JP2004058301A - Cutting blade for brittle material and its manufacturing method - Google Patents

Cutting blade for brittle material and its manufacturing method Download PDF

Info

Publication number
JP2004058301A
JP2004058301A JP2002216367A JP2002216367A JP2004058301A JP 2004058301 A JP2004058301 A JP 2004058301A JP 2002216367 A JP2002216367 A JP 2002216367A JP 2002216367 A JP2002216367 A JP 2002216367A JP 2004058301 A JP2004058301 A JP 2004058301A
Authority
JP
Japan
Prior art keywords
cutting edge
roughness
brittle material
grinding
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002216367A
Other languages
Japanese (ja)
Other versions
JP4220192B2 (en
Inventor
Hiroshi Soyama
曽山 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2002216367A priority Critical patent/JP4220192B2/en
Publication of JP2004058301A publication Critical patent/JP2004058301A/en
Application granted granted Critical
Publication of JP4220192B2 publication Critical patent/JP4220192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/105Details of cutting or scoring means, e.g. tips
    • C03B33/107Wheel design, e.g. materials, construction, shape

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting blade for glass having a cutting edge of a well-formed shape and assuring a scribing performance. <P>SOLUTION: In the cutting blade 1 for the glass made of a cemented carbide or a sintered diamond having truncated cone surfaces 2A, 2B formed at both left and right sides and a circular cutting edge 3 projecting in a V shape outwardly at crossed sides of these truncated cone surfaces, a surface roughness of the conical surface 2A of one side of right and left sides is different from that of the conical surface 2B of the other side of the right and left sides. Thus, a disorder in the shape of the edge 3 can be reduced as much as possible at the edge 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス、セラミック、半導体ウエハーなどの脆性材料の分断工程に使用される脆性材料用切刃およびその製造方法に関するものである。
【0002】
【従来の技術】
以下、脆性材料用切刃の具体例として、ガラス板にスクライブラインを刻むガラス用切刃について説明する。
【0003】
従来、図4に示すように、両側に円錐台面12,12が形成されるとともに、それらの円錐台面12,12が交わる辺に外方に向けてV字状に突出する円形状の刃先13が形成された超硬合金製または焼結ダイヤモンド製のガラス用切刃11が知られている。このガラス用切刃11を図示しないガラススクライバーのヘッドなどに回転自在に軸支し、ガラス板上に圧接状態で転動させることにより、ガラス板にスクライブライン(切り筋)を刻むことができる。
【0004】
このようなガラス用切刃11は、例えば、図5に示す研削加工装置20の回転するダイヤモンド砥石Rを、回転する刃先部材に対して、ガラス用切刃11の刃先角度方向に移動させ、刃先部材を研削することによって製造することができる。
【0005】
具体的には、刃先部材である超硬合金製または焼結ダイヤモンド製のディスクDを軸21に固定した後、軸21を図示しないモータにより回転させ、ディスクDを回転させながら粗さr1(例えば、#200〜300)のダイヤモンド砥石R1を回転させるとともに、刃先角度方向に移動させ、ディスクDの円周エッジの片半分を研削することにより、左右一側に円錐台面121を形成する。そして、左右一側に円錐台面121が形成されたディスクDを軸21から取り外して裏返した後、再度軸21に固定し、同一粗さr1のダイヤモンド砥石R1を用いて同様に研削加工することにより、左右他側にも円錐台面121を形成する(図6(a)参照)。
【0006】
このようにして、ディスクDを偏平なそろばん玉状に粗研削加工したならば、より細かな粗さr2(例えば、#600〜1000)のダイヤモンド砥石R2に交換し、同様に作業して左右両側の円錐台面121,121を順次仕上げ研削することにより、それらの仕上げ研削後の円錐台面12,12が交わる辺に外方にV字状に突出する円形状の刃先13(図7(a)および図8(a)参照)を形成するものである。
【0007】
【発明が解決しようとする課題】
ところで、ガラス用切刃11の製造に際しては、粗研削加工された左右一側の円錐台面121を製品面12に仕上げ研削する場合と、粗研削加工された左右他側の円錐台面121を製品面12に仕上げ研削する場合とを、同一粗さr2のダイヤモンド砥石R2で研削加工するため、先に左右一側の円錐台面121を仕上げ研削することによって形成された刃先(図7(b)参照)を、左右他側の円錐台面121を仕上げ研削する際に同一粗さr2のダイヤモンド砥石R2で研削することになる。したがって、ダイヤモンド砥石R2による円錐台面12の表面粗さが刃先13に現れることから、ガラス用切刃11の刃先13は、左右両側の円錐台面12,12の表面粗さが複合したものとなる。この結果、左右他側の円錐台面121の仕上げ研削により、先に左右一側の円錐台面121の仕上げ研削によって形成された非常に脆い刃先13(図7(b)参照)に割れや欠けが発生し(図8(b)参照)、良好な刃先13を安定して形成することが困難であった。このため、ガラス用切刃11の必要とするスクライブ性能を安定して得ることができないという問題があった。
【0008】
また、次のようにも考えることができる。先に左右一側の円錐台面121を仕上げ研削することによって形成された刃先を、左右他側の円錐台面121を仕上げ研削する際に同一粗さr2のダイヤモンド砥石R2で研削することから、刃先13は、左右両側の円錐台面12,12の表面粗さが複合したものとなる。このため、図8(c)に示すように、刃先の軌跡には「うねり」が生じる。この刃先のうねりの幅UN(図8(c)参照)を一定にすることによって一定の垂直クラックを安定して形成できることが判明している。また、安定したスクライブ性能を得るためには、刃先のうねりを少なくしてほぼ直線に近いものにすることが好ましい。ところが、この刃先のうねりの幅を調整することが困難であった。
【0009】
本発明は、このような問題点に鑑みてなされたもので、一定のスクライブ性能を確保することのできる良好な刃先を有するガラス用切刃を一例とする脆性材料用切刃を提供するとともに、スクライブ性能を損ねることのない良好な刃先を安定して形成することのできる脆性材料用切刃の製造方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明の脆性材料用切刃は、左右両側に円錐台面が形成されるとともに、これらの円錐台面の交わる辺に外方に向けてV字状に突出する円形状の刃先が形成された超硬合金製または焼結ダイヤモンド製の脆性材料用切刃において、左右一側の円錐台面の表面粗さが、左右他側の円錐台面の表面粗さと異なることを特徴とするものである。
【0011】
本発明によれば、左右一側の円錐台面の表面粗さが、左右他側の円錐台面の表面粗さと異なる細かさに形成されているため、これらの円錐台面の交わる辺に形成された刃先は、刃先形状が整った良好なものとなり、従来より安定したスクライブ性能を確保することができる。
【0012】
本発明の脆性材料用切刃の製造方法は、超硬合金製または焼結ダイヤモンド製のディスクを回転させながらそのディスクの両側の円周エッジを斜めに研削加工して左右の円錐台面を形成し、これらの円錐台面の交わる辺に外方に向けてV字状に突出する円形状の刃先を形成する脆性材料用切刃の製造方法において、左右一側の円錐台面を設定粗さの仕上げ用研削砥石で研削した後、左右他側の円錐台面を、左右一側の円錐台面の仕上げ用研削砥石よりも細かな仕上げ用研削砥石で研削することを特徴とするものである。
【0013】
本発明によれば、超硬合金または焼結ダイヤモンドからなるディスクを、設定粗さの砥石で粗研削加工し、左右にその砥石による表面粗さの円錐台面を有する略製品形状の半製品を形成した後、より細かな粗さの砥石を用いて、粗加工された左右一側の円錐台面を仕上げ研削し、次いで、さらに細かな粗さの砥石を用いて左右他側の円錐台面を仕上げ研削する。
【0014】
この結果、先に仕上げ研削された左右一側の円錐台面の表面粗さが現れた刃先に、左右他側の円錐台面の仕上げ研削が影響することが少なく、刃先形状の乱れを可及的に削減することができる。したがって、形状の整った刃先を有する脆性材料用切刃を安定して製造することができ、製造された脆性材料用切刃のスクライブ性能の安定化を確保することができる。
【0015】
本発明において、前記先に仕上げ研削する左右一側の円錐台面の研削量よりも、後に仕上げ研削する左右他側の円錐台面の研削量が大きいと、先に仕上げ研削された左右一側の円錐台面に形成されていた粗い形状の刃先が除去され、先に仕上げ研削された左右一側の円錐台面と、後に仕上げ研削された左右他側の円錐台面との間に、左右他側の円錐台面の表面粗さを有する新たな刃先が形成される。したがって、形状の整った刃先を安定して形成することができる。
【0016】
本発明において、前記後に仕上げ研削する仕上げ用研削砥石の粗さが、先に仕上げ研削する仕上げ用研削砥石の粗さの略3倍以上の細かさであることが好ましい。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0018】
図1には、本発明のガラス用切刃1が示されている。
【0019】
このガラス用切刃1は、主に超硬合金または焼結ダイヤモンドを素材とし、両側に円錐台面2A,2Bが形成されるとともに、それらの円錐台面2A,2Bの交わる辺に外方に向けてV字状に突出する円形状の刃先3が形成されたものである。そして、左右他側の円錐台面2Bの表面粗さは、左右一側の円錐台面2Aの表面粗さの約3倍の細かさに形成されている。
【0020】
したがって、左右両側の円錐台面2A,2Bの交わる辺に形成された円形状の刃先3は、形状の整った良好なものとなり、スクライブ性能を確保することができる。
【0021】
この実施形態のガラス用切刃1の寸法は、例えば、直径が2.5mm、幅が0.65mm、刃先角度θが120度である。
【0022】
次に、このようなガラス用切刃1を製造する工程について説明する。
【0023】
先に図5に示したように、まず、超硬合金または焼結ダイヤモンドからなるディスクDを軸21に固定した後、軸21を図示しないモータにより回転させ、ディスクDを回転させながら粗さr1(例えば、#200〜300)のダイヤモンド砥石R1を回転させるとともに、略刃先角度方向(刃先角度が117度となる角度方向)に移動させ、ディスクDの左右一側の円周エッジを研削することにより、左右一側に円錐台面21Aを形成する。そして、左右一側に円錐台面21Aが形成されたディスクDを軸21から取り外して裏返した後、再度軸21に固定し、同一粗さr1のダイヤモンド砥石R1を用いて同様に研削加工することにより、左右他側にも円錐台面21Bを形成する(図2参照)。
【0024】
このようにして、ディスクDを偏平なそろばん玉状に粗加工したならば、より細かな粗さr2(例えば、#600〜1000)のダイヤモンド砥石R2に交換し、ディスクDと砥石R2の両方を回転させるとともに、刃先角度(120度)方向に砥石R2を移動させ、先に粗加工された左右一側の円錐台面21Aを仕上げ研削して円錐台面2Aを得る(図3参照)。その後、左右一側の円錐台面21Aが仕上げ研削された半製品を軸21から取り外して裏返した後、軸21に固定するとともに、さらに細かな粗さr3(例えば、粗さr2の3倍程度の細かさであって、#2000〜3000)のダイヤモンド砥石R3を用いて左右他側の円錐台面21Bを同様に仕上げ研削する。
【0025】
この結果、粗さr2のダイヤモンド砥石R2によって仕上げ研削された左右一側の円錐台面2Aの表面粗さよりも、さらに細かな粗さr3のダイヤモンド砥石R3によって仕上げ研削された左右他側の円錐台面2Bの表面粗さが細かいことから、先に仕上げ研削された左右一側の円錐台面2Aの表面粗さが現れた刃先3に、左右他側の円錐台面2Bの仕上げ研削が影響することが少なく、刃先形状の乱れを可及的に削減することができる(図1(b)参照)。また、このとき、刃先のうねりはほぼ直線に近いものとなる(図1(c)参照)。この場合、刃先のうねりの幅UNは、左右一側の円錐台面2Aの仕上げ加工に用いられるダイヤモンド砥石の粗さによって変化する。
【0026】
したがって、形状の整った刃先3を有するガラス用切刃1、すなわち、安定したスクライブ性能を確保したガラス用切刃1を品質的に安定して製造することができる。
【0027】
この場合、より細かな粗さr2のダイヤモンド砥石R2による左右一側の円錐台面2Aの仕上げ研削量よりも、さらに細かな粗さr3のダイヤモンド砥石R3による左右他側の円錐台面2Bの仕上げ研削量を大きく設定すると、先に仕上げ研削された左右一側の円錐台面2Aによる非常に脆い刃先が除去され、左右一側の円錐台面2Aと、左右他側の円錐台面2Bとの間に、左右他側の円錐台面2Bの表面粗さを有する新たな刃先3が形成されることになり、形状の整った刃先3を安定して形成することができる。このとき、刃先のうねりは、ほぼ直線に近いものとなる。この場合、刃先のうねりの幅UNは、左右他側の円錐台面2Bの仕上げ加工に用いられるダイヤモンド砥石の粗さによって変化する。
【0028】
また、本実施形態においては、ガラスの切断を例として説明したが、セラミック、半導体ウエハなどの脆性材料の切断にも適用することができる。
【0029】
さらに、前述した実施形態においては、刃先部材であるディスクDから研削加工する場合を説明したが、左右の円錐台面が粗さr2の砥石R2で仕上げ研削加工された脆性材料用切刃や、それ以外の粗さの砥石で仕上げ研削加工された脆性材料用切刃を、磨耗により再研削する場合にも適用することができる。
【0030】
【発明の効果】
以上のように本発明のガラス用切刃によれば、割れや欠けのない良好な刃先を有することにより、一定のスクライブ性能を確保することができる。また、本発明のガラス用切刃の製造方法によれば、一定のスクライブ性能を確保することのできる形状の整った良好な刃先を安定して形成することができる。
【図面の簡単な説明】
【図1】本発明のガラス用切刃の一実施形態の正面図、その刃先を模式的に示すX方向からの拡大図および刃先の軌跡を模式的に示す拡大図である。
【図2】図1のガラス用切刃の製造工程における粗加工された半製品の正面図およびその刃先を模式的に示すY方向からの拡大図である。
【図3】図1のガラス用切刃の製造工程における一側円錐台面が仕上げ研削された半製品の正面図およびその刃先を模式的に示すZ方向からの拡大図である。
【図4】従来のガラス用切刃を示す側面図および正面図である。
【図5】ガラス用切刃を製造するための加工装置を示す概略図である。
【図6】従来のガラス用切刃の製造工程における粗加工された半製品の正面図およびその刃先を模式的に示すU方向からの拡大図である。
【図7】従来のガラス用切刃の製造工程における一側円錐台面が仕上げ研削された半製品の正面図およびその刃先を模式的に示すV方向からの拡大図である。
【図8】従来のガラス用切刃の製造工程における両側円錐台面が仕上げ研削された製品の正面図、その刃先を模式的に示すW方向からの拡大図および刃先の軌跡を模式的に示す拡大図である。
【符号の説明】
1 ガラス用切刃
2A,2B  円錐台面
3 刃先
20 加工装置
R1,R2,R3 ダイヤモンド砥石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cutting edge for a brittle material used in a step of cutting a brittle material such as glass, ceramic, and a semiconductor wafer, and a method for manufacturing the same.
[0002]
[Prior art]
Hereinafter, as a specific example of the cutting edge for a brittle material, a glass cutting blade for cutting a scribe line on a glass plate will be described.
[0003]
Conventionally, as shown in FIG. 4, frustoconical surfaces 12, 12 are formed on both sides, and a circular cutting edge 13 protruding outward in a V shape is formed on the side where the frustoconical surfaces 12, 12 intersect. A formed cutting edge 11 for glass made of cemented carbide or sintered diamond is known. The glass cutting blade 11 is rotatably supported by a glass scriber head (not shown) or the like, and is rolled on the glass plate in a pressed state, whereby a scribe line (cut line) can be cut on the glass plate.
[0004]
Such a glass cutting blade 11 moves, for example, a rotating diamond grindstone R of a grinding apparatus 20 shown in FIG. 5 with respect to a rotating cutting edge member in the direction of the cutting edge angle of the cutting edge 11 for glass. It can be manufactured by grinding members.
[0005]
Specifically, after a disk D made of cemented carbide or sintered diamond, which is a cutting edge member, is fixed to the shaft 21, the shaft 21 is rotated by a motor (not shown), and the roughness r1 (for example, , # 200 to 300) are rotated and moved in the direction of the blade edge to grind one half of the circumferential edge of the disk D, thereby forming a truncated conical surface 121 on one left and right side. Then, after removing the disk D having the frustoconical surface 121 formed on one of the left and right sides from the shaft 21 and turning it over, it is fixed to the shaft 21 again, and is similarly ground by using a diamond grindstone R1 having the same roughness r1. A frustoconical surface 121 is also formed on the other side (see FIG. 6A).
[0006]
In this way, if the disk D is roughly ground into a flat abacus ball shape, it is replaced with a diamond whetstone R2 having a finer roughness r2 (for example, # 600 to 1000). Of the circular truncated cones 121 (see FIG. 7 (a) and FIG. 7 (a)) FIG. 8A).
[0007]
[Problems to be solved by the invention]
By the way, when manufacturing the cutting edge 11 for glass, one of the left and right frustum conical surfaces 121 on one side of the rough grinding is finish-ground to the product surface 12, and the other is the rough fritted conical surface 121 on the other side of the right and left. In order to perform the grinding with the diamond grindstone R2 having the same roughness r2 as the case of the finish grinding to 12, the cutting edge formed by first finish grinding the frustoconical surface 121 on the left and right sides (see FIG. 7B) Is ground with the diamond grindstone R2 having the same roughness r2 when the other side of the frustum conical surface 121 is finish-ground. Therefore, since the surface roughness of the truncated conical surface 12 due to the diamond grindstone R2 appears on the cutting edge 13, the cutting edge 13 of the glass cutting blade 11 is a composite of the surface roughness of the right and left truncated conical surfaces 12, 12. As a result, due to the finish grinding of the left and right frustoconical surfaces 121, cracks and chips occur in the very fragile cutting edge 13 (see FIG. 7B) formed by the finish grinding of the left and right frustoconical surfaces 121 first. However, it was difficult to stably form a good cutting edge 13 (see FIG. 8B). For this reason, there has been a problem that the scribing performance required by the glass cutting blade 11 cannot be stably obtained.
[0008]
The following can also be considered. The edge formed by first finishing the left and right frusto-conical surfaces 121 is ground with the diamond grindstone R2 having the same roughness r2 when the other side of the frusto-conical surfaces 121 is finish-ground. Is a composite of the surface roughness of the frustoconical surfaces 12, 12 on both the left and right sides. For this reason, as shown in FIG. 8C, a swell occurs in the trajectory of the cutting edge. It has been found that a constant vertical crack can be stably formed by keeping the undulation width UN (see FIG. 8C) of the cutting edge constant. In addition, in order to obtain stable scribe performance, it is preferable to reduce the undulation of the cutting edge and make it nearly linear. However, it was difficult to adjust the width of the undulation of the cutting edge.
[0009]
The present invention has been made in view of such problems, and provides a cutting edge for brittle material, which is an example of a cutting edge for glass having a good cutting edge capable of securing a constant scribe performance, An object of the present invention is to provide a method for producing a cutting edge for brittle material, which can stably form a good cutting edge without impairing scribe performance.
[0010]
[Means for Solving the Problems]
The cutting edge for brittle material of the present invention has a frustoconical surface formed on both left and right sides, and a carbide cutting edge formed with a circular cutting edge protruding outward in a V-shape on a side where the frustoconical surfaces intersect. In the cutting edge for brittle material made of alloy or sintered diamond, the surface roughness of the right and left frustoconical surfaces is different from the surface roughness of the left and right other frustoconical surfaces.
[0011]
According to the present invention, since the surface roughness of the left and right frustoconical surfaces is formed to be different from the surface roughness of the left and right frustoconical surfaces, the cutting edge formed on the side where these frustoconical surfaces intersect. Has a good edge shape and can secure a more stable scribe performance than before.
[0012]
The manufacturing method of the cutting edge for brittle material of the present invention is to form a left and right truncated conical surface by diagonally grinding circumferential edges on both sides of the disk while rotating a hard metal or sintered diamond disk. In a method for manufacturing a cutting edge for brittle material, in which a circular cutting edge protruding outward in a V-shape is formed on a side where these frustoconical surfaces intersect, a left and right frustoconical surface is set for finishing with a set roughness. After grinding with a grinding wheel, the left and right frustoconical surfaces are ground with a finer grinding wheel than the finishing grindstone on the left and right frustoconical surfaces.
[0013]
According to the present invention, a disk made of cemented carbide or sintered diamond is roughly ground with a grindstone having a set roughness to form a semi-finished product having a substantially product shape having a truncated conical surface having a surface roughness of the grindstone on the left and right sides. After that, using a finer grindstone, finish-grinding the roughed frustum on one side on the left and right, and then using a finer grindstone, finish-grinding the frustum on the other side. I do.
[0014]
As a result, the finish grinding of the frustum of the conical surface on the left and right sides is less affected on the cutting edge on which the surface roughness of the frustum of the conical surface on the left and right sides which has been previously finished is less affected, and the disturbance of the shape of the cutting edge is minimized. Can be reduced. Therefore, it is possible to stably manufacture a brittle material cutting blade having a well-formed cutting edge, and it is possible to ensure stabilization of scribe performance of the manufactured brittle material cutting blade.
[0015]
In the present invention, if the grinding amount of the left and right frusto-conical surfaces on the left and right sides to be finish-ground later is greater than the grinding amount on the left and right frusto-conical surfaces for the first finish grinding, the left and right one-side cones previously finished and ground The truncated cone on the left and right sides is removed between the left and right frustoconical faces on the left and right sides that were finished and ground after the rough-shaped cutting edge formed on the trapezoid was removed. A new cutting edge having a surface roughness of is formed. Therefore, it is possible to stably form an edge having a uniform shape.
[0016]
In the present invention, it is preferable that the roughness of the finishing grinding wheel to be finish-ground later is about three times or more the roughness of the finishing grinding wheel to be finish-ground first.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 shows a glass cutting blade 1 of the present invention.
[0019]
This glass cutting blade 1 is mainly made of cemented carbide or sintered diamond, has frusto-conical surfaces 2A, 2B formed on both sides, and is directed outward to the side where these frusto-conical surfaces 2A, 2B intersect. A circular cutting edge 3 protruding in a V-shape is formed. The surface roughness of the left and right frusto-conical surfaces 2B is formed to be approximately three times the surface roughness of the left and right frusto-conical surfaces 2A.
[0020]
Therefore, the circular cutting edge 3 formed on the side where the frusto-conical surfaces 2A and 2B on both sides intersect becomes a well-shaped and good one, and scribe performance can be secured.
[0021]
The dimensions of the glass cutting blade 1 of this embodiment are, for example, a diameter of 2.5 mm, a width of 0.65 mm, and a blade angle θ of 120 degrees.
[0022]
Next, a process of manufacturing such a glass cutting blade 1 will be described.
[0023]
As shown in FIG. 5, first, a disk D made of cemented carbide or sintered diamond is fixed to the shaft 21, and then the shaft 21 is rotated by a motor (not shown) to rotate the disk D while rotating the disk D. While rotating the diamond grindstone R1 (for example, # 200 to 300) and moving the diamond grindstone substantially in the angle direction of the cutting edge (the angle direction in which the cutting edge angle becomes 117 degrees), the circumferential edge on one of the left and right sides of the disk D is ground. Thereby, a frustoconical surface 21A is formed on one left and right side. Then, after removing the disk D having the frusto-conical surface 21A formed on one of the left and right sides from the shaft 21 and turning it over, the disk D is fixed to the shaft 21 again, and is similarly ground using a diamond grindstone R1 having the same roughness r1. A frustoconical surface 21B is also formed on the other side (see FIG. 2).
[0024]
In this way, if the disk D is roughly processed into a flat abacus ball shape, it is replaced with a diamond whetstone R2 having a finer roughness r2 (for example, # 600 to 1000), and both the disk D and the whetstone R2 are replaced. While rotating, the grindstone R2 is moved in the direction of the cutting edge angle (120 degrees) to finish-grind the frustum surface 21A on one side on the left and right sides previously roughened, thereby obtaining the frustum surface 2A (see FIG. 3). Then, after removing the semifinished product having the left and right frusto-conical surfaces 21A finished and ground from the shaft 21 and turning over the semifinished product, the semifinished product is fixed to the shaft 21 and has a finer roughness r3 (for example, approximately three times the roughness r2). Using a diamond grindstone R3 (# 2000-3000) of fineness, the right and left frustoconical surfaces 21B are similarly finish-ground.
[0025]
As a result, the right and left frusto-conical surfaces 2B finished and ground by the diamond grindstone R3 having a roughness r3 finer than the surface roughness of the right and left frustoconical surfaces 2A finished and ground by the diamond whetstone R2 having the roughness r2. Since the surface roughness of the surface is small, the finish grinding of the left and right frusto-conical surfaces 2B is less affected on the cutting edge 3 in which the surface roughness of the left and right frusto-conical surfaces 2A, which has been previously ground, is less affected. Disorder of the cutting edge shape can be reduced as much as possible (see FIG. 1B). Also, at this time, the undulation of the cutting edge is almost a straight line (see FIG. 1C). In this case, the width UN of the undulation of the cutting edge changes depending on the roughness of the diamond grindstone used for finishing the left and right frustoconical surfaces 2A.
[0026]
Therefore, it is possible to stably produce the glass cutting blade 1 having the edge 3 having a well-shaped shape, that is, the glass cutting blade 1 having stable scribe performance.
[0027]
In this case, the amount of finish grinding of the left and right frusto-conical surfaces 2B on the left and right sides by the diamond grindstone R3 having a further finer roughness r3 is smaller than the amount of finish grinding of the right and left frustoconical surfaces 2A by the diamond grindstone R2 having a finer roughness r2. Is set to be large, a very brittle cutting edge is removed by the frustum conical surface 2A on the left and right sides which has been previously ground and the left and right frusto-conical surfaces 2A and the frustum conical surfaces 2B on the other left and right sides are removed. The new cutting edge 3 having the surface roughness of the frustoconical surface 2B on the side is formed, and the cutting edge 3 having a uniform shape can be formed stably. At this time, the undulation of the cutting edge is almost a straight line. In this case, the width UN of the undulation of the cutting edge varies depending on the roughness of the diamond grindstone used for finishing the frustum surface 2B on the left and right sides.
[0028]
Further, in the present embodiment, cutting of glass has been described as an example, but the present invention can also be applied to cutting of brittle materials such as ceramics and semiconductor wafers.
[0029]
Further, in the above-described embodiment, the case where the grinding is performed from the disk D which is the cutting edge member has been described. However, the cutting edge for brittle material in which the right and left truncated cone surfaces are finish-ground by the grindstone R2 having the roughness r2, The present invention can also be applied to a case in which a cutting edge for a brittle material that has been finish-ground with a grindstone having a roughness other than that is re-ground by wear.
[0030]
【The invention's effect】
As described above, according to the glass cutting blade of the present invention, it is possible to ensure a certain scribe performance by having a good cutting edge without cracking or chipping. In addition, according to the method for manufacturing a glass cutting blade of the present invention, a well-formed and well-cut edge capable of securing a constant scribe performance can be stably formed.
[Brief description of the drawings]
FIG. 1 is a front view of an embodiment of a glass cutting blade of the present invention, an enlarged view from the X direction schematically showing the cutting edge, and an enlarged view schematically showing a locus of the cutting edge.
2 is a front view of a semi-finished semi-finished product in a manufacturing process of the glass cutting blade of FIG. 1 and an enlarged view from the Y direction schematically showing a cutting edge thereof.
FIG. 3 is a front view of a semifinished product in which one side of a truncated conical surface is finish-ground in a manufacturing process of the glass cutting blade of FIG. 1, and an enlarged view from the Z direction schematically showing a cutting edge thereof.
FIG. 4 is a side view and a front view showing a conventional glass cutting blade.
FIG. 5 is a schematic view showing a processing apparatus for manufacturing a glass cutting blade.
FIG. 6 is a front view of a semi-finished product that has been roughly processed in a conventional manufacturing process of a glass cutting blade, and an enlarged view from the U direction schematically showing the cutting edge thereof.
FIG. 7 is a front view of a semi-finished product in which one side of a truncated conical surface is finish-ground in a conventional manufacturing process of a glass cutting blade, and an enlarged view from the V direction schematically showing the cutting edge thereof.
FIG. 8 is a front view of a product in which both frustoconical surfaces are finish-ground in a conventional manufacturing process of a glass cutting blade, an enlarged view from the W direction schematically showing the blade edge, and an enlarged view schematically showing the locus of the blade edge. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cutting edge for glass 2A, 2B Frustoconical surface 3 Cutting edge 20 Processing equipment R1, R2, R3 Diamond grinding stone

Claims (4)

左右両側に円錐台面が形成されるとともに、これらの円錐台面の交わる辺に外方に向けてV字状に突出する円形状の刃先が形成された超硬合金製または焼結ダイヤモンド製の脆性材料用切刃において、左右一側の円錐台面の表面粗さが、左右他側の円錐台面の表面粗さと異なることを特徴とする脆性材料用切刃。A brittle material made of cemented carbide or sintered diamond in which frustoconical surfaces are formed on both left and right sides and a circular cutting edge protruding outward in a V-shape is formed on the side where these frustoconical surfaces intersect. A cutting edge for brittle material, wherein the surface roughness of the right and left frustoconical surfaces is different from the surface roughness of the left and right other frustoconical surfaces. 超硬合金製または焼結ダイヤモンド製のディスクを回転させながらそのディスクの両側の円周エッジを斜めに研削加工して左右の円錐台面を形成し、これらの円錐台面の交わる辺に外方に向けてV字状に突出する円形状の刃先を形成する脆性材料用切刃の製造方法において、左右一側の円錐台面を設定粗さの仕上げ用研削砥石で研削した後、左右他側の円錐台面を、左右一側の円錐台面の仕上げ用研削砥石よりも細かな仕上げ用研削砥石で研削することを特徴とする脆性材料用切刃の製造方法。While rotating a disc made of cemented carbide or sintered diamond, the circumferential edges on both sides of the disc are grinded diagonally to form left and right frustoconical surfaces, and directed outward to the side where these frustoconical surfaces intersect. In the method for manufacturing a cutting edge for brittle material that forms a circular cutting edge protruding in a V-shape, the left and right frusto-conical surfaces are ground using a finishing grindstone having a set roughness, and then the frusto-conical surfaces on the other right and left sides Of a cutting edge for brittle material, characterized in that the surface is ground with a grinding wheel for finishing that is finer than a grinding wheel for finishing on one of the left and right frustoconical surfaces. 前記先に仕上げ研削する左右一側の円錐台面の研削量よりも、後に仕上げ研削する左右他側の円錐台面の研削量が大きいことを特徴とする請求項2記載の脆性材料用切刃の製造方法。3. The cutting edge for brittle material according to claim 2, wherein the grinding amount of the left and right frustum surfaces of the left and right sides to be finish-ground later is larger than the grinding amount of the left and right frusto-conical surfaces for the finish grinding first. Method. 前記後に仕上げ研削する仕上げ用研削砥石の粗さが、先に仕上げ研削する仕上げ用研削砥石の粗さの略3倍以上の細かさであることを特徴とする請求項2または3記載の脆性材料用切刃の製造方法。The brittle material according to claim 2 or 3, wherein the roughness of the finishing grinding wheel to be subjected to the finish grinding is approximately three times or more the roughness of the finishing grinding wheel to be subjected to the finish grinding first. Manufacturing method for cutting blades.
JP2002216367A 2002-07-25 2002-07-25 Method of manufacturing cutting edge for brittle material and cutting blade for brittle material manufactured by the manufacturing method Expired - Fee Related JP4220192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216367A JP4220192B2 (en) 2002-07-25 2002-07-25 Method of manufacturing cutting edge for brittle material and cutting blade for brittle material manufactured by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216367A JP4220192B2 (en) 2002-07-25 2002-07-25 Method of manufacturing cutting edge for brittle material and cutting blade for brittle material manufactured by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2004058301A true JP2004058301A (en) 2004-02-26
JP4220192B2 JP4220192B2 (en) 2009-02-04

Family

ID=31938151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216367A Expired - Fee Related JP4220192B2 (en) 2002-07-25 2002-07-25 Method of manufacturing cutting edge for brittle material and cutting blade for brittle material manufactured by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4220192B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422935B (en) * 2007-11-01 2011-09-07 上海新型建材矿棉厂 No-alburn rockwool sliver processing technique
JP2013091319A (en) * 2012-12-21 2013-05-16 Mitsuboshi Diamond Industrial Co Ltd Scribing wheel and method of manufacturing the same
EP2823944A4 (en) * 2012-03-08 2015-09-30 Mitsuboshi Diamond Ind Co Ltd Scribing wheel and method for manufacturing same
CN104999574A (en) * 2015-08-11 2015-10-28 中国兵器工业集团第二一四研究所苏州研发中心 Slicing method of super-thick multi-layered co-fired ceramics
JP2016140868A (en) * 2015-01-30 2016-08-08 三星ダイヤモンド工業株式会社 Slide member texture processing method, and slide member
CN112008894A (en) * 2019-05-28 2020-12-01 三星钻石工业株式会社 Cutter wheel and holder unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328311B2 (en) 2021-03-12 2023-08-16 千住金属工業株式会社 Manufacturing method of flux and electronic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422935B (en) * 2007-11-01 2011-09-07 上海新型建材矿棉厂 No-alburn rockwool sliver processing technique
EP2823944A4 (en) * 2012-03-08 2015-09-30 Mitsuboshi Diamond Ind Co Ltd Scribing wheel and method for manufacturing same
JP2013091319A (en) * 2012-12-21 2013-05-16 Mitsuboshi Diamond Industrial Co Ltd Scribing wheel and method of manufacturing the same
JP2016140868A (en) * 2015-01-30 2016-08-08 三星ダイヤモンド工業株式会社 Slide member texture processing method, and slide member
CN104999574A (en) * 2015-08-11 2015-10-28 中国兵器工业集团第二一四研究所苏州研发中心 Slicing method of super-thick multi-layered co-fired ceramics
CN112008894A (en) * 2019-05-28 2020-12-01 三星钻石工业株式会社 Cutter wheel and holder unit

Also Published As

Publication number Publication date
JP4220192B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4742845B2 (en) Method for processing chamfered portion of semiconductor wafer and method for correcting groove shape of grindstone
KR101677732B1 (en) Scribing wheel and method for manufacturing the same
JP5998574B2 (en) Manufacturing method of scribing wheel
JP4220192B2 (en) Method of manufacturing cutting edge for brittle material and cutting blade for brittle material manufactured by the manufacturing method
TWI679085B (en) Dehorning method of glass plate, and manufacturing method of glass plate
JP2005347712A (en) Processing method of silicon wafer
TWI674169B (en) Scoring wheel and manufacturing method thereof
JP4865160B2 (en) Cutter wheel for brittle material substrate and scriber equipped with the same
JP5942783B2 (en) Scribing wheel and manufacturing method thereof
JP2013220554A (en) Scribing wheel and method of manufacturing the same
JP3895965B2 (en) Surface treatment method for polycrystalline Si ingot
JPH10217076A (en) Work method of disk substrate, work device and outer peripheral blade grinding wheel used in this work method
JP5499150B2 (en) Scribing wheel and manufacturing method thereof
JP6736151B2 (en) Cutter wheel and manufacturing method thereof
JP2001334469A (en) Diamond wheel for glass substrate work and working method of glass substrate
JP6255467B2 (en) Manufacturing method of scribing wheel
JP6088687B2 (en) Scribing wheel and manufacturing method thereof
KR102509143B1 (en) Cutter wheel and manufacturing method the same
JP6234534B2 (en) Scribing wheel
JP2016106046A (en) Producing method of scribing wheel
JP6234418B2 (en) Scribing wheel
JP2019022994A (en) Scribing wheel and method for producing the same
JPH11138446A (en) Manufacture of multiple blade grinding tool
JPH10217077A (en) Work method and work device of disk substrate
JPH03196950A (en) Grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081113

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees