JP4785185B2 - Inner hole processing method of hollow brittle material - Google Patents

Inner hole processing method of hollow brittle material Download PDF

Info

Publication number
JP4785185B2
JP4785185B2 JP2005375875A JP2005375875A JP4785185B2 JP 4785185 B2 JP4785185 B2 JP 4785185B2 JP 2005375875 A JP2005375875 A JP 2005375875A JP 2005375875 A JP2005375875 A JP 2005375875A JP 4785185 B2 JP4785185 B2 JP 4785185B2
Authority
JP
Japan
Prior art keywords
head
drill
brittle material
less
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005375875A
Other languages
Japanese (ja)
Other versions
JP2007175967A (en
JP2007175967A5 (en
Inventor
敦之 嶋田
祐介 本山
健男 円谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005375875A priority Critical patent/JP4785185B2/en
Publication of JP2007175967A publication Critical patent/JP2007175967A/en
Publication of JP2007175967A5 publication Critical patent/JP2007175967A5/ja
Application granted granted Critical
Publication of JP4785185B2 publication Critical patent/JP4785185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、所定の構成を有する中空脆性材料加工用ドリルを用いて中空脆性材料の内孔を加工する新規な方法に関し、特に半導体工業用に使用される炉心管やランプを製造するために使用される石英ガラスチュ−ブ及び光ファイバの母材となる石英ガラスチュ−ブ等を製造するための母材となる石英ガラス円筒体の内径を加工するために有効に適用される中空脆性材料の内孔加工方法に関する。   The present invention relates to a novel method for processing an inner hole of a hollow brittle material using a drill for processing a hollow brittle material having a predetermined configuration, and particularly used for manufacturing a core tube and a lamp used in the semiconductor industry. Of hollow brittle material that is effectively applied to process the inner diameter of a quartz glass cylindrical body that is a base material for manufacturing a silica glass tube and a silica glass tube that is a base material of an optical fiber. It relates to a processing method.

半導体工業用に使用される炉心管やランプを製造するために使用される石英ガラスチュ−ブ及び光ファイバの母材となる石英ガラスチュ−ブ等を製造するための母材となる石英ガラス円筒体は、用途によって様々な寸法に加工されるが、その寸法毎に母材から作っていると、生産性において時間と手間がかかり大きなコストアップにつながる。   A quartz glass cylinder used as a base material for manufacturing a quartz glass tube used as a base material for an optical fiber and a quartz glass tube used for manufacturing a core tube and a lamp used in the semiconductor industry Although it is processed into various dimensions depending on the application, if it is made from a base material for each dimension, it takes time and labor in productivity, leading to a large cost increase.

そのため、一般的には、一定寸法の石英ガラスの一次母材をまず作製し、そこから各寸法に内壁及び外壁を加工して二次母材である石英ガラス円筒体を作製し、これらの母材を延伸加工して最終製品を製造する。最終製品での肉厚変動差は、平均外径の円中心に対する平均内径の円中心のズレで、1.0mm以下を求められるため、母材に対しても1.0mm以下の精度が求められる。   For this reason, in general, a primary base material of quartz glass having a certain size is first prepared, and then an inner wall and an outer wall are processed into the respective dimensions to prepare a secondary glass quartz glass cylindrical body. The material is stretched to produce the final product. The difference in wall thickness variation in the final product is a deviation of the circle center of the average inner diameter from the circle center of the average outer diameter, and is required to be 1.0 mm or less, so accuracy of 1.0 mm or less is also required for the base material. .

例えば、VAD法やダイレクト法にて作製された無孔の一次母材に、前記母材の円中心に合わせて熱間炭素ドリル穴開け装置等で開孔したり、又はOVD法にてスート母材を作製後、心棒を抜き、透明ガラス化し透明な一次母材を作製した後、精密ホーニング加工装置で研磨するなどして二次母材である石英ガラス円筒体を作製するが、一次母材に熱間炭素ドリルにて穴を開孔する際、特に1mを超える母材に穴を開孔する場合、コアドリルの先端部の溶け方の不均一性やコアドリルの心棒のたわみなどにより直進性よく開孔することが難しい。   For example, a non-porous primary base material produced by the VAD method or the direct method is drilled with a hot carbon drill drilling device or the like according to the center of the circle of the base material, or a soot base material by the OVD method. After making the material, pull out the mandrel, make it transparent glass and make a transparent primary base material, then polish it with a precision honing machine to make a quartz glass cylinder that is the secondary base material, but the primary base material When drilling holes with a hot carbon drill, especially when drilling holes in a base material exceeding 1 m, the straightness of the core drill is excellent due to non-uniform melting of the tip of the core drill and deflection of the core of the core drill. Difficult to open holes.

また、OVD法の場合は、中空の状態でスート母材を透明ガラス化すると内面は不均一な内径の状態で透明化される。これらの状態から精密ホーニング加工装置で研削・研磨する場合、まず内径寸法を整えるだけでも非常に時間を費やし、生産性が悪くなる。   In the case of the OVD method, when the soot base material is made transparent glass in a hollow state, the inner surface is made transparent with a non-uniform inner diameter. When grinding and polishing with a precision honing apparatus from these states, it takes a very long time just to adjust the inner diameter, and the productivity deteriorates.

これらの問題を解消するために、孔の内壁に対する回転カムの衝撃によって二次的な亀裂が境界領域に生じ、孔が形成された中空脆性材料の強度を更に減少させることを防止するため、中空脆性材料に対する損傷を最小にすると共に、ドリルを精確に案内して、同中空脆性材料に深孔を穿孔する方法及びドリルが開示されている(特許文献1)。   In order to eliminate these problems, a secondary crack is generated in the boundary region due to the impact of the rotating cam against the inner wall of the hole, and the hollow brittle material in which the hole is formed is prevented from further reducing the strength. There has been disclosed a method and drill for minimizing damage to a brittle material and accurately guiding a drill to drill a deep hole in the hollow brittle material (Patent Document 1).

図5に示したように、上記した従来の中空脆性材料加工用ドリル10では、内壁を指定寸法に加工するため、ドリルヘッド部の頭部円板体12に設けられた砥石チップ14の数を8個にして拡孔研削加工を行っていたが、内壁に亀裂を残すことなく、平均外径の円中心に対する平均内径の円中心のズレが、1.0mm以下に精度良く拡孔でき、寸法精度の良い、石英ガラス円筒体が得られていた。   As shown in FIG. 5, in the conventional drill 10 for processing a hollow brittle material, the number of the grindstone chips 14 provided on the head disk body 12 of the drill head portion is set in order to process the inner wall to a specified dimension. Although eight holes were drilled, the gap between the center of the average inner diameter and the center of the average inner diameter with respect to the center of the circle of the average outer diameter can be expanded to 1.0 mm or less without leaving cracks on the inner wall. A quartz glass cylinder with high accuracy was obtained.

しかし、砥石チップ14の数を8個にして、加工前の内径から+5mm以上の拡孔研削をする場合には、研削時の直進性が落ち、加工後の平均外径の円中心に対する平均内径の円中心のズレが、1.0mm以上となってしまい、再度拡孔加工をしなければならなかった。すなわち、加工された内径が母材の長手方向に対して曲がった状態に加工されてしまった。   However, when the number of grindstone chips 14 is set to 8 and the hole-growing grinding is performed by +5 mm or more from the inner diameter before processing, the straightness during grinding decreases, and the average inner diameter with respect to the circle center of the average outer diameter after processing. The deviation of the center of the circle became 1.0 mm or more, and the hole expansion process had to be performed again. That is, the processed inner diameter has been processed so as to be bent with respect to the longitudinal direction of the base material.

また、時にはドリルヘッド部の砥石チップの研削部分が孔の内壁に作用する機械的剪断及び衝撃応力により、孔の内壁が大きなダメージを受けて深い亀裂が発生し、他の段部では取りきれないほどの深さで亀裂が残り、再度孔の抜き直しを行わなければならないこともあった。   Also, due to mechanical shearing and impact stress that the grinding part of the grindstone tip of the drill head part acts on the inner wall of the hole, the inner wall of the hole is greatly damaged and deep cracks occur, which cannot be removed by other steps Cracks remained at such a depth that the holes had to be re-extracted.

これらを未然に防ぐため、特に加工前の内径から+5mm以上の拡孔研削をする場合は、加工前内径から+5mm未満の研削工程を数回繰り返すことで所望の内径に仕上げることも可能であるが、手間と時間がかかり、大きなコストアップとなる。また、特許文献1のように研削ツール(ドリルクラウン)の段数を増やして対応することも可能であるが、研削ツールの構造が複雑になり、また各段の段差の差も考慮しなければならず、一長一短である。   In order to prevent these problems, it is possible to finish to the desired inner diameter by repeating the grinding process of less than +5 mm from the inner diameter before processing several times, especially when performing hole expansion grinding of +5 mm or more from the inner diameter before processing. It takes a lot of time and effort, and the cost increases. Although it is possible to increase the number of steps of the grinding tool (drill crown) as in Patent Document 1, the structure of the grinding tool becomes complicated, and the difference in level difference between the steps must be taken into consideration. First and foremost.

このような従来の問題点について本発明者らは鋭意検討した結果、その問題点の原因が以下の点にあることをつきとめた。   As a result of intensive studies on the conventional problems, the present inventors have found that the cause of the problems is as follows.

砥石チップの数が多いほど、研削時の研削負荷が小さいため、研削されるガラス等の中空脆性材料にとっては有利であるが、研削負荷が小さい分、砥石チップのボンド部(砥粒接着部分)の摩耗が相対的に遅くなり、ダイヤモンド砥粒等の砥粒が取れて、新しい次の砥粒が出てくるタイミングも遅くなるので、いわゆるドレッシング効果が低下してしまい、砥石チップの砥粒面も目詰まりを起こして逆に研削能力が落ちてしまう。   The larger the number of grinding wheel tips, the smaller the grinding load during grinding, which is advantageous for hollow brittle materials such as glass to be ground. However, the smaller the grinding load, the smaller the grinding stone bond part (abrasive bonding part). Wear is relatively slow, diamond grains and other abrasive grains are removed, and the timing at which new next abrasive grains come out is also delayed, so the so-called dressing effect is reduced and the abrasive surface of the grindstone tip Also clogging will occur, conversely the grinding ability will fall.

この現象は、長時間、すなわち全長の長い中空脆性材料の内径を加工する場合ほど顕著になり、砥石チップの研削能力が落ちているのに、能力が落ちていない時の砥石チップを回転させる力及び押し込む力で砥石チップを押し込むので、内径が不均一な未加工の状態では、砥石チップのあたりが多い研削抵抗の大きい内壁部分では抵抗を受けてその方向にドリルヘッドが曲がってしまう。   This phenomenon becomes more conspicuous as the inner diameter of a hollow brittle material with a long length, that is, with a long overall length, is reduced. The grinding ability of the grinding wheel tip is reduced, but the force that rotates the grinding wheel tip when the ability is not reduced. In addition, since the grindstone tip is pushed in by the pushing force, in an unprocessed state where the inner diameter is not uniform, the drill head is bent in that direction due to resistance at the inner wall portion where the grinding stone tip is large and the grinding resistance is large.

また、場合によっては、砥石チップの研削能力が落ちて、ドリルヘッド部の砥石チップの研削部分が孔の内壁に作用する機械的剪断及び衝撃応力により、孔の内壁が大きなダメージを受けて深い亀裂が発生し、深い亀裂が残る。   Also, in some cases, the grinding ability of the grinding wheel tip is reduced, and the inner wall of the hole is greatly damaged by the mechanical shear and impact stress that the grinding part of the grinding wheel tip of the drill head part acts on the inner wall of the hole, resulting in a deep crack Occurs and deep cracks remain.

そこで、本発明者らは、さらに鋭意検討を続けた結果、砥石チップの数を少なくするとともに所定の研削条件を設定して研削することにより、良好な研削結果が得られるという知見を得た。
特開平08−174538号公報
Therefore, as a result of further intensive studies, the present inventors have obtained the knowledge that a good grinding result can be obtained by reducing the number of grindstone tips and setting a predetermined grinding condition for grinding.
Japanese Patent Laid-Open No. 08-174538

本発明は、上記した従来の問題点に鑑みなされたもので、中空脆性材料の加工前の内孔を研削するにあたって、被研削対象が比較的長尺であっても研削能力及び研削直進性に優れ、かつ被研削対象への損傷がないようにして中空脆性材料の内孔加工方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems. When grinding an inner hole before processing a hollow brittle material, the grinding ability and straightness of grinding can be improved even if the object to be ground is relatively long. An object of the present invention is to provide a hollow brittle material inner hole machining method that is excellent and does not damage the object to be ground.

本発明の中空脆性材料の内孔加工方法は、長手方向軸線を中心に回転するドリルロッドと、前記ドリルロッドの前端に設けられたドリルヘッドと、からなり、前記ドリルヘッドが、頭部円板体の外周面に等間隔をおいて設けられた2個以上4個以下の頭部砥石チップを具備した頭部ドリル体を有し、前記頭部砥石チップの幅が4mm以上10mm以下である中空脆性材料加工用ドリルを用いて中空脆性材料の加工前内孔の内周面の内径を+5mm以上の拡孔研削する内孔加工方法であって、前記頭部砥石チップの前記中空脆性材料の内孔に対する接触面積を5mm2以上80mm2以下に規制し、研削加工された中空脆性材料の平均外径の円中心に対する平均内径の円中心のズレが1.0mm以下であるように加工することを特徴とする。 An inner hole machining method for a hollow brittle material according to the present invention comprises a drill rod that rotates about a longitudinal axis, and a drill head provided at a front end of the drill rod, wherein the drill head is a head disk. A hollow having a head drill body provided with two or more and four or less head grindstone tips provided at equal intervals on the outer peripheral surface of the body, and the width of the head grindstone chip is 4 mm or more and 10 mm or less An inner hole machining method for performing hole expansion grinding with an inner diameter of an inner circumferential surface of a hollow brittle material before machining of a hollow brittle material using a drill for brittle material machining, wherein the inner diameter of the hollow brittle material is +5 mm or more . the contact area with the bore to restrict the 5 mm 2 or more 80 mm 2 or less, the deviation of the circle center of the average inner diameter for the circle center of the average outer diameter of the hollow brittle material which is grinding is processed such that 1.0mm or less It is characterized by.

前記ドリルヘッドが、中間円板体の外周面に等間隔をおいて設けられた複数の中間砥石チップを具備するとともに前記頭部ドリル体よりも径大とされた中間ドリル体をさらに有し、前記ドリル体と中間ドリル体との外径差が1mm以下であるように構成するのが好適である。前記中間ドリル体を複数個設置し、前記ドリルロッドの前端側に位置する前端側中間ドリル体の外径よりも前記ドリルロッドの後端側に位置する後端側中間ドリル体の外径が徐々に径大となるように構成し、各中間ドリル体の外径差が1mm以下であるようにすることも可能である。前記頭部砥石チップの数が2個以上4個以下であるのが好適である。また、前記頭部砥石チップの砥粒がダイヤモンド砥粒又はCBN砥粒であるのが好ましい。   The drill head further includes an intermediate drill body having a plurality of intermediate grindstone tips provided at equal intervals on the outer peripheral surface of the intermediate disk body and having a diameter larger than that of the head drill body, It is preferable that the outer diameter difference between the drill body and the intermediate drill body is 1 mm or less. A plurality of the intermediate drill bodies are installed, and the outer diameter of the rear end side intermediate drill body positioned on the rear end side of the drill rod is gradually larger than the outer diameter of the front end side intermediate drill body positioned on the front end side of the drill rod. It is also possible to configure so that the diameter of each intermediate drill body is 1 mm or less. It is preferable that the number of the head grindstone chips is 2 or more and 4 or less. Moreover, it is preferable that the abrasive grains of the head grindstone chip are diamond abrasive grains or CBN abrasive grains.

前記頭部砥石チップの前記中空脆性材料の内孔に対する接触面積を5mm2以上80mm2以下にすると、頭部砥石チップの砥粒接着部の摩耗が相対的に速く、また砥粒が取れて新しい次の砥粒が出てくるタイミングも速くなり、ドレッシング効果により研削能力が維持される。また、中空脆性材料の内径が不均一であっても頭部砥石チップの研削能力は維持されているため、直進性良く研削される。また、ドリルヘッドによる研削部分によって中空脆性材料の内壁に作用する機械的剪断及び衝撃応力も相対的に弱くなり、中空脆性材料の内壁が大きなダメージを受けることなく、深い亀裂が発生しない。特に、中空脆性材料に深孔を開ける際には有効である。 When the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material is set to 5 mm 2 or more and 80 mm 2 or less, the wear of the abrasive bonding portion of the head grindstone chip is relatively fast, and the abrasive grains are removed and new. The timing at which the next abrasive comes out also becomes faster, and the grinding ability is maintained by the dressing effect. Moreover, even if the hollow brittle material has an uneven inner diameter, the grinding ability of the head grindstone tip is maintained, so that the grinding is performed with good straightness. Further, the mechanical shear and impact stress acting on the inner wall of the hollow brittle material are also relatively weakened by the grinding portion by the drill head, and the inner wall of the hollow brittle material is not greatly damaged, and a deep crack does not occur. This is particularly effective when a deep hole is opened in a hollow brittle material.

なお、中間ドリル体を設置しなくても本発明の作用効果は達成されるが、所望に応じて、1個又は複数個の中間ドリル体を設けることができる。この中間ドリル体に設ける中間砥石チップの個数については特別の限定はないが、例えば、従来構造の場合と同様に6個〜9個設置することができる。   In addition, although the effect of this invention is achieved even if it does not install an intermediate drill body, if desired, one or several intermediate drill bodies can be provided. The number of intermediate grindstone tips provided in the intermediate drill body is not particularly limited, but for example, 6 to 9 can be installed as in the case of the conventional structure.

前記頭部砥石チップの前記中空脆性材料の内孔に対する接触面積が80mm2を超えると中空脆性材料の内径が不均一な場合、頭部砥石チップの研削能力は維持されず、ドリルヘッドの直進性が損なわれ、また、前記接触面積が5mm2に満たないと、研削能力が低下するという不利がある。 When the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material exceeds 80 mm 2 , if the inner diameter of the hollow brittle material is not uniform, the grinding ability of the head grindstone tip is not maintained, and the straightness of the drill head If the contact area is less than 5 mm 2 , there is a disadvantage that the grinding ability is lowered.

前記頭部砥石チップの幅は4mm以上10mm以下がよい。頭部砥石チップの幅を4mm未満にすると、頭部砥石チップが欠けてしまう。また、頭部砥石チップの幅が10mmを超えると、逆に研削抵抗が増えて、研削能力が落ちてしまう。   The width of the head grindstone tip is preferably 4 mm or more and 10 mm or less. When the width of the head grindstone chip is less than 4 mm, the head grindstone chip is chipped. On the other hand, when the width of the head grindstone tip exceeds 10 mm, the grinding resistance increases, and the grinding ability is lowered.

特に加工前の内径から+5mm以上の拡孔研削をする場合は、内壁に亀裂を残すことなく、平均外径の円中心に対する平均内径の円中心のズレが、1.0mm以下に精度良く拡孔でき、寸法精度の良い、石英ガラス円筒体が得られる。     In particular, when drilling with a diameter of +5 mm or more from the inner diameter before processing, the deviation of the circle center of the average inner diameter from the circle center of the average outer diameter is precisely 1.0 mm or less without leaving a crack in the inner wall. And a quartz glass cylinder with good dimensional accuracy can be obtained.

上記平均外径は、所定の長さの母材に対し、50〜100mm間隔毎に、4点以上360点以下でレーザー式外径測定器で母材の外径を測定し、その円周上での外径を求め、それらを平均化して求めた値であり、平均内径は、前記と同様に50〜100mm間隔毎に、4点以上360点以下でレーザー式肉厚測定器で管の肉厚を測定し、前記外径との計算によりその円周上での内径を求め、それらを平均化して求めた値である。さらに、円中心のズレは、母材の端面の平均外径及び平均内径の面中心を基準とし、この外径面及び内径面の円中心から管の長手方向に垂直に伸ばした軸に対してのズレである。   The above-mentioned average outer diameter is obtained by measuring the outer diameter of the base material with a laser-type outer diameter measuring device at intervals of 4 to 360 points at intervals of 50 to 100 mm with respect to a predetermined length of the base material. The average inner diameter is 4 to 360 points at intervals of 50 to 100 mm in the same manner as described above, and the thickness of the tube is measured with a laser type wall thickness measuring instrument. It is a value obtained by measuring the thickness, obtaining the inner diameter on the circumference by calculation with the outer diameter, and averaging them. Further, the deviation of the center of the circle is based on the surface center of the average outer diameter and average inner diameter of the end face of the base material, with respect to the axis extending perpendicularly to the longitudinal direction of the pipe from the circle center of the outer diameter surface and inner diameter surface. This is a deviation.

本発明の中空脆性材料の内径加工方法によれば、中空脆性材料の加工前の内孔を研削するにあたって、被研削対象が比較的長尺であっても研削能力及び研削直進性に優れ、かつ被研削対象への損傷がない内径加工を実現できるという著大な効果を有する。   According to the inner diameter processing method of the hollow brittle material of the present invention, when grinding the inner hole before processing the hollow brittle material, even if the object to be ground is relatively long, it has excellent grinding ability and straightness of grinding, and It has a remarkable effect that inner diameter machining without damage to the object to be ground can be realized.

また、本発明の中空脆性材料の内径加工方法によれば、上述のように加工前の内径から+5mm以上の拡孔研削をする場合であっても中空脆性材料に損傷を与えることなく精度良く研削できるという利点がある。また、使用する中空脆性材料加工用ドリルの砥石のチップ数も少なくできるため、コストの削減ができるという利点がある。   Further, according to the inner diameter machining method of the hollow brittle material of the present invention, even when the hole grinding is performed by +5 mm or more from the inner diameter before machining as described above, the hollow brittle material is accurately ground without damaging the hollow brittle material. There is an advantage that you can. Moreover, since the number of tips of the grindstone of the hollow brittle material processing drill to be used can be reduced, there is an advantage that the cost can be reduced.

以下に本発明の実施の形態を添付図面に基づいて説明するが、図示例はあくまでも例示的なものであり、本発明の技術的思想から逸脱しない限り図示例以外にも種々の変形が可能なことはいうまでもない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. However, the illustrated examples are merely illustrative, and various modifications other than the illustrated examples are possible without departing from the technical idea of the present invention. Needless to say.

図1は本発明方法に用いられる中空脆性材料加工用ドリルの一つの実施の形態を示す概略縦側断面図、図2は頭部砥石チップの拡大断面図である。図3は図1のI−I線からみた概略平面断面図、及び図4は本発明方法に用いられる中空脆性材料加工用ドリルの別の実施の形態を示す概略平面断面図である。   FIG. 1 is a schematic longitudinal sectional view showing one embodiment of a drill for processing a hollow brittle material used in the method of the present invention, and FIG. 2 is an enlarged sectional view of a head grindstone chip. FIG. 3 is a schematic plan sectional view taken along line II of FIG. 1, and FIG. 4 is a schematic plan sectional view showing another embodiment of a drill for processing a brittle brittle material used in the method of the present invention.

図1〜図3において、符号20は本発明方法に用いられる中空脆性材料加工用ドリルを示す。中空脆性材料加工用ドリル20は、中空脆性材料の加工前の内孔を所定の内径寸法精度に拡孔研削するために用いられる。   1-3, the code | symbol 20 shows the drill for hollow brittle material processing used for the method of this invention. The hollow brittle material processing drill 20 is used for expanding and grinding an inner hole of a hollow brittle material before processing to a predetermined inner dimensional accuracy.

中空脆性材料加工用ドリル20は、長手方向軸線Zを中心に回転するドリルロッド22と、前記ドリルロッド22の前端に設けられたドリルヘッド24とを有している。前記ドリルヘッド24はその先端側に設けられた頭部円板体26と、当該頭部円板体26に連設されかつ当該頭部円板体26よりも径大とされた中間円板体28とを具備している。前記頭部円板体26の先端側外周面には等間隔をおいて複数個の頭部砥石チップ30が設置され頭部ドリル体31を形成している。また、前記中間円板体28の外周面には等間隔をおいて複数個の中間砥石チップ32が設置され中間ドリル体33を形成している。   The hollow brittle material processing drill 20 includes a drill rod 22 that rotates about a longitudinal axis Z, and a drill head 24 provided at the front end of the drill rod 22. The drill head 24 has a head disc 26 provided on the tip side thereof, and an intermediate disc connected to the head disc 26 and having a diameter larger than that of the head disc 26. 28. A plurality of head grindstone tips 30 are installed at equal intervals on the outer peripheral surface on the front end side of the head disc body 26 to form a head drill body 31. A plurality of intermediate grindstone tips 32 are installed at equal intervals on the outer peripheral surface of the intermediate disc body 28 to form an intermediate drill body 33.

前記中間ドリル体33は図1の例では1個設置した場合を示したが、当該中間ドリル体33を設置しない場合でも本発明の作用効果を達成することができる。また、中間ドリル体33を複数個設置することもできる。中間ドリル体33を複数個設置する場合には、ドリルロッド22の前端側に位置する中間ドリル体よりもドリルロッド22の後端側に位置する中間ドリル体が徐々に径大となるように構成する。頭部砥石チップ30及び中間砥石チップ32の砥粒としては、ダイヤモンド砥粒又はCBN砥粒が好適に用いられる。なお、符号34は、内孔36が開穿されている中空脆性材料を示す。   In the example of FIG. 1, the case where one intermediate drill body 33 is installed is shown. However, even when the intermediate drill body 33 is not installed, the effect of the present invention can be achieved. A plurality of intermediate drill bodies 33 can also be installed. In the case where a plurality of intermediate drill bodies 33 are installed, the intermediate drill body located on the rear end side of the drill rod 22 is gradually increased in diameter from the intermediate drill body located on the front end side of the drill rod 22. To do. As the abrasive grains of the head grindstone chip 30 and the intermediate grindstone chip 32, diamond abrasive grains or CBN abrasive grains are preferably used. Reference numeral 34 denotes a hollow brittle material in which the inner hole 36 is opened.

図1に示した中空脆性材料加工用ドリル20においては、図3に示されるごとく、2個の頭部砥石チップ30が等間隔をおいて頭部円板体26の外周面に設けられている。この頭部砥石チップ30は、2個以上4個以下設置すればよいものである。図4には、頭部円板体26に4個の頭部砥石チップ30を設けた中空脆性材料加工用ドリル21の構成例を示した。   In the drill 20 for processing a hollow brittle material shown in FIG. 1, as shown in FIG. 3, two head grindstone tips 30 are provided on the outer peripheral surface of the head disc body 26 at equal intervals. . This head grindstone chip 30 should just be installed 2 or more and 4 or less. In FIG. 4, the structural example of the drill 21 for hollow brittle material processing which provided the four head grindstone tips 30 in the head disc body 26 was shown.

また、頭部砥石チップ30の幅dは4mm以上10mm以下のものが好適に使用できる。これは、頭部砥石チップ30の個数が4個以下であっても、頭部砥石チップ30が中空脆性材料34に接触する接触面積が80mm2を超えると研削の際の直進性が悪くなるか或いは中空脆性材料34にクラックが発生するため、頭部砥石チップ30の幅dを4mm以上10mm以下とし、頭部砥石チップ30の接触面積を80mm2以下とする必要があるためである。 Moreover, the width | variety d of the head grindstone chip | tip 30 can use suitably 4 mm or more and 10 mm or less. Even if the number of head grindstone tips 30 is four or less, does the straightness during grinding worsen if the contact area where the head grindstone tip 30 contacts the hollow brittle material 34 exceeds 80 mm 2 ? Alternatively, since cracks occur in the hollow brittle material 34, the width d of the head grindstone chip 30 needs to be 4 mm or more and 10 mm or less, and the contact area of the head grindstone chip 30 needs to be 80 mm 2 or less.

前記頭部砥石チップ30の上面は水平面であってもよいが、図2によく示されるごとく、その上面が前記頭部ドリル体31の中心方向に向かって下方に所定の傾斜角度αで傾斜し、その傾斜角度αが5度以上70度以下であるのが好ましい。この傾斜角度αが5度未満であると、研削対象である中空脆性材料34の内孔36の研削が終了する時、頭部砥石チップ30が中空脆性材料34の内孔36から抜ける時点でクラックが発生してしまう場合がある。また、この傾斜角度αが70を超えると、頭部砥石チップ30に負荷がかかり、頭部砥石チップ30が欠けてしまうという不都合が生じる場合がある。 The upper surface of the head grindstone tip 30 may be a horizontal plane, but as shown in FIG. 2, the upper surface is inclined downward at a predetermined inclination angle α toward the center of the head drill body 31. The inclination angle α is preferably 5 degrees or more and 70 degrees or less. When the inclination angle α is less than 5 degrees, when the grinding of the inner hole 36 of the hollow brittle material 34 to be ground is finished, the head grindstone tip 30 is cracked when it is removed from the inner hole 36 of the hollow brittle material 34. May occur. Moreover, when this inclination | tilt angle (alpha) exceeds 70 degree | times , load will be applied to the head grindstone chip | tip 30, and the problem that the head grindstone chip | tip 30 may be missing may arise.

本発明の中空脆性材料の内孔加工方法は、上記した中空脆性材料加工用ドリル21、即ち長手方向軸線を中心に回転するドリルロッド22と、前記ドリルロッド22の前端に設けられたドリルヘッド24と、からなり、前記ドリルヘッドが、頭部円板体26の外周面に等間隔をおいて設けられた複数の頭部砥石チップ30を具備した頭部ドリル体31を有し、前記頭部砥石チップ30の幅が4mm以上10mm以下である中空脆性材料加工用ドリル21を用いて中空脆性材料34の加工前内孔36の内周面の内径を所定寸法だけ拡孔研削する内孔加工方法であって、前記頭部砥石チップ30の前記中空脆性材料34の内孔36に対する接触面積を5mm2以上80mm2以下に規制し、研削加工された中空脆性材料34の平均外径の円中心に対する平均内径の円中心のズレが1.0mm以下であるように加工するものである。 The hollow brittle material inner hole machining method of the present invention includes the above-described hollow brittle material machining drill 21, that is, a drill rod 22 that rotates about a longitudinal axis, and a drill head 24 provided at the front end of the drill rod 22. And the drill head has a head drill body 31 having a plurality of head grindstone tips 30 provided at equal intervals on the outer peripheral surface of the head disk body 26, and the head An inner hole processing method in which the inner diameter of the inner peripheral surface of the inner hole 36 of the hollow brittle material 34 is expanded and ground by a predetermined dimension using the hollow brittle material processing drill 21 having a width of the grindstone tip 30 of 4 mm to 10 mm. The contact area of the head grindstone tip 30 with respect to the inner hole 36 of the hollow brittle material 34 is regulated to 5 mm 2 or more and 80 mm 2 or less, and is centered on the circle of the average outer diameter of the ground hollow brittle material 34. versus The average inner diameter is processed so that the deviation of the center of the circle is 1.0 mm or less.

前記ドリルヘッド24が、中間円板体28の外周面に等間隔をおいて設けられた複数の中間砥石チップ32を具備するとともに前記頭部ドリル体31よりも径大とされた中間ドリル体33をさらに有し、頭部ドリル体31と中間ドリル体33との外径差が1mm以下であるように構成するのが好適である。また、前記中間ドリル体33を複数個設置し、前記ドリルロッド22の前端側に位置する前端側中間ドリル体の外径よりも前記ドリルロッド22の後端側に位置する後端側中間ドリル体の外径が徐々に径大とし、各中間ドリル体との外径差が1mm以下であるように構成することも可能である。さらに、前記頭部砥石チップ32を2個以上4個以下設置するのが好適である。前記頭部砥石チップ26及び中間砥石チップ32の砥粒がダイヤモンド砥粒又はCBN砥粒であるのが好ましい。   The drill head 24 includes a plurality of intermediate grindstone tips 32 provided at equal intervals on the outer peripheral surface of the intermediate disc body 28 and has an intermediate drill body 33 having a diameter larger than that of the head drill body 31. It is preferable that the outer diameter difference between the head drill body 31 and the intermediate drill body 33 is 1 mm or less. Further, a plurality of the intermediate drill bodies 33 are installed, and a rear end side intermediate drill body positioned on the rear end side of the drill rod 22 with respect to the outer diameter of the front end side intermediate drill body positioned on the front end side of the drill rod 22. It is also possible to configure such that the outer diameter of each is gradually increased and the difference in outer diameter from each intermediate drill body is 1 mm or less. Furthermore, it is preferable that 2 or more and 4 or less of the head grindstone tips 32 are installed. The abrasive grains of the head grindstone tip 26 and the intermediate grindstone chip 32 are preferably diamond abrasive grains or CBN abrasive grains.

前記頭部砥石チップ32を2個以上4個以下設置する場合の利点は次の通りである。
(1)例えば、幅4mmの頭部砥石チップ32を8個設け、中空脆性材料の内孔の内径を 50mmにする場合には頭部砥石チップの中空脆性材料の内孔に対する接触面積の 律速により、一次母材の内径から+5mm(接触面積は80mm2)程度までしか 削れないため、一次母材の加工前の内径が45mm以上と制限されてしまう。また 、一次母材の加工前の内径が45mm以上を廻って一次母材を作らなければならず 、生産性が悪くなる。頭部砥石チップ32を2個〜4個とすれば、内径差1mm〜 十数mmと幅広くなっても対処可能であるので、一次母材の加工前の内径が40m m程度であっても研削加工が可能であり、精密に内径をコントロールする必要がな いため生産性が良好となる。
(2)また、実施例2で示したように、OVD法でガラス化した材料において、当該材料 の内孔の内径が大きい部分と小さい部分の差が大きくなっても、頭部砥石チップ3 2を2個以上4個以下設置する構成とすれば、拡孔できる内径差が1mm〜十数m mあるため、ほぼ制限なく対応して研削加工を行うことができる。例えば、頭部砥 石チップ32が8個であると、一次母材の内径差が5mm程度までしか対応できな いが頭部砥石チップ32が2個以上4個以下であれば5mmを超える内径差や内径 の曲がりがあっても対応できる。
(3)頭部砥石チップ32を2個以上4個以下とすれば、チップの数が少なくて済み、そ の分だけコストダウンとなる。
(4)頭部砥石チップ32を2個以上4個以下とすれば、チップ数が少ないため、研削用 に流すクーラントが隙間から流れやすくなり、それだけ冷却効果が高くなる。
Advantages when two or more head grindstone tips 32 are installed are as follows.
(1) For example, when eight head grindstone tips 32 having a width of 4 mm are provided and the inner diameter of the hollow brittle material inner diameter is set to 50 mm, the head grindstone tip is controlled by the rate of contact area with the inner hole of the hollow brittle material. Since the inner diameter of the primary base material can be cut only to about +5 mm (contact area is 80 mm 2 ), the inner diameter of the primary base material before processing is limited to 45 mm or more. In addition, the primary base material must be made with an inner diameter of 45 mm or more before processing the primary base material, resulting in poor productivity. If 2 to 4 head grindstone tips 32 are used, even if the inner diameter difference is as wide as 1 mm to several tens of mm, it is possible to cope with the grinding, even if the inner diameter of the primary base material before processing is about 40 mm. Processing is possible and productivity is improved because there is no need to precisely control the inner diameter.
(2) Further, as shown in Example 2, in the material vitrified by the OVD method, the head grindstone tip 32 is increased even if the difference between the large inner diameter portion and the small inner diameter portion of the material is large. If there is a configuration in which two or more and four or less are installed, the difference in inner diameter that can be expanded is 1 mm to several tens of mm, so that grinding can be performed with almost no limitation. For example, if the head grindstone tips 32 are eight, the inner diameter difference of the primary base material can only cope up to about 5 mm, but if the head grindstone tips 32 are two or more and four or less, the inner diameter exceeds 5 mm. Even if there is a difference or bending of the inner diameter, it can be handled.
(3) If the number of head grindstone chips 32 is 2 or more and 4 or less, the number of chips can be reduced, and the cost can be reduced accordingly.
(4) If the number of head grindstone chips 32 is 2 or more and 4 or less, the number of chips is small, so that the coolant flowing for grinding can easily flow from the gap, and the cooling effect increases accordingly.

以下、本発明の実施例を具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。   Examples of the present invention will be specifically described below, but it is needless to say that these examples are illustrative and should not be construed in a limited manner.

(実施例1)
図1〜図3に示した中空脆性材料加工用ドリルと同様の装置を用い、VAD法によって、四塩化珪素を気化し、酸水素炎中で火炎加水分解し、回転する石英ガラス棒にシリカガラス微粒子を堆積させて多孔質スート体を作成した。この多孔質スート体を電気炉に入れ、Heガスにより1100℃で加熱脱水し、引き続きHeガス雰囲気中1600℃で透明ガラス化して円柱状石英ガラスインゴットを得た。
Example 1
Using the same apparatus as the drill for processing hollow brittle materials shown in FIGS. 1 to 3, silicon tetrachloride is vaporized by VAD method, flame-hydrolyzed in an oxyhydrogen flame, and silica glass is rotated on a rotating quartz glass rod. A porous soot body was prepared by depositing fine particles. This porous soot body was put into an electric furnace, heated and dehydrated with He gas at 1100 ° C., and then transparent vitrified at 1600 ° C. in a He gas atmosphere to obtain a cylindrical quartz glass ingot.

前記円柱状石英ガラスインゴットの両端を切断し、その外周をダイヤモンド砥粒を備えた円筒研削装置で所定の寸法に正確に研削し、レーザー外径測定機で寸法測定を行い、外径の円中心を求めた。前記円中心に合わせて熱間炭素ドリル穴開け装置で開孔し、内径約30mm、長さ約3mの円筒状一次母材を製造した。内径は、透明な状態であったが、得られた一次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、開孔開始部から長さ2mの部分で、平均外径の円中心に対する平均内径の円中心のズレが最大で2.0mmであった。   Cut both ends of the cylindrical quartz glass ingot, accurately grind the outer periphery to a predetermined dimension with a cylindrical grinding machine equipped with diamond abrasive grains, measure the dimensions with a laser outer diameter measuring machine, Asked. A cylindrical primary base material having an inner diameter of about 30 mm and a length of about 3 m was manufactured in accordance with the center of the circle using a hot carbon drilling device. The inner diameter was in a transparent state, but when the dimensions of the obtained primary base material were measured with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, a portion 2 m in length from the opening start portion. The deviation of the average inner diameter circle center from the average outer diameter circle center was 2.0 mm at the maximum.

この円筒状一次母材の両端を切断し、その内径を30mmから40mmにすべく、頭部円板体26の研削直径を38mmに設定し、幅10mmの#100メタルボンドダイヤモンドの頭部砥石チップ30をその傾斜角度αを50度として2個配置し、中間円板体28の研削外径を40mmに設定した中空脆性材料加工用ドリル20で研削し、内径40mm、長さ3mの二次母材を作成した。研削条件は、頭部砥石チップの中空脆性材料の内孔に対する接触面積を80mm2、ヘッドの回転数を900rpm、送り速度を15mm/minとし、研削液であるクーラント水を圧力0.2MPaで流し続けた。 The cylindrical primary base material is cut at both ends, and the grinding diameter of the head disk 26 is set to 38 mm in order to reduce the inner diameter from 30 mm to 40 mm, and the head grindstone tip of # 100 metal bond diamond with a width of 10 mm. 2 is arranged with an inclination angle α of 50 degrees, and is ground by a hollow brittle material processing drill 20 in which the grinding outer diameter of the intermediate disk 28 is set to 40 mm, and a secondary mother having an inner diameter of 40 mm and a length of 3 m. Made the material. The grinding conditions were such that the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material was 80 mm 2 , the head rotation speed was 900 rpm, the feed rate was 15 mm / min, and coolant water as a grinding fluid was flowed at a pressure of 0.2 MPa. Continued.

得られた二次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、長さが3m、平均内径が40mmで、平均内径差が0.02mm、真円度が最大で0.05mm、平均外径の円中心からのズレが最大で0.1mm、平均外径の円中心に対する平均内径の円中心のズレが最大で0.1mmであった。   When the dimensions of the obtained secondary base material were measured with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, the length was 3 m, the average inner diameter was 40 mm, the average inner diameter difference was 0.02 mm, and a perfect circle The degree of deviation was 0.05 mm at the maximum, the deviation from the circle center of the average outer diameter was 0.1 mm at the maximum, and the deviation of the circle center of the average inner diameter from the circle center of the average outer diameter was at most 0.1 mm.

(実施例2)
図3に示した中空脆性材料加工用ドリルと同様の装置を用い、OVD法によって、四塩化珪素を気化し、酸水素炎中で火炎加水分解し、回転する心棒の周囲にシリカガラス微粒子を堆積させて大型多孔質スート体を作成した。引き続き心棒を引き抜き、この中空多孔質スート体を電気炉に入れ、Heガスにより1100℃で加熱脱水し、引き続きHeガス雰囲気中1600℃で透明ガラス化し、内径約60mm、長さ約4mの円筒状一次母材を製造した。心棒がない状態で透明ガラス化されたため、内径は不均一な円筒状一次母材を製造した。得られた一次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、全体にわたって内径差が6mmの範囲で振れていた。
(Example 2)
Using the same equipment as the hollow brittle material processing drill shown in Fig. 3, OVD vaporizes silicon tetrachloride, flame-hydrolyzes it in an oxyhydrogen flame, and deposits silica glass particles around the rotating mandrel A large porous soot body was prepared. Subsequently, the mandrel is pulled out, this hollow porous soot body is placed in an electric furnace, heated and dehydrated with He gas at 1100 ° C., and then transparently vitrified at 1600 ° C. in a He gas atmosphere, and has a cylindrical shape with an inner diameter of about 60 mm and a length of about 4 m. A primary matrix was produced. Since it was made into transparent glass without a mandrel, a cylindrical primary base material having a non-uniform inner diameter was manufactured. When the dimension measurement of the obtained primary base material was performed with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, the entire inner diameter difference was in a range of 6 mm.

この円筒状一次母材の両端を切断し、その内径を60mmから70mmにすべく、頭部円板体26の研削直径を68mmに設定し、幅4mmの#100メタルボンドダイヤモンドの頭部砥石チップ30をその傾斜角度αを10度として4個配置し、中間円板体28の研削外径を70mmに設定した中空脆性材料用ドリル10Bで研削し、内径70mm、長さ4mの二次母材を作成した。研削条件は、頭部砥石チップの中空脆性材料の内孔に対する接触面積を64mm2、ヘッドの回転数を600rpm、送り速度を20mm/minとし、研削液であるクーラント水を圧力0.2MPaで流し続けた。 The cylindrical primary base material is cut at both ends, and the grinding diameter of the head disk 26 is set to 68 mm in order to reduce the inner diameter from 60 mm to 70 mm, and the head grindstone tip of # 100 metal bond diamond with a width of 4 mm. 4 is arranged with an inclination angle α of 10 degrees, and the intermediate disk 28 is ground with a hollow brittle material drill 10B in which the grinding outer diameter is set to 70 mm. The secondary base material has an inner diameter of 70 mm and a length of 4 m. It was created. The grinding conditions were such that the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material was 64 mm 2 , the rotational speed of the head was 600 rpm, the feed rate was 20 mm / min, and coolant water as a grinding fluid was flowed at a pressure of 0.2 MPa. Continued.

得られた二次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、長さが4m、平均内径が70mmで、平均内径差は0.12mm、真円度は最大で0.1mm、平均外径の円中心からのズレは最大で0.6mm、平均外径の円中心に対する平均内径の円中心のズレは最大で0.7mmであった。   When the dimensions of the obtained secondary base material were measured with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, the length was 4 m, the average inner diameter was 70 mm, the average inner diameter difference was 0.12 mm, and a perfect circle The degree was 0.1 mm at the maximum, the deviation from the circle center of the average outer diameter was 0.6 mm at the maximum, and the deviation of the circle center of the average inner diameter from the circle center of the average outer diameter was 0.7 mm at the maximum.

(比較例1)
実施例1と同様にVAD法を用い、四塩化珪素を気化し、酸水素炎中で火炎加水分解し、回転する石英ガラス棒にシリカガラス微粒子を堆積させて多孔質スート体を作成した。この多孔質スート体を電気炉に入れ、Heガスにより1100℃で加熱脱水し、引き続きHe雰囲気中1600℃で透明ガラス化して円柱状石英ガラスインゴットを得た。前記円柱状石英ガラスインゴットの両端を切断し、その外周をダイヤモンド砥粒を備えた円筒研削装置で所定の寸法に正確に研削し、レーザー外径測定機で寸法測定を行い、外径の円中心を求めた。前記円中心に合わせて熱間炭素ドリル穴開け装置で開孔し、内径約30mm、長さ約3mの円筒状一次母材を製造した。内径は、透明な状態であったが、得られた一次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、開孔開始部から長さ2.5mの部分で、平均外径の円中心に対する平均内径の円中心のズレが最大で1.9mmであった。
(Comparative Example 1)
The VAD method was used in the same manner as in Example 1, and silicon tetrachloride was vaporized, flame hydrolyzed in an oxyhydrogen flame, and silica glass fine particles were deposited on a rotating quartz glass rod to prepare a porous soot body. This porous soot body was put into an electric furnace, heated and dehydrated with He gas at 1100 ° C., and then transparent vitrified at 1600 ° C. in a He atmosphere to obtain a cylindrical quartz glass ingot. Cut both ends of the cylindrical quartz glass ingot, accurately grind the outer periphery to a predetermined dimension with a cylindrical grinding machine equipped with diamond abrasive grains, measure the dimensions with a laser outer diameter measuring machine, Asked. A cylindrical primary base material having an inner diameter of about 30 mm and a length of about 3 m was manufactured in accordance with the center of the circle using a hot carbon drilling device. The inner diameter was in a transparent state, but when the dimension measurement of the obtained primary base material was performed with a laser outer diameter measuring machine and a wall thickness measuring machine at intervals of 50 mm, a length of 2.5 m from the opening start portion. In the portion, the deviation of the circle center of the average inner diameter from the circle center of the average outer diameter was 1.9 mm at the maximum.

この円筒状一次母材の両端を切断し、その内径を30mmから40mmにすべく、頭部円板体の研削直径を38mmに設定し、幅4mmの#100メタルボンドダイヤモンドの頭部砥石チップをその傾斜角度αを50度として8個配置し、中間円板体の研削外径を40mmに設定した中空脆性材料用ドリルで研削し、内径40mm、長さ4mの二次母材を作成した。研削条件は、頭部砥石チップの中空脆性材料の内孔に対する接触面積を128mm2、ヘッドの回転数を900rpm、送り速度を15mm/minとし、研削液であるクーラント水を圧力0.2MPaで流し続けた。 In order to cut both ends of this cylindrical primary base material, the grinding diameter of the head disk is set to 38 mm so that the inner diameter is 30 mm to 40 mm, and a # 100 metal bond diamond head grindstone chip with a width of 4 mm is used. Eight of them were arranged with an inclination angle α of 50 degrees, and ground with a drill for a hollow brittle material in which the outer diameter of the intermediate disk was set to 40 mm, thereby producing a secondary base material having an inner diameter of 40 mm and a length of 4 m. The grinding conditions were such that the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material was 128 mm 2 , the head rotation speed was 900 rpm, the feed rate was 15 mm / min, and coolant water as a grinding fluid was flowed at a pressure of 0.2 MPa. Continued.

内面には、亀裂の発生することなく加工でしたが、得られた二次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、開孔開始部から長さ2.5mの部分で、平均外径の円中心に対する平均内径の円中心のズレが最大で1.5mmであった。   The inner surface was processed without cracking, but when the dimensions of the obtained secondary base material were measured with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, the length from the opening start portion was long. In the portion of 2.5 m in length, the deviation of the average inner diameter circle center from the average outer diameter circle center was 1.5 mm at the maximum.

(比較例2)
実施例2と同様にOVD法を用い、四塩化珪素を気化し、酸水素炎中で火炎加水分解し、回転する心棒の周囲にシリカガラス微粒子を堆積させて大型多孔質スート体を作成した。引き続き心棒を引き抜き、この中空多孔質スート体を電気炉に入れ、Heガスにより1100℃で加熱脱水し、引き続きHe雰囲気中1600℃で透明ガラス化し、内径約60mm、長さ約4mの円筒状一次母材を製造した。心棒がない状態で透明ガラス化されたため、内径は不均一な状一次母材を製造した。得られた一次母材の寸法測定を50mm間隔でレーザー外径測定機及び肉厚測定機で行ったところ、全体にわたって内径差が6mmの範囲で振れていた。
(Comparative Example 2)
Using the OVD method as in Example 2, silicon tetrachloride was vaporized, flame hydrolyzed in an oxyhydrogen flame, and silica glass fine particles were deposited around the rotating mandrel to create a large porous soot body. Subsequently, the mandrel is pulled out, this hollow porous soot body is placed in an electric furnace, heated and dehydrated with He gas at 1100 ° C., and then transparently vitrified at 1600 ° C. in a He atmosphere. A cylindrical primary having an inner diameter of about 60 mm and a length of about 4 m. A base material was manufactured. Since it was made into a transparent glass without a mandrel, a primary base material having a non-uniform inner diameter was produced. When the dimension measurement of the obtained primary base material was performed with a laser outer diameter measuring device and a wall thickness measuring device at intervals of 50 mm, the entire inner diameter difference was in a range of 6 mm.

この円筒状一次母材の両端を切断し、その内径を60mmから70mmにすべく、頭部円板体の研削直径を68mmに設定し、幅15mmの#100メタルボンドダイヤモンドの頭部砥石チップをその傾斜角度αを10度として4個配置し、中間円板体の研削外径を70mmに設定した中空脆性材料用ドリルで研削し、内径70mm、長さ4mの二次母材を作成した。研削条件は、頭部砥石チップの中空脆性材料の内孔に対する接触面積を240mm2、ヘッドの回転数を600rpm、送り速度を20mm/minとし、研削液である水を圧力0.2MPaで流し続けた。しかし、開孔開始部から長さ1mの部分で、ヘッド先端部による内壁研削部分より深い亀裂が研削内面に発生したため、研削を中止した。 In order to cut both ends of this cylindrical primary base material, the grinding diameter of the head disk body is set to 68 mm so that the inner diameter is changed from 60 mm to 70 mm, and a # 100 metal bond diamond head grindstone chip with a width of 15 mm is used. Four of them were arranged with an inclination angle α of 10 degrees, and ground with a drill for a hollow brittle material in which the outer diameter of the intermediate disk was set to 70 mm, thereby producing a secondary base material having an inner diameter of 70 mm and a length of 4 m. Grinding conditions were as follows: the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material was 240 mm 2 , the head rotation speed was 600 rpm, the feed rate was 20 mm / min, and water as the grinding fluid was continuously supplied at a pressure of 0.2 MPa. It was. However, since a crack deeper than the inner wall grinding portion by the head tip portion occurred in the portion 1 m long from the opening start portion, grinding was stopped.

このように、実施例1〜2で得られた二次母材は、比較例1〜2における二次母材に比べて損傷を与えることなく精度良く研削できたことが確認できた。   As described above, it was confirmed that the secondary base materials obtained in Examples 1 and 2 could be accurately ground without being damaged as compared with the secondary base materials in Comparative Examples 1 and 2.

本発明方法に用いられる中空脆性材料加工用ドリルの一つの実施の形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one embodiment of the drill for hollow brittle material processing used for the method of this invention. 頭部砥石チップの拡大断面図である。It is an expanded sectional view of a head grindstone chip. 図1のI−I線からみた概略平面断面図である。It is a schematic plane sectional view seen from the II line of FIG. 本発明方法に用いられる中空脆性材料加工用ドリルの別の実施の形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows another embodiment of the drill for hollow brittle material processing used for the method of this invention. 従来の中空脆性材料加工用ドリルの1例を示す概略平面断面図である。It is a schematic plane sectional view showing an example of the conventional drill for hollow brittle material processing.

符号の説明Explanation of symbols

20,21:本発明方法に用いられる脆性材料加工用ドリル、22:ドリルロッド、24:ドリルヘッド、26:頭部円板体、28:中間円板体、30:頭部砥石チップ、31:頭部ドリル体、32:中間砥石チップ、33:中間ドリル体、34:脆性材料、36:内孔。   20, 21: Drill for processing brittle material used in the method of the present invention, 22: Drill rod, 24: Drill head, 26: Head disc body, 28: Intermediate disc body, 30: Head grindstone tip, 31: Head drill body, 32: intermediate grindstone tip, 33: intermediate drill body, 34: brittle material, 36: inner hole.

Claims (5)

長手方向軸線を中心に回転するドリルロッドと、前記ドリルロッドの前端に設けられたドリルヘッドと、からなり、前記ドリルヘッドが、頭部円板体の外周面に等間隔をおいて設けられた2個以上4個以下の頭部砥石チップを具備した頭部ドリル体を有し、前記頭部砥石チップの幅が4mm以上10mm以下である中空脆性材料加工用ドリルを用いて中空脆性材料の加工前内孔の内周面の内径を+5mm以上の拡孔研削する内孔加工方法であって、前記頭部砥石チップの前記中空脆性材料の内孔に対する接触面積を5mm2以上80mm2以下に規制し、研削加工された中空脆性材料の平均外径の円中心に対する平均内径の円中心のズレが1.0mm以下であるように加工することを特徴とする中空脆性材料の内孔加工方法。 A drill rod that rotates about a longitudinal axis and a drill head provided at the front end of the drill rod, the drill heads being provided at equal intervals on the outer peripheral surface of the head disk body Processing of a hollow brittle material using a drill for processing a hollow brittle material having a head drill body including two or more and four or less head grindstone tips, and the width of the head grindstone tip being 4 mm or greater and 10 mm or less. An inner hole machining method in which the inner diameter of the inner peripheral surface of the front inner hole is subjected to expansion grinding of +5 mm or more, and the contact area of the head grindstone tip with respect to the inner hole of the hollow brittle material is set to 5 mm 2 or more and 80 mm 2 or less. An inner hole machining method for a hollow brittle material, characterized in that processing is performed so that a deviation of a circle center of an average inner diameter with respect to a circle center of an average outer diameter of a hollow brittle material that has been regulated and ground is 1.0 mm or less. 前記ドリルヘッドが、中間円板体の外周面に等間隔をおいて設けられた複数の中間砥石チップを具備するとともに前記頭部ドリル体よりも径大とされた中間ドリル体をさらに有し、前記頭部ドリル体と中間ドリル体との外径差が1mm以下であるようにしたことを特徴とする請求項1記載の加工方法。   The drill head further includes an intermediate drill body having a plurality of intermediate grindstone tips provided at equal intervals on the outer peripheral surface of the intermediate disk body and having a diameter larger than that of the head drill body, The processing method according to claim 1, wherein an outer diameter difference between the head drill body and the intermediate drill body is 1 mm or less. 前記中間ドリル体を複数個設置し、前記ドリルロッドの前端側に位置する前端側中間ドリル体の外径よりも前記ドリルロッドの後端側に位置する後端側中間ドリル体の外径が徐々に径大となるように構成し、各中間ドリル体の外径差が1mm以下であるようにしたことを特徴とする請求項2記載の加工方法。   A plurality of the intermediate drill bodies are installed, and the outer diameter of the rear end side intermediate drill body positioned on the rear end side of the drill rod is gradually larger than the outer diameter of the front end side intermediate drill body positioned on the front end side of the drill rod. The machining method according to claim 2, wherein the diameter of each intermediate drill body is set to be 1 mm or less. 前記頭部砥石チップの上面が前記頭部ドリル体の中心方向に向かって下方に所定の傾斜角度αで傾斜し、その傾斜角度αが5度以上70度以下であることを特徴とする請求項1〜のいずれか1項記載の加工方法。 The upper surface of the head grindstone tip is inclined downward at a predetermined inclination angle α toward the center direction of the head drill body, and the inclination angle α is 5 degrees or more and 70 degrees or less. machining method of any one of 1-3. 前記頭部砥石チップの砥粒がダイヤモンド砥粒又はCBN砥粒であることを特徴とする請求項1〜のいずれか1項記載の加工方法。 Processing method according to any one of claims 1-4, wherein the abrasive grains of the head grinding chips are diamond abrasive grains or CBN abrasive grains.
JP2005375875A 2005-12-27 2005-12-27 Inner hole processing method of hollow brittle material Active JP4785185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375875A JP4785185B2 (en) 2005-12-27 2005-12-27 Inner hole processing method of hollow brittle material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375875A JP4785185B2 (en) 2005-12-27 2005-12-27 Inner hole processing method of hollow brittle material

Publications (3)

Publication Number Publication Date
JP2007175967A JP2007175967A (en) 2007-07-12
JP2007175967A5 JP2007175967A5 (en) 2008-08-28
JP4785185B2 true JP4785185B2 (en) 2011-10-05

Family

ID=38301633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375875A Active JP4785185B2 (en) 2005-12-27 2005-12-27 Inner hole processing method of hollow brittle material

Country Status (1)

Country Link
JP (1) JP4785185B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006410B4 (en) * 2012-03-30 2013-11-28 Heraeus Quarzglas Gmbh & Co. Kg Process for producing a quartz glass hollow cylinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3706641A1 (en) * 1987-03-02 1988-09-15 Hilti Ag HOLLOW DRILL
JPH01206004A (en) * 1988-02-12 1989-08-18 Nachi Fujikoshi Corp Drill for hard and brittle material
DE4434025C2 (en) * 1994-09-23 1996-10-10 Heraeus Quarzglas Process for drilling brittle materials, drill for carrying out the process and use of the drill

Also Published As

Publication number Publication date
JP2007175967A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
EP2843688B1 (en) Dicing blade
JP5510514B2 (en) Disk-shaped glass substrate, method for manufacturing disk-shaped glass substrate, and glass substrate for magnetic recording medium
CN102806465B (en) tool and method for mechanical roughening
CN109333385B (en) Diamond grinding wheel with microstructure and preparation method thereof
KR0171664B1 (en) Drill for drilling brittle materials
Su et al. Experimental research on performance of monolayer brazed diamond wheel through a new precise dressing method—plate wheel dressing
JP4785185B2 (en) Inner hole processing method of hollow brittle material
JPH08298251A (en) Manufacture of thin plate
CN201613382U (en) Improved groove-shaped spiral cutter
Tawakoli et al. Dressing of grinding wheels
KR100506874B1 (en) A PCD Temp Cutter And Processing Method
Nadolny The method of assessment of the grinding wheel cutting ability in the plunge grinding
TW201600229A (en) Scribing wheel and method of manufacturing same
Vignesh et al. Design and development of spiral grooved grinding wheel and their influence on the performance of vertical surface grinding process
CN207757880U (en) A kind of grinding wheel post-processing cutter
CN106799665A (en) Ceramics based on Crack Extension effect cut combined type plane surface processing method of turning a millstone
JP2004058301A (en) Cutting blade for brittle material and its manufacturing method
TWI540009B (en) The blade has a non-symmetrical microstructure of the tool
CN110561272A (en) Superhard tool for dressing grinding wheel and preparation method thereof
CN103707147B (en) The processing method of the large plane of high-precision silicon carbide super-hard material
TWM565727U (en) Miniature diamond round drill bit for miniature repair of hollow ridge of building decoration brick
JP3306443B2 (en) Diamond core drill
JP2008188701A (en) Drill for manufacturing honeycomb object molding die, and method for manufacturing honeycomb object molding die using it
TWI715591B (en) Cutter wheel and manufacturing method thereof
CN107932749A (en) A kind of emery wheel post-processing cutter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Ref document number: 4785185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250