JP4785713B2 - Fluorine-containing elastomer and composition thereof - Google Patents

Fluorine-containing elastomer and composition thereof Download PDF

Info

Publication number
JP4785713B2
JP4785713B2 JP2006309853A JP2006309853A JP4785713B2 JP 4785713 B2 JP4785713 B2 JP 4785713B2 JP 2006309853 A JP2006309853 A JP 2006309853A JP 2006309853 A JP2006309853 A JP 2006309853A JP 4785713 B2 JP4785713 B2 JP 4785713B2
Authority
JP
Japan
Prior art keywords
fluorine
mol
containing elastomer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006309853A
Other languages
Japanese (ja)
Other versions
JP2007092076A (en
JP2007092076A5 (en
Inventor
智 斉藤
淳 金賀
聡 堀江
正嗣 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Unimatec Co Ltd
Original Assignee
Nok Corp
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Unimatec Co Ltd filed Critical Nok Corp
Priority to JP2006309853A priority Critical patent/JP4785713B2/en
Publication of JP2007092076A publication Critical patent/JP2007092076A/en
Publication of JP2007092076A5 publication Critical patent/JP2007092076A5/ja
Application granted granted Critical
Publication of JP4785713B2 publication Critical patent/JP4785713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、含フッ素エラストマーおよびその組成物に関する。更に詳しくは、成形加工性、低温特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーおよびその組成物に関する。   The present invention relates to a fluorine-containing elastomer and a composition thereof. More specifically, the present invention relates to a fluorine-containing elastomer and a composition thereof that can give a vulcanizate excellent in moldability, low-temperature characteristics and solvent resistance.

フッ化ビニリデン-テトラフルオロエチレン-パーフルオロ(メチルビニルエーテル)を主構成単位とする含フッ素エラストマーは、含フッ素エラストマー特有のすぐれた耐熱性や耐溶剤性を有するばかりではなく、良好な低温特性をも有することから、自動車産業を始め種々の産業分野で用いられている。しかしながら、近年の技術進歩に伴う対応の面では、このような含フッ素エラストマーでは対応が困難な場合が多くみられ、特に低温特性およびメタノール等のアルコール性溶剤に対する耐性が厳しく求められるようになってきている。また、近年の排ガス規制等に伴ない、含フッ素エラストマ−に対するさらなる耐熱性、耐溶剤性、低温特性が求められている。   Fluorine-containing elastomers with vinylidene fluoride-tetrafluoroethylene-perfluoro (methyl vinyl ether) as the main structural unit not only have excellent heat resistance and solvent resistance unique to fluorine-containing elastomers, but also have good low-temperature characteristics. Therefore, it is used in various industrial fields including the automobile industry. However, in response to technical progress in recent years, such fluorine-containing elastomers are often difficult to cope with, and in particular, low temperature characteristics and resistance to alcoholic solvents such as methanol have been strictly demanded. ing. Further, along with recent exhaust gas regulations and the like, further heat resistance, solvent resistance, and low temperature characteristics for fluorine-containing elastomers are required.

このような課題を解決するために、上記含フッ素エラストマーにおいて、パーフルオロ(メチルビニルエーテル)の代りに側鎖に複数のエーテル結合を有する単量体を共重合させることが提案されている。この場合、得られる共重合体をエラストマー状にするためには、この単量体を多量に共重合させなければならず、これの共重合割合が少ないと半樹脂状となり、低温特性が損われるようになる。実際には、その共重合割合は12〜50モル%とされ、各実施例では25〜32モル%の共重合組成とされている。しかしながら、このような単量体を多量に含む含フッ素エラストマ−は、機械的強度が劣る上、例えば成形時に発泡が生じ易いなど成形加工性もよくないという問題もみられる。
特公平5−13961号公報
In order to solve such problems, it has been proposed to copolymerize a monomer having a plurality of ether bonds in the side chain instead of perfluoro (methyl vinyl ether) in the fluorine-containing elastomer. In this case, in order to make the resulting copolymer elastomeric, a large amount of this monomer must be copolymerized, and if the copolymerization ratio is small, it becomes semi-resinous and the low-temperature properties are impaired. It becomes like this. Actually, the copolymerization ratio is 12 to 50 mol%, and in each example, the copolymer composition is 25 to 32 mol%. However, the fluorine-containing elastomer containing a large amount of such monomers has a problem that the mechanical strength is inferior and the molding processability is not good, for example, foaming easily occurs during molding.
Japanese Patent Publication No.5-139661

また、自動車燃料用シール材には、完璧な耐燃料油性が求められるため、現在は市販のフッ素ゴムを中心に使用されているが、自動車燃料としては一般に使用されているガソリン以外に、燃焼効率などの面からエーテルやアルコール等の含酸素燃料も使用されるようになってきている。含酸素燃料に対しては、フッ素ゴム中のフッ素含有量を増加させることで対応可能であるが、フッ素含有量を増加させると耐寒性が悪化し、冬季寒冷地で燃料漏れを生ずるおそれがある。逆に、フッ素含有量を減少させると、耐寒性は良好になるが含酸素燃料に対しての耐性がなくなり、これら両者を同時に満足させるのは非常に困難な状況にある。   In addition, since automotive fuel seal materials are required to have perfect fuel oil resistance, they are currently used mainly on commercially available fluororubber, but in addition to gasoline, which is commonly used as automotive fuel, combustion efficiency In view of the above, oxygen-containing fuels such as ethers and alcohols are also being used. Oxygenated fuel can be handled by increasing the fluorine content in the fluororubber, but increasing the fluorine content will deteriorate cold resistance and may cause fuel leakage in cold winter regions. . On the contrary, if the fluorine content is decreased, the cold resistance is improved, but the resistance to oxygen-containing fuel is lost, and it is very difficult to satisfy both of them simultaneously.

本発明の目的は、含フッ素エラストマーが本来有する成形加工性および耐圧縮永久歪特性を損うことなく、低温特性および耐溶剤性にすぐれた加硫物を与え得る含フッ素エラストマーおよび耐寒性、耐燃料油性などにすぐれたその組成物を提供することにある。   An object of the present invention is to provide a fluorine-containing elastomer which can give a vulcanizate excellent in low-temperature characteristics and solvent resistance without impairing the molding processability and compression set resistance inherent to the fluorine-containing elastomer, and cold resistance, The object is to provide a composition excellent in fuel oiliness and the like.

かかる本発明の目的は、その共重合組成が
(a)フッ化ビニリデン 50〜85モル%
(b)テトラフルオロエチレン 0〜25モル%
(c)パーフルオロ(メチルビニルエーテル) 7〜20モル%
(d)CF2=CFO[CF2CF(CF3)O]nCF3 3〜15モル%
(ただし、nは4〜6の整数である)
(e)RfX(Rfは炭素数2〜8の不飽和フルオロ炭化水素基であり、 0.1〜2モル%
基中に1個以上のエーテル結合を有していてもよく、
Xは臭素またはヨウ素である)
であり、数平均分子量Mn(GPC法、テトラヒドロフラン溶媒)が10000〜1000000である含フッ素エラストマーによって達成される。この含フッ素エラストマーは、好ましくは一般式 R(Br)n(I)m (ここで、Rは炭素数2〜6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合して得られる。
The object of the present invention is that the copolymer composition is
(a) Vinylidene fluoride 50-85 mol%
(b) Tetrafluoroethylene 0-25 mol%
(c) Perfluoro (methyl vinyl ether) 7-20 mol%
(d) CF 2 = CFO [ CF 2 CF (CF 3) O] nCF 3 3 ~15 mol%
(Where n is an integer from 4 to 6)
(e) RfX (Rf is an unsaturated fluorohydrocarbon group having 2 to 8 carbon atoms, 0.1 to 2 mol%
The group may have one or more ether bonds,
X is bromine or iodine)
And is achieved by a fluorine-containing elastomer having a number average molecular weight Mn (GPC method, tetrahydrofuran solvent) of 10,000 to 100,000 . This fluorine-containing elastomer preferably has the general formula R (Br) n (I) m (wherein R is a saturated fluorohydrocarbon group or saturated chlorofluorohydrocarbon group having 2 to 6 carbon atoms, and n and m are Obtained by copolymerization in the presence of a bromine-containing and / or iodine compound represented by 0, 1 or 2 and m + n is 2.

また、この含フッ素エラストマー100重量部当リ0.1〜10重量部の有機過酸化物、0.1〜10重量部の多官能性不飽和化合物および2重量部以上の受酸剤を添加した含フッ素エラストマー組成物は、耐寒性および耐燃料油性にすぐれた架橋物を与えるので、この架橋物は自動車燃料用シール材料として好適に用いられる。   Further, a fluorine-containing elastomer composition comprising 0.1 to 10 parts by weight of an organic peroxide, 0.1 to 10 parts by weight of a polyfunctional unsaturated compound, and 2 parts by weight or more of an acid acceptor per 100 parts by weight of the fluorine-containing elastomer. Since the product provides a cross-linked product excellent in cold resistance and fuel oil resistance, the cross-linked product is preferably used as a sealing material for automobile fuel.

本発明に係る含フッ素エラストマーは、それが本来有する耐熱性、成形加工性および耐圧縮永久歪特性に加えて、低温特性(ガラス転移温度)および耐溶剤性(耐メタール性)にすぐれた加硫物を形成し得るので、Oリング、オイルシール、燃料ホース等の成形材料として有効に用いることができる。   The fluorine-containing elastomer according to the present invention is a vulcanization having excellent low temperature characteristics (glass transition temperature) and solvent resistance (methal resistance) in addition to its inherent heat resistance, moldability and compression set resistance. Since the product can be formed, it can be effectively used as a molding material for O-rings, oil seals, fuel hoses and the like.

特に、この含フッ素エラストマーに瀝青質微粉末または偏平状充填剤を添加して過酸化物架橋したものは、TR10値(JIS K6261準拠)が-30℃以下でありかつメタノール膨潤率(JIS K6258準拠;25℃、168時間)が+50%以内であって、耐寒性、耐圧縮永久歪特性にすぐれているばかりではなく、ガソリンや含酸素燃料が用いられる自動車燃料に対する燃料遮蔽性の点でもすぐれているので、自動車燃料用シール材等として有効に用いることができる。耐燃料油性は、燃料油やアルコールばかりでななく、潤滑油、作動油等の油類や芳香族または脂肪族の炭化水素類についても発揮されるので、これらを収容した容器のシール材等としても用いられる。 In particular, this fluorine-containing elastomer is obtained by adding a bituminous fine powder or a flat filler and peroxide-crosslinking, and has a TR 10 value (conforming to JIS K6261) of -30 ° C or lower and a methanol swelling ratio (JIS K6258). (Compliance; 25 ° C, 168 hours) is within + 50%, and not only has excellent cold resistance and compression set resistance, but also fuel shielding against gasoline and automobile fuels using oxygenated fuel Since it is excellent, it can be used effectively as a sealing material for automobile fuel. Fuel oil resistance is demonstrated not only for fuel oil and alcohol, but also for oils such as lubricating oil and hydraulic oil, and aromatic or aliphatic hydrocarbons. Is also used.

含フッ素エラストマ−の共重合組成比は、(a)フッ化ビニリデンが50〜85モル%、好ましくは60〜85モル%、(b)テトラフルオロエチレンが0〜25モル%、好ましくは0〜20モル%、(c)パーフルオロ(メチルビニルエーテル)が7〜20モル%、好ましくは7〜15モル%、(d)前記一般式で表わされるパーフルオロビニルエーテルが3〜15モル%、好ましくは3〜10モル%、(e)前記一般式で表わされる含臭素またはヨウ素不飽和化合物が0.1〜2モル%、好ましくは0.3〜1.5モル%であり、これらの組成比は所望の低温特性および耐溶剤性を有する加硫物を与え得る範囲として選択されたものである。 The copolymer composition ratio of the fluorine-containing elastomer is as follows: (a) vinylidene fluoride is 50 to 85 mol%, preferably 60 to 85 mol%, (b) tetrafluoroethylene is 0 to 25 mol%, preferably 0 to 20 mole%, (c) perfluoro (methyl vinyl ether) is 7 to 20 mol%, preferably 7-15 mol%, (d) a perfluorovinyl ether represented by the general formula 3-15 mol%, preferably 3 to 10 mol%, (e) 0.1 to 2 mol%, preferably 0.3 to 1.5 mol% of a bromine-containing or iodine-unsaturated compound represented by the above general formula, these composition ratios are desired low-temperature characteristics and solvent resistance It is selected as a range that can give a vulcanizate having.

(a)成分のフッ化ビニリデンには、下記(b)〜(e)成分がぞれぞれ共重合される。
(b)成分のテトラフルオロエチレンをさらに共重合させた場合には、耐溶剤性を著しく改善することができる。ただし、(b)成分の組成比率が大きすぎると低温特性が損われるので、その割合は25モル%以下、好ましくは20モル%以下とするのがよい。また、(b)成分の共重合は、メタノール・ガソリン混合燃料、エタノール・ガソリン混合燃料等の酸素含有化合物混合燃料やメタノール、エタノール等のアルコール燃料に対する耐性を著しく改善させる。
(c)成分のパーフルオロ(メチルビニルエーテル)は、得られる共重合体に柔軟性を付与し、低温特性、特にTR試験におけるTR70値を改善するための必須成分である。
(d)成分のパーフルオロビニルエーテルは、その一般式で表わされる化合物の単一成分を用いてもよいし、あるいは種々のn値を有する2種以上の混合物を用いてもよい。これに類似したパーフルオロビニルエーテルとしては、一般式CF2=CFO〔CF2CF(CF3)O〕mCF2CF2CF3が知られているが(特公平5-13961号公報)、本発明者らの検討結果によれば、この単量体の共重合は低温特性(TR 10 値)を付与するが、分子量の低下、成形時の発泡等の成形加工性の低下、機械的強度の低下などが認められる。ただし、所望の性質を損わない範囲内、例えば1モル%以下の割合でこの化合物を共重合させることはできる。
前記一般式で表わされる(d)成分のパーフルオロビニルエーテルは、フッ化セシウム触媒、ジグライム溶剤等の存在下にCF3OCF(CF3)COFとヘキサフルオロプロペンオキシドとを反応させ、次いで無水炭酸カリウムとの反応および熱分解反応を行うことによって得られ、生成物はn=2〜6の混合物であるが、それを分留することによって4〜6のn値を有するパーフルオロビニルエーテルを分離し、これらを単独またはこれらの混合物として、あるいはこれらとn=2〜3のものとの混合物として用いることができる。前記一般式で表わされるn=4〜6のパーフルオロビニルエーテルは、n=2〜3のものと比べて、同じ共重合割合であればよりすぐれた低温特性が示され、またより少ない共重合割合で同等の低温特性を付与することができる(例えば後記実施例1〜3-比較例3、実施例4-比較例5)。
(e)成分の含臭素またはヨウ素化合物としては、例えばCF2=CFOCF2CF2Br、CF2=CFOCF2CF(CF3)OCF2CF2Br、CF2=CFBr、CF2=CHBr、CF2=CFI、CF2=CHI等のRf基が炭素数2〜8の不飽和フルオロ炭化水素基で、1個以上のエーテル結合を有していてもよいものが用いられ(特公昭54-1585号公報参照)、好ましくはCF2=CFOCF2CF2Br、CF2=CFI、CF2=CHIが用いられる。
The following components (b) to (e) are copolymerized with the vinylidene fluoride as the component (a).
When the tetrafluoroethylene (b) component is further copolymerized, the solvent resistance can be remarkably improved. However, if the composition ratio of the component (b) is too large, the low temperature characteristics are impaired. Therefore, the ratio is 25 mol% or less, preferably 20 mol% or less. In addition, the copolymerization of component (b) significantly improves the resistance to oxygen-containing compound mixed fuels such as methanol / gasoline mixed fuel and ethanol / gasoline mixed fuel, and alcohol fuels such as methanol and ethanol.
Component (c), perfluoro (methyl vinyl ether), is an essential component for imparting flexibility to the resulting copolymer and improving low temperature characteristics, particularly TR 70 value in the TR test.
As the component (d), perfluorovinyl ether, a single component of the compound represented by the general formula may be used, or a mixture of two or more having various n values may be used. As a perfluorovinyl ether similar to this, the general formula CF 2 = CFO [CF 2 CF (CF 3 ) O] mCF 2 CF 2 CF 3 is known (Japanese Patent Publication No. 5-13961). According to the results of their studies, copolymerization of this monomer imparts low temperature properties (TR 10 value) , but lowers molecular weight, molding processability such as foaming during molding, and mechanical strength. Etc. are accepted. However, this compound can be copolymerized within a range that does not impair the desired properties, for example, at a ratio of 1 mol% or less.
The perfluorovinyl ether of the component (d) represented by the general formula is obtained by reacting CF 3 OCF (CF 3 ) COF with hexafluoropropene oxide in the presence of a cesium fluoride catalyst, a diglyme solvent, etc., and then anhydrous potassium carbonate And the product is a mixture of n = 2-6, but by separating it, perfluorovinyl ether having an n value of 4-6 is separated, These can be used alone or as a mixture thereof or as a mixture of these with n = 2-3. The perfluorovinyl ether of n = 4 to 6 represented by the above general formula shows better low-temperature characteristics at the same copolymerization ratio as compared with that of n = 2 to 3, and a lower copolymerization ratio Can provide equivalent low-temperature characteristics (for example, Examples 1 to 3 to Comparative Example 3 and Example 4 to Comparative Example 5 described later).
The bromine- or iodine compound of the component (e), for example, CF 2 = CFOCF 2 CF 2 Br , CF 2 = CFOCF 2 CF (CF 3) OCF 2 CF 2 Br, CF 2 = CFBr, CF 2 = CHBr, CF R 2 groups such as 2 = CFI and CF 2 = CHI are unsaturated fluorohydrocarbon groups having 2 to 8 carbon atoms, which may have one or more ether bonds (Japanese Patent Publication No. 54-1585). In other words, CF 2 = CFOCF 2 CF 2 Br, CF 2 = CFI, and CF 2 = CHI are preferably used.

また、本発明に係る含フッ素エラストマ−共重合体の分子量を調節する目的であるいは成形加工性、特に硬化段階での発泡を抑制する目的で、一般式R(Br)n(I)mで表わされる含臭素および/またはヨウ素化合物の存在下で共重合反応を行うことは非常に有効である(特公昭54-1585号公報参照)。   Further, for the purpose of adjusting the molecular weight of the fluorine-containing elastomer copolymer according to the present invention or for the purpose of suppressing molding processability, particularly foaming in the curing stage, it is represented by the general formula R (Br) n (I) m. It is very effective to carry out the copolymerization reaction in the presence of a bromine-containing and / or iodine compound (see Japanese Patent Publication No. 54-1585).

かかる化合物としては、例えばICF2CF2CF2CF2I、ICF2CF2CF2CF2Br、ICF2CF2Br等が用いられ、特にICF2CF2CF2CF2Iは硬化特性等の面からみて好適である。他の例は、同58-4728号公報等に記載されている。 Such compounds, for example, ICF 2 CF 2 CF 2 CF 2 I, ICF 2 CF 2 CF 2 CF 2 Br, ICF 2 CF 2 Br and the like are used, in particular ICF 2 CF 2 CF 2 CF 2 I curing characteristics From the viewpoint of the above, it is preferable. Other examples are described in JP-A-58-4728 .

これらの化合物は連鎖移動剤として作用し、生成する共重合体の分子量を調節する働きをする。また、連鎖移動反応の結果として、分子末端に臭素および/またはヨウ素原子が結合した共重合体が得られ、これらの部位は加硫成形段階において硬化部位として働く。ただし、重合工程でのそれの使用割合が多いと、最終成形品の機械的強度を低下させるので、それの使用割合は全単量体重量に対して約1重量%以下、好ましくは約0.5〜0.01重量%とされる。   These compounds act as chain transfer agents and serve to adjust the molecular weight of the copolymer produced. As a result of the chain transfer reaction, a copolymer having bromine and / or iodine atoms bonded to the molecular ends is obtained, and these sites serve as curing sites in the vulcanization molding stage. However, since the mechanical strength of the final molded product is lowered when the proportion used in the polymerization step is large, the proportion used is about 1% by weight or less, preferably about 0.5 to less than the total monomer weight. 0.01% by weight.

さらに、加硫成形品の耐圧縮永久歪特性を改善するために、下記の如きパーフルオロジビニルエーテルを共重合させてもよい。その使用割合は、成形品の機械的物性の点から、全単量体重量に対して約1重量%以下、好ましくは約0.5〜0.1重量%とされる。
CF2=CFOCF2CF(CF3)OCF2CF2OCF=CF2
Further, in order to improve the compression set resistance of the vulcanized molded product, perfluorodivinyl ether as described below may be copolymerized. The proportion of use is about 1% by weight or less, preferably about 0.5 to 0.1% by weight, based on the total monomer weight, from the viewpoint of the mechanical properties of the molded product.
CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 OCF = CF 2

また、本発明の含フッ素エラストマ−に求められる所望の性質を損わない範囲内において、他の単量体、例えばトリフルオロエチレン、ヘキサフルオロプロペン、クロロトリフルオロエチレン等の含フッ素単量体をさらに共重合させてもよい。   In addition, other monomers such as fluorinated monomers such as trifluoroethylene, hexafluoropropene, and chlorotrifluoroethylene may be used within a range that does not impair the desired properties required for the fluorinated elastomer of the present invention. Further, it may be copolymerized.

本発明の含フッ素エラストマ−は、水性乳化重合法または水性けん濁重合法によって製造することができる。水性乳化重合法では、水溶性過酸化物を単独であるいはそれと水溶性還元性物質とを組合せたレドックス系のいずれをも反応開始剤系として用いることができる。水溶性過酸化物としては例えば過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等が、また水溶性還元性物質としては例えば亜硫酸ナトリウム、亜硫酸水素ナトリウム等が用いられる。この際、水性乳化液の安定化剤として、pH調節剤(緩衡剤)、例えばリン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸一水素カリウム、リン酸二水素カリウム等も用いられる。   The fluorine-containing elastomer of the present invention can be produced by an aqueous emulsion polymerization method or an aqueous suspension polymerization method. In the aqueous emulsion polymerization method, either a water-soluble peroxide alone or a redox system in combination with a water-soluble reducing substance can be used as a reaction initiator system. Examples of water-soluble peroxides include ammonium persulfate, potassium persulfate, and sodium persulfate. Examples of water-soluble reducing substances include sodium sulfite and sodium hydrogen sulfite. At this time, a pH regulator (relaxation agent) such as sodium monohydrogen phosphate, sodium dihydrogen phosphate, potassium monohydrogen phosphate, potassium dihydrogen phosphate and the like is also used as a stabilizer for the aqueous emulsion.

乳化重合法に用いられる乳化剤としては、一般にフッ素化カルボン酸塩が用いられ(特公平5-13961号公報参照)、好ましくは
CF3CF2CF2O[CF(CF3)CF2O]nCF(CF3)COONH4
n:1または2
が用いられる。これらの乳化剤は、約1〜30重量%、好ましくは約5〜20重量%の水溶液として用いられる。乳化剤量がこれよりも少ないと、モノマーおよび生成共重合体を水性媒体中に均一に分散させることができず、多すぎると経済的に不利となる。
As the emulsifier used in the emulsion polymerization method, a fluorinated carboxylate is generally used (see Japanese Patent Publication No. 5-13961), preferably
CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] nCF (CF 3 ) COONH 4
n: 1 or 2
Is used. These emulsifiers are used as an aqueous solution of about 1 to 30% by weight, preferably about 5 to 20% by weight. If the amount of the emulsifier is less than this, the monomer and the produced copolymer cannot be uniformly dispersed in the aqueous medium, and if it is too much, it is economically disadvantageous.

共重合反応は、約20〜80℃、好ましくは、約25〜60℃の温度で行われる。重合温度が高すぎると、成形加工時に発泡などの問題が発生し、また加硫成形品の耐圧縮永久歪特性も悪化する。また、重合圧力は、一般に約5MPa以下で行われる。   The copolymerization reaction is performed at a temperature of about 20-80 ° C, preferably about 25-60 ° C. If the polymerization temperature is too high, problems such as foaming occur during the molding process, and the compression set properties of the vulcanized molded article also deteriorate. The polymerization pressure is generally performed at about 5 MPa or less.

このようにして得られる含フッ素エラストマ−は、-30〜-45℃のガラス転移温度Tgを有する。また、得られる共重合体の分子量は特に限定されないが、数平均分子量Mn(GPC法、テトラヒドロフラン溶媒)が約10000〜1000000、好ましくは約50000〜300000であることが望ましい。また、分子量の指標としての溶液粘度ηsp/c(35℃、1重量%メチルエチルケトン溶液)は、約0.1〜2dl/g、好ましくは約0.2〜1dl/gであることが望ましい。得られる共重合体の組成または分子量によっては、メチルエチルケトンに難溶または不溶となり、1重量%メチルエチルケトン溶液を調製できない場合がある。この場合には、溶媒としてヘキサフルオロベンゼンを用い、1重量%ヘキサフルオロベンゼン溶液(35℃)として溶液粘度ηsp/cを測定した。この溶液粘度ηsp/cの値は、約0.1〜7dl/g、好ましくは0.3〜5dl/gであることが望ましい。   The fluorine-containing elastomer thus obtained has a glass transition temperature Tg of −30 to −45 ° C. The molecular weight of the obtained copolymer is not particularly limited, but the number average molecular weight Mn (GPC method, tetrahydrofuran solvent) is preferably about 10,000 to 100,000, preferably about 50,000 to 300,000. The solution viscosity ηsp / c (35 ° C., 1 wt% methyl ethyl ketone solution) as an index of molecular weight is about 0.1-2 dl / g, preferably about 0.2-1 dl / g. Depending on the composition or molecular weight of the resulting copolymer, it may be insoluble or insoluble in methyl ethyl ketone, and a 1 wt% methyl ethyl ketone solution may not be prepared. In this case, hexafluorobenzene was used as a solvent, and the solution viscosity ηsp / c was measured as a 1 wt% hexafluorobenzene solution (35 ° C.). The value of the solution viscosity ηsp / c is about 0.1 to 7 dl / g, preferably 0.3 to 5 dl / g.

このような性状の含フッ素エラストマーは、従来公知の種々の加硫方法、例えばパーオキサイド加硫法、ポリアミン加硫法、ポリオール加硫法あるいは放射線、電子線などの照射法によって硬化させることができるが、有機過酸化物を用いるパーオキサイド加硫法は、機械的強度にすぐれ、また架橋点の構造が安定した炭素-炭素結合を形成するため耐薬品性、耐摩耗性、耐溶剤性などにすぐれた加硫物を与えるので、特に好ましく用いられる。   The fluorine-containing elastomer having such properties can be cured by various conventionally known vulcanization methods such as peroxide vulcanization method, polyamine vulcanization method, polyol vulcanization method or irradiation methods such as radiation and electron beam. However, the peroxide vulcanization method using organic peroxides has excellent mechanical strength, and forms a carbon-carbon bond with a stable structure at the cross-linking point, resulting in chemical resistance, wear resistance, solvent resistance, etc. It is particularly preferably used because it gives an excellent vulcanizate.

パーオキサイド加硫法に用いられる有機過酸化物としては、例えば2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキシン-3、ベンゾイルパーオキサイド、ビス(2,4-ジクロロベンゾイル)パーオキサイド、ジクミルパーオキサイド、ジ第3ブチルパーオキサイド、第3ブチルクミルパーオキサイド、第3ブチルパーオキシベンゼン、1,1-ビス(第3ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキサイド、α,α′-ビス(第3ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、第3ブチルパーオキシイソプロピルカーボネート等が挙げられる。   Examples of the organic peroxide used in the peroxide vulcanization method include 2,5-dimethyl-2,5-bis (tertiary butylperoxy) hexane, 2,5-dimethyl-2,5-bis (tertiary Butylperoxy) hexyne-3, benzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, dicumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, tert-butyl peroxybenzene, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, α, α'-bis (tert-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, tert-butylperoxyisopropyl carbonate and the like.

これらの有機過酸化物が用いられるパーオキサイド加硫法では、共架橋剤として多官能性不飽和化合物、例えばトリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N′-m-フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)-s-トリアジン、亜リン酸トリアリル、1,2-ポリブタジエン、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート等を併用することが好ましい。これらの共架橋剤を併用することにより、よりすぐれた加硫特性、機械的強度、圧縮永久歪特性など有する加硫物を得ることができる。 In the peroxide vulcanization method in which these organic peroxides are used, polyfunctional unsaturated compounds such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, triallyl trimellitate, N, N'-m-phenylenebismaleimide, diallyl phthalate, tris (diallylamine) -s-triazine, triallyl phosphite, 1,2-polybutadiene, ethylene glycol diacrylate, diethylene glycol diacrylate, etc. are preferably used in combination. The combined use of these co-crosslinking agent, it is possible to obtain more excellent vulcanization characteristics, mechanical strength, a vulcanizate having such resistant compression set characteristics.

さらに、受酸剤としてハイドロタルサイト化合物や2価金属の酸化物または水酸化物、例えばカルシウム、マグネシウム、鉛、亜鉛などの酸化物または水酸化物を用いることもできる。   Furthermore, hydrotalcite compounds and divalent metal oxides or hydroxides, for example, oxides or hydroxides of calcium, magnesium, lead, zinc and the like can also be used as the acid acceptor.

パーオキサイド加硫系に配合される以上の各成分は、含フッ素エラストマー100重量部当り、有機過酸化物が約0.1〜10重量部、好ましくは約0.5〜5重量部の割合で、また必要に応じて共架橋剤が約0.1〜10重量部、好ましくは約0.5〜5重量部の割合で、さらに受酸剤は約2重量部以上、好ましくは約3〜20重量部の割合でそれぞれ用いられる。受酸剤の使用割合がこれよりも少ないと、金属に対する耐腐食性が損われるようになる。   Each of the above components to be blended in the peroxide vulcanizing system is about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight of organic peroxide per 100 parts by weight of the fluorine-containing elastomer. Accordingly, the co-crosslinking agent is used in an amount of about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight, and the acid acceptor is used in an amount of about 2 parts by weight or more, preferably about 3 to 20 parts by weight. . If the proportion of the acid acceptor used is less than this, the corrosion resistance to the metal is impaired.

加硫に際しては、上記各成分に加えて、従来公知の充填剤、補強剤、可塑剤、滑剤、加工助剤、顔料などを適宜配合することもできる。充填剤または補強剤としてカーボンブラックを用いる場合、一般には含フッ素エラストマー100重量部当り約10〜50重量部程度の割合で用いられる。   In vulcanization, in addition to the above-described components, conventionally known fillers, reinforcing agents, plasticizers, lubricants, processing aids, pigments, and the like can be appropriately blended. When carbon black is used as a filler or reinforcing agent, it is generally used at a ratio of about 10 to 50 parts by weight per 100 parts by weight of the fluorine-containing elastomer.

さらに、瀝青質微粉末の添加は耐圧縮永久歪特性を改善させ、耐熱性の向上によるシール材等の長寿命化を図ることができ、また偏平状充填剤の添加は燃料油遮断性を改善させ、シール対象とされる自動車燃料等の蒸散を一層抑制することを可能とする。   Furthermore, the addition of bituminous fine powder improves the compression set resistance and can extend the life of sealing materials by improving the heat resistance, and the addition of a flat filler improves the fuel oil barrier properties. Thus, it is possible to further suppress the transpiration of automobile fuel or the like to be sealed.

瀝青質微粉末としては、石炭等の瀝青質物質を粉砕し、平均粒径を約10μm以下、一般には約1〜10μmであって、好ましくは約3〜8μmの大きさに微粉末化したものが用いられる。これ以上の平均粒径のものを用いると、ゴムの破断強度や破断伸びが低下し、強度面での実用性が損われるようになる。実際には、Keystone Filler & Mfg社製Mineral Black 325BA等の市販品がそのまま用いられる。これらの瀝青質微粉末は、含フッ素エラストマー100重量部当り約40重量部以下、好ましくは約5〜30重量部の割合で用いられる。これ以上の割合で用いられると、組成物の粘度が高くなりすぎ、混練時や成形時に支障を来すようになる。   As a bituminous fine powder, a bituminous substance such as coal is pulverized, and the average particle size is about 10 μm or less, generally about 1 to 10 μm, preferably about 3 to 8 μm. Is used. If an average particle size larger than this is used, the breaking strength and breaking elongation of the rubber are lowered, and the practicality in terms of strength is impaired. Actually, commercially available products such as Mineral Black 325BA manufactured by Keystone Filler & Mfg are used as they are. These bituminous fine powders are used in an amount of about 40 parts by weight or less, preferably about 5 to 30 parts by weight, per 100 parts by weight of the fluorine-containing elastomer. If it is used in a proportion higher than this, the viscosity of the composition becomes too high, which causes troubles during kneading and molding.

また、偏平状充填剤としては、例えばクレー、マイカ、グラファイト、二硫化モリブデン等の少くとも一種であって、平均粒子径が約0.5〜50μm、好ましくは約5〜30μmで、アスペクト比が3以上、好ましくは5〜30のものが用いられる。平均粒子径またはアスペクト比がこれ以下のものを用いると、燃料遮蔽性の向上がみられない。一方、これ以上の平均粒子径のものを用いると、ゴムの破断強度や破断伸びが低下して、強度面での実用性が損われるようになる。これらの偏平状充填剤は、含フッ素エラストマー100重量部当り約40重量部以下、好ましくは約5〜30重量部の割合で用いられる。これ以上の割合で用いられると、組成物の粘度が上昇して混練できなくなり、さらに架橋後のシール材が非常に硬くなってシール性が損われるようになる。   Further, as the flat filler, for example, at least one of clay, mica, graphite, molybdenum disulfide, etc., the average particle diameter is about 0.5-50 μm, preferably about 5-30 μm, and the aspect ratio is 3 or more. Preferably, 5 to 30 are used. When the average particle diameter or aspect ratio is less than this, the fuel shielding property is not improved. On the other hand, when a particle having an average particle size larger than this is used, the breaking strength and breaking elongation of the rubber are lowered, and the practicality in terms of strength is impaired. These flat fillers are used in an amount of about 40 parts by weight or less, preferably about 5 to 30 parts by weight, per 100 parts by weight of the fluorine-containing elastomer. If it is used in a proportion higher than this, the viscosity of the composition will increase and it will no longer be kneaded, and the sealing material after crosslinking will become very hard and the sealing performance will be impaired.

以上の各成分は、ロール混合、ニーダ混合、バンバリー混合、溶液混合など一般に用いられる混合法によって混練され、混練された混練物は、一般に約100〜250℃で約1〜60分間程度行われるプレス加硫によって加硫され、好ましくはさらに約150〜250℃で約30時間以内のオーブン加硫(二次加硫)が行われる。
Each of the above components is kneaded by a commonly used mixing method such as roll mixing, kneader mixing, Banbury mixing, solution mixing, etc., and the kneaded kneaded material is generally pressed at about 100 to 250 ° C. for about 1 to 60 minutes. Vulcanization is preferably performed by vulcanization, and further oven vulcanization (secondary vulcanization) is preferably performed at about 150 to 250 ° C. within about 30 hours .

得られた含フッ素エラストマーは、有機過酸化物架橋後に以下に示される低温特性を発現する加硫物を与える。
-43℃≦TR10<-30℃<TR70≦-20℃
ここでTR10、TR70値は、TRテストでサンプルを50%伸長し、ガラス転移温度Tg以下としてガラス化させた後、徐々に温度を上げていくと歪みが緩和し、初期伸長に対して10%または70%回復した温度を示している。
The obtained fluorine-containing elastomer gives a vulcanizate that develops the following low-temperature characteristics after organic peroxide crosslinking.
-43 ℃ ≦ TR 10 <-30 ℃ <TR 70 ≦ -20 ℃
Here, the TR 10 and TR 70 values are 50% elongation of the sample in the TR test, and after vitrification with the glass transition temperature Tg or less, the strain gradually relaxes as the temperature is gradually raised, and the initial elongation is reduced. Shows 10% or 70% recovered temperature.

また、前記TR10、TR70についての条件を満足させるためには、前記(c)成分のパーフルオロ(メチルビニルエーテル)と(d)成分のパーフルオロビニルエーテルとの組成合計量が10モル%以上、好ましくは15モル%以上とすることが望ましい。これらの各成分組成合計量が10モル%以下では、得られる共重合体が半樹脂状になったり、低温特性、特にTR70値が悪化するようになる。 Further, in order to satisfy the conditions for TR 10 and TR 70 , the total composition amount of perfluoro (methyl vinyl ether) of component (c) and perfluorovinyl ether of component (d) is 10 mol% or more, Preferably it is 15 mol% or more. When the total amount of these component compositions is 10 mol% or less, the resulting copolymer becomes a semi-resin or the low temperature characteristics, particularly TR 70 value, deteriorates.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

参考例
攪拌機を備えた容量10Lのステンレス鋼製オートクレーブ中に、フッ化セシウム36g、ジグライム360gおよびCF3OCF(CF3)COF 4.18kgを仕込み、一夜攪拌した後-10℃に冷却し、そこにヘキサフルオロプロペンオキシド12.0kgを150g/時間の供給速度で仕込んだ。供給終了後、この温度を保ちながら2時間攪拌を継続した後室温に戻し、攪拌を停止して静置した。その後、オートクレーブの下部取出口より、フルオロカーボン相のみを注意深く抜き取った。得られたフルオロカーボン相15.9kgを、ガスクロマトグラフィー(GC)により分析した結果、下記の組成を有していた。
CF3O〔CF(CF3)CF2O〕nCF(CF3)COF
n GC(%)
2 1
3 27
4 50
5 20
6 2
Stainless steel autoclave of volume 10L with Reference Example stirrer, cesium fluoride 36 g, was charged with diglyme 360g and CF 3 OCF (CF 3) COF 4.18kg, was cooled to -10 ° C. After stirring overnight, there 12.0 kg of hexafluoropropene oxide was charged at a feed rate of 150 g / hour. After the completion of the supply, stirring was continued for 2 hours while maintaining this temperature, and then the temperature was returned to room temperature. Stirring was stopped and the mixture was allowed to stand. Thereafter, only the fluorocarbon phase was carefully extracted from the lower outlet of the autoclave. As a result of analyzing 15.9 kg of the obtained fluorocarbon phase by gas chromatography (GC), it had the following composition.
CF 3 O [CF (CF 3 ) CF 2 O] nCF (CF 3 ) COF
n GC (%)
twenty one
3 27
4 50
5 20
6 2

得られたフルオロカーボン相の1.2kgおよび無水炭酸カリウム1.2kgを、攪拌機を備えた容量10Lのガラス製反応容器に仕込み、130℃に加熱した。炭酸ガスの発生が終了した後、内部を1Torr迄減圧し、未反応のフルオロカーボン混合物および極く少量のジグライム(合計30g)を回収した。得られた生成物1.0kgをGCにより分析した結果、以下の組成を有していた。ビニル化反応は200〜270℃で行われ、生成した液体はコールドトラップにより回収した。ビニル化反応は、ほぼ定量的(90%以上)に進行するため、反応の前後で組成は殆ど変化しない。
CF2=CFO〔CF2CF(CF3)0〕nCF3
n GC(%)
2 1
3 27
4 50
5 20
6 2
1.2 kg of the obtained fluorocarbon phase and 1.2 kg of anhydrous potassium carbonate were charged into a 10 L glass reaction vessel equipped with a stirrer and heated to 130 ° C. After the generation of carbon dioxide gas was completed, the inside was depressurized to 1 Torr, and an unreacted fluorocarbon mixture and a very small amount of diglyme (total 30 g) were recovered. As a result of analyzing 1.0 kg of the obtained product by GC, it had the following composition. The vinylation reaction was performed at 200 to 270 ° C., and the produced liquid was recovered by a cold trap. Since the vinylation reaction proceeds almost quantitatively (90% or more), the composition hardly changes before and after the reaction.
CF 2 = CFO [CF 2 CF (CF 3 ) 0] nCF 3
n GC (%)
twenty one
3 27
4 50
5 20
6 2

得られたパーフルオロビニルエーテルを蒸留し、それぞれのn値を有する化合物を単離した。各化合物の同定は、19F-NMR(ケミカルシフトはCFCl3基準)によって行われた。
(n=2)MPr2VE

Figure 0004785713

δ/ppm
Fa -114.2
Fb -121.6
Fc -135.2
Fd -83.5
Fe -143.3
Ff -78.9
Fg -144.4
Fh -52.8

(n=3)MPr3VE
Figure 0004785713
δ/ppm
Fa -114.2
Fb -121.6
Fc -135.3
Fd -83.5
Fe -143.2
Ff -78.9
Fg -144.5
Fh -52.9

(n=4)MPr4VE
Figure 0004785713
δ/ppm
Fa -114.2
Fb -121.6
Fc -135.3
Fd -83.4
Fe -143.1
Ff -78.8
Fg -144.5
Fh -52.9

(n=5)MPr5VE
Figure 0004785713
δ/ppm
Fa -114.1
Fb -121.7
Fc -135.3
Fd -83.5
Fe -143.1
Ff -78.9
Fg -144.5
Fh -52.9

(n=6)MPr6VE
Figure 0004785713
δ/ppm
Fa -114.1
Fb -121.6
Fc -135.3
Fd -83.5
Fe -143.1
Ff -78.8
Fg -144.5
Fh -52.9 The obtained perfluorovinyl ether was distilled to isolate compounds having respective n values. Each compound was identified by 19 F- NMR ( chemical shift is based on CFCl 3 ).
(n = 2) MPr 2 VE
Figure 0004785713

δ / ppm
F a -114.2
F b -121.6
F c -135.2
F d -83.5
F e -143.3
F f -78.9
F g -144.4
F h -52.8

(n = 3) MPr 3 VE
Figure 0004785713
δ / ppm
F a -114.2
F b -121.6
F c -135.3
F d -83.5
F e -143.2
F f -78.9
F g -144.5
F h -52.9

(n = 4) MPr 4 VE
Figure 0004785713
δ / ppm
F a -114.2
F b -121.6
F c -135.3
F d -83.4
F e -143.1
F f -78.8
F g -144.5
F h -52.9

(n = 5) MPr 5 VE
Figure 0004785713
δ / ppm
F a -114.1
F b -121.7
F c -135.3
F d -83.5
F e -143.1
F f -78.9
F g -144.5
F h -52.9

(n = 6) MPr 6 VE
Figure 0004785713
δ / ppm
F a -114.1
F b -121.6
F c -135.3
F d -83.5
F e -143.1
F f -78.8
F g -144.5
F h -52.9

比較例1
容量500mlのステンレス鋼製オートクレーブ内を窒素ガスで置換し、脱気後下記反応媒体を仕込んだ。
界面活性剤CF3CF2CF2OCF(CF3)CF2OCF(CF3)COONH4 30g
Na2HPO4・12H20 0.5g
イオン交換水 250ml
Comparative Example 1
The inside of a 500 ml stainless steel autoclave was replaced with nitrogen gas, and after deaeration, the following reaction medium was charged.
Surfactant CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 30g
Na 2 HPO 4・ 12H 2 0 0.5g
Ion exchange water 250ml

オートクレーブ内を再び窒素ガスで置換し、脱気後以下の反応原料を仕込んだ。
フッ化ビニリデン[VdF] 40g(68.1%)
テトラフルオロエチレン[TFE] 6g(6.5%)
パーフルオロ(メチルビニルエーテル)[FMVE] 24g(15.8%)
CF2=CFOCF2CF(CF3)OCF2CF(CF3)OCF3 [MPr2VE] 40g(8.8%)
CF2=CFOCF2CF2Br [FBrVE] 2g(0.8%)
ICF2CF2CF2CF2I [DIOFB] 0.5g
なお、カッコ内の百分率はモル%である。
The inside of the autoclave was again replaced with nitrogen gas, and after deaeration, the following reaction raw materials were charged.
Vinylidene fluoride [VdF] 40g (68.1%)
Tetrafluoroethylene [TFE] 6g (6.5%)
Perfluoro (methyl vinyl ether) [FMVE] 24g (15.8%)
CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 3 [MPr 2 VE] 40 g (8.8%)
CF 2 = CFOCF 2 CF 2 Br [FBrVE] 2g (0.8%)
ICF 2 CF 2 CF 2 CF 2 I [DIOFB] 0.5g
The percentage in parentheses is mol%.

次いで、オートクレーブ内部の温度を50℃とし、そこに亜硫酸水素ナトリウム0.01gおよび過硫酸アンモニウム0.05gをそれぞれ0.3重量%水溶液として加え、重合反応を開始させた。2時間反応を行った後冷却し、残ガスを排出して乳化液を取出し、これに5重量%塩化カルシウム水溶液を加えて重合物を凝析させ、水洗、乾燥して、下記組成(19F-NMRによる)のエラストマー状共重合体を108g得た。
VdF 71モル%
TFE 7モル%
FMVE 14モル%
MPr2VE 7.2モル%
FBrVE 0.8モル%
Next, the temperature inside the autoclave was set to 50 ° C., and 0.01 g of sodium hydrogen sulfite and 0.05 g of ammonium persulfate were added as 0.3 wt% aqueous solutions to start the polymerization reaction. After reacting for 2 hours, cooling, discharging the residual gas and taking out the emulsion, adding 5 wt% aqueous calcium chloride solution to coagulate the polymer, washing with water and drying, the following composition ( 19 F 108 g of an elastomeric copolymer (by NMR ) were obtained.
VdF 71 mol%
TFE 7 mol%
FMVE 14 mol%
MPr 2 VE 7.2 mol%
FBrVE 0.8 mol%

このエラストマー状共重合体100部(重量、以下同じ)に、
MTカーボンブラック(キャンキャブ製品サーマックスN990) 30部
トリアリルイソシアヌレート(日本化成製品TAIC M60) 6部
有機過酸化物(日本油脂製品パーヘキサ25B-40) 1.4部
ZnO 4部
を加え、2本ロールミルで混和し、得られた硬化性組成物を180℃で10分間圧縮成形して厚さ2mmのシートおよびOリング(P24)を得、さらに200℃で10時間の二次加硫(オーブン加硫)を行った。
To 100 parts of this elastomeric copolymer (weight, the same shall apply hereinafter)
MT carbon black (Cancab product Thermax N990) 30 parts Triallyl isocyanurate (Nippon Kasei products TAIC M60) 6 parts Organic peroxide (Nippon Yushi Co., Ltd. Perhexa 25B-40) 1.4 parts
Add 4 parts of ZnO, mix with a two-roll mill, and compress the resulting curable composition at 180 ° C for 10 minutes to obtain a sheet and O-ring (P24) with a thickness of 2 mm, and further at 200 ° C for 10 hours Secondary vulcanization (oven vulcanization) was performed.

これの加硫の際および加硫物について、次の各試験を行った。
硬化試験:モンサント・ディスク・レオメータを使用し、180℃でのt10,t90,
ML,MHの値を測定
常態物性:JIS K6250,6253に準拠
圧縮永久歪:ASTM D395 Method Bに準拠して、P24 Oリングについて200℃、70時間の
値を測定
低温特性:ASTM D1329に準拠して、TR10,TR70値を測定
メタノール膨潤試験:25℃のメタノール中に70時間浸せき後の体積変化率を測定
The following tests were performed on the vulcanized product and the vulcanized product.
Curing test: t 10 , t 90 at 180 ° C using a Monsanto disk rheometer
Measure ML and MH values
Normal state property: Conforms to JIS K6250,6253 Compression set: Conforms to ASTM D395 Method B, P24 O-ring, 200 ° C, 70 hours
Measure value Low-temperature characteristics: Measure TR 10 and TR 70 values according to ASTM D1329 Methanol swelling test: Measure volume change rate after immersion in methanol at 25 ° C for 70 hours

比較例2〜6
比較例1において、反応媒体、反応原料および反応条件が下記表1の如くに変更された。この表1には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tg(SEIKO I SSC5200使用)が併記されている。
表1
比較例
2 3 4 5 6
[反応媒体]
界面活性剤 (g) 40 40 40 40 40
Na2HPO4・12H2O (g) 0.5 0.5 0.5 0.5 0.5
イオン交換水 (ml) 250 250 250 250 250
[反応原料]
VdF (g) 40 40 40 46 46
TFE (g) 6 6 6 - -
FMVE (g) 20 24 16 24 24
MPr2VE (g) 26 - - 40 -
MPr3VE (g) 14 40 48 - 40
FBrVE (g) 2 2 2 2 2
DIOFB (g) 0.5 0.5 0.5 0.5 0.5
[反応条件]
温度 (℃) 50 50 50 50 50
時間 (hrs) 14 17 20 15 20
[共重合体量]
生成量 (g) 110 107 106 103 105
[共重合体組成]
VdF (モル%) 72 72 75 84 83
TFE (モル%) 7 7 7 - -
FMVE (モル%) 14 16 11 10 11
MPr2VE (モル%) 4.2 - - 5.3 -
MPr3VE (モル%) 2 4.2 6.2 - 5.2
FBrVE (モル%) 0.8 0.8 0.8 0.7 0.8
[溶液粘度]
ηsp/c (dl/g) 0.60 0.55 0.51 0.65 0.56

[ガラス転移温度]
Tg (℃) -33.5 -34.2 -35.0 -36.6 -36.9
Comparative Examples 2-6
In Comparative Example 1, the reaction medium, reaction raw materials, and reaction conditions were changed as shown in Table 1 below. In Table 1, the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg (using SEIKO I SSC5200) are also shown.
Table 1
Comparative example
2 3 4 5 6
[Reaction medium]
Surfactant (g) 40 40 40 40 40
Na 2 HPO 4・ 12H 2 O (g) 0.5 0.5 0.5 0.5 0.5
Ion exchange water (ml) 250 250 250 250 250
[Reaction raw materials]
VdF (g) 40 40 40 46 46
TFE (g) 6 6 6--
FMVE (g) 20 24 16 24 24
MPr 2 VE (g) 26--40-
MPr 3 VE (g) 14 40 48-40
FBrVE (g) 2 2 2 2 2
DIOFB (g) 0.5 0.5 0.5 0.5 0.5
[Reaction conditions]
Temperature (° C) 50 50 50 50 50
Time (hrs) 14 17 20 15 20
[Amount of copolymer]
Production amount (g) 110 107 106 103 105
[Copolymer composition]
VdF (mol%) 72 72 75 84 83
TFE (mol%) 7 7 7--
FMVE (mol%) 14 16 11 10 11
MPr 2 VE (mol%) 4.2--5.3-
MPr 3 VE (mol%) 2 4.2 6.2-5.2
FBrVE (mol%) 0.8 0.8 0.8 0.7 0.8
[Solution viscosity]
ηsp / c (dl / g) 0.60 0.55 0.51 0.65 0.56

[Glass-transition temperature]
Tg (° C) -33.5 -34.2 -35.0 -36.6 -36.9

また、比較例2〜6で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、比較例1における測定結果と共に、次の表2に示される。
表2
比較例
測定項目 1 2 3 4 5 6
[硬化試験]
t10 (分) 0.5 0.5 0.6 0.6 0.6 0.6
t90 (分) 1.4 1.6 1.6 1.8 1.8 2.5
ML (dN・m) 0.8 0.6 0.7 0.4 0.6 1.1
MH (dN・m) 13.6 13.9 12.5 11.4 13.3 15.5
[常態物性]
硬さ 72 68 67 68 65 67
100%モジュラス(MPa) - - - - 5.0 6.5
破断時強さ (MPa) 9.6 10.4 8.4 7.2 11.6 10.7
破断時伸び (%) 160 160 150 150 170 150
比重 1.87 1.86 1.86 1.87 1.87 1.87
[圧縮永久歪]
200℃、70時間 (%) 39 27 30 29 34 33
[低温特性]
TR10 (℃) -31.7 -32.5 -33.5 -34.3 -33.9 -35.8
TR70 (℃) -22.8 -24.2 -23.3 -20.1 -23.3 -24.7
[メタノール膨潤試験]
体積変化率 (%) +21 +13 +20 +15 +39 +33
Further, using the elastomeric copolymers obtained in Comparative Examples 2 to 6, the curable composition was prepared and vulcanized in the same manner as in Comparative Example 1, and the vulcanized product and the vulcanized product were used. The measurement results in each test are shown in the following Table 2 together with the measurement results in Comparative Example 1.
Table 2
Comparative example
Measurement item 1 2 3 4 5 6
[Curing test]
t 10 (min) 0.5 0.5 0.6 0.6 0.6 0.6
t 90 (min) 1.4 1.6 1.6 1.8 1.8 2.5
ML (dN ・ m) 0.8 0.6 0.7 0.4 0.6 1.1
MH (dN ・ m) 13.6 13.9 12.5 11.4 13.3 15.5
[Normal physical properties]
Hardness 72 68 67 68 65 67
100% modulus (MPa)----5.0 6.5
Strength at break (MPa) 9.6 10.4 8.4 7.2 11.6 10.7
Elongation at break (%) 160 160 150 150 170 150
Specific gravity 1.87 1.86 1.86 1.87 1.87 1.87
[Compression set]
200 ° C, 70 hours (%) 39 27 30 29 34 33
[Low temperature characteristics]
TR 10 (° C) -31.7 -32.5 -33.5 -34.3 -33.9 -35.8
TR 70 (℃) -22.8 -24.2 -23.3 -20.1 -23.3 -24.7
[Methanol swelling test]
Volume change rate (%) +21 +13 +20 +15 +39 +33

実施例1〜、比較例7
比較例1において、亜硫酸ナトリウム量が0.04gに、過硫酸アンモニウム量が0.2gにそれぞれ変更され、また反応媒体、反応原料および反応条件が下記表3の如くに変更された。この表3には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、比較例7では、得られた共重合体がメチルエチルケトンに完全に溶解しないため、溶液粘度ηsp/cの測定をすることができなかった(後述のヘキサフルオロベンゼン溶液としての測定は実施していない)。
表3
実施例 比較例
1 2 3 4 7
[反応媒体]
界面活性剤 (g) 40 40 40 40 40
Na2HPO4・12H2O (g) 0.5 0.5 0.5 0.5 0.5
イオン交換水 (ml) 200 200 200 200 200
[反応原料]
VdF (g) 42 42 42 42 42
FMVE (g) 28 24 20 18 -
MPr4VE (g) 44 44 44 50 68
FBrVE (g) 2 2 2 2 2
DIOFB (g) 0.5 0.5 0.5 0.5 0.5
[反応条件]
温度 (℃) 50 50 50 50 50
時間 (hrs) 10 10 10 10 10
[共重合体量]
生成量 (g) 114 110 108 115 110
[共重合体組成]
VdF (モル%) 78 80 81 82 90
FMVE (モル%) 17 15 14 12 -
MPr4VE (モル%) 4.2 4.2 4.2 5.3 9
FBrVE (モル%) 0.8 0.8 0.8 0.7 1.0
[溶液粘度]
ηsp/c (dl/g) 0.41 0.31 0.45 0.40 測定
不可
[ガラス転移温度]
Tg (℃) -38.6 -39.2 -39.6 -40.2 -41.0
Examples 1 to 4 and Comparative Example 7
In Comparative Example 1, the amount of sodium sulfite was changed to 0.04 g, the amount of ammonium persulfate was changed to 0.2 g, and the reaction medium, reaction raw materials and reaction conditions were changed as shown in Table 3 below. In Table 3, the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg are also shown. In Comparative Example 7, since the obtained copolymer was not completely dissolved in methyl ethyl ketone, the solution viscosity ηsp / c could not be measured (the measurement as a hexafluorobenzene solution described later was not performed). Absent).
Table 3
Example Comparative Example
1 2 3 4 7
[Reaction medium]
Surfactant (g) 40 40 40 40 40
Na 2 HPO 4・ 12H 2 O (g) 0.5 0.5 0.5 0.5 0.5
Ion exchange water (ml) 200 200 200 200 200
[Reaction raw materials]
VdF (g) 42 42 42 42 42
FMVE (g) 28 24 20 18-
MPr 4 VE (g) 44 44 44 50 68
FBrVE (g) 2 2 2 2 2
DIOFB (g) 0.5 0.5 0.5 0.5 0.5
[Reaction conditions]
Temperature (° C) 50 50 50 50 50
Time (hrs) 10 10 10 10 10
[Amount of copolymer]
Production amount (g) 114 110 108 115 110
[Copolymer composition]
VdF (mol%) 78 80 81 82 90
FMVE (mol%) 17 15 14 12-
MPr 4 VE (mol%) 4.2 4.2 4.2 5.3 9
FBrVE (mol%) 0.8 0.8 0.8 0.7 1.0
[Solution viscosity]
ηsp / c (dl / g) 0.41 0.31 0.45 0.40 Measurement
Impossible
[Glass-transition temperature]
Tg (° C) -38.6 -39.2 -39.6 -40.2 -41.0

また、実施例1〜4および比較例7で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、次の表4に示される。
表4
実施例 比較例
測定項目
[硬化試験]
t10 (分) 0.5 0.5 0.5 0.5 0.5
t90 (分) 1.7 1.7 1.7 1.7 2.0
ML (dN・m) 0.4 0.4 0.5 0.3 0.3
MH (dN・m) 10.0 10.0 9.9 9.7 9.0
[常態物性]
硬さ 67 65 66 68 77
100%モジュラス(MPa) 5.8 5.1 5.5 6.1 8.0
破断時強さ (MPa) 11.8 10.1 12.1 10.9 9.5
破断時伸び (%) 160 150 150 150 120
比重 1.87 1.87 1.86 1.86 1.87
[圧縮永久歪]
200℃、70時間 (%) 32 30 31 31 37
[低温特性]
TR10 (℃) -36.9 -37.5 -37.1 -37.8 -38.7
TR70 (℃) -26.4 -28.4 -26.0 -26.0 -1.0
[メタノール膨潤試験]
体積変化率 (%) +32 +26 +34 +24 +13
Further, the elastomeric copolymers obtained in Examples 1 to 4 and Comparative Example 7 were used to prepare and vulcanize the curable composition in the same manner as in Comparative Example 1, and during the vulcanization and the vulcanized product The measurement results in each test conducted for are shown in Table 4 below.
Table 4
Example Comparative Example
Measurement item 1 2 3 4 7
[Curing test]
t 10 (min) 0.5 0.5 0.5 0.5 0.5
t 90 (min) 1.7 1.7 1.7 1.7 2.0
ML (dN ・ m) 0.4 0.4 0.5 0.3 0.3
MH (dN ・ m) 10.0 10.0 9.9 9.7 9.0
[Normal physical properties]
Hardness 67 65 66 68 77
100% modulus (MPa) 5.8 5.1 5.5 6.1 8.0
Strength at break (MPa) 11.8 10.1 12.1 10.9 9.5
Elongation at break (%) 160 150 150 150 120
Specific gravity 1.87 1.87 1.86 1.86 1.87
[Compression set]
200 ° C, 70 hours (%) 32 30 31 31 37
[Low temperature characteristics]
TR 10 (° C) -36.9 -37.5 -37.1 -37.8 -38.7
TR 70 (℃) -26.4 -28.4 -26.0 -26.0 -1.0
[Methanol swelling test]
Volume change rate (%) +32 +26 +34 +24 +13

比較例8
比較例1において、反応媒体、反応原料および反応条件が下記表5の如くに変更された。この表5には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。

比較例8
[反応媒体]
界面活性剤 (g) 30
Na2HPO4・12H2O (g) 0.5
イオン交換水 (ml) 220
[反応原料]
VdF (g) 42
FMVE (g) 24
MPr2VE (g) 44
FBrVE (g) 1.0
DIOFB (g) 0.5
[反応条件]
温度 (℃) 50
時間 (hrs) 12
[共重合体量]
生成量 (g) 110
[共重合体組成]
VdF (モル%) 80
FMVE (モル%) 13
MPr2VE (モル%) 6.6
FBrVE (モル%) 0.4
[溶液粘度]
ηsp/c (dl/g) 0.62
[ガラス転移温度]
Tg (℃) -35.2
Comparative Example 8
In Comparative Example 1, the reaction medium, reaction raw materials, and reaction conditions were changed as shown in Table 5 below. In Table 5 , the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg are also shown.
Table 5
Comparative Example 8
[Reaction medium]
Surfactant (g) 30
Na 2 HPO 4・ 12H 2 O (g) 0.5
Ion exchange water (ml) 220
[Reaction raw materials]
VdF (g) 42
FMVE (g) 24
MPr 2 VE (g) 44
FBrVE (g) 1.0
DIOFB (g) 0.5
[Reaction conditions]
Temperature (℃) 50
Hours (hrs) 12
[Amount of copolymer]
Production amount (g) 110
[Copolymer composition]
VdF (mol%) 80
FMVE (mol%) 13
MPr 2 VE (mol%) 6.6
FBrVE (mol%) 0.4
[Solution viscosity]
ηsp / c (dl / g) 0.62
[Glass-transition temperature]
Tg (℃) -35.2

また、比較例8で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について行われた各試験での測定結果は、次の表6に示される。

測定項目 比較例8
[硬化試験]
t10 (分) 0.5
t90 (分) 1.7
ML (dN・m) 0.4
MH (dN・m) 11.0
[常態物性]
硬さ 67
100%モジュラス(MPa) 3.7
破断時強さ (MPa) 9.3
破断時伸び (%) 180
比重 1.87
[圧縮永久歪]
200℃、70時間 (%) 39
[低温特性]
TR10 (℃) -33.1
TR70 (℃) -23.8
[メタノール膨潤試験]
体積変化率 (%) +28
Further, the elastomeric copolymer obtained in Comparative Example 8 was used to prepare and vulcanize the curable composition in the same manner as in Comparative Example 1, and during the vulcanization and each test performed on the vulcanized product The measurement results at are shown in Table 6 below.
Table 6
Measurement item comparison example 8
[Curing test]
t 10 (min) 0.5
t 90 (min) 1.7
ML (dN ・ m) 0.4
MH (dN ・ m) 11.0
[Normal physical properties]
Hardness 67
100% modulus (MPa) 3.7
Strength at break (MPa) 9.3
Elongation at break (%) 180
Specific gravity 1.87
[Compression set]
200 ° C, 70 hours (%) 39
[Low temperature characteristics]
TR 10 (℃) -33.1
TR 70 (℃) -23.8
[Methanol swelling test]
Volume change rate (%) +28

実施例
比較例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表7の如くに変更された。この表7には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。得られた共重合体が、35℃の1重量%メチルエチルケトン溶液として完全に溶解しない場合には、35℃の1重量%ヘキサフルオロベンゼン溶液として溶液粘度ηsp/cの値を測定し、カッコを付してその値を表示した。

実施例5 実施例6 実施例7
[反応媒体]
界面活性剤 (g) 40 40 40
Na2HPO4・12H2O (g) 0.5 0.5 0.5
イオン交換水 (ml) 180 180 180
[反応開始剤]
過硫酸アンモニウム (g) 0.25 0.25 0.25
Na2SO3 (g) 0.05 0.05 0.05
[反応原料]
VdF (g) 24 24 24
TFE (g) 12 12 12
FMVE (g) 14 14 14
MPr5VE (g) 64 72 72
FBrVE (g) 2 2.5 2.5
DIOFB (g) − 0.07 0.14
[反応条件]
温度 (℃) 33 33 33
時間 (hrs) 12 12 12
[共重合体量]
生成量 (g) 105 113 111
[共重合体組成]
VdF (モル%) 62 61 61
TFE (モル%) 16 16 16
FMVE (モル%) 11 11 11
MPr5VE (モル%) 10.0 10.7 10.7
FBrVE (モル%) 1.0 1.3 1.3
[溶液粘度]
ηsp/c (dl/g) (1.38) (0.73) (0.64)
[ガラス転移温度]
Tg (℃) -40.9 -41.9 -42.6
Examples 5-7
In Comparative Example 1, the reaction medium, reaction initiator, reaction raw materials, and reaction conditions were changed as shown in Table 7 below. In Table 7 , the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg are also shown. If the obtained copolymer does not completely dissolve as a 1 wt% methyl ethyl ketone solution at 35 ° C, measure the solution viscosity ηsp / c as a 1 wt% hexafluorobenzene solution at 35 ° C and add parentheses. And displayed the value.
Table 7
Example 5 Example 6 Example 7
[Reaction medium]
Surfactant (g) 40 40 40
Na 2 HPO 4・ 12H 2 O (g) 0.5 0.5 0.5
Ion exchange water (ml) 180 180 180
[Reaction initiator]
Ammonium persulfate (g) 0.25 0.25 0.25
Na 2 SO 3 (g) 0.05 0.05 0.05
[Reaction raw materials]
VdF (g) 24 24 24
TFE (g) 12 12 12
FMVE (g) 14 14 14
MPr 5 VE (g) 64 72 72
FBrVE (g) 2 2.5 2.5
DIOFB (g) − 0.07 0.14
[Reaction conditions]
Temperature (℃) 33 33 33
Time (hrs) 12 12 12
[Amount of copolymer]
Generated amount (g) 105 113 111
[Copolymer composition]
VdF (mol%) 62 61 61
TFE (mol%) 16 16 16
FMVE (mol%) 11 11 11
MPr 5 VE (mol%) 10.0 10.7 10.7
FBrVE (mol%) 1.0 1.3 1.3
[Solution viscosity]
ηsp / c (dl / g) (1.38) (0.73) (0.64)
[Glass-transition temperature]
Tg (℃) -40.9 -41.9 -42.6

実施例57で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間に変更)行われた各試験での測定結果は、次の表8に示される。

測定項目 実施例5 実施例6 実施例7
[硬化試験]
t10 (分) 0.5 0.5 0.5
t90 (分) 2.1 1.9 1.9
ML (dN・m) 2.6 1.1 0.7
MH (dN・m) 11.4 10.0 9.5
[常態物性]
硬さ 62 60 61
100%モジュラス(MPa) 4.3 3.7 4.8
破断時強さ (MPa) 11.5 10.5 9.7
破断時伸び (%) 180 190 170
比重 1.90 1.90 1.90
[圧縮永久歪]
200℃、70時間 (%) 27 35 36
[低温特性]
TR10 (℃) -38.3 -39.6 -40.6
TR70 (℃) -24.6 -29.4 -29.0
[メタノール膨潤試験]
体積変化率 (%) +4.0 +4.2 +8.1
Using the elastomeric copolymers obtained in Examples 5 to 7 , a curable composition was prepared and vulcanized in the same manner as in Comparative Example 1. Table 8 below shows the measurement results in each test performed (the oxide amount was changed to 2 parts, and the secondary vulcanization condition was changed to 230 ° C. and 20 hours).
Table 8
Measurement item Example 5 Example 6 Example 7
[Curing test]
t 10 (min) 0.5 0.5 0.5
t 90 (min) 2.1 1.9 1.9
ML (dN ・ m) 2.6 1.1 0.7
MH (dN ・ m) 11.4 10.0 9.5
[Normal physical properties]
Hardness 62 60 61
100% modulus (MPa) 4.3 3.7 4.8
Strength at break (MPa) 11.5 10.5 9.7
Elongation at break (%) 180 190 170
Specific gravity 1.90 1.90 1.90
[Compression set]
200 ° C, 70 hours (%) 27 35 36
[Low temperature characteristics]
TR 10 (° C) -38.3 -39.6 -40.6
TR 70 (℃) -24.6 -29.4 -29.0
[Methanol swelling test]
Volume change rate (%) +4.0 +4.2 +8.1

実施例12
比較例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表9の如くに変更された。この表9には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、ITrFEは
CF2=CFI
である。また、実施例810および12の溶液粘度ηsp/cは、前記と同様の理由で1重量%ヘキサフルオロベンゼン溶液(35℃)として測定した。

実施例
10 11 12
[反応媒体]
界面活性剤 (g) 40 40 40 30 40
Na2HPO4・12H2O (g) 0.5 0.5 0.5 0.5 0.5
イオン交換水 (ml) 200 170 200 170 200
[反応開始剤]
過硫酸アンモニウム (g) 0.25 0.25 0.25 0.13 0.25
Na2SO3 (g) 0.05 0.05 0.05 0.02 0.05
[反応原料]
VdF (g) 26 24 30 34 24
TFE (g) 12 14 8 24 14
FMVE (g) 14 14 14 32 14
MPr3VE (g) − 12 − − −
MPr4VE (g) − 40 64 40 −
MPr5VE (g) 72 12 − − 72
FBrVE (g) 2 2 2 1.5 −
DIOFB (g) − − − 0.25 0.15
ITrFE (g) − − − − 0.50
[反応条件]
温度 (℃) 33 33 50 50 40
時間 (hrs) 12 12 12 12 12
[共重合体量]
生成量 (g) 111 103 112 124 103
[共重合体組成]
VdF (モル%) 65 62 70 57 61
TFE (モル%) 16 18 10 20 19
FMVE (モル%) 10 10 10 18 10
MPr3VE (モル%) − 2 − − −
MPr4VE (モル%) − 6 9 4.5 −
MPr5VE (モル%) 8 1 − − 9.6
ITrFE (モル%) − − − − 0.4
FBrVE (モル%) 1 1 1 0.5 −
[溶液粘度]
ηsp/c (dl/g) (3.36) (4.63) (4.83) 0.55 (0.67)
[ガラス転移温度]
Tg (℃) -41.9 -39.5 -40.0 -35.6 -44.1
Examples 8-12
In Comparative Example 1, the reaction medium, reaction initiator, reaction raw materials, and reaction conditions were changed as shown in Table 9 below. In Table 9 , the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg are also shown. ITrFE is
CF 2 = CFI
It is. The solution viscosities ηsp / c of Examples 8 to 10 and 12 were measured as 1 wt% hexafluorobenzene solutions (35 ° C.) for the same reason as described above.
Table 9
Example
8 9 10 11 12
[Reaction medium]
Surfactant (g) 40 40 40 30 40
Na 2 HPO 4・ 12H 2 O (g) 0.5 0.5 0.5 0.5 0.5
Ion exchange water (ml) 200 170 200 170 200
[Reaction initiator]
Ammonium persulfate (g) 0.25 0.25 0.25 0.13 0.25
Na 2 SO 3 (g) 0.05 0.05 0.05 0.02 0.05
[Reaction raw materials]
VdF (g) 26 24 30 34 24
TFE (g) 12 14 8 24 14
FMVE (g) 14 14 14 32 14
MPr 3 VE (g) − 12 − − −
MPr 4 VE (g) − 40 64 40 −
MPr 5 VE (g) 72 12 − − 72
FBrVE (g) 2 2 2 1.5 −
DIOFB (g) − − − 0.25 0.15
ITrFE (g) − − − − 0.50
[Reaction conditions]
Temperature (° C) 33 33 50 50 40
Time (hrs) 12 12 12 12 12
[Amount of copolymer]
Production amount (g) 111 103 112 124 103
[Copolymer composition]
VdF (mol%) 65 62 70 57 61
TFE (mol%) 16 18 10 20 19
FMVE (mol%) 10 10 10 18 10
MPr 3 VE (mol%) − 2 − − −
MPr 4 VE (mol%) − 6 9 4.5 −
MPr 5 VE (mol%) 8 1 − − 9.6
ITrFE (mol%) − − − − 0.4
FBrVE (mol%) 1 1 1 0.5 −
[Solution viscosity]
ηsp / c (dl / g) (3.36) (4.63) (4.83) 0.55 (0.67)
[Glass-transition temperature]
Tg (° C) -41.9 -39.5 -40.0 -35.6 -44.1

実施例812で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、実施例89での有機過酸化物量は2部に、実施例810での二次加硫条件は230℃、20時間に、実施例11での圧縮成形温度は170℃、二次加硫時間は4時間にそれぞれ変更)の各試験での測定結果は、次の表10に示される。
10
実施例
測定項目 10 11 12
[硬化試験]
t10 (分) 0.6 0.5 0.5 0.5 0.5
t90 (分) 2.4 2.4 2.4 1.6 1.9
ML (dN・m) 1.3 1.7 1.7 2.4 0.4
MH (dN・m) 8.2 9.6 10.0 18.5 7.4
[常態物性]
硬さ 59 61 60 68 62
100%モジュラス(MPa) 3.0 3.4 2.8 5.1 5.4
破断時強さ (MPa) 9.4 9.2 10.1 13.5 7.0
破断時伸び (%) 200 190 220 200 120
比重 1.90 1.90 1.89 1.88 1.89
[圧縮永久歪]
200℃、70時間 (%) 31 31 28 28 27
[低温特性]
TR10 (℃) -39.1 -37.0 -37.9 -33.7 -41.0
TR70 (℃) -24.1 -23.4 -28.8 -26.9 -28.3
[メタノール膨潤試験]
体積変化率 (%) +3.3 +3.0 +5.1 +3.4 +3.2
Using the elastomeric copolymers obtained in Examples 8 to 12 , a curable composition was prepared and vulcanized in the same manner as in Comparative Example 1, and the vulcanized product and the vulcanized product (however, Examples the amount of the organic peroxide at 8-9 in 2 parts, the secondary vulcanization conditions in examples 8-10 230 ° C., for 20 hours, the compression molding temperature is 170 ° C. in example 11, secondary vulcanization The measurement results in each test (time changed to 4 hours) are shown in Table 10 below.
Table 10
Example
Measurement item 8 9 10 11 12
[Curing test]
t 10 (min) 0.6 0.5 0.5 0.5 0.5
t 90 (min) 2.4 2.4 2.4 1.6 1.9
ML (dN ・ m) 1.3 1.7 1.7 2.4 0.4
MH (dN ・ m) 8.2 9.6 10.0 18.5 7.4
[Normal physical properties]
Hardness 59 61 60 68 62
100% modulus (MPa) 3.0 3.4 2.8 5.1 5.4
Strength at break (MPa) 9.4 9.2 10.1 13.5 7.0
Elongation at break (%) 200 190 220 200 120
Specific gravity 1.90 1.90 1.89 1.88 1.89
[Compression set]
200 ° C, 70 hours (%) 31 31 28 28 27
[Low temperature characteristics]
TR 10 (° C) -39.1 -37.0 -37.9 -33.7 -41.0
TR 70 (℃) -24.1 -23.4 -28.8 -26.9 -28.3
[Methanol swelling test]
Volume change rate (%) +3.3 +3.0 +5.1 +3.4 +3.2

実施例1315
比較例1において、反応媒体、反応開始剤、反応原料および反応条件が下記表11の如くに変更された。この表11には、生成エラストマー共重合体の生成量、共重合体組成、溶液粘度ηsp/cおよびガラス転移温度Tgが併記されている。なお、BDFEは
CF2=CHBr
である。また、実施例13の溶液粘度ηsp/cは、前記と同様の理由で1重量%ヘキサフルオロベンゼン溶液(35℃)として測定した。
11
実施例
13 14 15
[反応媒体]
界面活性剤 (g) 40 40 40
Na2HPO4・12H2O (g) 0.5 0.5 0.5
イオン交換水 (ml) 170 210 210
[反応開始剤]
過硫酸アンモニウム (g) 0.25 0.45 0.35
NaHSO3 (g) 0.05 0.09 0.07
[反応原料]
VdF (g) 30 28 30
TFE (g) 8 10 8
FMVE (g) 14 20 14
MPr4VE (g) − − 64
MPr5VE (g) 72 30 −
MPr6VE (g) − 10 −
FBrVE (g) 2.5 2.5 −
BDFE (g) − − 1.0
DIOFB (g) − 0.08 0.1
[反応条件]
温度 (℃) 35 50 50
時間 (hrs) 12 12 12
[共重合体量]
生成量 (g) 115 89 109
[共重合体組成]
VdF (モル%) 70 66 70
TFE (モル%) 10 13 10
FMVE (モル%) 10 15 10
MPr4VE (モル%) − − 9
MPr5VE (モル%) 9 4 −
MPr6VE (モル%) − 1 −
FBrVE (モル%) 1 1 −
BDFE (モル%) − − 1
[溶液粘度]
ηsp/c (dl/g) (1.23) 0.33 0.10
[ガラス転移温度]
Tg (℃) -42.5 -38.5 -41.6
Examples 13-15
In Comparative Example 1, the reaction medium, reaction initiator, reaction raw materials, and reaction conditions were changed as shown in Table 11 below. In Table 11 , the production amount of the produced elastomer copolymer, the copolymer composition, the solution viscosity ηsp / c, and the glass transition temperature Tg are also shown. BDFE is
CF 2 = CHBr
It is. The solution viscosity ηsp / c of Example 13 was measured as a 1 wt% hexafluorobenzene solution (35 ° C.) for the same reason as described above.
Table 11
Example
13 14 15
[Reaction medium]
Surfactant (g) 40 40 40
Na 2 HPO 4・ 12H 2 O (g) 0.5 0.5 0.5
Ion exchange water (ml) 170 210 210
[Reaction initiator]
Ammonium persulfate (g) 0.25 0.45 0.35
NaHSO 3 (g) 0.05 0.09 0.07
[Reaction raw materials]
VdF (g) 30 28 30
TFE (g) 8 10 8
FMVE (g) 14 20 14
MPr 4 VE (g) − − 64
MPr 5 VE (g) 72 30 −
MPr 6 VE (g) − 10 −
FBrVE (g) 2.5 2.5 −
BDFE (g) − − 1.0
DIOFB (g) − 0.08 0.1
[Reaction conditions]
Temperature (℃) 35 50 50
Time (hrs) 12 12 12
[Amount of copolymer]
Production amount (g) 115 89 109
[Copolymer composition]
VdF (mol%) 70 66 70
TFE (mol%) 10 13 10
FMVE (mol%) 10 15 10
MPr 4 VE (mol%) − − 9
MPr 5 VE (mol%) 9 4 −
MPr 6 VE (mol%) − 1 −
FBrVE (mol%) 1 1 −
BDFE (mol%) − − 1
[Solution viscosity]
ηsp / c (dl / g) (1.23) 0.33 0.10
[Glass-transition temperature]
Tg (℃) -42.5 -38.5 -41.6

実施例1315で得られたエラストマー状共重合体を用い、比較例1と同様に硬化性組成物の調製および加硫を行い、その加硫の際および加硫物について(ただし、有機過酸化物量は2部に、二次加硫条件は230℃、20時間にそれぞれ変更)の各試験での測定結果は、次の表12に示される。なお、実施例15では、成形時厚さ2mmのシート表面に極くわずかの発泡が認められた。
12
実施例
測定項目 13 14 15
[硬化試験]
t10 (分) 0.5 0.5 0.5
t90 (分) 2.6 2.1 3.0
ML (dN・m) 2.0 2.1 0.3
MH (dN・m) 10.7 16.4 6.4
[常態物性]
硬さ 59 66 58
100%モジュラス(MPa) 4.5 8.1 3.1
破断時強さ (MPa) 11.3 13.9 8.2
破断時伸び (%) 180 140 200
比重 1.89 1.88 1.88
[圧縮永久歪]
200℃、70時間 (%) 24 25 41
[低温特性]
TR10 (℃) -40.3 -36.6 -38.5
TR70 (℃) -28.7 -27.7 -22.0
[メタノール膨潤試験]
体積変化率 (%) +4.3 +9.8 +6.0
Using the elastomeric copolymers obtained in Examples 13 to 15 , a curable composition was prepared and vulcanized in the same manner as in Comparative Example 1, and during the vulcanization and the vulcanized product (however, organic peroxide Table 12 below shows the measurement results of each test in which the amount of oxide was changed to 2 parts, and the secondary vulcanization conditions were changed to 230 ° C. and 20 hours, respectively. In Example 15 , very slight foaming was observed on the surface of the sheet having a thickness of 2 mm during molding.
Table 12
Example
Measurement item 13 14 15
[Curing test]
t 10 (min) 0.5 0.5 0.5
t 90 (min) 2.6 2.1 3.0
ML (dN ・ m) 2.0 2.1 0.3
MH (dN ・ m) 10.7 16.4 6.4
[Normal physical properties]
Hardness 59 66 58
100% modulus (MPa) 4.5 8.1 3.1
Strength at break (MPa) 11.3 13.9 8.2
Elongation at break (%) 180 140 200
Specific gravity 1.89 1.88 1.88
[Compression set]
200 ° C, 70 hours (%) 24 25 41
[Low temperature characteristics]
TR 10 (° C) -40.3 -36.6 -38.5
TR 70 (℃) -28.7 -27.7 -22.0
[Methanol swelling test]
Volume change rate (%) +4.3 +9.8 +6.0

Claims (10)

その共重合組成が
(a)フッ化ビニリデン 50〜85モル%
(b)テトラフルオロエチレン 0〜25モル%
(c)パーフルオロ(メチルビニルエーテル) 7〜20モル%
(d)CF2=CFO[CF2CF(CF3)O]nCF3 3〜15モル%
(ただし、nは4〜6の整数である)
(e)RfX(Rfは炭素数2〜8の不飽和フルオロ炭化水素基であり、 0.1〜2モル%
基中に1個以上のエーテル結合を有していてもよく、
Xは臭素またはヨウ素である)
であり、数平均分子量Mn(GPC法、テトラヒドロフラン溶媒)が10000〜1000000である含フッ素エラストマー。
Its copolymer composition is
(a) Vinylidene fluoride 50-85 mol%
(b) Tetrafluoroethylene 0-25 mol%
(c) Perfluoro (methyl vinyl ether) 7-20 mol%
(d) CF 2 = CFO [ CF 2 CF (CF 3) O] nCF 3 3 ~15 mol%
(Where n is an integer from 4 to 6)
(e) RfX (Rf is an unsaturated fluorohydrocarbon group having 2 to 8 carbon atoms, 0.1 to 2 mol%
The group may have one or more ether bonds,
X is bromine or iodine)
And a fluorine-containing elastomer having a number average molecular weight Mn (GPC method, tetrahydrofuran solvent) of 10,000 to 100,000 .
溶液粘度ηsp/c(35℃、1重量%メチルエチルケトン溶液)が0.1〜2dl/gである請求項1記載の含フッ素エラストマー。   The fluorine-containing elastomer according to claim 1, wherein the solution viscosity ηsp / c (35 ° C, 1 wt% methyl ethyl ketone solution) is 0.1 to 2 dl / g. 溶液粘度ηsp/c(35℃、1重量%ヘキサフルオロベンゼン溶液)が0.1〜7dl/gである請求項1記載の含フッ素エラストマー。   The fluorine-containing elastomer according to claim 1, wherein the solution viscosity ηsp / c (35 ° C, 1 wt% hexafluorobenzene solution) is 0.1 to 7 dl / g. 一般式 R(Br)n(I)m (ここで、Rは炭素数2〜6の飽和フルオロ炭化水素基または飽和クロロフルオロ炭化水素基であり、nおよびmは0、1または2であり、m+nは2である)で表わされる含臭素および/またはヨウ素化合物の存在下で共重合反応させて得られた請求項1記載の含フッ素エラストマ−。   General formula R (Br) n (I) m (wherein R is a saturated fluorohydrocarbon group or saturated chlorofluorohydrocarbon group having 2 to 6 carbon atoms, n and m are 0, 1 or 2, 2. The fluorine-containing elastomer according to claim 1, which is obtained by copolymerization reaction in the presence of a bromine-containing and / or iodine compound represented by m + n is 2. 含臭素および/またはヨウ素化合物がICF2CF2CF2CF2Iである請求項記載の含フッ素エラストマー。 The fluorine-containing elastomer according to claim 4, wherein the bromine-containing and / or iodine compound is ICF 2 CF 2 CF 2 CF 2 I. (c)成分と(d)成分との合計共重合量が10モル%以上である請求項1または4記載の含フッ素エラストマー。   The fluorine-containing elastomer according to claim 1 or 4, wherein the total copolymerization amount of the component (c) and the component (d) is 10 mol% or more. (e)成分化合物がCF2=CFOCF2CF2Br、CF2=CFBr、CF2=CHBr、CF2=CFIまたはCF2=CHIである請求項1または4記載の含フッ素エラストマー。 The fluorine-containing elastomer according to claim 1 or 4, wherein the component compound (e) is CF 2 = CFOCF 2 CF 2 Br, CF 2 = CFBr, CF 2 = CHBr, CF 2 = CFI or CF 2 = CHI. -30〜-45℃のガラス転移温度Tgを有する請求項1または4記載の含フッ素エラストマ−。   The fluorine-containing elastomer according to claim 1 or 4, having a glass transition temperature Tg of -30 to -45 ° C. 請求項1または4記載の含フッ素エラストマー100重量部当リ0.1〜10重量部の有機過酸化物、0.1〜10重量部の多官能性不飽和化合物および2〜20重量部の受酸剤を添加してなる含フッ素エラストマー組成物。 Addition of 0.1 to 10 parts by weight of organic peroxide, 0.1 to 10 parts by weight of polyfunctional unsaturated compound and 2 to 20 parts by weight of acid acceptor per 100 parts by weight of fluorine-containing elastomer according to claim 1 or 4 A fluorine-containing elastomer composition. さらに、40重量部以下の割合で、平均粒子径が0.5〜50μmでかつアスペクト比が3〜30の偏平状充填剤が添加された請求項9記載の含フッ素エラストマー組成物。The fluorine-containing elastomer composition according to claim 9, further comprising a flat filler having an average particle size of 0.5 to 50 µm and an aspect ratio of 3 to 30 at a ratio of 40 parts by weight or less.
JP2006309853A 2002-04-23 2006-11-16 Fluorine-containing elastomer and composition thereof Expired - Fee Related JP4785713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309853A JP4785713B2 (en) 2002-04-23 2006-11-16 Fluorine-containing elastomer and composition thereof

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002120818 2002-04-23
JP2002120818 2002-04-23
JP2003055183 2003-03-03
JP2003055183 2003-03-03
JP2003086943 2003-03-27
JP2003086943 2003-03-27
JP2006309853A JP4785713B2 (en) 2002-04-23 2006-11-16 Fluorine-containing elastomer and composition thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003102462A Division JP4491547B2 (en) 2002-04-23 2003-04-07 Fluorine-containing elastomer composition

Publications (3)

Publication Number Publication Date
JP2007092076A JP2007092076A (en) 2007-04-12
JP2007092076A5 JP2007092076A5 (en) 2007-07-19
JP4785713B2 true JP4785713B2 (en) 2011-10-05

Family

ID=37978132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309853A Expired - Fee Related JP4785713B2 (en) 2002-04-23 2006-11-16 Fluorine-containing elastomer and composition thereof

Country Status (1)

Country Link
JP (1) JP4785713B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141129A1 (en) 2011-04-11 2012-10-18 ユニマテック株式会社 Method for producing fluorine-containing elastomer
GB201108963D0 (en) * 2011-05-27 2011-07-13 3M Innovative Properties Co Composite materials comprising polyamides and fluoroelastomers
JP6020107B2 (en) * 2012-12-07 2016-11-02 Nok株式会社 Fluoro rubber composition
JP6415284B2 (en) * 2014-12-08 2018-10-31 日信工業株式会社 Carbon fiber composite material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223007A (en) * 1985-03-28 1986-10-03 Daikin Ind Ltd Emulsion polymerization of fluoroelastomer
JPS63308008A (en) * 1986-04-01 1988-12-15 Nippon Mektron Ltd Production of fluorine-containing elastomer vulcanizable with peroxide
JP2729838B2 (en) * 1989-07-21 1998-03-18 日本メクトロン株式会社 Low polymerization method of perfluoro (vinyl ether) s
JP3259317B2 (en) * 1992-02-14 2002-02-25 日本メクトロン株式会社 Method of producing peroxide-curable fluorine-containing elastomer
JP3360689B2 (en) * 1992-06-26 2002-12-24 ダイキン工業株式会社 Method for producing fluorinated vinyl ether
JP3278979B2 (en) * 1993-06-17 2002-04-30 ダイキン工業株式会社 Cold and alcohol resistant fluorinated elastic copolymer
JP3327016B2 (en) * 1994-12-06 2002-09-24 ダイキン工業株式会社 Fluororubber copolymer excellent in low-temperature sealability and its curing composition
DE19542501A1 (en) * 1995-11-15 1997-05-22 Bayer Ag Peroxidically crosslinkable fluororubbers, a process for their production and their use
JP4352546B2 (en) * 1999-12-22 2009-10-28 ユニマテック株式会社 Fluoroelastomer, production method thereof, crosslinkable composition and cured product thereof
JP4258933B2 (en) * 2000-01-13 2009-04-30 Nok株式会社 Manufacturing method of fluoro rubber vulcanized molded products
JP2002037818A (en) * 2000-05-18 2002-02-06 Nippon Mektron Ltd Fluorine-containing copolymer and method for producing the same

Also Published As

Publication number Publication date
JP2007092076A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP5168918B2 (en) Fluorine-containing elastomer and composition thereof
JP4491547B2 (en) Fluorine-containing elastomer composition
US5969066A (en) Fluoroelastomer and its cross-linkable composition
US5554680A (en) Heat-resistant perfluoroelastomer composition
US5910552A (en) Fluorine-containing copolymer elastomer process for producing the same and composition containing the same
US7312289B2 (en) Fluorine-containing elastomer and its composition
US7138470B2 (en) Fluoroelastomers with improved low temperature property and method for making the same
KR101589784B1 (en) Perfluoroelastomer
US20020028886A1 (en) Fluorocopolymer and process for preparing the same
EP0979832B1 (en) Fluoroelastomers
US6303699B1 (en) Vulcanizable fluororubber produced from tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer
WO2004024788A1 (en) Fluoroelastomers with improved permeation resistance and method for making the same
JP4785713B2 (en) Fluorine-containing elastomer and composition thereof
JP5725167B2 (en) Method for producing fluorine-containing elastomer
EP2221318B1 (en) Process for producing fluoroelastomer
JP5962188B2 (en) Method for producing fluorine-containing elastomer
JP2010241900A (en) Fluorine-containing elastomer composition
JPH1135637A (en) Production of fluorine-containing elastomer
JP4345214B2 (en) Fluorine-containing copolymer composition
JPH03100039A (en) Fluoroelastomer composition
JP3496739B2 (en) Fluorine-containing elastomer, its production method and composition
JP2010111789A (en) Fluorine-containing elastomer and crosslinkable composition thereof
JPH11116634A (en) Fluorine-containing elastomer and its composition
JP2002128833A (en) Fluorine-containing copolymer and method of producing the same
JPH10279635A (en) Fluoroelastomer and production thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees