive resin composition comprising (A) carbon nanotubes, (B) polyaniline, and (C) polyvinyl alcohol, wherein the composition satisfies the following: polyethylene terephthalate A film laminated to a film.
(A) is 4.6 to 9.1 wt%,
(B) is 15.4-30.3% by weight,
(C) is 60.6-80.0 wt%,
(A)カーボンナノチューブが、直径が100nm以下かつアスペクト比が5以上 である請求項1に記載の導電性樹脂組成物をポリエチレンテレフテレートフィルムに積層したフィルム。(A) The carbon nanotube has a diameter of 100 nm or less and an aspect ratio of 5 or more. A film obtained by laminating the conductive resin composition according to claim 1 on a polyethylene terephthalate film. 導電性樹脂組成物の厚さ2μmの塗膜の表面抵抗値が1011Ω/□以下である請求項1又は2に記載の導電性樹脂組成物をポリエチレンテレフテレートフィルムに積層したフィルム。The film obtained by laminating the conductive resin composition according to claim 1 or 2 on a polyethylene terephthalate film, wherein the surface resistance value of the coating film having a thickness of 2 μm of the conductive resin composition is 10 11 Ω / □ or less.
JP2002351380A 2002-12-03 2002-12-03 Conductive resin composition Expired - Fee Related JP4264804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351380A JP4264804B2 (en) 2002-12-03 2002-12-03 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351380A JP4264804B2 (en) 2002-12-03 2002-12-03 Conductive resin composition

Publications (2)

Publication Number Publication Date
JP2004185983A JP2004185983A (en) 2004-07-02
JP4264804B2 true JP4264804B2 (en) 2009-05-20

Family

ID=32753314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351380A Expired - Fee Related JP4264804B2 (en) 2002-12-03 2002-12-03 Conductive resin composition

Country Status (1)

Country Link
JP (1) JP4264804B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051147A1 (en) * 2004-11-11 2006-05-18 Gamesa Innovation And Technology, S.L. Lightning conductor system for wind generator blades comprising carbon fibre laminates
CN1333013C (en) * 2004-12-15 2007-08-22 中国科学院化学研究所 Electricity conductive polyaniline carbon nanotube combined electromagnetic shielding composite material and its production method
JP4760056B2 (en) * 2005-03-01 2011-08-31 日産自動車株式会社 Fiber actuator
JP4947759B2 (en) * 2005-09-01 2012-06-06 三菱レイヨン株式会社 Carbon nanotube-containing curable composition and composite having the cured coating film
DE102006001335B4 (en) * 2006-01-09 2016-08-04 Rogers Germany Gmbh Use of a heat-transporting medium
JP5209211B2 (en) * 2006-04-25 2013-06-12 哲男 日野 Reaction product of carbon material and phenylene derivative, conductive composition using the same, and process for producing reaction product
US7851111B2 (en) * 2006-07-31 2010-12-14 Xerox Corporation Imaging belt with nanotube backing layer, and image forming devices including the same
TWI496168B (en) * 2008-07-03 2015-08-11 Henkel IP & Holding GmbH Thixotropic conductive composition
US8673416B2 (en) * 2009-10-28 2014-03-18 Xerox Corporation Multilayer electrical component, coating composition, and method of making electrical component
JP6578618B1 (en) * 2018-07-20 2019-09-25 東洋インキScホールディングス株式会社 Carbon nanotube dispersion and use thereof

Also Published As

Publication number Publication date
JP2004185983A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
Guo et al. Aspect ratio effects of multi‐walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites
Pötschke et al. A novel strategy to incorporate carbon nanotubes into thermoplastic matrices
JP5194480B2 (en) Carbon nanotube coating film and manufacturing method thereof
Feng et al. High electromagnetic interference shielding effectiveness of carbon nanotube–cellulose composite films with layered structures
Ali et al. Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride
JP2008274060A (en) Method for mixing resin material and conductive filler, composite material produced by the method and master pellet
JP4264804B2 (en) Conductive resin composition
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
Mondal et al. Role of the interface on electron transport in electro‐conductive polymer‐matrix composite: A review
Hosier et al. The effects of water on the dielectric properties of silicon-based nanocomposites
KR20130041554A (en) Thermally conductive materials based on thermally conductive hollow particles and fabrication method thereof
JP2005150362A (en) Highly thermal conductive sheet and its manufacturing method
Kazakova et al. Comparative study of multiwalled carbon nanotube/polyethylene composites produced via different techniques
KR101154502B1 (en) Thermoplastic polymer composite having improved barrier properties and electrical conductivity and the product made therefrom
JP2004253326A (en) Conductive film
JP2004196912A (en) Conductive coating
JP2004196981A (en) Resin molded article having conductive surface
KR101534298B1 (en) a composition for electro-magnetic interference shielding film, a method of fabricating a electro-magnetic interference shielding film therewith and an electro-magnetic interference shielding film fabricated thereby
JP2004256702A (en) Conductive coating
Humbe et al. Polyvinylidene fluoride/polysulfone/air plasma defected hexagonal boron nitride emerging nano blends for electrostatic dissipation
JP2004195678A (en) Conductive film
Jonah et al. Topological investigation of electronic silicon nanoparticulate aggregates using ultra-small-angle X-ray scattering
JP6326536B2 (en) Resin composition, thermally conductive thin film, and thermally conductive article
Slobodian et al. Poly (methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: Composites electrical percolation threshold
Nayak et al. Thermally stable electromagnetic interference shielding material from polysulfone nanocomposites: Comparison on carbon nanotube and nanofiber reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees