JP4790864B2 - センサの状況依存信頼性についての学習と推論 - Google Patents

センサの状況依存信頼性についての学習と推論 Download PDF

Info

Publication number
JP4790864B2
JP4790864B2 JP2010514938A JP2010514938A JP4790864B2 JP 4790864 B2 JP4790864 B2 JP 4790864B2 JP 2010514938 A JP2010514938 A JP 2010514938A JP 2010514938 A JP2010514938 A JP 2010514938A JP 4790864 B2 JP4790864 B2 JP 4790864B2
Authority
JP
Japan
Prior art keywords
sensor
data
sensor data
sensors
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010514938A
Other languages
English (en)
Other versions
JP2010533903A5 (ja
JP2010533903A (ja
Inventor
ジェイ.ホルビッツ エリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Corp
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Publication of JP2010533903A publication Critical patent/JP2010533903A/ja
Publication of JP2010533903A5 publication Critical patent/JP2010533903A5/ja
Application granted granted Critical
Publication of JP4790864B2 publication Critical patent/JP4790864B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/097Supervising of traffic control systems, e.g. by giving an alarm if two crossing streets have green light simultaneously

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Chemical & Material Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Analytical Chemistry (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)

Description

コンピュータ主導のシステムは、一連のセンサを利用して幹線フローシステムを監視する。一般に、動脈流システムは、管、コンベヤ、または他の導管を通る液体、気体、または粒状材料の動きを記述する。都市または地理的地域の街路を通る交通の動きを、この動脈システムとして見ることもできる。都市を通る自動車および他の車両の流れは、種々のタイプまたは一連のセンサを使用して追跡可能である。収集されたセンサデータを、交通流システムが利用して、交通の動きを監視することが可能である。
交通流システムは、路線計画および道路設計を含む様々な目的のために利用できる。例えば、交通の流れを監視して、ボトルネック状態を検出および予測することが可能である。交通システム等の幹線フローシステムにおけるボトルネックの識別により、材料の分散およびボトルネックの緩和が可能になる。加えて、ボトルネックになりやすい道路区分の識別により、将来の交通流の計画または既存の車道の修正(例えば、既存の2車線道路を4車線道路に拡張する)を支援できる。
交通流は、様々なセンサを利用して監視することが可能である。特に、ほとんどの通勤者が仕事と家との間を移動中のラッシュ時間中、ほとんどの大都市の交通が、ヘリコプタ、戦略的に設置されたカメラおよび/または交通上の出来事の通勤者レポートを使用して、監視される。加えて、特にかなり交通量の多い道路は、交通の流れを監視するよう設計された圧力センサのネットワークを含むことが可能である。通勤者には、ラジオまたはテレビで放送される交通レポートを介して通勤のルートを計画するのに必要な交通情報が提供される。交通情報はまた、インターチェンジまたは他の問題のある領域に近づいている走行者に警告を出す電光標識を介して表示できる。標識は、センサにより検出された交通の密度と速度に基づく、走行時間の予測をさらに含みうる。提供された交通情報により、運転者は、ボトルネックを避けて走行時間を最小にする、自分の通勤を計画することができる。
交通流を監視または予測する交通流情報およびシステムの有効性は、センサから受信されるデータの有効性に依存する。一般に、多数のセンサを使用して、システムの現在の流れを推定または計算し、かつ、将来の流れを予測する。しかし、多数のセンサにより収集されたデータを利用するシステムにおいてさえ、無効なセンサ情報が、交通流システムの性能の劣化をもたらし得る。
以下は、請求される主題のいくつかの態様の基本的理解を提供するために簡略化した要約を提示する。この要約は、広範囲の概説ではなく、重要な/重大な要素を識別すること、または、請求される主題の範囲を明らかに描出することを意図していない。その唯一の目的は、後に提示されるより詳細な記述の前置きとして、簡略化した形式でいくつかの概念を提示することである。
コンピュータ主導の路線計画アプリケーションおよび他の交通流システムは、毎日利用され、通行の計画、通勤の計画等でユーザの助けになる。これらのフローシステムは、多くの場合、一連のセンサから受信されるデータに依存する。システムは、固定または静止のセンサ(例えば、圧力センサおよびビデオカメラ)、交通流(例えばGPS)と共に動く車両に連結されたセンサ、および、交通レポートまたは任意の他の交通流の標識を含む、様々なセンサの方法を使用して取得する情報を利用できる。そのようなセンサの信頼性と精度は、センサのタイプによって変わる。機械の故障または他の異常は、不正確なセンサデータをもたらしかねない。無効または不正確なセンサデータを利用する路線計画または他の交通流システムが、正確な結果を生むことは疑わしい。
本明細書は、その一態様において、センサデータを監視し不正確なセンサデータを識別して、無効または不正確なセンサデータを最小限度にする、または軽減することを開示する。疑わしいセンサデータは、タグを付加する、および/または、交通流システムが利用するデータセットから除去することができる。加えて、警告を発し、システムオペレータに、識別され劣化したセンサデータに関連するセンサ(単数または複数)の故障の可能性を通知することができる。
センサの品質は、経時的に関連するシステムのコンポーネントを監視する他のセンサと併せて、経時的なセンサからの信号に部分的に基づいて識別し分類できる。例えば、センサの故障の表示は、システムにおいて一般的にはよく変化が見られるセンサの値が、一定期間にわたって無変化であることに由来し、そのような変化は、閉じた管または容器を通る流れを推測することにより、評価するセンサに近接したセンサから受信するセンサデータにより感知できる。先に取得したセンサデータを評価して、現在のセンサデータが、非典型的であるか、通常と異なるか、不変であるか、および、従って1つまたは複数の種類の故障、例えば、継続的な安定性の不具合、間欠的な型通りの故障、および確率としてエラーを来すより複雑な故障など、に基づく可能性が高いのか、を判定することが可能である。
センサ品質を、交通流表現および現在の状況(例えば、時刻、曜日、気象条件、場所、動き等)の状況的特徴に基づき、評価および予測し、劣化したセンサデータの尤度を判定することが可能である。交通流表現を使用して、期待されるセンサデータを判定し、期待されるデータの範囲外のセンサデータを識別する(例えば、動的閾値および/または所定の閾値に基づき)ことが可能である。加えて、交通流表現は、状況に基づき動的に変化して、精度を高めることが可能である。確率的モデルは、個々のセンサの精度を示すヒューリスティックなデータまたは他のデータに基づき、健全であろうと思われるそのセンサについて各センサに割り当てたラベルを含む、センサの挙動について経時的に収集したデータセットから、センサの健全性を自動的に推論するように構成できる。
前述の関連する目的を達成するために、以下の記述および付属の図面と関連して、特定の例示的態様を本明細書で記述する。しかし、これらの態様は、請求される主題の原理を採用することのできる種々の方法をほんの数例示すものであり、請求される主題は、全てのそのような態様およびその等価物を含むことを意図している。他の利点および新規の特徴は、図面と併せて考察したときに、以下の詳細な説明から明らかになるであろう。
本明細書に記載の主題に従う、状況的データに少なくとも部分的に基づきセンサ性能を評価する、センサ監視システムのブロック図である。 本明細書に記載の主題に従う、センサ監視システムのブロック図である。 本明細書に記載の主題に従う、センサ監視システムのブロック図である。 本明細書に記載の主題に従う、センサの劣化の通知を提供するセンサ監視システムのブロック図である。 本明細書に記載の主題に従う、センサの故障を予測するセンサ監視システムのブロック図である。 内容が状況の変化と共に変わる交通システム表現を構築/改良するためのシステムのブロック図である。 本明細書に記載の主題に従う、センサデータの劣化を識別するための方法の代表的なフロー図である。 本明細書に記載の主題に従う、センサデータの劣化を通知するための方法の代表的なフロー図である。 本明細書に記載の主題に従う、センサの劣化を推測するための方法の代表的なフロー図である。 適切な動作環境を例示する概略ブロック図である。 サンプルのコンピュータ環境の概略ブロック図である。
ここで、標記発明を、図面を参照して説明する。そこでは全体を通して同様の要素を参照するためには同様の参照番号を使用する。以下の記載において、説明の目的で、請求される主題を完全に理解するために特定の詳細を多数記述する。しかし、そのような主題が、これらの特定の詳細なしで実践され得ることは明らかであろう。他の例において、周知の構造および装置が、標記発明の説明を容易にするためにブロック図の形式で示される。
本出願にて使用されるとき、用語「コンポーネント」および「システム」は、コンピュータ関連のエンティティ、ハードウェア、ハードウェアとソフトウェアとの組合せ、ソフトウェア、または、実行中のソフトウェアのいずれかを参照することが意図される。例えば、コンポーネントは、処理装置上で稼働中の処理、処理装置、オブジェクト、実行ファイル、実行のスレッド、プログラム、および、コンピュータであってもよいが、これに限定されない。例示として、サーバ上で稼動するアプリケーションおよびサーバの両方が、コンポーネントであってもよい。1つまたは複数のコンポーネントは、処理および/または実行のスレッド内に存在してもよく、コンポーネントは、1つのコンピュータ上に局在してもよく、および/または、2つまたはそれ以上のコンピュータ間に分散してもよい。単語「例示の」は、本明細書において、例、事例または例示として機能することを意味するために使用する。本明細書において「例示の」として記載する任意の態様または設計は、必ずしも、他の態様または設計を超えて好ましい、または有利であるものとは解釈しない。
さらに、請求される主題の態様は、標準のプログラミングおよび/または工学技術を使用して、コンピュータを制御して標記発明の種々の態様を実装するためのソフトウェア、ファームウェア、ハードウェア、または、その任意の組合せを製造する、製造の方法、装置または物品として実装してもよい。用語「製造物」は本明細書で使用するとき、任意のコンピュータ可読デバイスからアクセス可能なコンピュータプログラム、キャリア、または媒体を包含することを意図している。例えば、コンピュータ可読媒体は、磁気記憶デバイス(例えば、ハードディスク、フロッピーディスク、磁気ストリップなど)、光ディスク(例えば、CD(compact disk)、DVD(digital versatile disk)など)、スマートカード、および、フラッシュメモリデバイス(カード、スティック、キードライブなど)を含むが、これに限定しない。加えて、搬送波を採用して、電子メールを送受信する際に使用するもの、または、インターネットまたはローカルエリアネットワーク(LAN)等のネットワークにアクセスする際に使用するもの等の、コンピュータ可読電子データを搬送できることは理解されるべきである。もちろん、当業者は、本明細書の記述の範囲または精神から逸脱することなく、この構成に多くの修正を加えることができることを認識するであろう。
ここで、図複数の1を参照する。状況依存のシステムのセンサデータおよび/またはセンサ性能における劣化を検出するセンサ監視システム100を例示する。センサ監視システムは、交通流システム等の広範囲の様々な幹線フローシステムと組み合わせて利用し、そのようなシステムの信頼性を向上させることができる。交通流システムは、典型的には、複数のセンサで収集したデータを利用する。センサデータの分析により、重大な情報を交通システムに提供することが可能である。従って、センサデータの精度および信頼性は、そのようなシステムにとって重要である。
センサ監視システム100は、センサデータを1つまたは複数のセンサ102〜106から、要求、受信および/または取得することができる。センサインターフェースコンポーネント108は、利用されて、交通システム(または、本明細書に記載する概念を採用できる他の適切なシステム)の状態を判定する複数のセンサ102〜106に通信可能に連結できる。センサ102〜106は、道路区分に埋め込んで、領域の交通流率および/または車両の数を判定するのに利用する、圧力センサを含む。センサ102〜106はまた、衛星画像およびビデオカメラ(例えば、固定カメラや、ヘリコプタ、飛行船等に搭載するカメラ)を含むがこれに限定されない、視覚的画像センサを含んでもよい。センサ102〜106は、加えて、交通事象を記載するウェブサイト、および、ある領域内の交通を監視するラジオ放送局に関連づけることができる。さらにセンサ102〜106は、GPS受信機、速度計等の、個々の車両に関連するセンサを含んでもよい。交通流を監視するために、バス、タクシー、および輸送車等の車両群を使用できる。
センサはまた、携帯用デバイス(携帯用デバイスとは、ネットワークへの接続が維持可能な任意の適切なデバイスであり得る)、例えば、PDA(personal digital assistant)、スマートフォン、携帯電話、ラップトップコンピュータ等、に装着しても、または含めてもよい。携帯用デバイスセンサは、位置センサ、速度センサ、または、他の有用なセンサを含んでもよい。さらに詳細には、センサは、GPS受信機、速度計および加速度計を含んでもよい。携帯用デバイスのユーザが移動すると、センサからのデータが、センサインターフェースコンポーネント108により受信可能である。歩行者交通も、車両交通と同様、携帯用センサデバイスを使用して監視できる。
センサインターフェースコンポーネント108は、あらかじめ定義したセンサからデータを受信することができる。あるいは、アドホックなセンサのセットを使用して、センサインターフェースコンポーネント108に提供したセンサデータを収集することが可能である。例えば、センサインターフェースコンポーネント108は、自分たちの位置情報を提供することを選択した、携帯電話のユーザからのセンサデータを受信することができる。
センサインターフェースコンポーネント108は、センサデータを継続して受信するように構成できる。あるいは、センサインターフェースコンポーネント108は、センサデータを、同時にまたは定期的に取得することが可能である。センサインターフェースコンポーネント108は、交通流システムで使用するようにデータをフォーマット化できる。センサインターフェースコンポーネント108は、異種のセットのセンサから受信したセンサデータ(例えば、GPSから受信したデータおよびビデオ監視から受信したデータ)を統合することが可能である。
センサデータおよび/またはセンサ性能は、無数の原因により劣化し得る。単純な機械的異常は、センサが無効なデータを生成する原因となりかねない。例えば、機械的な欠陥または通常の損耗でさえ、圧力センサまたはビデオカメラが機能しない原因となる。頻繁に、センサは、非常に様々な、温度、湿度、過剰な振動および一般的な損傷に曝される。センサが適正に機能していても、センサを装着した車両が機械的異常を被ると、無効なセンサデータの原因になってしまう。例えば、オーバーヒートし、路肩に寄った車の中のGPSセンサは、交通がその道路区分上で止まってしまったことを示しているようにみえるであろう。交通流を正確に記録しているセンサがすぐ近くにあっても、止まった車両のセンサからのデータは交通流システム性能に影響することがある。
性能の劣化は、間欠的誤差および/または微少な誤差から、センサが不正確なデータを生成する完全な故障までさまざまである。一般的には、全体的な故障は簡単に識別可能である。例えば、月曜の朝のラッシュ時間中の任意の交通を記録できないセンサは、難なく識別できる。しかし、間欠的エラーまたは微少なエラーは検出が難しいにもかかわらず、センサデータに依存する交通流システムに累積的に影響を与えかねない。
センサ監視システム100は、センサデータに関連づけられた状況を分析する状況分析コンポーネント110をさらに含むことができる。例えば、状況分析コンポーネント110は、データが記録された時刻を分析可能である。加えて、状況分析コンポーネント110は、曜日(その日が休日であるかどうか)、現在または予報の気象条件、現在の道路状態(例えば、事故が報告されているか、どこで事故が報告されているたか)、および、任意の他の適切な状況的データ、に関する情報を判定または受信することが可能である。センサ監視システム100は、状況的データに少なくとも部分的に基づき、センサ性能を評価することができる。
センサ監視システム100は、センサ102〜106から受信したデータを分析し、性能が劣化している、または故障しているセンサを識別する、センサ分析コンポーネント112を含んでもよい。センサ分析コンポーネント112の分析は、センサから受信した前のデータ、評価しているセンサ近くのセンサから記録されたデータ、および/または、状況的情報、に基づくことができる。データが収集される状況または状態を使用して、読み込みをしているセンサが、妥当であるか、または、疑わしい所与の他のセンサおよび状況的情報であるかどうかを判定できる。例えば、大交通量を示すセンサデータは、特定の道路区分上でラッシュ時間中に予測範囲の値内であれば良いが、日曜日の3時に記録されれば疑わしい。センサ分析コンポーネント112は、大規模な事象(例えば、スポーツイベント、文化的イベント)の発生、天気、事故、自然言語での交通レポート、車線または道路の通行止め、過去の情報等を含む、センサ分析中の種々の状況的事象を考察できる。
センサ分析コンポーネント112は交通システム表現114にアクセスでき、交通システム表現114は可能性の高い交通流を記載し、状況変化と共に変わる。特別な例において、交通システム表現114は、重み付きグラフであるか、および/または重み付きグラフを含むことができる。重み付きグラフではグラフの節点が交差点を表し、境界が交差点間の道路区分を表し、それに関連する重み付けが道路区分/交差点の平均走行速度または交通量を表す。重み付けは、状況の変化に伴って変化する。例えば、1日のうちの第1の時刻に第1の重み付けを道路区分に与え、1日のうちの第2の時刻に第2の重み付けを同じ道路区分に与えることができる。従って、交通システム表現114は、1日のうちの所与の異なる時刻(例えば、ラッシュ時とラッシュでない時間)、曜日(例えば、平日と週末)、気象条件(例えば雨と晴れ)、および他の適切な状況的データで、交通流がどのように変わるかを表すことが可能である。
そのような情報は、交通の現在のフローと将来のフローの予測とを提供するモデルにおいて、直接使用できる。さらに一般的には、故障を起こしやすいセンサのデータベースを作成し、状況的情報と結合させることが可能であり、このデータベースは、各センサに対して、経時的な近くのセンサの値の観察に基づき、各センサの健全性を予測するモデルの、機械学習方法を介した構築において使用できる。
交通システム表現114に関してさらに詳細には、道路区分でのフロー(例えば、交通が動いているまたは動くことが期待されている、方法)は、フロー全体にわたる確率分布により表され得、これらの確率分布は、時刻、曜日、カレンダ情報、早い時間に見られたフロー、および/または、交通システムの他の部分におけるフロー等の状況的観察の関数であり得る。確率的予測モデルは訓練され得、それにおいて、モデルは、交通システム全体の現在のフローを採り、交通システムの将来のフローについての予測を計算する、多数の予測方法のうちの1つを採用するものであって、将来のフローの予測は異なる状況について対象とされる。センサデータは、現在のセンサ状況と同程度の状況に対する予測に関して評価され得る。変化が、同一の状況においても予測される一方、エラーの確率が、予測される交通流からの変化の関数として生成される。
センサ分析コンポーネント112は、確率モデルを利用できる。経時的な予想および予測のために、いくつかの弁別的または生成的統計手法を採用することができる。これらの方法は、サポートベクターマシン等の統計的分類子、ベイジアン機械学習の分野内のベイジアン構造探索の使用、動的ベイジアンネットワークと関連する隠れマルコフモデル(Hidden Markov Model)の学習と使用、連続時間ベイジアンネットワーク(Continuous Time Bayesian Networks(CTBN))、ならびに、一時的なベイジアンモデル、およびARMA予測モデルやARIMA予測モデルとして既知のモデルを採用する時系列の方法の群、を含む。
センサ監視システム100は、路線計画をシステム等の1つまたは複数の交通流システム(図示せず)に提供できる。センサデータは、センサ監視システム100のデータ出力コンポーネント116により交通流システムへ提供できる。データ出力コンポーネントは、劣化していると識別されたデータを含む、センサ102〜106から受信した全てのセンサデータを提供できる。疑わしい、または問題のあるデータをマークしまたはタグをつけて、路線計画システムが、劣化の可能性の高いデータの使用をしない、および/または、最低限に抑えることができるようにする。あるいは、センサデータは、データ出力コンポーネント116でフィルタし、交通流システムが、劣化していると識別したデータを受信しないようにする。さらに、データ出力コンポーネント116は、特定のセンサデータをフィルタし、他のセンサデータを疑わしいものとしてマークすることが可能である。データ出力コンポーネント116は、劣化している可能性が高いデータを除去できるが、一方で、疑わしいと識別されたが無効ではなさそうなデータは提供する。
作成コンポーネント118は、機械学習を採用して、センサの出力を予測および/または解釈するのに使用される、少なくとも1つのモデルを構築する。このモデルはエラーモデルおよび/または故障モデルを含む。機械学習を介したモデルの作成を使用して、そのエラーモデルまたは故障モダリティを含む、センサの出力を予測または解釈することができる。機械学習を用いるそのようなモデルの作成は、関連の状況的データに加えて、起こる可能性のあるセンサ故障データのライブラリの記憶に依存して、任意のセンサに適用できる予測モデルを作成する。そのような事例のライブラリは、センサの潜在的に異常な出力の履歴を捕捉し、潜在的な故障についてのこのデータを、時刻、曜日、交通システムの部分について登録された交通流の統計、センサのタイプと銘柄、電流センサと直列に存在する近接したセンサ等の、他の観察と連結させる。構成されたモデルは、実時間で適用されて、誤ったデータを使用するために適用できる出力の確定関数および確率関数を含む、センサの信頼性を解釈することが可能である(例えば、このセンサは、価値ある情報を提供できるが、リスケーリングが必要である、など)。作成コンポーネント118は、確率モデルを構築して、証拠および起こりえる故障のライブラリに基づき、センサ故障を予測することが可能である。
作成コンポーネント118は、データから学習し、次に本明細書に記述する種々の自動化された態様の実装に従って、そのように構成したモデルから出力するセンサ出力を、予測および/または解釈するための1つまたは複数の方法を機械学習および機械推論することを含む(そのモデルには、例えば、隠れマルコフモデル(HMM)および関連するプロトタイプの依存モデル、例えば、ベイジアンモデルのスコアまたは近似値を使用して構造探索により作成される、ベイジアンネットワーク等の、さらに一般的な確率的グラフィックモデル、サポートベクターマシン(SVM)等の線形分類器、「ニューラルネットワーク」方法論として参照される方法等の非線形分類器、ファジー理論、並びにデータ融合を実行する他のアプローチが含まれる)。
方法には、また、定理証明器またはさらなる発見的規則に基づく専門システム等の、論理関係の捕捉のための方法も含まれる。そのような学習されたまたは手動で構築されたモデルに由来する推測は、いくつかのオブジェクトの機能を最大化しようとする、線形および非線形のプログラミング等の、最適化手法に採用できる。
図2では、センサ監視システム200が例示される。センサ監視システム200は、複数のデータソース202〜206から状況データを受信、要求、および/または、取得することが可能である。データソース202〜206は、任意の適切なデータソースであり得る。例えば、データソース202は、現在の/予報の気象条件を記載するウェブサイトであり得る。別の例において、データソース202は、交通事故について公表するラジオ放送局であってもよく、そこで状況分析コンポーネント110は、そのような事故に関する特定の言葉を理解し解釈することが可能である。
ここで図3を参照する。図3はセンサ監視システム300を例示する。システム300は、センサ102〜106から以前受信したセンサデータを保持するセンサデータリポジトリ302をさらに含む。センサデータを分析して疑わしいセンサデータを識別する際、センサ分析コンポーネント112は、以前記録したセンサデータを利用することが可能である。これは、評価する特定センサから受信した以前のデータを含むことができる。センサデータリポジトリ302はまた、以前の劣化したセンサデータのレコードを保持することも可能である。以前提供された劣化データを有するセンサは、劣化データを提供しなかったセンサより信頼性に欠けるとみなされる。
図4を参照する。ここでは1つまたは複数のユーザおよび/またはオペレータにセンサの故障の可能性を通知する、センサ監視システム400を例示する。あるセンサが無効または不正確なセンサデータを提供していると判定すると、警告または通知を提供することができる。センサ故障に関する情報は、中央集中型システムのオペレータによりセンサを管理または統制するシステムでは特に有益である。不正確なセンサデータに関する情報は、センサを交換または修理すべきかの判断に極めて有用である。
ユーザまたはシステムオペレータには、任意の妥当な方法でセンサデータの劣化を通知する。通知は、携帯電話に配信するショートメッセージサービス(SMS)のテキストメッセージ、ボイスメール、電子メール、または任意の他の配信システムとして、送信できる。システム400は、グラフィックユーザインターフェース(GUI)(図示せず)を含むことができ、その場合、センサ故障の通知は、エラーの可能性を示すフラグまたは視覚的合図として現れる。通知は、センサが不正確だったと思われる時間の長さ、センサ性能が許容レベル以下に劣化した可能性、および、オペレータに有益な任意の他の情報を含めることができる。
図5を参照する。ここではセンサ故障を予測するセンサ監視システム500を例示する。センサ監視システム500はさらに、センサの性能劣化または故障を予測するセンサ故障予測コンポーネント502を含むことができる。センサ故障予測コンポーネント502は、センサ性能をある期間にわたって分析し、将来、センサが故障するかまたは許容可能な範囲を超える可能性を評価する。センサ故障の予測は、センサ性能、センサ寿命および/またはセンサ状況(例えば、極端な気象条件、過剰な使用等)に基づくことが可能である。機械学習システムを利用して、起こりそうな故障、および、全体のシステムの信頼性に与えられるその影響または衝撃を予測できる。
いくつかの弁別的または生成的統計手法の1つを採用して、センサ故障を経時的に推測することが可能である。これらの方法は、サポートベクターマシン等の統計的分類子、ベイジアン機械学習、動的ベイジアンネットワークと関連する隠れマルコフモデルの学習と使用、連続時間ベイジアンネットワーク(CTBN)、ならびに、一時的なベイジアンモデル、およびARMA予測モデルやARIMA予測モデルとして既知のモデルを採用する時系列の方法の群を含む。
通知コンポーネント402は、システムのユーザまたはオペレータ404に、予測されたセンサ故障について通知することができる。オペレータ404には、センサ故障の予測時間、および/または、特定の期間内にセンサ故障が起こる確率を提供する。全ての利用可能なセンサに基づき、センサ故障予測コンポーネント502は、最も故障を起こしやすいセンサのリストを作成することが可能である。リストは、修理および/または交換のコスト、近接する他のセンサの数、他の近くのセンサの予測される故障、または任意の他の妥当な根拠、に基づき優先順位がつけられる。例えば、多数の近接するセンサが、ほぼ同時に故障することが予測される、と判定した場合、それらのセンサは、ある領域についての全てまたはほとんどのセンサデータの損失を回避するために、リスト上で優先順位を持ってもよい。
図6を参照する、ここでは、ロバストな交通システム表現を構築するためのシステム600を例示する。システム600は、感知された時系列データ604を含むデータリポジトリ602を含み、そのようなデータを複数のセンサ(例えば、交通システムを走行する運転者)から収集する。例えば、感知された時系列データ604は、交通システム(例えば、大都市の交通システム)内に複数の運転者が存在する、位置/速度判定センサ(GPS受信器等)にアクセスすることにより、取得できる。センサからデータを生成するのに伴い、そのようなデータは、タイムスタンプと関連付けられる。従って、位置判定センサと関連づけられた各運転者のトレースログが生成され、感知した時系列データ604内に配置できる。区分けコンポーネント606を採用して、個々の道程がいつ停止および開始したかを判別することが可能である。自動車が閾値の時間、動きを止める時、自動車に関連付けられたセンサが記録を止めると、運転者が走ったほとんど(全てではなく)の個々の道程が、センサログに現れる時間の空白を検討することにより、区分けコンポーネント606で識別される。
交通システム表現114は、感知した時系列データ604に少なくとも部分的に基づいて構築/定義することができ、グラフであるかまたはグラフを含むことができ、グラフの節点が道路の交差点を表し、境界が道路区分を表す。一本の道路を多数の境界で表現してもよく、各道路区分(2つの交差点間の道路の切れ目のない最小の部分)は、グラフ内で別個の境界であってもよい。加えて、境界および節点は、それらが表す道路の緯度と経度に関連付けられる。感知した時系列データ604が個々の道程に分かれると、そのような道程は、任意の適切な方法を介して交通システム表現114へ「スナップ」できる。
トレースログを道路区分にマッピングすると、速度分析コンポーネント608は、交通システム表現114のグラフ内の境界/節点に異なる時間にわたって、異なる重みを関連付ける。例えば、速度分析コンポーネント608は、曜日を多数のカテゴリに分割し、そのようなカテゴリをいくつかのタイムスライスに分割することにより、道路の時間依存の交通速度を学習することができる。例示目的のため、速度分析コンポーネント608が、曜日を2つのカテゴリ、平日と週末、に分割すると仮定することが可能である。そしてそのようなカテゴリは、96個のタイムスライス、1日24時間にわたる時間の15分ずつのブロック、に分割できる。しかし、速度分析コンポーネント608は、任意の仕分けの状況的データに関連付けられたカテゴリを作成できることが認識される。例えば、速度分析コンポーネント608は、気象条件、休日等に基づくカテゴリを作成することが可能である。
上記の例を続けると、速度分析コンポーネント608は、スナップされたトレース内の連続的なGPSポイントの各対(A、B)を検査することにより、各時刻および平日/週末分解の別個の平均速度を学習することが可能である。各対の間の運転者の平均速度を計算し、速度を利用して、AからBに達するように横断するどの道路区分に対しても移動平均を作成することができる。速度計測は、速度計算に関与して収集されたデータのタイムスタンプの時間特徴と合致する時間特徴を持つ、時間のブロックに関連した移動速度に適用できる。従って、速度分析コンポーネント608は、種々の種類(時刻、曜日...)の道路区分に関連する速度を判定することが可能である。そして、速度分析コンポーネント608は、そのようなデータを交通システム表現114に関連付けし、境界と節点を、収集したデータに基づいて重み付けすることができる。
しかし、全てのカテゴリにわたって交通システム内の全ての道路のデータを取得することが不可能であることは理解されるであろう。従って、道路上での速度は、「類似する」道路区分の所定の既知の道路上での速度に一般化できる。さらに詳細には、一般化コンポーネント610は、交通システム表現114を分析し、各種類に対して収集されたデータと関連しない道路区分に速度値を提供することができる。例えば、いずれのデータも利用できない道路区分および時間区分に対して、一般化コンポーネント610は、隣接する時間ブロックにおける同じ道路区分に関連するスピードを割り当てることが可能である。隣接する時間ブロックに関連する速度がない場合、一般化コンポーネント610は、区分に、ある類似する道路からの速度、および/または、交通システム表現114内で道路分類により類似性を定義する、類似した道路からのシステム全体の速度平均を割り当てることが可能である。加えて、類似性は、制限速度、道路区分の地理的近接性、道路区分の地理的位置等を分析することにより判定できる。さらに、類似する道路を決められない、および/または、システム全体の速度平均が利用できない場合、時間区分に対する速度を、掲示する制限速度として定義することが可能である。さらに、一般化コンポーネント610は、機械学習技術/システムを利用して、交通システム表現114内のパターン/相関関係を学習し、学習されたパターン、相関関係および/または傾向に少なくとも部分的に基づき、平均の道路上での速度を道路区分に割り当てることが可能である。
道路区分全体の交通流および/または道路上での速度の表現を使用して、道路区分に関連するセンサに対するありそうなセンサデータを推定することができる。そのようなセンサにより収集された実際のセンサデータを、推定または推測されたセンサデータに対して評価することが可能である。予測された値から劇的に変化するセンサデータは、疑わしいと見なされる。
ここで図7から9を参照する。ここで、請求される主題に従う方法論を、一連の動作として記述する。請求される主題が動作の順番により限定されず、いくつかの動作が、本明細書に記述のものとは異なる順番で、および/または他の動作と同時に起こることを、理解および認識されたい。例えば、当業者は、方法論が、代替として、状態図におけるような、一連の相互に関係する状態および事象として表せることを、理解および認識するであろう。さらに、請求される主題に従う方法を実行するために、全ての例示される動作が要求されるわけではない。加えて、以下および本明細書全体を通して開示する方法論を製造物に格納して、そのような方法論のコンピュータへの移送および転送を容易にできることは、さらに理解されるべきである。用語「製造物」は、本明細書で使用するとき、任意のコンピュータ可読デバイスからアクセス可能なコンピュータプログラム、キャリア、または媒体を包含することが意図される。
図7を詳細に参照する。ここではセンサデータの劣化を検出するための方法を例示する。参照番号702において、複数のセンサからセンサデータを受信する。例えば、データは、道路区分に埋め込まれた圧力センサのセットから受信できる。あるいは、センサデータは、車両に連結したセンサから受信できる。例えば、バスシステムは、各バスに連結したセンサを含んで、現在の交通の流れを監視することが可能である。センサデータは、多数のセンサタイプから様々なフォーマットで記録される。
参照番号704において、センサおよび/またはフローシステムの現在の状態に関連する状況を分析する。現在の状況には、時刻、曜日、現在の気象条件等を含むことができる。状況は、カレンダ、時計、スポーツまたは文化的イベントを一覧にした事象カレンダ、天気予報等を含む種々のソースから、推測する。
参照番号706において、センサデータを評価し、劣化したセンサデータを識別できる。センサ性能は、第1のセンサから受信したデータと、評価するセンサに極めて近接する1つまたは複数のセンサから受信したデータを比較して、評価する。第1のセンサが近接するセンサから変わる場合は、センサが信頼できないことを示す。センサデータはまた、時刻、曜日等の状況情報に照らして分析する。例えば、交通センサは、週末の午前3時よりかなり高い、平日のラッシュ時間中の交通量を示すデータを生成することが期待される。
参照番号708において、分析されたセンサデータに少なくとも部分的に基づいて、センサデータを出力する。故障のセンサが生成したセンサデータは、路線計画システムが使用する前に識別し除去することができ、それにより、路線計画の正確さが増す。あるいは、全てのセンサデータを、路線計画システムに提供できる。しかし、疑わしいセンサに関連するセンサデータにはタグを付け、センサデータエラーの可能性を含めることもできる。センサデータの分析は、センサデータを利用する路線計画システムの信頼性を大いに向上させる。
図8を参照する。ここではセンサの劣化の通知を提供するための方法を開示する。参照番号802において、評価のためにセンサに関連するセンサデータを選択する。選択後、参照番号804においてセンサデータを分析し、センサデータが劣化したかどうかを確定する。センサデータの劣化を判定するために、近接するセンサ、予測されるセンサデータ、およびセンサ状況から受信したデータについて、センサデータを分析することができる。
参照番号806において、警告または通知をセンサデータに対して発するべきかどうかを判定する。判定は、センサデータの分析に基づく。例えば、判定は、センサ性能が劣化する確率に基づく。劣化の確率は、所定の閾値と比較し、確率が閾値より大きい場合、システムオペレータに通知することができる。通知を送信しない場合、参照番号812において処理を継続する。通知を送信する場合は、通知のメッセージが、参照番号808において生成される。通知は、疑わしいセンサデータを生成する1つまたは複数のセンサを識別し、疑わしいセンサデータが無効である確率を含むことができる。通知は、参照番号810にて、1つまたは複数のユーザまたはシステムオペレータに送信する。参照番号812において、評価すべき追加のセンサデータがあるかどうかを判定する。ある場合には、参照番号802の処理に戻り、そこでセンサデータを評価のために選択する。評価すべき追加のセンサデータが無い場合、処理は終了する。あるいは、全てのセンサデータを、通知を送信する前に評価することが可能である。全てのセンサデータの評価の後、劣化したセンサデータの全ての事例を一覧にした1つの通知を送信することができる。
図9を見る。ここではセンサ故障を予測するための方法を例示する。参照番号902において、以前記録したセンサデータが、選択したセンサに対して取得される。以前記録したデータを、参照番号904において分析する。センサデータにおける、およびセンサデータのエラーの確率における傾向を分析する。参照番号906において、分析したデータのほかに、センサのタイプ、センサの寿命、センサが作動する条件を含むセンサ情報に基づいて、センサの故障を予測する。あるいは、特定期間内のセンサ故障の確率が生成される。
参照番号908において、予測される故障が関連あるかどうかを判定する。関連性は、センサが故障していると予測される時間、または、センサが特定の期間内に故障するであろう確率に基づいて判定する。例えば、1ヶ月以内のセンサの予測される故障は、関連性があると考えられ、一方、5年間の予測される故障は、関連性がない。
予測される故障が関連性のないものの場合、参照番号914において、処理を継続する。予測される故障が関連性のあるものの場合、参照番号910において通知を作成する。通知は、予測される故障の日付および/または故障の確率を含んでもよい。参照番号912において、通知をシステムオペレータに送信する。システムオペレータは、センサのメンテナンスおよび/または交換の計画時、加えて予算計上の目的で、そのような通知を利用することができる。参照番号914において、再調査すべき追加のセンサがあるかどうかを判定する。追加のセンサがある場合、処理は参照番号902に戻り、以前記録したセンサデータを、選択したセンサに対して取得する。追加のセンサがない場合、処理は終了する。
種々の請求される主題の態様に追加コンテクストを提供するために、図10および以下の検討では、種々の態様を実装できる、適切な動作環境1010の簡略な一般的説明を提供することが意図される。請求される主題は、プログラムモジュール等の、1つまたは複数のコンピュータまたは他のデバイスにより実行する、コンピュータ実行可能命令の一般的コンテクストで記述される一方、当業者は、本発明がまた、他のプログラムモジュールとの組み合わせにおいて、および/または、ハードウェアおよびソフトウェアの組合せとして、実装可能であることを認識するであろう。
しかし、一般に、プログラムモジュールは、特定のタスクを実行する、または、特定のデータ型を実装する、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む。動作環境1010は、適切な動作環境の単なる一例であり、本明細書に記述する使用範囲または特徴の機能性について、任意の限定を示唆することは意図されない。請求される主題と共に使用することに適切な、他の周知のコンピュータシステム、環境および/または構成は、パーソナルコンピュータ、ハンドヘルドデバイスまたはラップトップデバイス、マルチプロセッサベースのシステム、マイクロプロセッサベースのシステム、プログラム可能な家庭用電化製品、ネットワークPC、ミニコンピュータ、メインフレームコンピュータ、上記のシステムまたはデバイスを含む分散コンピュータ環境等、を含むがこれに限定されない。
図10を参照する。状況依存の道案内(ナビ)作成と関連して採用できる例示の環境1010は、コンピュータ1012を含む。コンピュータ1012は、プロセシングユニット1014、システムメモリ1016、およびシステムバス1018を含む。システムバス1018は、システムメモリ1016を含むがこれに限定されないシステムコンポーネントを、プロセシングユニット1014に連結させる。プロセシングユニット1014は、任意の種々の利用可能な処理装置であってもよい。デュアルマイクロプロセッサおよび他のマルチプロセッサのアーキテクチャも、プロセシングユニット1014として採用することが可能である。
システムバス1018は、メモリバスまたはメモリコントローラ、周辺機器用バスまたは外部バス、および/または、任意の様々な利用可能なバスアーキテクチャバスを使用するローカルバスを含む、任意のいくつかのタイプのバス構造であってもよい。任意の様々な利用可能なバスアーキテクチャバスには、8ビットバス、ISA(Industrial Standard Architecture)、MCA(Micro−Channel Architecture)、EISA(拡張ISA)、IDE(Intelligent Drive Electronics)、VESAローカルバス(VLB)、PCI(Peripheral Component Interconnect)、USB(Universal Serial Bus)、AGP(Advanced Graphics Port)、PCMCIA(Personal Computer Memory Card International Association)バス、およびSCSI(Small Computer Systems Interface)、が含まれるがそれらに限定されない。システムメモリ1016は、揮発性メモリ1020および不揮発性メモリ1022を含む。BIOS(basic input/output system)は、起動中等にコンピュータ1012内の要素間で情報を転送するための基本ルーチンを含有するもので、不揮発性メモリ1022に記憶される。限定ではなく例示として、不揮発性メモリ1022は、ROM(read only memory)、PROM(プログラマブルROM)、EPROM(消去可能PROM)、EEPROM(電気的消去可能PROM)、または、フラッシュメモリ、を含む。揮発性メモリ1020は、外部キャッシュメモリとして動作する、RAM(random access memory)を含む。限定ではなく例示として、RAMは、SRAM(同期RAM)、DRAM(ダイナミックRAM)、SDRAM(同期DRAM)、DDR SDRAM(ダブルデータレートSDRAM)、ESDRAM(エンハンストSDRAM)、SLDRAM(同期リンクDRAM)、およびRDRAM(ラムバスダイナミックRAM)等の多数の形式で利用可能である。
コンピュータ1012はまた、着脱可能/着脱不可能、揮発性/不揮発性のコンピュータ記憶媒体を含む。図10は、例えば、ディスク記憶装置1024を例示する。ディスク記憶装置1024は、磁気ディスクドライブ、フロッピーディスクドライブ、テープドライブ、Jazドライブ、Zipドライブ、LS−100ドライブ、フラッシュメモリカード、または、メモリスティック等の装置を含むが、これに限定されない。加えて、ディスク記憶装置1024は、別個に、または、CD−ROM(compact disk ROM装置)、CD−R(CD recordable)ドライブ、CD−RW(CD rewritable)ドライブ、または、DVD−ROM(digital versatile disk ROM)ドライブ等の、光ディスクドライブを含むがこれに限定されない他の記憶媒体と組合せて、記憶媒体を含むことができる。例えば、DVD−ROMドライブを、DVDから映像の読み込みに関連して採用することが可能である。ディスク記憶装置1024のシステムバス1018への接続を容易にするため、インターフェース1026等の、着脱可能または着脱不可能のインターフェースを一般的には使用する。
図10が、ユーザと適切な動作環境1010で記述する基本コンピュータリソースとの間の媒介として動作するソフトウェアを説明することを理解されたい。そのようなソフトウェアには、オペレーティングシステム1028が含まれる。オペレーティングシステム1028は、ディスク記憶装置1024に記憶するもので、コンピュータシステム1012のリソースを制御および割り当てるために動作する。システムアプリケーション1030は、システムメモリ1016内またはディスク記憶装置1024上に記憶するプログラムモジュール1032およびプログラムデータ1034を介した、オペレーティングシステム1028によるリソースの管理を活用する。標記発明が、種々のオペレーティングシステムまたはオペレーティングシステムの組合せを用いて実装可能であることを理解されたい。
ユーザは、入力デバイス1036を介して、コマンドまたは情報をコンピュータ1012に入力する。入力デバイス1036は、マウス、トラックボール、スタイラスペン、タッチパッド、タッチスクリーン、ステアリングホイールボタン、キーボード、マイク、ジョイスティック、ゲームパッド、パラボラアンテナ、テレビチューナカード、デジタルカメラ、デジタルビデオカメラ、ウェブカメラ、リモート制御等のポインティングデバイスを含むが、これらに限定されない。これらおよび他の入力デバイスは、インターフェースポート1038を介してシステムバス1018を通ってプロセシングユニット1014に接続する。インターフェースポート1038には、例えば、シリアルポート、パラレルポート、ゲームポート、およびUSB(universal serial bus)を含む。出力デバイス1040は、入力デバイス1036と同じタイプのいくつかのポートを使用する。従って、例えば、USBポートを使用して、入力をコンピュータ1012に提供し、コンピュータ1012からの情報を出力デバイス1040へ出力できる。出力アダプタ1042を、特定のアダプタを必要とする他の出力デバイス1040の中に、モニタ、インダッシュディスプレイ、スピーカ、およびプリンタ等のいくつかの出力デバイス1040が存在することを例示するために提示する。出力アダプタ1042には、限定ではなく例示として、出力デバイス1040とシステムバス1018との間の接続手段を提供するビデオカードおよびサウンドカードを含む。なお、他のデバイスおよび/またはデバイスのシステムは、リモートコンピュータ1044等の、入力および出力両方の能力を提供する。
コンピュータ1012は、リモートコンピュータ1044等の1つまたは複数のリモートコンピュータへの論理接続を使用して、ネットワーク環境内で作動することが可能である。リモートコンピュータ1044は、パーソナルコンピュータ、サーバ、ルータ、ネットワークPC、ワークステーション、マイクロプロセッサベースのアプリケーション、ピアデバイスまたは他の一般のネットワークノード等であってもよく、一般的には、コンピュータ1012に関して記載した要素の多くまたは全てを含む。簡潔にする目的で、メモリ記憶装置1046のみをコンピュータ1044内に例示する。リモートコンピュータ1044は、ネットワークインターフェース1048を介して論理的に、そして通信接続1050を介して物理的に、コンピュータ1012に接続する。ネットワークインターフェース1048は、ローカルエリアネットワーク(LAN)およびワイドエリアネットワーク(WAN)等の通信ネットワークを包含する。FDDI(Fiber Distributed Data Interface(光ファイバー分散データインタフェース)、CDDI(Copper Distributed Data Interface)、イーサネット/IEEE802.3、無線LAN(例えば、802.11およびワイマックス)、トークンリング/IEEE802.5等が含まれる。WAN技術には、ポイントツーポイント接続、ISDN(Integrated Services Digital Network(総合デジタル通信網))およびその上の異なるもの等の回路交換ネットワーク、パケット交換ネットワーク、ならびに、DSL(Digital Subscriber Line(デジタル加入者回線))を含むがこれらに限定されない。
通信接続1050は、ネットワークインターフェース1048をバス1018に接続するために採用するハードウェア/ソフトウェアを参照する。コンピュータ1012内部を明確に例示するために通信接続1050を示すが、コンピュータ1012の外部にあってもよい。ネットワークインターフェース1048への接続に必要なハードウェア/ソフトウェアは、例示の目的のみで、通常の電話回線用のモデム、ケーブルモデムおよびDSLモデム、ISDNアダプタ、ならびに、イーサネットカードを含むモデム等の、内部および外部の技術を含む。
図11は、請求される主題が相互作用可能なサンプルのコンピュータ環境1100の概略ブロック図である。システム1100は、1つまたは複数のクライアント1110を含む。クライアント1110は、ハードウェアおよび/またはソフトウェア(例えば、スレッド、処理、コンピュータデバイス)であってもよい。またシステム1100は、1つまたは複数のサーバ1130を含む。サーバ1130はまた、ハードウェアおよび/またはソフトウェア(例えば、スレッド、処理、コンピュータデバイス)であってもよい。サーバ1130は、例えば、請求される主題を採用することにより、変換を実行するスレッドを収容することが可能である。クライアント1110とサーバ1130との間の可能性のある通信は、2つまたはそれ以上のコンピュータ処理間で送信するよう適合された、データパケットの形式であってもよい。システム1100は、クライアント1110とサーバ1130との間の通信を容易にするための通信フレームワーク1150を含む。クライアント1110は、クライアント1110にローカルな情報を記憶するために採用できる、1つまたは複数のクライアントデータストア1160に動作可能に接続する。同様に、サーバ1130は、サーバ1130にローカルな情報を記憶するために採用できる、1つまたは複数のサーバデータストア1140に動作可能に接続する。特定の一例において、サーバは、ネットワークを介してクライアントにアクセス可能な、センサ監視システムであってもよい。ユーザは、クライアントおよびネットワークを介して、サーバ内のセンサ監視システムからセンサまたはセンサデータの劣化に関する情報を受信することができる。
上記に記載されたことは、請求される主題の例を含む。もちろん、そのような主題を説明する目的で、全ての考え得るコンポーネントまたは方法の組み合わせを記載することは不可能である。しかし、当業者は、多くのさらなる組合せおよび置き換えが可能であることを認識することができる。従って、請求される主題は、添付の請求項の精神および範囲にある、全てのそのような代替、修正、および変更を包含することが意図されている。さらに、用語「含む」が、詳細な説明および請求項において使用される限りにおいて、用語「備える」と同様に、「備える」が請求項において移行語として採用するときに解釈するのと同様に、そのような用語が包括的であることが意図されている。

Claims (20)

  1. 幹線フローシステムのセンサ性能を状況依存的に監視するためのシステムであって、以下のコンピュータ実行可能コンポーネント、すなわち、
    センサデータを複数のセンサから取得するセンサインターフェースコンポーネントと、
    少なくとも1つのデータソースから受信した状況的データを分析する状況分析コンポーネントであって、前記状況データは前記センサデータに関連する、状況分析コンポーネントと、
    前記状況的データの分析に少なくとも部分的に基づき、どのセンサデータが劣化しているかを識別するセンサ分析コンポーネントと、
    前記劣化したセンサデータの識別に少なくとも部分的に基づき、出力されたセンサデータを提供する出力コンポーネントと
    であることを特徴とするシステム。
  2. 前記複数のセンサが、異種であることを特徴とする請求項1に記載のシステム。
  3. 前記出力されたセンサデータは、前記センサデータに少なくとも部分的に基づき、フィルタされて、前記劣化したセンサデータを除去するか、または、センサエラーモデルに従って前記センサデータを適切に使用することを特徴とする請求項1に記載のシステム。
  4. 前記出力されたセンサデータが、前記センサデータの劣化を記述する確率論的機能を含むことを特徴とする請求項1に記載のシステム。
  5. 機械学習を採用して、エラーモデルおよび/または故障モデルを含む、前記複数のセンサの出力を予測および/または解釈するために使用される少なくとも1つのモデルを構築する作成コンポーネントをさらに備えることを特徴とする請求項1に記載のシステム。
  6. 劣化したセンサデータの機能としての警告を発する通知コンポーネントをさらに備えることを特徴とする請求項1に記載のシステム。
  7. サブセットの前記複数のセンサの故障を予測するセンサ予測コンポーネントと、
    前記予測された故障の機能としての警告を生成する通知コンポーネントと
    をさらに備えることを特徴とする請求項1に記載のシステム。
  8. 前記センサデータの分析に使用された前回のセンサデータを保持するセンサデータストアをさらに備えることを特徴とする請求項1に記載のシステム。
  9. 前記センサ分析コンポーネントが、物理的に近接するセンサからのセンサデータに少なくとも部分的に基づき、前記センサデータ内の劣化を識別することを特徴とする請求項1に記載のシステム。
  10. 前記センサ分析コンポーネントが、劣化したセンサデータの識別時に交通のフロー表現を利用することを特徴とする請求項1に記載のシステム。
  11. 問題のあるセンサデータを識別するためのコンピュータに実行される方法であって、
    複数のセンサからセンサデータを取得するステップと、
    前記複数のセンサを有する少なくとも1つのデータソースから状況を分析するステップと、
    前記分析された状況に少なくとも部分的に基づき、疑わしいデータを識別するステップと
    を含むことを特徴とする方法。
  12. 前記識別された疑わしいデータ、および、前記識別された疑わしいデータが正しくない確率を出力するステップをさらに含むことを特徴とする請求項11に記載の方法。
  13. 前記複数のセンサが、異種のセンサの組み合わせを含むことを特徴とする請求項11に記載の方法。
  14. 前記識別された疑わしいデータの機能として、前記複数のセンサの少なくとも1つの故障を予測するステップと、
    前記複数のセンサの少なくとも1つの前記予測された故障の機能としての通知を生成するステップと
    をさらに含むことを特徴とする請求項11に記載の方法。
  15. 特定の期間内における前記複数のセンサの少なくとも1つの故障の確率を予測するステップと、
    前記確率に基づき通知を生成するステップとをさらに含むことを特徴とする請求項11に記載の方法。
  16. 前記状況が、曜日、時刻、および/または、気象条件の少なくとも1つを含むことを特徴とする請求項11に記載の方法。
  17. 第1のデータソースの前記状況が、物理的に近接するデータソースから取得されたデータを含むことを特徴とする請求項11に記載の方法。
  18. 幹線フローシステムのセンサ性能を状況依存的に監視するためのシステムであって、以下のコンピュータ実行可能なコンポーネント、すなわち
    複数のセンサからセンサデータを受信する手段と、
    少なくとも1つのデータソースから受信される状況に少なくとも部分的に基づき、前記センサデータを分析する手段であって、前記状況は前記センサデータに関連する、手段と、
    前記センサデータの分析に少なくとも部分的に基づき、出力されたデータをフィルタリングする手段と
    を備えることを特徴とするシステム。
  19. 前記センサデータの分析が、交通のフロー表現を利用することを特徴とする請求項18に記載のシステム。
  20. サブセットの前記複数のセンサの故障を予測する手段と、
    前記予測されたセンサの故障をユーザに通知する手段と
    をさらに備えることを特徴とする請求項18に記載のシステム。
JP2010514938A 2007-06-28 2008-06-10 センサの状況依存信頼性についての学習と推論 Active JP4790864B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/770,649 US7696866B2 (en) 2007-06-28 2007-06-28 Learning and reasoning about the context-sensitive reliability of sensors
US11/770,649 2007-06-28
PCT/US2008/066394 WO2009005963A1 (en) 2007-06-28 2008-06-10 Learning and reasoning about the context-sensitive reliability of sensors

Publications (3)

Publication Number Publication Date
JP2010533903A JP2010533903A (ja) 2010-10-28
JP2010533903A5 JP2010533903A5 (ja) 2011-08-11
JP4790864B2 true JP4790864B2 (ja) 2011-10-12

Family

ID=40159707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010514938A Active JP4790864B2 (ja) 2007-06-28 2008-06-10 センサの状況依存信頼性についての学習と推論

Country Status (5)

Country Link
US (1) US7696866B2 (ja)
EP (1) EP2176822A4 (ja)
JP (1) JP4790864B2 (ja)
CN (1) CN101689287A (ja)
WO (1) WO2009005963A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107403A1 (ja) * 2017-12-01 2019-06-06 オムロン株式会社 データ生成装置、データ生成方法、データ生成プログラムおよびセンサ装置
CN111524348A (zh) * 2020-04-14 2020-08-11 长安大学 一种长短期交通流预测模型及方法
KR20220081070A (ko) * 2020-12-08 2022-06-15 한남대학교 산학협력단 카메라를 이용한 자율주행 지게차

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978789B2 (ja) * 2007-08-13 2012-07-18 富士通株式会社 センサ評価システム、センサ評価方法、および、センサ評価プログラム
US8386157B2 (en) * 2008-10-10 2013-02-26 Jin Hong Kim Universal GPS traffic monitoring system
CN101753609B (zh) * 2008-12-15 2012-09-19 中国移动通信集团公司 分布式系统版本控制方法、节点及系统
US20110157355A1 (en) * 2009-12-28 2011-06-30 Yuri Ivanov Method and System for Detecting Events in Environments
CN103026780B (zh) * 2010-06-30 2016-06-29 诺基亚技术有限公司 用于控制传感器的调用的方法和设备
EP2614019B1 (en) * 2010-09-09 2022-12-14 Laitram, L.L.C. System and method for measuring, mapping, and modifying the temperature of a conveyor
US20120173301A1 (en) * 2011-01-04 2012-07-05 International Business Machines Corporation System and method for failure association analysis
US9311615B2 (en) 2010-11-24 2016-04-12 International Business Machines Corporation Infrastructure asset management
US8457835B2 (en) * 2011-04-08 2013-06-04 General Electric Company System and method for use in evaluating an operation of a combustion machine
JP5358814B2 (ja) * 2011-05-31 2013-12-04 トヨタ自動車株式会社 センサ情報補完システムおよびセンサ情報補完方法
US20140201369A1 (en) * 2011-08-12 2014-07-17 Omron Corporation Information management device, information management program, and information management method
EP2772014B1 (en) * 2011-10-28 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) Method and system for evaluation of sensor observations
WO2013116993A1 (en) * 2012-02-08 2013-08-15 Telefonaktiebolaget L M Ericsson Method, computer program, computer program product and system for handling sensor data
DE102012209443B4 (de) * 2012-06-05 2022-10-20 Robert Bosch Gmbh Verfahren zum Durchführen einer Diagnose einer mit einem Steuergerät in einem Kraftfahrzeug verbundenen Funktionseinheit und Vorrichtung eingerichtet zur Durchführung des Verfahrens
US20140159914A1 (en) * 2012-07-24 2014-06-12 Alan C. Heller Electronic reporting systems and methods
DE102012218362A1 (de) * 2012-10-09 2014-04-24 Bayerische Motoren Werke Aktiengesellschaft Schätzung des Straßentyps mithilfe von sensorbasierten Umfelddaten
CN102970366A (zh) * 2012-11-23 2013-03-13 江苏物联网研究发展中心 基于地理信息系统的气象监控系统
KR101606239B1 (ko) 2013-05-31 2016-03-24 삼성에스디에스 주식회사 센싱 데이터 분석 시스템 및 방법
US10552511B2 (en) * 2013-06-24 2020-02-04 Infosys Limited Systems and methods for data-driven anomaly detection
CN103916927B (zh) * 2014-03-17 2017-06-13 华中科技大学 一种基于改进和声搜索算法的无线传感器网络路由方法
US10203231B2 (en) * 2014-07-23 2019-02-12 Hach Company Sonde
US20160077166A1 (en) * 2014-09-12 2016-03-17 InvenSense, Incorporated Systems and methods for orientation prediction
WO2016043635A1 (en) * 2014-09-16 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Sensor system of master and slave sensors, and method therein
EP3016352B1 (en) * 2014-11-03 2019-02-06 Fujitsu Limited Method of managing sensor network
JP2016162249A (ja) 2015-03-03 2016-09-05 住友電気工業株式会社 センサ管理装置、センサ、監視システム、センサ管理方法、センサ管理プログラム、監視方法および監視プログラム
US10048996B1 (en) * 2015-09-29 2018-08-14 Amazon Technologies, Inc. Predicting infrastructure failures in a data center for hosted service mitigation actions
US10902524B2 (en) 2015-09-30 2021-01-26 Sensormatic Electronics, LLC Sensor based system and method for augmenting underwriting of insurance policies
US11151654B2 (en) 2015-09-30 2021-10-19 Johnson Controls Tyco IP Holdings LLP System and method for determining risk profile, adjusting insurance premiums and automatically collecting premiums based on sensor data
US11436911B2 (en) * 2015-09-30 2022-09-06 Johnson Controls Tyco IP Holdings LLP Sensor based system and method for premises safety and operational profiling based on drift analysis
US10690511B2 (en) * 2015-12-26 2020-06-23 Intel Corporation Technologies for managing sensor anomalies
US10510006B2 (en) 2016-03-09 2019-12-17 Uptake Technologies, Inc. Handling of predictive models based on asset location
US10552914B2 (en) 2016-05-05 2020-02-04 Sensormatic Electronics, LLC Method and apparatus for evaluating risk based on sensor monitoring
US10810676B2 (en) 2016-06-06 2020-10-20 Sensormatic Electronics, LLC Method and apparatus for increasing the density of data surrounding an event
US10489752B2 (en) * 2016-08-26 2019-11-26 General Electric Company Failure mode ranking in an asset management system
US11003518B2 (en) 2016-09-29 2021-05-11 Hewlett-Packard Development Company, L.P. Component failure prediction
CN106507315B (zh) * 2016-11-24 2019-06-28 西安交通大学 基于网络社交媒体数据的城市交通事故预测方法和系统
US10337753B2 (en) * 2016-12-23 2019-07-02 Abb Ag Adaptive modeling method and system for MPC-based building energy control
WO2018125245A1 (en) * 2016-12-31 2018-07-05 Intel Corporation Crowdsourced failure mode prediction
US10783778B2 (en) 2017-10-20 2020-09-22 Microsoft Technology Licensing, Llc Traffic data reconciliation and brokering
US11537868B2 (en) * 2017-11-13 2022-12-27 Lyft, Inc. Generation and update of HD maps using data from heterogeneous sources
AU2018382919B2 (en) 2017-12-12 2023-11-16 Schreder S.A. Luminaire network with sensors
WO2019175435A2 (en) * 2018-03-16 2019-09-19 Schreder S.A. Luminaire network with sensors
WO2020036818A1 (en) * 2018-08-12 2020-02-20 Presenso, Ltd. System and method for forecasting industrial machine failures
US11680832B2 (en) * 2018-08-22 2023-06-20 Ntt Docomo, Inc. Detection device
WO2020117677A1 (en) * 2018-12-03 2020-06-11 DSi Digital, LLC Data interaction platforms utilizing security environments
US11693423B2 (en) * 2018-12-19 2023-07-04 Waymo Llc Model for excluding vehicle from sensor field of view
CN109857018B (zh) * 2019-01-28 2020-09-25 中国地质大学(武汉) 一种数字传感器软模型系统
US11205343B2 (en) * 2019-02-20 2021-12-21 GM Global Technology Operations LLC Methods and systems for interpretating traffic signals and negotiating signalized intersections
US11069161B2 (en) 2019-09-30 2021-07-20 Ford Global Technologies, Llc Adaptive sensor fusion
JP7222344B2 (ja) * 2019-12-06 2023-02-15 横河電機株式会社 判定装置、判定方法、判定プログラム、学習装置、学習方法、および、学習プログラム
GB201919198D0 (en) * 2019-12-23 2020-02-05 Univ Surrey Sensor fault prediction method and apparatus
JP7333284B2 (ja) * 2020-03-16 2023-08-24 株式会社日立製作所 保守支援システム及び保守支援方法
JP7512230B2 (ja) 2020-06-24 2024-07-08 株式会社東芝 設備故障予測システム、設備故障予測方法、および、設備故障予測プログラム
WO2022032102A1 (en) * 2020-08-06 2022-02-10 Front End Analytics Llc Apparatus and method for electronic determination of system data integrity
WO2022033677A1 (en) * 2020-08-12 2022-02-17 Siemens Aktiengesellschaft System and method for adaptive traffic signal planning and control
EP4075130A1 (en) * 2021-04-15 2022-10-19 Infineon Technologies AG Sensing device for sensing an environmental parameter and method for determining an information about a functional state of a sensing device using a neural network
CN115237510A (zh) * 2021-04-23 2022-10-25 沃尔沃汽车公司 用于车辆的建议提供设备、系统和方法
DE102021209681A1 (de) 2021-09-03 2023-03-09 Robert Bosch Gesellschaft mit beschränkter Haftung Konzept zum Unterstützen eines Kraftfahrzeugs durch eine Infrastruktur
US12056722B1 (en) 2021-10-04 2024-08-06 Quanata, Llc Systems and methods for managing vehicle operator profiles based on relative telematics inferences via a telematics marketplace
US12026729B1 (en) * 2021-10-04 2024-07-02 BlueOwl, LLC Systems and methods for match evaluation based on change in telematics inferences via a telematics marketplace
WO2023195049A1 (ja) * 2022-04-04 2023-10-12 日本電気株式会社 監視装置、監視システム、監視方法、及び非一時的なコンピュータ可読媒体
CN115962797B (zh) * 2022-12-28 2024-05-24 国网江苏省电力有限公司泰州供电分公司 一种基于温度应力下的传感器可靠性测试方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168661A (ja) * 2000-08-21 2002-06-14 General Electric Co <Ge> センサ故障の検出、分離及び調整法
JP2002522837A (ja) * 1998-08-17 2002-07-23 アスペン テクノロジー インコーポレイテッド センサの性能確認装置および方法
JP2004213273A (ja) * 2002-12-27 2004-07-29 Tokyo Gas Co Ltd 故障検出装置及び故障検出方法
JP2006085511A (ja) * 2004-09-17 2006-03-30 Hitachi Ltd 交通情報予測装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5400246A (en) * 1989-05-09 1995-03-21 Ansan Industries, Ltd. Peripheral data acquisition, monitor, and adaptive control system via personal computer
US5812865A (en) 1993-12-03 1998-09-22 Xerox Corporation Specifying and establishing communication data paths between particular media devices in multiple media device computing systems based on context of a user or users
US5493692A (en) 1993-12-03 1996-02-20 Xerox Corporation Selective delivery of electronic messages in a multiple computer system based on context and environment of a user
US5555376A (en) 1993-12-03 1996-09-10 Xerox Corporation Method for granting a user request having locational and contextual attributes consistent with user policies for devices having locational attributes consistent with the user request
BR9509446A (pt) 1994-10-26 1997-12-23 Siemens Ag Processo para a análise de um valor medido como também de um analisador de valor medido para a execução do processo
US6035104A (en) 1996-06-28 2000-03-07 Data Link Systems Corp. Method and apparatus for managing electronic documents by alerting a subscriber at a destination other than the primary destination
US6812937B1 (en) 1998-12-18 2004-11-02 Tangis Corporation Supplying enhanced computer user's context data
US7055101B2 (en) 1998-12-18 2006-05-30 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US6842877B2 (en) 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US7137069B2 (en) 1998-12-18 2006-11-14 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US7107539B2 (en) 1998-12-18 2006-09-12 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US6513046B1 (en) 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
US6968333B2 (en) 2000-04-02 2005-11-22 Tangis Corporation Soliciting information based on a computer user's context
US6801223B1 (en) 1998-12-18 2004-10-05 Tangis Corporation Managing interactions between computer users' context models
US7076737B2 (en) 1998-12-18 2006-07-11 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US6791580B1 (en) 1998-12-18 2004-09-14 Tangis Corporation Supplying notifications related to supply and consumption of user context data
US6747675B1 (en) 1998-12-18 2004-06-08 Tangis Corporation Mediating conflicts in computer user's context data
US6466232B1 (en) 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
US6847892B2 (en) 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US20020054130A1 (en) 2000-10-16 2002-05-09 Abbott Kenneth H. Dynamically displaying current status of tasks
US20020044152A1 (en) 2000-10-16 2002-04-18 Abbott Kenneth H. Dynamic integration of computer generated and real world images
GB2386724A (en) 2000-10-16 2003-09-24 Tangis Corp Dynamically determining appropriate computer interfaces
US7373283B2 (en) * 2001-02-22 2008-05-13 Smartsignal Corporation Monitoring and fault detection system and method using improved empirical model for range extrema
SE522545C2 (sv) * 2001-03-06 2004-02-17 Goalart Ab System, anordning och förfarande för diagnostisering av flödesprocesser
WO2002088850A1 (en) * 2001-04-26 2002-11-07 Abb As Method for detecting and correcting sensor failure in oil and gas production system
KR20030045420A (ko) 2001-12-04 2003-06-11 (주) 이스텍 수질측정시스템
JP2005250557A (ja) 2004-03-01 2005-09-15 Mail Support Systems:Kk モバイル技術による日常的水質監視システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522837A (ja) * 1998-08-17 2002-07-23 アスペン テクノロジー インコーポレイテッド センサの性能確認装置および方法
JP2002168661A (ja) * 2000-08-21 2002-06-14 General Electric Co <Ge> センサ故障の検出、分離及び調整法
JP2004213273A (ja) * 2002-12-27 2004-07-29 Tokyo Gas Co Ltd 故障検出装置及び故障検出方法
JP2006085511A (ja) * 2004-09-17 2006-03-30 Hitachi Ltd 交通情報予測装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107403A1 (ja) * 2017-12-01 2019-06-06 オムロン株式会社 データ生成装置、データ生成方法、データ生成プログラムおよびセンサ装置
JP2019101756A (ja) * 2017-12-01 2019-06-24 オムロン株式会社 データ生成装置、データ生成方法、データ生成プログラムおよびセンサ装置
JP7006199B2 (ja) 2017-12-01 2022-01-24 オムロン株式会社 データ生成装置、データ生成方法、データ生成プログラムおよびセンサ装置
CN111524348A (zh) * 2020-04-14 2020-08-11 长安大学 一种长短期交通流预测模型及方法
KR20220081070A (ko) * 2020-12-08 2022-06-15 한남대학교 산학협력단 카메라를 이용한 자율주행 지게차
KR102425529B1 (ko) 2020-12-08 2022-07-25 한남대학교 산학협력단 카메라를 이용한 자율주행 지게차

Also Published As

Publication number Publication date
US7696866B2 (en) 2010-04-13
EP2176822A1 (en) 2010-04-21
EP2176822A4 (en) 2012-06-20
WO2009005963A1 (en) 2009-01-08
CN101689287A (zh) 2010-03-31
JP2010533903A (ja) 2010-10-28
US20090002148A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP4790864B2 (ja) センサの状況依存信頼性についての学習と推論
US7948400B2 (en) Predictive models of road reliability for traffic sensor configuration and routing
US10535205B2 (en) Vehicle maintenance analytics and notifications
JP2006146889A (ja) 確率的相互依存およびコンテキストデータのモデリングおよび解析を用いた交通予測
GB2585243A (en) Traffic event and road condition identification and classification
CN103430203A (zh) 远程无线通讯智能执行ping操作的系统及方法
JP2021182189A (ja) 事故予測方法、コンピュータプログラム、事故予測装置及び学習モデル生成方法
US20220237956A1 (en) Systems and methods for detecting full-stops to reduce vehicle accidents
US20240295408A1 (en) Systems and methods for generating dynamic transit routes
Evans et al. Evolution and future of urban road incident detection algorithms
US20240127385A1 (en) Systems and methods for analyzing and mitigating community-associated risks
US11790458B1 (en) Systems and methods for modeling telematics, positioning, and environmental data
Duan et al. Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions
Ding et al. Insights into vehicle conflicts based on traffic flow dynamics
US20150348407A1 (en) Recommendation Engine Based on a Representation of the Local Environment Augmented by Citizen Sensor Reports
Hofmockel et al. Multiple vehicle fusion for a robust road condition estimation based on vehicle sensors and data mining
Lin Data science application in intelligent transportation systems: An integrative approach for border delay prediction and traffic accident analysis
Gu et al. An unsupervised learning approach for analyzing traffic impacts under arterial road closures: Case study of East Liberty in Pittsburgh
Lukasik et al. Enhancing active transportation and demand management (ATDM) with advanced and emerging technologies and data sources
Evans Improving road incident detection algorithm performance with contextual data
Wamburu et al. Roaming Nairobi roads: Instrumenting roads under resource constraints
Song et al. Mapping to cells: a map-independent approach for traffic congestion detection and evolution pattern recognition
Moonam Developing sampling strategies and predicting freeway travel time using Bluetooth data
US12118881B1 (en) System and method for providing consolidated events in a traffic management control centre using situational awareness
Lira et al. Using Congestion to Improve Short-Term Velocity Forecasting with Machine Learning Models

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250