JP4785774B2 - Laminated body and method for producing the same - Google Patents

Laminated body and method for producing the same Download PDF

Info

Publication number
JP4785774B2
JP4785774B2 JP2007061428A JP2007061428A JP4785774B2 JP 4785774 B2 JP4785774 B2 JP 4785774B2 JP 2007061428 A JP2007061428 A JP 2007061428A JP 2007061428 A JP2007061428 A JP 2007061428A JP 4785774 B2 JP4785774 B2 JP 4785774B2
Authority
JP
Japan
Prior art keywords
melting point
layer
point layer
laminate
aromatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007061428A
Other languages
Japanese (ja)
Other versions
JP2008221555A (en
Inventor
泰弘 城谷
裕 宮口
公彦 法橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007061428A priority Critical patent/JP4785774B2/en
Publication of JP2008221555A publication Critical patent/JP2008221555A/en
Application granted granted Critical
Publication of JP4785774B2 publication Critical patent/JP4785774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、耐熱寸法安定性、低誘電特性、非吸水性に優れたプリント基板やクッション材等の樹脂補強用基材、あるいはフィルター等に有用な積層体およびその製造方法に関する。   The present invention relates to a laminate useful for a resin reinforcing substrate such as a printed circuit board or a cushioning material excellent in heat-resistant dimensional stability, low dielectric properties, and non-water absorption, or a filter, and a method for producing the same.

従来より、電気絶縁材料には耐熱性の優れたアラミド系のパルプあるいは繊維よりなる紙が広く利用されている。しかしながら、アラミドからなる紙は、その化学構造から吸湿性を有するため高い絶縁性、長期耐久性を要求される用途では信頼性の面から問題があった。この問題点を解決するために非吸湿であり、耐薬品性、耐熱性にも優れた紙として、溶融液晶形成性全芳香族ポリエステル繊維を叩解することによって得られるパルプと短繊維で構成された抄紙が提案されている(例えば、特許文献1参照。)。
しかしながら、特許文献1の方法では短繊維化、パルプ化、抄紙と工程が多く複雑となり、コスト面で不利であった。
Conventionally, paper made of aramid pulp or fiber having excellent heat resistance has been widely used as an electrical insulating material. However, since aramid paper has hygroscopicity due to its chemical structure, there is a problem in terms of reliability in applications that require high insulation and long-term durability. In order to solve this problem, it was made of pulp and short fibers obtained by beating non-moisture-absorbing, chemically-resistant, heat-resistant paper and melted liquid crystal-forming wholly aromatic polyester fibers. Papermaking has been proposed (see, for example, Patent Document 1).
However, the method of Patent Document 1 is disadvantageous in terms of cost because it involves many complicated processes such as fiber shortening, pulping, and paper making.

上記した方法に対し、メルトブロー法により得られた溶融液晶形成性全芳香族ポリエステル不織布をロールプレス加工により製造する方法が提案されている(例えば、特許文献2参照。)。しかし、特許文献2の溶融液晶形成性全芳香族ポリエステル不織布にて絶縁性能を得るためには目付けを高くする必要があり、かつ高温でのプレス加工が必要となるため不織布が部分的にフィルム化し、ロールとの離型性が悪くなるといった問題があった。   In contrast to the above-described method, a method has been proposed in which a melted liquid crystal-forming wholly aromatic polyester nonwoven fabric obtained by a melt blow method is manufactured by roll press processing (see, for example, Patent Document 2). However, in order to obtain insulation performance with the melted liquid crystal-forming wholly aromatic polyester nonwoven fabric of Patent Document 2, it is necessary to increase the basis weight and press processing at high temperature is required, so the nonwoven fabric is partially filmed. There was a problem that the releasability with the roll deteriorated.

特開平7−048718号公報Japanese Unexamined Patent Publication No. 7-048718 特開2002−061064号公報JP 2002-061064 A

本発明の目的は、上記問題点に鑑みてなされたものであり、非吸湿性、耐熱性、電気絶縁性に優れ、かつロールプレス加工時のロールとの離型性も良好な絶縁材、クッション材等に有用な積層体を提供することにある。   The object of the present invention has been made in view of the above problems, and is an insulating material and cushion excellent in non-hygroscopicity, heat resistance and electrical insulation, and having good releasability from the roll during roll press processing. An object of the present invention is to provide a laminate that is useful for materials and the like.

本発明者等は、かかる課題を解決するために鋭意検討した結果、融点の異なる溶融液晶形成性全芳香族ポリエステルポリマーからなる不織布を積層し、かつ低融点側の不織布層を熱圧着により軟化、溶融させてフィルム化させることにより、得られる積層体は絶縁性能が向上されることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventors laminated non-woven fabrics made of melted liquid crystal-forming wholly aromatic polyester polymers having different melting points, and softened the non-woven fabric layer on the low melting point side by thermocompression bonding, By melting and forming into a film, the obtained laminate was found to have improved insulating performance, and the present invention was completed.

すなわち本発明は、溶融液晶形成性全芳香族ポリエステル不織布からなる低融点層(イ)と、(イ)より溶融温度が30℃以上高い溶融液晶形成性全芳香族ポリエステル不織布からなる高融点層(ロ)からなり、かつ以下(1)〜(3)を全て満足する積層体である。
(1)少なくとも3層以上で構成されていること、
(2)各層間が熱圧着により接着されてなること、
(3)高融点層(ロ)が積層体の最外層に配されていること。
That is, the present invention includes a low melting point layer (a) made of a melted liquid crystal forming fully aromatic polyester non-woven fabric and a high melting point layer made of a melted liquid crystal forming fully aromatic polyester non-woven fabric having a melting temperature 30 ° C. higher than (a) ( B) and satisfying all of the following (1) to (3).
(1) It is composed of at least three layers,
(2) Each layer is bonded by thermocompression bonding,
(3) The high melting point layer (b) is disposed on the outermost layer of the laminate.

そして本発明は、好ましくは低融点層(イ)が、融点250℃以上、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmである実質的に連続したフィラメントからなる不織布であり、高融点層(ロ)が、融点280℃以上、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmである実質的に連続したフィラメントからなる不織布であることを特徴とする上記の積層体である。さらに本発明は、好ましくは前記低融点層(イ)と高融点層(ロ)がともにメルトブロー法により製造される上記の積層体である。   In the present invention, preferably, the low melting point layer (a) is composed mainly of a molten liquid crystal forming wholly aromatic polyester having a melting point of 250 ° C. or higher and a melt viscosity at 310 ° C. of 20 Pa · s or less, and has an average fiber diameter. A non-woven fabric consisting of substantially continuous filaments of 1 to 15 μm, a high melting point layer (b) having a melting point of 280 ° C. or higher and a melt viscosity at 310 ° C. of 20 Pa · s or less. The laminate as described above, which is a non-woven fabric composed of substantially continuous filaments mainly composed of polyester and having an average fiber diameter of 1 to 15 μm. Furthermore, the present invention is preferably the above laminate in which both the low melting point layer (A) and the high melting point layer (B) are produced by a melt blow method.

また本発明は、より好ましくは<低融点層(イ)の軟化温度>〜<低融点層(イ)の軟化温度+30℃>の範囲に加熱された金属ロールにて、低融点層(イ)が軟化した状態で高融点層(ロ)と熱圧着させることを特徴とする上記の積層体である。   In the present invention, the low melting point layer (A) is more preferably a metal roll heated in the range of <softening temperature of the low melting point layer (A)> to <softening temperature of the low melting point layer (A) + 30 ° C.>. It is said laminated body characterized by making it heat-press with a high melting point layer (b) in the state which softened.

本発明の積層体は、従来の溶融液晶形成性全芳香族ポリエステル繊維からなる不織布に比べて絶縁性に優れたものとなる。   The laminate of the present invention is superior in insulation properties compared to a nonwoven fabric made of a conventional fused liquid crystal-forming wholly aromatic polyester fiber.

本発明において不織布に用いる溶融液晶形成性全芳香族ポリエステルは、耐熱性、耐薬品性に優れた樹脂である。本発明にいう溶融液晶形成性全芳香族ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することで認定できる。溶融異方性ポリエステルは芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸の反復構成単位を主成分とするものであり、例えば、以下に示す反復構成単位群の組合せからなるものが好ましい。   The molten liquid crystal-forming wholly aromatic polyester used for the nonwoven fabric in the present invention is a resin excellent in heat resistance and chemical resistance. The molten liquid crystal-forming wholly aromatic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the molten phase. For example, a sample is placed on a hot stage and heated in a nitrogen atmosphere. It can be recognized by observing the transmitted light. The melt-anisotropic polyester is composed mainly of repeating structural units of aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid. For example, those composed of combinations of repeating structural units shown below are preferable.

Figure 0004785774
Figure 0004785774

これらの中でも、本発明で使用される溶融液晶形成性全芳香族ポリエステルとしては、パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が主成分となる構成、またはパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸とテレフタル酸とビフェノールが主成分となる構成が好ましい。
なお、上記溶融液晶形成性全芳香族ポリエステルには、必要に応じて着色剤、無機フィラー、酸化防止剤、紫外線吸収剤等の通常使用されている添加剤および熱可塑性エラストマーを本発明の機能を阻害しない範囲で添加してもよい。
Among these, as the molten liquid crystal-forming wholly aromatic polyester used in the present invention, a configuration mainly composed of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, or parahydroxybenzoic acid and 6-hydroxy A configuration in which -2-naphthoic acid, terephthalic acid, and biphenol are the main components is preferable.
The melted liquid crystal-forming wholly aromatic polyester has the functions of the present invention as required by adding additives such as colorants, inorganic fillers, antioxidants, ultraviolet absorbers, and thermoplastic elastomers as necessary. You may add in the range which does not inhibit.

本発明で使用される溶融液晶形成性全芳香族ポリエステルは310℃での溶融粘度が20Pa・s以下であることが好ましい。溶融粘度が20Pa・sを超えると極細繊維化が困難であったり、重合時のオリゴマーの発生や重合時や造粒時のトラブル発生などの理由から好ましくない。
一方、溶融粘度が低すぎる場合も繊維化が困難であるため、310℃における溶融粘度が5Pa・s以上であることが好ましい。
The molten liquid crystal-forming wholly aromatic polyester used in the present invention preferably has a melt viscosity at 310 ° C. of 20 Pa · s or less. When the melt viscosity exceeds 20 Pa · s, it is not preferable because it is difficult to make ultrafine fibers, or the occurrence of oligomers during polymerization or the occurrence of troubles during polymerization or granulation.
On the other hand, since fiberization is difficult even when the melt viscosity is too low, the melt viscosity at 310 ° C. is preferably 5 Pa · s or more.

本発明の積層体は、図1に示すように少なくとも低融点の溶融液晶形成性全芳香族ポリエステル不織布層(イ)と高融点の溶融液晶形成性全芳香族ポリエステル不織布層(ロ)からなり、少なくとも3層以上で構成されていることが重要である。
また低融点層(イ)と高融点層(ロ)を構成する溶融液晶形成性全芳香族ポリエステル不織布としては、高融点層(ロ)を構成する溶融液晶形成性全芳香族ポリエステルの融点が低融点層(イ)を構成する溶融液晶形成性全芳香族ポリエステルの融点よりも30℃以上高いものを選択することが必要であり、具体的には耐熱性の点から低融点層(イ)の融点が250℃以上、高融点層(ロ)の融点が280℃以上であることが好ましい。
低融点層(イ)と高融点層(ロ)との融点差が30℃未満の場合、積層体とした時に低融点層(イ)と高融点層(ロ)の熱接着性が不十分となる。
低融点層(イ)と高融点層(ロ)の融点差は好ましくは35℃以上であり、より好ましくは40℃以上である。
また、低融点層(イ)の融点が250℃未満、高融点層(ロ)の融点が280℃未満であると、前記したように耐熱性の点で問題がある。
As shown in FIG. 1, the laminate of the present invention comprises at least a low-melting-point molten liquid crystal-forming wholly aromatic polyester nonwoven fabric layer (A) and a high-melting point melting liquid-crystal-forming wholly aromatic polyester nonwoven fabric layer (B). It is important that it is composed of at least three layers.
The melted liquid crystal forming wholly aromatic polyester nonwoven fabric constituting the low melting point layer (b) and the high melting point layer (b) has a low melting point of the melted liquid crystal forming fully aromatic polyester constituting the high melting point layer (b). It is necessary to select one having a melting point higher than that of the melted liquid crystal-forming wholly aromatic polyester constituting the melting point layer (a) by 30 ° C or more. Specifically, from the viewpoint of heat resistance, the low melting point layer (a) The melting point is preferably 250 ° C. or higher, and the high melting point layer (b) preferably has a melting point of 280 ° C. or higher.
If the difference in melting point between the low melting point layer (a) and the high melting point layer (b) is less than 30 ° C., the thermal adhesion between the low melting point layer (a) and the high melting point layer (b) is insufficient when the laminate is formed. Become.
The difference in melting point between the low melting point layer (A) and the high melting point layer (B) is preferably 35 ° C. or more, more preferably 40 ° C. or more.
Further, when the melting point of the low melting point layer (A) is less than 250 ° C. and the melting point of the high melting point layer (B) is less than 280 ° C., there is a problem in terms of heat resistance as described above.

次に本発明でいう溶融液晶形成性全芳香族ポリエステル不織布の製造方法(紡糸方法)は、フラッシュ紡糸法、メルトブロー法等が挙げられるが、極細繊維からなる不織布の製造が比較的容易であること、紡糸時に溶剤を必要とせず環境への影響を最小限とすることができる点からメルトブロー法で製造された不織布であることが好ましい。
メルトブロー法にて製造する場合、紡糸装置は従来公知のメルトブロー装置を用いることができる。紡糸条件としては、紡糸温度310〜360℃、熱風温度(一次エアー温度)310〜380℃、ノズル長1m当りのエアー量10〜50Nmとすることが好ましい。またこのようにして製造される本発明の不織布を構成する繊維の平均繊維径は1〜15μmであることが好ましい。平均繊維径が1μm未満では風綿が発生し繊維塊となりやすく、一方15μmを越えると地合が粗くなるため好ましくない。
なお、本発明において平均繊維径は、不織布を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維径を測定した値の平均値を示す。
Next, examples of the manufacturing method (spinning method) of the melt liquid crystal-forming wholly aromatic polyester nonwoven fabric referred to in the present invention include a flash spinning method, a melt blowing method, etc., but it is relatively easy to manufacture a nonwoven fabric composed of ultrafine fibers. A nonwoven fabric produced by a melt-blowing method is preferable because a solvent is not required at the time of spinning and the influence on the environment can be minimized.
In the case of producing by the melt blowing method, a conventionally known melt blowing apparatus can be used as the spinning apparatus. The spinning conditions are preferably a spinning temperature of 310 to 360 ° C., a hot air temperature (primary air temperature) of 310 to 380 ° C., and an air amount of 10 to 50 Nm 3 per 1 m of the nozzle length. Moreover, it is preferable that the average fiber diameter of the fiber which comprises the nonwoven fabric of this invention manufactured in this way is 1-15 micrometers. If the average fiber diameter is less than 1 μm, fluff is likely to be formed and a fiber lump is easily formed. On the other hand, if it exceeds 15 μm, the formation becomes rough, which is not preferable.
In addition, in this invention, an average fiber diameter shows the average value of the value which carried out magnified photography of the nonwoven fabric with the scanning electron microscope, and measured arbitrary 100 fiber diameters.

本発明の積層体に用いられる溶融液晶形成性全芳香族ポリエステル不織布の坪量は特に制限はなく、要求性能に応じて適宜調整することが可能であるが、絶縁性、加工性の面からは5〜300g/m2であることが好ましい。坪量が5g/m2未満であると地合、緻密性が低下し十分な絶縁性能が得られず、300g/mを超えると後の積層工程で伝熱が低下し、加工速度を著しく低下させることとなる。 The basis weight of the molten liquid crystal-forming wholly aromatic polyester nonwoven fabric used in the laminate of the present invention is not particularly limited and can be appropriately adjusted according to the required performance, but from the aspects of insulation and workability It is preferable that it is 5-300 g / m < 2 >. If the basis weight is less than 5 g / m 2 , the formation and the denseness are lowered and sufficient insulation performance cannot be obtained. If the basis weight is more than 300 g / m 2 , the heat transfer is lowered in the subsequent laminating process, and the processing speed is remarkably increased. Will be reduced.

本発明において、高融点層の溶融液晶形成性全芳香族ポリエステル不織布を該融点−40℃以上、該融点+20℃以下の温度で3時間以上熱処理することで繊維自体の配向促進および繊維間の交絡点の接着性向上により不織布の強度を向上させることができる。
ここで、熱処理温度を該融点−40℃未満の温度で熱処理した場合には、溶融液晶形成性全芳香族ポリエステルの固相重合が進まず、不織布強度を向上させることはできない。一方、熱処理温度が該融点+20℃を超えるとポリマーが軟化し、繊維が融着するなどの問題が生じる。熱処理時に加熱媒体として用いる気体は、窒素、酸素、アルゴン、炭酸ガスなどの混合気体または空気等が用いられる。また熱処理は緊張下、無緊張下のどちらでもよい。
In the present invention, the melted liquid crystal-forming wholly aromatic polyester nonwoven fabric of the high melting point layer is heat-treated at a temperature of the melting point −40 ° C. or higher and the melting point + 20 ° C. or lower for 3 hours or longer to promote the orientation of the fiber itself and entanglement between the fibers The strength of the nonwoven fabric can be improved by improving the adhesion of the dots.
Here, when the heat treatment is performed at a temperature lower than the melting point of −40 ° C., the solid-state polymerization of the molten liquid crystal-forming wholly aromatic polyester does not proceed and the strength of the nonwoven fabric cannot be improved. On the other hand, when the heat treatment temperature exceeds the melting point + 20 ° C., the polymer softens and the fibers are fused. As a gas used as a heating medium at the time of heat treatment, a mixed gas such as nitrogen, oxygen, argon, carbon dioxide, air, or the like is used. The heat treatment may be under tension or under tension.

溶融液晶形成性全芳香族ポリエステル不織布からなる低融点層(イ)と高融点層(ロ)とを熱圧着する方法は、接着強度、ロール耐久性等の観点から、一対の加熱された金属ロールを使用することが好ましい。加熱条件としては、<低融点層(イ)の軟化温度>から<低融点層(イ)の軟化温度+30℃>の温度範囲に加熱された金属ロールにて、低融点層(イ)が軟化した状態で高融点層(ロ)と熱圧着させることが好ましい。低融点層(イ)の軟化温度よりも低い場合、低融点層(イ)の軟化が不十分となり、層間の接着強度が低下する。また軟化温度+30℃を超えると低融点層(イ)が軟化しすぎて著しく変形し、積層体の厚みの均質性が損なわれる。なお、ここでいう軟化温度とは熱機器分析計(TMAと称す)を使用して、幅5mm×長さ20mmの供試体に1gの荷重をかけ、10℃/minの速度で昇温して、温度(℃)〜寸法変化率(%)曲線を求め、この曲線において、昇温に伴って寸法変化率が負(収縮)の領域から正(膨張)の領域に転ずる直前の温度領域に認められる接線の勾配が0%/℃となる温度と定義したものである。   A method of thermocompression bonding a low melting point layer (A) and a high melting point layer (B) made of a melted liquid crystal-forming wholly aromatic polyester nonwoven fabric is a pair of heated metal rolls from the viewpoint of adhesive strength, roll durability, etc. Is preferably used. As heating conditions, the low melting point layer (a) is softened by a metal roll heated to the temperature range of <the softening temperature of the low melting point layer (a)> to <the softening temperature of the low melting point layer (a) + 30 ° C.>. In this state, it is preferable to perform thermocompression bonding with the high melting point layer (b). When the temperature is lower than the softening temperature of the low melting point layer (a), the softening of the low melting point layer (a) becomes insufficient, and the adhesive strength between the layers decreases. On the other hand, when the temperature exceeds the softening temperature + 30 ° C., the low melting point layer (A) is excessively softened and significantly deformed, and the thickness uniformity of the laminate is impaired. The softening temperature referred to here uses a thermal instrument analyzer (referred to as TMA), applies a load of 1 g to a specimen having a width of 5 mm and a length of 20 mm, and raises the temperature at a rate of 10 ° C./min. The temperature (° C.) to the dimensional change rate (%) curve was obtained, and in this curve, the dimensional change rate with a rise in temperature was recognized in the temperature region immediately before the negative (shrinkage) region changed to the positive (expansion) region. It is defined as the temperature at which the gradient of the tangential line is 0% / ° C.

また本発明において、低融点層(イ)と高融点層(ロ)の配置については、図1に示すように高融点層(ロ)を金属ロールと接する最外層に配することが必要である。高融点層(ロ)を金属ロールと接する最外層に配することにより低融点層(イ)が軟化する温度においても高融点層(ロ)はロールとの剥離性が良好となる。一方、低融点層(イ)を金属ロールと接する最外層に配した場合、低融点層(イ)が軟化し、金属ロールとの剥離性が著しく悪化する。   In the present invention, the arrangement of the low melting point layer (A) and the high melting point layer (B) needs to be arranged on the outermost layer in contact with the metal roll as shown in FIG. . By disposing the high melting point layer (b) in the outermost layer in contact with the metal roll, the high melting point layer (b) has good releasability from the roll even at a temperature at which the low melting point layer (b) is softened. On the other hand, when the low melting point layer (a) is disposed in the outermost layer in contact with the metal roll, the low melting point layer (a) is softened and the peelability from the metal roll is significantly deteriorated.

金属ロールに加えられる圧力は線圧10〜200kg/cmであることが好ましい。線圧10kg/cm未満の場合、層間の接着強度が不十分となるので好ましくない。
一方、200kg/cmを超えると低融点層が一部染み出し金属ロールへ接着したり、基材の一部が破断するといった問題が生じる。
The pressure applied to the metal roll is preferably a linear pressure of 10 to 200 kg / cm. When the linear pressure is less than 10 kg / cm, the adhesive strength between the layers becomes insufficient, which is not preferable.
On the other hand, when it exceeds 200 kg / cm, the low melting point layer partially oozes out and adheres to the metal roll, or the base material partially breaks.

このようにして得られた本発明の積層体にエポキシ樹脂、BT(ビスマレイミド・トリアジン)樹脂、PPE(ポリフェニレンエーテル)樹脂等の熱硬化性樹脂を含浸後、プレス成形にて硬化させることにより、耐熱寸法安定性、低誘電特性、非吸水性に優れた樹脂補強成形体を得ることができる。   By impregnating the thus obtained laminate of the present invention with a thermosetting resin such as an epoxy resin, BT (bismaleimide / triazine) resin, PPE (polyphenylene ether) resin, and curing by press molding, A resin-reinforced molded article excellent in heat-resistant dimensional stability, low dielectric properties, and non-water absorption can be obtained.

以下、実施例によって本発明を詳細に説明するが、本発明は実施例によって限定されるものではない。なお、本発明において積層体の諸物性は以下の測定方法により測定されたものを意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by an Example. In addition, in this invention, the various physical properties of a laminated body mean what was measured with the following measuring methods.

[融点 ℃]
積層体をJIS L1085試験法に準拠し、180度剥離試験を実施した。
すなわち、幅5cmの剥離試験片の片面を他面に対して平行に引っ張ることで層間剥離強度を測定した。
[Melting point ℃]
The laminate was subjected to a 180 degree peel test in accordance with the JIS L1085 test method.
That is, the delamination strength was measured by pulling one side of a peel test piece having a width of 5 cm in parallel to the other side.

[軟化温度 ℃]
理学電器社製の熱機器分析計(TMAと称す)を使用して、幅5mm×長さ20mmの供試体に1gの荷重をかけ、10℃/minの速度で昇温して、温度(℃)〜寸法変化率(%)曲線を作図し、この曲線において、昇温に伴って寸法変化率が負(収縮)の領域から正(膨張)の領域に転ずる直前の温度領域に認められる接線の勾配が0%/℃となる温度を軟化温度として求めた。
[Softening temperature ℃]
Using a thermal instrument analyzer (TMA) manufactured by Rigaku Denki Co., Ltd., a 1 g load was applied to a specimen having a width of 5 mm and a length of 20 mm, and the temperature was raised at a rate of 10 ° C./min. )-Draw a dimensional change rate (%) curve. In this curve, the tangential line observed in the temperature region immediately before the dimensional change rate changes from a negative (shrinkage) region to a positive (expansion) region as the temperature rises. The temperature at which the gradient was 0% / ° C. was determined as the softening temperature.

[絶縁破壊強さ kV/mm]
供試体をJIS C 2111に準じ、多摩電測株式会社製の絶縁破壊試験器を使用し、1試験片中の10点の絶縁破壊強さを測定し、その平均値を求めた。
[Dielectric breakdown strength kV / mm]
In accordance with JIS C 2111, the dielectric breakdown tester made by Tama Densetsu Co., Ltd. was used for the specimen, and the dielectric breakdown strength at 10 points in one test piece was measured, and the average value was obtained.

[吸湿率 %]
供試体を10cm角に切り取り、JIS C 2111に準じ、真空状態にて120℃×6hr乾燥後、20℃×95%RH雰囲気中に1週間放置し、吸湿前後の重量変化を電子天秤で測定し、下記式から吸湿率を求めた。W0は乾燥後の供試体重量であり、Wは吸湿後の重量である。
吸湿率(%)=(W−W0)÷W0×100
[Hygroscopic rate%]
The specimen is cut into a 10 cm square, dried in a vacuum state at 120 ° C. for 6 hours in accordance with JIS C 2111, and left in a 20 ° C. × 95% RH atmosphere for one week, and the weight change before and after moisture absorption is measured with an electronic balance. The moisture absorption rate was determined from the following formula. W0 is the weight of the specimen after drying, and W is the weight after moisture absorption.
Moisture absorption rate (%) = (W−W0) ÷ W0 × 100

[吸湿による寸法変化率 %]
供試体を10cm角に切り取り、真空状態にて120℃×6hr乾燥後、20℃×95%RH雰囲気中に1週間放置し、吸湿前後の供試体縦方向の寸法を最小目盛り0.5mmの金定規で測定し、下記式から寸法変化率を求めた。L0は乾燥後の供試体寸法であり、Lは吸湿後の寸法である。
寸法変化率(%)=(L−L0)÷L0×100
[Dimensional change rate due to moisture absorption%]
The specimen is cut into 10 cm squares, dried in a vacuum at 120 ° C. for 6 hours, and then left in a 20 ° C. × 95% RH atmosphere for one week, and the vertical dimension of the specimen before and after moisture absorption is 0.5 mm at a minimum scale. Measured with a ruler, the dimensional change rate was determined from the following formula. L0 is the dimension of the specimen after drying, and L is the dimension after moisture absorption.
Dimensional change rate (%) = (L−L0) ÷ L0 × 100

[実施例1]
(1)パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が12Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−A」)を二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nmの条件にて坪量40g/m、軟化温度200℃、融点300℃の低融点層の不織布(イ)を得た。
(2)次いで上記(イ)と同じ310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステルを上記(1)と同じ条件にて坪量70g/mの不織布を得た後、該不織布を270℃で6時間熱処理し、融点335℃の高融点層の不織布(ロ)を得た。
(3)そして前記(1)で得られた低融点層の不織布(イ)を中間層に配し、(イ)の両側に前記(2)で得られた高融点層の不織布(ロ)を配して200℃に加熱した一対の金属ロール間で線圧100kg/cmで熱圧着させ、厚み170μmの三層からなる積層体を得た。この積層体の絶縁破壊強さは41kV/mmで、絶縁材料として十分な性能を有しており、さらに吸湿率は0.1%、吸湿時の寸法変化率も0.1%と低く、絶縁性、非吸湿性に優れた積層体であった。
[Example 1]
(1) Molten liquid crystal-forming wholly aromatic polyester comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 12 Pa · s (Polyplastics Corporation) "Vectra-A") is extruded from a twin-screw extruder and supplied to a melt-blown nonwoven fabric manufacturing apparatus having a nozzle with a width of 1 m and a hole count of 1000, with a single-hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C, and a hot air temperature A low melting point non-woven fabric (I) having a basis weight of 40 g / m 2 , a softening temperature of 200 ° C., and a melting point of 300 ° C. was obtained under the conditions of 310 ° C. and an air amount of 20 Nm 3 per 1 m of the nozzle length.
(2) Next, a non-woven fabric having a basis weight of 70 g / m 2 is obtained from the molten liquid crystal-forming wholly aromatic polyester having a melt viscosity of 15 Pa · s at 310 ° C. as in (a) above under the same conditions as in (1) above. After that, the nonwoven fabric was heat-treated at 270 ° C. for 6 hours to obtain a nonwoven fabric (b) having a high melting point layer having a melting point of 335 ° C.
(3) Then, the low melting point nonwoven fabric (A) obtained in (1) above is disposed in the intermediate layer, and the high melting point nonwoven fabric (B) obtained in (2) above is placed on both sides of (A). It was thermocompression bonded at a linear pressure of 100 kg / cm between a pair of metal rolls arranged and heated to 200 ° C. to obtain a laminate composed of three layers having a thickness of 170 μm. This laminated body has a dielectric breakdown strength of 41 kV / mm and has sufficient performance as an insulating material. Further, the moisture absorption rate is as low as 0.1% and the dimensional change rate during moisture absorption is as low as 0.1%. It was a laminate excellent in properties and non-hygroscopicity.

[実施例2]
(1)パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−L」)を二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nmの条件にて坪量40g/m、軟化温度200℃、融点280℃の低融点層の不織布(イ)を得た。
(2)次いでパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が10Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−C」)を上記(1)と同じ条件にて坪量70g/m、融点325℃の高融点層の不織布(ロ)を得た。
(3)そして前記(1)で得られた低融点層の不織布(イ)を中間層に配し、(イ)の両側に前記(2)で得られた高融点層の不織布(ロ)を配して200℃に加熱した一対の金属ロール間で線圧100kg/cmで熱圧着させ、厚み170μmの三層からなる積層体を得た。この積層体の絶縁破壊強さは41kV/mmで、絶縁材料として十分な性能を有しており、さらに吸湿率は0.1%、吸湿時の寸法変化率も0.1%と低く、絶縁性、非吸湿性に優れた積層体であった。
[Example 2]
(1) Molten liquid crystal-forming wholly aromatic polyester (polyplastics Co., Ltd.) comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 15 Pa · s. "Vectra-L") is extruded from a twin screw extruder and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle with a width of 1 m and a hole count of 1000, with a single hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C, and a hot air temperature A low melting point non-woven fabric (I) having a basis weight of 40 g / m 2 , a softening temperature of 200 ° C. and a melting point of 280 ° C. was obtained under the conditions of 310 ° C. and an air amount of 20 Nm 3 per 1 m of the nozzle length.
(2) Molten liquid crystal-forming wholly aromatic polyester (polyplastics stock) comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 10 Pa · s. A non-woven fabric (b) having a high melting point layer having a basis weight of 70 g / m 2 and a melting point of 325 ° C. was obtained under the same conditions as in (1) above.
(3) Then, the low melting point nonwoven fabric (A) obtained in (1) above is disposed in the intermediate layer, and the high melting point nonwoven fabric (B) obtained in (2) above is placed on both sides of (A). It was thermocompression bonded at a linear pressure of 100 kg / cm between a pair of metal rolls arranged and heated to 200 ° C. to obtain a laminate composed of three layers having a thickness of 170 μm. This laminated body has a dielectric breakdown strength of 41 kV / mm and has sufficient performance as an insulating material. Further, the moisture absorption rate is as low as 0.1% and the dimensional change rate during moisture absorption is as low as 0.1%. It was a laminate excellent in properties and non-hygroscopicity.

[実施例3]
低融点層の不織布(イ)の坪量を150g/mに変更したこと以外は実施例2と同様にして厚み250μmの三層からなる積層体を得た。
この積層体の絶縁破壊強さは59kV/mmで、絶縁材料として十分な性能を有しており、さらに吸湿率は0.1%、吸湿時の寸法変化率も0.1%と低く、絶縁性、非吸湿性に優れた積層体であった。
[Example 3]
A laminate composed of three layers having a thickness of 250 μm was obtained in the same manner as in Example 2 except that the basis weight of the low melting point nonwoven fabric (I) was changed to 150 g / m 2 .
This laminated body has a dielectric breakdown strength of 59 kV / mm and has sufficient performance as an insulating material. Further, the moisture absorption rate is as low as 0.1% and the dimensional change rate during moisture absorption is as low as 0.1%. It was a laminate excellent in properties and non-hygroscopicity.

[比較例1]
高融点層(ロ)を中間層に配し、高融点層(ロ)の両側に低融点層(イ)を配した以外は実施例2と同様にして200℃に加熱した一対の金属ロール間で線圧100kg/cmで熱圧着させたが、最外層の低融点層がロールに接着し、加工性不良であった。
[Comparative Example 1]
Between a pair of metal rolls heated to 200 ° C. in the same manner as in Example 2 except that the high melting point layer (b) was disposed in the intermediate layer and the low melting point layer (b) was disposed on both sides of the high melting point layer (b). However, the outermost low melting point layer adhered to the roll, resulting in poor workability.

[比較例2]
高融点層(ロ)を270℃、1時間の熱処理条件にて融点を320℃とした以外は実施例1と同様にして低融点層(イ)を中間層に配し、該低融点層の両側に融点320℃の高融点層(ロ)を配して200℃に加熱した一対の金属ロール間で線圧100kg/cmで熱圧着させたが、高融点層(ロ)と低融点層(イ)の融点差が20℃しかないため、最外層の高融点層(ロ)の一部がロールに接着し、加工性不良となった。
[Comparative Example 2]
The low melting point layer (b) was placed in the intermediate layer in the same manner as in Example 1 except that the melting point was 320 ° C. under the heat treatment conditions of 270 ° C. and 1 hour. A high melting point layer (b) having a melting point of 320 ° C. was placed on both sides and thermocompression bonded between a pair of metal rolls heated to 200 ° C. at a linear pressure of 100 kg / cm. Since the difference in melting point of b) was only 20 ° C., a part of the outermost high melting point layer (B) adhered to the roll, resulting in poor workability.

[比較例3]
パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−L」)を二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nmの条件にて坪量250g/mの不織布を得た。該不織布をさらに270℃で6時間熱処理を行って融点335℃の不織布とした。
この不織布を200℃に加熱した一対の金属ロール間で線圧200kg/cmでプレスし、厚み260μmの単層不織布を得た。
この不織布の吸湿率は0.1%、吸湿時の寸法変化率も0.1%と低いものであったが、絶縁破壊強さは18kV/mmであり、絶縁材料としては不十分な性能であった。
[Comparative Example 3]
A molten liquid crystal-forming wholly aromatic polyester (“Vectra” manufactured by Polyplastics Co., Ltd.) comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 15 Pa · s. -L ") is extruded from a twin screw extruder and supplied to a melt blown nonwoven fabric production apparatus having a nozzle having a width of 1 m and a hole number of 1000, a single hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C, a hot air temperature of 310 ° C, A nonwoven fabric having a basis weight of 250 g / m 2 was obtained under the condition of an air amount of 20 Nm 3 per 1 m of the nozzle length. The nonwoven fabric was further heat-treated at 270 ° C. for 6 hours to obtain a nonwoven fabric having a melting point of 335 ° C.
This nonwoven fabric was pressed at a linear pressure of 200 kg / cm between a pair of metal rolls heated to 200 ° C. to obtain a single-layer nonwoven fabric having a thickness of 260 μm.
This nonwoven fabric had a low moisture absorption rate of 0.1% and a dimensional change rate at the time of moisture absorption of 0.1%, but the dielectric breakdown strength was 18 kV / mm, which was insufficient as an insulating material. there were.

[比較例4]
溶融液晶形成性全芳香族ポリエステル不織布に変えてメタアラミド紙〔デュポン帝人アドバンスドペーパー株式会社製「ノーメックス/タイプ410(登録商標)」:坪量248g/m2、厚さ277μm〕を用いてみたところ、絶縁破壊強さは33kV/mmと十分な絶縁性能を有しているが、吸湿率は9%、吸湿時の寸法変化率は1.5%であり、耐久性の面で問題が生じた。
[Comparative Example 4]
Insulation was performed by using meta-aramid paper ["Domex Teijin Advanced Paper Co., Ltd." Nomex / Type 410 (registered trademark) ": basis weight 248 g / m2, thickness 277 μm] instead of melted liquid crystal-forming wholly aromatic polyester nonwoven fabric. Although the breaking strength was 33 kV / mm and sufficient insulation performance, the moisture absorption rate was 9% and the dimensional change rate at the time of moisture absorption was 1.5%, causing problems in terms of durability.

本発明の製造方法によって得られる積層体は、高い絶縁性能、長期信頼性が要求される絶縁材料のほか、クッション材、断熱材料としても有用である。   The laminate obtained by the production method of the present invention is useful as a cushioning material and a heat insulating material in addition to an insulating material that requires high insulation performance and long-term reliability.

本発明の積層体の構成の一例を示す断面図。Sectional drawing which shows an example of a structure of the laminated body of this invention.

符号の説明Explanation of symbols

1 溶融液晶形成性全芳香族ポリエステル不織布からなる低融点層(イ)
2 溶融液晶形成性全芳香族ポリエステル不織布からなる高融点層(ロ)
1 Low melting point layer (b) consisting of a fully aromatic polyester non-woven fabric that forms molten liquid crystals
2 High melting point layer (b) made of melted liquid crystal forming wholly aromatic polyester nonwoven fabric

Claims (5)

溶融液晶形成性全芳香族ポリエステル不織布からなる低融点層(イ)と、(イ)より溶融温度が30℃以上高い溶融液晶形成性全芳香族ポリエステル不織布からなる高融点層(ロ)からなり、かつ以下(1)〜(3)を全て満足する積層体。
(1)少なくとも3層以上で構成されていること、
(2)各層間が熱圧着により接着されてなること、
(3)高融点層(ロ)が積層体の最外層に配されていること。
A low-melting-point layer (b) made of a molten liquid crystal-forming wholly aromatic polyester non-woven fabric, and a high-melting point layer (b) made of a molten liquid-crystal-forming wholly aromatic polyester non-woven fabric having a melting temperature higher by 30 ° C. And the laminated body which satisfies all the following (1)-(3).
(1) It is composed of at least three layers,
(2) Each layer is bonded by thermocompression bonding,
(3) The high melting point layer (b) is disposed on the outermost layer of the laminate.
低融点層(イ)が、融点250℃以上、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmである実質的に連続したフィラメントからなる不織布であることを特徴とする請求項1記載の積層体。   The low-melting-point layer (A) has a melting liquid crystal-forming wholly aromatic polyester having a melting point of 250 ° C. or higher and a melting viscosity at 310 ° C. of 20 Pa · s or less as a main component, and has an average fiber diameter of 1 to 15 μm. The laminate according to claim 1, wherein the laminate is a non-woven fabric comprising continuous filaments. 高融点層(ロ)が、融点280℃以上、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmである実質的に連続したフィラメントからなる不織布であることを特徴とする請求項1記載の積層体。   The high melting point layer (b) is essentially composed of a melted liquid crystal-forming wholly aromatic polyester having a melting point of 280 ° C. or higher and a melt viscosity at 310 ° C. of 20 Pa · s or less, and an average fiber diameter of 1 to 15 μm. The laminate according to claim 1, wherein the laminate is a non-woven fabric comprising continuous filaments. 前記低融点層(イ)と高融点層(ロ)がともにメルトブロー法により製造される請求項1〜3のいずれかに記載の積層体。   The laminate according to any one of claims 1 to 3, wherein both the low melting point layer (A) and the high melting point layer (B) are produced by a melt blow method. <低融点層(イ)の軟化温度>〜<低融点層(イ)の軟化温度+30℃>の温度範囲に加熱された金属ロールにて、低融点層(イ)が軟化した状態で高融点層(ロ)と熱圧着させることを特徴とする請求項1〜4のいずれかに記載の積層体。   <Softening temperature of low melting point layer (a)> to <Softening temperature of low melting point layer (a) + 30 ° C.> High melting point in a state where the low melting point layer (a) is softened in a metal roll heated to a temperature range of The laminate according to any one of claims 1 to 4, wherein the laminate is thermocompression-bonded to the layer (b).
JP2007061428A 2007-03-12 2007-03-12 Laminated body and method for producing the same Active JP4785774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061428A JP4785774B2 (en) 2007-03-12 2007-03-12 Laminated body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061428A JP4785774B2 (en) 2007-03-12 2007-03-12 Laminated body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008221555A JP2008221555A (en) 2008-09-25
JP4785774B2 true JP4785774B2 (en) 2011-10-05

Family

ID=39840719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061428A Active JP4785774B2 (en) 2007-03-12 2007-03-12 Laminated body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4785774B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498013B2 (en) * 2008-11-28 2014-05-21 旭化成せんい株式会社 Cable insulation
US10052840B2 (en) * 2010-10-05 2018-08-21 Jnc Corporation Laminated non-woven fabric, and manufactured article using the same
WO2012073343A1 (en) * 2010-11-30 2012-06-07 パイオニア株式会社 Speaker edge, manufacturing method therefor, and speaker
KR101770826B1 (en) * 2011-01-05 2017-08-23 심천 워트 어드밴스드 머티리얼즈 주식회사 Fiberweb, method of preparing the same and filter having the same
JP5887799B2 (en) * 2011-09-27 2016-03-16 東レ株式会社 Manufacturing method of fiber sheet
KR20140028973A (en) * 2012-08-31 2014-03-10 삼성전기주식회사 Prepreg, copper clad laminate, and printed circuit board
CN109267242A (en) * 2018-09-30 2019-01-25 杭州恒邦实业有限公司 A kind of manufacturing method of spun lacing method non-woven fabrics
KR102208078B1 (en) * 2018-12-03 2021-01-28 에스엠화진 주식회사 Laminate sheet and Insert injection molding method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352575B2 (en) * 2000-04-21 2009-10-28 チッソ株式会社 Thermoplastic composite nonwoven fabric and fiber product using the same
JP2004100047A (en) * 2002-09-04 2004-04-02 Miki Tokushu Paper Mfg Co Ltd Method for producing polyester thermocompression bonded nonwoven fabric

Also Published As

Publication number Publication date
JP2008221555A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4785774B2 (en) Laminated body and method for producing the same
JP3868448B2 (en) Heat resistant synthetic fiber sheet
WO2002012619A1 (en) Heat-resistant fibrous paper
WO1998056987A1 (en) Heat-resistant fiber paper
JP6316631B2 (en) Laminated body and method for producing the same
JP2013072148A (en) Fiber sheet and method for producing the same
JP5571963B2 (en) High strength and high modulus sheet
JP4017769B2 (en) Printed wiring board base material and manufacturing method thereof
JP2004100047A (en) Method for producing polyester thermocompression bonded nonwoven fabric
JP2018035471A (en) Melt-blown nonwoven fabric laminate, and method of manufacturing the same
JP4980107B2 (en) Substrate for resin reinforcement and manufacturing method thereof
JP4980099B2 (en) Laminated body and method for producing the same
KR100522480B1 (en) Nonwoven reinforcement for printed wiring base board and process for producing the same
JP3917853B2 (en) Circuit board base material and circuit board using the same
JP6156079B2 (en) Metal-clad laminate and method for producing the same, printed wiring board using the same, and method for producing the same
JP6357747B2 (en) Melt blown nonwoven fabric made of polyphenylene sulfide fiber
JP4892999B2 (en) Melt liquid crystal forming polyester composite fiber
JP2010199437A (en) Laminated board for printed wiring board
JP5243121B2 (en) Polyethylene naphthalate fiber for speaker diaphragm
JP3484455B2 (en) Aromatic polyamide fiber paper
JP2020122234A (en) Nonwoven fabric comprising liquid crystal polyester fiber
JP3588423B2 (en) Heat-resistant fiber paper, method for producing the same, and prepreg using the heat-resistant fiber paper
JP6094160B2 (en) Metal-clad laminate, method for producing the same, and printed wiring board
JPH10325065A (en) Nonwoven fabric, its production and substrate for printed circuit board
JP2003342382A (en) Resin impregnated fiber sheet and circuit substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3