JP4783577B2 - Low concentration ozone gas adsorption method and adsorption device - Google Patents

Low concentration ozone gas adsorption method and adsorption device Download PDF

Info

Publication number
JP4783577B2
JP4783577B2 JP2005090387A JP2005090387A JP4783577B2 JP 4783577 B2 JP4783577 B2 JP 4783577B2 JP 2005090387 A JP2005090387 A JP 2005090387A JP 2005090387 A JP2005090387 A JP 2005090387A JP 4783577 B2 JP4783577 B2 JP 4783577B2
Authority
JP
Japan
Prior art keywords
adsorption
flow rate
gas
raw material
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005090387A
Other languages
Japanese (ja)
Other versions
JP2006273589A (en
Inventor
国彦 小池
浩一 泉
中村貞紀
井上吾一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2005090387A priority Critical patent/JP4783577B2/en
Publication of JP2006273589A publication Critical patent/JP2006273589A/en
Application granted granted Critical
Publication of JP4783577B2 publication Critical patent/JP4783577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、低濃度オゾンガスを吸着剤に対して効率的に吸着させる吸着方法及び該方法の実施に用いて好適な吸着装置に関する。     The present invention relates to an adsorption method for efficiently adsorbing low-concentration ozone gas to an adsorbent and an adsorption apparatus suitable for use in the implementation of the method.

酸素ガスを原料としてオゾンを発生させ、得られたオゾン含有酸素ガスを原料ガスとしてオゾンは吸着器で吸着することにより酸素とオゾンを分離してそれぞれ需要先に供給可能とすることが従来から行われていて、この種の典型的な先行技術としては特許文献1が挙げられる。
この先行技術に例示されるように、従来の関連発明の殆どは需要量の変動に対応してオゾン供給量が過不足しないように吸着器での吸着、脱着、排気をコントロールすることにより、吸着能力の調節を行わせようとするものであった。
特開昭53−28570号公報(特に、特許請求の範囲の欄参照)
Conventionally, ozone is generated using oxygen gas as a raw material, and ozone is adsorbed by an adsorber using the obtained ozone-containing oxygen gas as a raw material gas so that oxygen and ozone can be separated and supplied to customers. Patent Document 1 is a typical prior art of this type.
As exemplified in this prior art, most of the conventional related inventions adsorb by controlling adsorption, desorption, and exhaust in the adsorber so that the ozone supply amount does not become excessive or insufficient in response to fluctuations in demand. I was trying to adjust my ability.
Japanese Patent Application Laid-Open No. 53-28570 (especially, refer to the column of claims)

酸素ガスを原料としてオゾンを発生させる場合、放電式或いは紫外線式のオゾナイザーと称されるオゾン発生器が従来から多用されているが、これでは数百ppm〜数%程度の低濃度のオゾンガスを含有するオゾン含有酸素ガスが得られるのであって、吸着器に対してオゾンを満量吸着させようとすると低濃度である理由もあって吸着操作時間が非常に長くなり、場合によっては十数時間もかかることがあり非能率的であった。   In the case of generating ozone using oxygen gas as a raw material, an ozone generator called a discharge type or ultraviolet type ozonizer has been widely used in the past, but it contains ozone gas with a low concentration of several hundred ppm to several percent. Ozone-containing oxygen gas is obtained, and if the ozone is fully adsorbed to the adsorber, the adsorption operation time becomes very long due to the low concentration, and in some cases it is as long as 10 or more hours. It was sometimes inefficient.

このようなことから、効率的な吸着を可能とする技術の開発が斯界において希求されていたが、従来は特許文献1に見受けられるように吸着量、吸着能力の制御に対応するものが殆どであって、吸着時間の短縮を果たし得る技術に関するものは今もって提供されていない。   For this reason, there has been a demand in the art for the development of a technology that enables efficient adsorption. However, in the past, as can be seen in Patent Document 1, most of the technologies correspond to the control of the adsorption amount and adsorption capacity. Thus, no technology relating to a technique capable of shortening the adsorption time has been provided.

かかる実状に鑑みて、低濃度のオゾンガスを含有する原料ガスから前記オゾンガスを吸着塔における吸着剤に効率的に吸着させることが可能な吸着方法及び該方法の実施に用いて好適な吸着装置を提供するべく、ここに本発明は案出されるに至ったものである。   In view of the actual situation, an adsorption method capable of efficiently adsorbing the ozone gas from a raw material gas containing a low concentration of ozone gas to an adsorbent in an adsorption tower, and an adsorption device suitable for use in the implementation of the method are provided. Accordingly, the present invention has been devised here.

しかして本発明は上記の目的を達成するべく、先ず請求項1に記載された発明においては、酸素流量が多くなるほどオゾン発生濃度が低下し、酸素流量が少なくなるほどオゾン発生濃度が増加する特性をもつオゾナイザーを使用し、そのオゾナイザーが放出するオゾンガス含有酸素を原料ガスとし、その原料ガスから前記オゾンガスを吸着塔(2)の吸着剤に吸着させる吸着方法であって、吸着塔(2)への単位時間当たりの原料ガス流入量を吸着操作の初期においては大きくなるように、終期においては小さくなるように、連続的あるいは段階的に流量制御するに当たり、単位時間当たりの原料ガス流入量をパラメータとして使用し、前記原料ガス流入量を流量制御する際の流量転換点を、吸着塔出口のオゾンガスの基準濃度値が、オゾナイザーの特性によって決まる原料ガスのオゾン濃度と該オゾン濃度の1/2値の範囲内となるように、吸着塔への原料ガス流入開始時刻を起点として、流入時間により流量制御することを特徴とする低濃度オゾンガスの吸着方法である。 Therefore, in order to achieve the above-mentioned object, the present invention is characterized in that in the invention described in claim 1, the ozone generation concentration decreases as the oxygen flow rate increases, and the ozone generation concentration increases as the oxygen flow rate decreases. An adsorption method in which the ozone gas-containing oxygen released from the ozonizer is used as a raw material gas, and the ozone gas is adsorbed from the raw material gas to the adsorbent of the adsorption tower (2). In order to control the flow rate of raw material gas per unit time continuously or stepwise so that the amount of raw material gas inflow increases at the beginning of the adsorption operation and decreases at the end of the adsorption operation, the amount of raw material gas inflow per unit time is used as a parameter. When the flow rate of the raw material gas inflow is controlled, the reference concentration value of ozone gas at the adsorption tower outlet is the ozonizer. The flow rate is controlled by the inflow time starting from the starting time of inflow of the raw material gas into the adsorption tower so that it falls within the range of the ozone concentration of the raw material gas determined by the above characteristics and a half value of the ozone concentration. This is an adsorption method for low-concentration ozone gas.

また、低濃度オゾンガスの吸着装置に関するものであって、酸素流量が多くなるほどオゾン発生濃度が低下し、酸素流量が少なくなるほどオゾン発生濃度が増加する特性をもつオゾナイザー(3)と、そのオゾナイザー(3)が放出するオゾンガス含有酸素を原料ガスとして給送するガス給送ライン(1)に入口が接続されて内部にオゾンガスを吸着するための吸着剤が収蔵される吸着塔(2)と、吸着塔(2)の原料ガス流入量を増減調節するために前記ガス給送ライン(1)に設けられる流量制御器(6)と、吸着塔(2)の出口に接続したガス排出ライン(4)に介設されて吸着塔(2)の出口流量を計測する流量計測手段(14)と、流量計測手段(14)が計測した吸着塔(2)の出口流量に基づき前記流量制御器(6)の制御流量を連続的あるいは数段階的に制御する制御手段(11)を含み、前記制御手段(11)は、前記流量制御する際の流量転換点を、吸着塔出口の流量が、原料ガス流量値と「原料ガス流量−原料ガス流量×オゾン濃度値×1/2」の式で示される値の範囲内として、原料ガス流入量を連続的あるいは段階的に流量制御させる演算・制御手段を備えることをすることを特徴とする。 Further, the present invention relates to a low-concentration ozone gas adsorbing device, wherein the ozone generation concentration decreases as the oxygen flow rate increases, and the ozone generation concentration increases as the oxygen flow rate decreases, and the ozonizer (3 An adsorber tower (2) in which an inlet is connected to a gas feed line (1) for feeding oxygen gas-containing oxygen released from the gas as a raw material gas, and an adsorbent for adsorbing ozone gas is stored therein, and an adsorber tower In (2), the flow rate controller (6) provided in the gas feed line (1) and the gas discharge line (4) connected to the outlet of the adsorption tower (2) are used to adjust the flow rate of the raw material gas. A flow rate measuring means (14) for measuring the outlet flow rate of the adsorption tower (2), and the flow rate controller (6) based on the outlet flow rate of the adsorption tower (2) measured by the flow rate measurement means (14). Control to control the flow rate continuously or in several steps Control means (11), the control means (11) is a flow rate change point at the time of the flow control, the flow rate at the outlet of the adsorption tower is the raw material gas flow rate value-"raw material gas flow rate-raw material gas flow rate x ozone concentration" A calculation / control means for controlling the flow rate of the raw material gas inflow continuously or stepwise is provided within the range of the value represented by the formula “value × ½” .

また、請求項3に記載の発明は、低濃度オゾンガスの吸着装置に関するものであって、数%程度の一定低濃度のオゾンガスを含有する原料ガスを給送するガス給送ライン1に入口が接続されて内部にオゾンガスを吸着するための吸着剤が収蔵される吸着塔2と、吸着塔2のガス流出量を増減調節するために該吸着塔2の出口に接続したガス排出ライン4に設けられる圧力制御弁9と、前記吸着塔2に関連させ設けられて該吸着塔2内の吸着圧力を計測する吸着圧力計測手段12と、吸着圧力計測手段12が計測した吸着塔2内の吸着圧力に基づき前記圧力制御弁9の弁開度を制御する制御手段13を含み、前記制御手段13は、吸着塔2内の吸着圧力を吸着操作の初期から終期に至る間において吸着運転に適正な一定値に保持させるように吸着塔2のガス流出量を流量制御させる制御手段を備えることを特徴とする。 The invention described in claim 3 relates to an apparatus for adsorbing low-concentration ozone gas, and an inlet is connected to a gas supply line 1 for supplying a raw material gas containing ozone gas having a constant low concentration of about several percent. And an adsorbing tower 2 in which an adsorbent for adsorbing ozone gas is stored, and a gas discharge line 4 connected to the outlet of the adsorbing tower 2 in order to increase or decrease the gas outflow amount of the adsorbing tower 2. A pressure control valve 9, an adsorption pressure measuring means 12 provided in association with the adsorption tower 2 for measuring the adsorption pressure in the adsorption tower 2, and the adsorption pressure in the adsorption tower 2 measured by the adsorption pressure measuring means 12 Control means 13 for controlling the valve opening degree of the pressure control valve 9 based on the control means 13, the control means 13 is a constant value appropriate for the adsorption operation during the period from the initial stage to the final stage of the adsorption operation. Suck to keep Characterized in that it comprises a control means for flow control of the gas outflow tower 2.

このような本発明によれば、吸着塔2の原料ガス流入量を吸着操作の初期から終期に至る間において高流量から低流量に向けて連続的あるいは段階的に流量制御することにより、後述の[発明を実施するための最良の形態]の欄で詳細説明するように、吸着量が大きく取れる一定低流量での吸着操作の場合と比較して、吸着量は同じであるにもかかわらず満量吸着に至る吸着時間を短くできて、例えば1/3〜1/2にも短縮できる。   According to the present invention as described above, by controlling the flow rate of the raw material gas in the adsorption tower 2 continuously or stepwise from a high flow rate to a low flow rate from the initial stage to the final stage of the adsorption operation, As will be described in detail in the section “Best Mode for Carrying Out the Invention”, the adsorption amount is the same even though the adsorption amount is the same as compared with the case of the adsorption operation at a constant low flow rate that allows a large adsorption amount. The adsorption time required for mass adsorption can be shortened, for example, 1/3 to 1/2.

また本発明は、単位時間当たりの原料ガス流入量をパラメータとした原料ガスオゾン濃度と該オゾン濃度の1/2値の範囲内に存する各基準濃度値を流量転換点として、吸着塔2への原料ガス流入量を連続的あるいは段階的に流量制御することで、間延びを生じなくて手早くかつスムースな状態での効率的な吸着時間の短縮が可能である。   In addition, the present invention provides a raw material gas to the adsorption tower 2 using a raw material gas ozone concentration per unit time as a parameter and each reference concentration value within a range of ½ of the ozone concentration as a flow rate turning point. By controlling the flow rate of the gas inflow continuously or stepwise, the adsorption time can be shortened quickly and smoothly without causing any delay.

加えて本発明は、原料ガス流入量をパラメータとして、原料ガス流量値と「原料ガス流量−原料ガス流量×オゾン濃度値×1/2」の式で示される値の範囲内に存する基準濃度値を流量転換点として、吸着塔2の原料ガス流入量を連続的あるいは段階的に流量制御することで、効率的な吸着時間の短縮が可能である。   In addition, the present invention uses a raw material gas inflow amount as a parameter, and a reference concentration value existing within a range of a raw material gas flow rate value and a value represented by a formula of “raw material gas flow rate−raw material gas flow rate × ozone concentration value × 1/2”. By controlling the flow rate of the raw material gas in the adsorption tower 2 continuously or stepwise with the flow rate turning point, the adsorption time can be shortened efficiently.

更に又本発明によれば、吸着塔2内の吸着圧力を吸着操作の初期から終期に至る間において吸着運転に適正な一定値に保持させるように制御することにより、供給オゾンの分圧を出来る限り高めて吸着時間の短縮を図り得る。   Furthermore, according to the present invention, the partial pressure of the supplied ozone can be achieved by controlling the adsorption pressure in the adsorption tower 2 so as to be held at a constant value appropriate for the adsorption operation during the period from the beginning to the end of the adsorption operation. As much as possible, the adsorption time can be shortened.

また本発明は、吸着塔2への原料ガス流入量を吸着操作初期は大きくし、時間の経過に伴って順次小さくして行く簡単な手段で吸着時間の短縮が可能であって、取扱い操作が簡便となる利点を有する。   In addition, the present invention can reduce the adsorption time by a simple means of increasing the amount of raw material gas flowing into the adsorption tower 2 at the beginning of the adsorption operation and gradually decreasing it with the passage of time. It has the advantage of being simple.

以下に本発明に係る最適な実施形態について添付図面を参照しながら説明する。図1は本発明の第1の実施形態に係る吸着装置の概略構成図である。
図示の吸着装置は、数%程度の低濃度のオゾンガスを含有し残りが例えば酸素である原料ガスを給送するためのガス給送ライン1の給送端に接続して設けられていて、流量制御器6、吸着塔2、ガス排出ライン4、オゾン濃度計測手段10、前記流量制御器6の制御流量を連続的あるいは段階的に制御する制御手段11の各部材を主たる構成要素として備える。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, exemplary embodiments according to the invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an adsorption device according to a first embodiment of the present invention.
The illustrated adsorption device is provided in connection with a feed end of a gas feed line 1 for feeding a raw material gas containing ozone gas having a low concentration of about several percent and the remainder being oxygen, for example. The controller 6, the adsorption tower 2, the gas discharge line 4, the ozone concentration measuring means 10, and the control means 11 for controlling the control flow rate of the flow rate controller 6 continuously or stepwise are provided as main components.

ガス給送ライン1としては、公知の各種ガス給送システムが適用可能であるが、この例では、酸素ボンベB、減圧弁5、放電式オゾナイザー3、開閉弁8、圧力計14からなり酸素を主たるガスとした原料ガスを供給するための給送システムであって、放電式オゾナイザー3で発生した典型的には5%のオゾンを含んで残りが酸素であるガスを大気圧よりも少し高い圧力の下で吸着塔2内に送り込み可能に設けられる。   As the gas supply line 1, various known gas supply systems can be applied. In this example, the oxygen supply line B, the pressure reducing valve 5, the discharge type ozonizer 3, the on-off valve 8, and the pressure gauge 14 are used to supply oxygen. A feed system for supplying a raw material gas as a main gas, which is a pressure slightly higher than atmospheric pressure, which is generated by a discharge type ozonizer 3 and typically contains 5% ozone and the remainder is oxygen. Is provided so as to be able to be fed into the adsorption tower 2.

前記吸着装置における吸着塔2は、入口を頂部に、出口を底部に備える密封筒体を成す塔内にオゾンガスを吸着するための吸着剤例えばシリカゲルが収蔵されると共に、塔周囲の壁材が低温冷却装置7の冷却部材により囲繞された公知の構造を有する装置であって、入口は原料ガス流入量を流通・遮断するための開閉弁8を通してガス給送ライン1の給送端に接続され、出口はガス排出ライン4の流入端に接続される。   The adsorption tower 2 in the adsorption apparatus contains an adsorbent for adsorbing ozone gas, such as silica gel, in a tower that forms a sealed cylinder having an inlet at the top and an outlet at the bottom, and the wall material around the tower is at a low temperature. It is a device having a known structure surrounded by a cooling member of the cooling device 7, the inlet is connected to the feed end of the gas feed line 1 through an on-off valve 8 for circulating and shutting off the raw material gas inflow, The outlet is connected to the inflow end of the gas discharge line 4.

前記流量制御器6は、例えばマスフローコントローラが用いられて、放電式オゾナイザー3に対して下手側かつ吸着塔2に対して上手側となるガス給送ライン1の途中に配設して吸着塔2に流入する原料ガスを流量制御するように設けられる。   For example, a mass flow controller is used as the flow rate controller 6. The flow rate controller 6 is disposed in the middle of the gas feed line 1 on the lower side with respect to the discharge type ozonizer 3 and on the upper side with respect to the adsorption tower 2. Is provided so as to control the flow rate of the raw material gas flowing into the.

オゾン濃度計測手段10は、ガス排出ライン4中の開閉弁16に対して下手側となる位置に設けられて、吸着塔2出口からガス排出ライン4に排出されるガス中のオゾン濃度を測定する計測装置として機能する。そして、このオゾン濃度計測手段10の計測信号出力端と前記流量制御器6の制御信号入力端とを結ぶ信号回路中に前記制御手段11が設けられる。   The ozone concentration measuring means 10 is provided at a position on the lower side with respect to the on-off valve 16 in the gas discharge line 4 and measures the ozone concentration in the gas discharged from the adsorption tower 2 outlet to the gas discharge line 4. Functions as a measuring device. The control means 11 is provided in a signal circuit connecting the measurement signal output terminal of the ozone concentration measuring means 10 and the control signal input terminal of the flow rate controller 6.

前記制御手段11は、後述の吸着運転態様の説明の中で詳述されるが、図6で示される前記流量制御器6における連続的あるいは段階的な制御流量に対応する単位時間あたりの原料ガス流入量をパラメータとしたときの各原料ガス流量に対応するオゾン濃度と該オゾン濃度の1/2値の範囲内に存する各基準濃度値D1〜D5をそれぞれ設定して記憶する演算・記憶回路と、これ等の各基準濃度値D1〜D5を流量転換点として、吸着塔2への原料ガス流入量を連続的あるいは段階的に流量制御させる制御出力回路から成る演算・制御系統を備えている   The control means 11 will be described in detail in the description of the adsorption operation mode to be described later. The raw material gas per unit time corresponding to the continuous or stepwise control flow rate in the flow rate controller 6 shown in FIG. A calculation / storage circuit for setting and storing the ozone concentration corresponding to each raw material gas flow rate when the inflow amount is used as a parameter and the respective reference concentration values D1 to D5 within the range of ½ of the ozone concentration; A calculation / control system comprising a control output circuit for controlling the flow rate of the raw material gas flowing into the adsorption tower 2 continuously or step by step using these reference concentration values D1 to D5 as flow rate turning points is provided.

なお、図1中において開閉弁15を備えるラインは、吸着塔2入口のオゾン濃度を測定する際に利用される計測ラインであって、吸着塔2入口のオゾン濃度を測定する場合、必要に応じてオゾン濃度計測手段10を測定器として兼用し得るようになっている。   In addition, the line provided with the on-off valve 15 in FIG. 1 is a measurement line used when measuring the ozone concentration at the entrance of the adsorption tower 2, and when measuring the ozone concentration at the entrance of the adsorption tower 2, if necessary Thus, the ozone concentration measuring means 10 can be used as a measuring instrument.

上述の構成を備える吸着装置の吸着運転の態様について、図1に加え図2乃至図7を併せ参照して以下に説明する。ここにおいて、図2は吸着塔の吸着破過曲線図、図3は吸着塔2のオゾン濃度一定の場合の吸着破過曲線図、図4はラングミュア吸着理論図、図5は放電式オゾナイザー3の流量依存性を示す吐出オゾン濃度線図、図6は吸着塔2のガス流入量をパラメータとする出口オゾン濃度−吸着操作時間関係線図、図7は吸着塔2のガス流入量変化による出口オゾン濃度−吸着操作時間関係線図をそれぞれ表している。   An aspect of the adsorption operation of the adsorption apparatus having the above-described configuration will be described below with reference to FIGS. 2 to 7 in addition to FIG. 2 is an adsorption breakthrough curve diagram of the adsorption tower, FIG. 3 is an adsorption breakthrough curve diagram when the ozone concentration of the adsorption tower 2 is constant, FIG. 4 is a Langmuir adsorption theory diagram, and FIG. FIG. 6 is an outlet ozone concentration-adsorption operation time relationship graph using the gas inflow rate of the adsorption tower 2 as a parameter, and FIG. 7 is an outlet ozone due to a change in the gas inflow amount of the adsorption tower 2. The concentration-adsorption operation time relationship diagrams are respectively shown.

吸着塔2における一般的な吸着操作では、吸着塔出口オゾン濃度を縦軸、吸着時間を横軸とした吸着量曲線は、図2に示されるような破過曲線を呈することが知られており、吸着塔出口オゾン濃度が原料ガスオゾン濃度と等しくなった時点で、満量吸着した、即ち、飽和吸着した、または吸着破過したと言い、このことから原料ガスオゾン濃度と出口オゾン濃度を比較する過程で吸着塔での吸着操作の飽和状態を的確に知ることが可能である。   In a general adsorption operation in the adsorption tower 2, it is known that the adsorption amount curve with the adsorption tower outlet ozone concentration on the vertical axis and the adsorption time on the horizontal axis exhibits a breakthrough curve as shown in FIG. When the adsorption tower outlet ozone concentration becomes equal to the raw material gas ozone concentration, it is said that it has been fully adsorbed, that is, saturated adsorption, or adsorption breakthrough, and from this, the process of comparing the raw material gas ozone concentration with the outlet ozone concentration Thus, it is possible to accurately know the saturation state of the adsorption operation in the adsorption tower.

吸着操作時の原料ガスオゾン濃度を低域の一定値とした場合において、単位時間当たりの原料ガス流入量(SLM;Standard Liter per Minute)をパラメータとした吸着破過曲線は、図3に示される通りであって、オゾン濃度が一定であれば流量が小さいほど破過状態は遅くなり、満量吸着に時間が掛かることも判っている。   When the raw material gas ozone concentration during the adsorption operation is set to a constant value in the low range, the adsorption breakthrough curve using the raw material gas inflow per unit time (SLM) as a parameter is as shown in FIG. However, it is also known that if the ozone concentration is constant, the breakthrough state is delayed as the flow rate is reduced, and it takes time for full adsorption.

ラングミュア吸着理論によれば、吸着操作温度をパラメータとして吸着量を縦軸、供給オゾン濃度(又は圧力)を横軸とする吸着量曲線が図4に示されるが、供給オゾン濃度又はオゾン分圧を高くすると吸着量は増加することが知られる。また、温度が低くなる程吸着量は増加することも判っている。更に、下記のラングミュア式に表される通り、供給オゾン分圧Pと飽和吸着量qmが比例関係にあることも明らかである。   According to the Langmuir adsorption theory, an adsorption amount curve with the adsorption operation temperature as a parameter and the adsorption amount as the vertical axis and the supply ozone concentration (or pressure) as the horizontal axis is shown in FIG. It is known that the amount of adsorption increases when the value is increased. It has also been found that the amount of adsorption increases with decreasing temperature. Furthermore, as represented by the following Langmuir equation, it is also clear that the supply ozone partial pressure P and the saturated adsorption amount qm are in a proportional relationship.

q=(k・qm・P)/(1+k・P)=(1/qm)+(1/qm・k)×(1/P)
∴ (1/qm)∝(1/P)
注 q:吸着量、 P:供給オゾン分圧、 qm:一層吸着した時の全吸着サイトに対する飽和吸着量(定数)、 k:平衡定数
q = (k · qm · P) / (1 + k · P) = (1 / qm) + (1 / qm · k) × (1 / P)
∴ (1 / qm) ∝ (1 / P)
Note q: adsorption amount, P: supply ozone partial pressure, qm: saturated adsorption amount (constant) for all adsorption sites when one layer is adsorbed, k: equilibrium constant

ここで、オゾンを発生する装置として多用される放電式オゾナイザー3は、運転特性からして図5に示されるように、その酸素流量とオゾン発生濃度との関係は、酸素流量が多くなるほどオゾン発生濃度が低下し、酸素流量が少なくなるほどオゾン発生濃度が増加する特性をもつ。吸着操作においては吸着量が大きくかつ吸着時間が短いことが望ましいにも関わらず、放電式オゾナイザー3を用いて吸着操作する場合には、単位時間当たりの原料ガス流入量(SLM)をパラメータとしたときの出口オゾン濃度−吸着操作時間の関係は図6において各吸着破過曲線イ〜ホに示される通り、原料ガス流入量を大きくするとオゾン濃度が低くなるので吸着量が少なくなってしまうことから、現実的には、5%O/残りOの原料ガスの場合で1SLM又は2SLMの流量下で吸着操作を行っているのが実態である。 Here, the discharge type ozonizer 3 frequently used as a device for generating ozone has a relationship between the oxygen flow rate and the ozone generation concentration as shown in FIG. As the concentration decreases and the oxygen flow rate decreases, the ozone generation concentration increases. In the adsorption operation, although it is desirable that the adsorption amount is large and the adsorption time is short, when performing the adsorption operation using the discharge type ozonizer 3, the raw material gas inflow amount (SLM) per unit time is used as a parameter. The relationship between the outlet ozone concentration and the adsorption operation time at that time is that, as shown by the respective adsorption breakthrough curves a to e in FIG. Actually, the adsorption operation is performed at a flow rate of 1 SLM or 2 SLM in the case of 5% O 3 / remaining O 2 source gas.

以上述べる諸検討結果に鑑みて、本発明では、吸着塔2の吸着初期時点から始まって吸着が進行する過程において単位時間当たりの原料ガス流入量(SLM)を変化させる操作手段を採用したものであって、即ち、図1に併せて図6及び図7を特に参照して、吸着塔2に送り込ませる原料ガス流入量を一定量(例えば2SLM)に固定するのではなくて、吸着初期時点から始まって吸着飽和に至る終期時点の間において最多量(例えば4SLM)から最少量(例えば0.2SLM)までの範囲内で数段階、例えば5段階に分けて、吸着初期時点は最多量(4SLM)で吸着操作し、順次段階的に2SLM,1SLM,0.5SLM,0.2SLMと流量制御しながら吸着操作させるようにするものである。   In view of the various examination results described above, the present invention employs an operating means that changes the raw material gas inflow (SLM) per unit time in the process of adsorption starting from the initial adsorption time of the adsorption tower 2. That is, in particular, referring to FIGS. 6 and 7 in conjunction with FIG. 1, instead of fixing the inflow amount of the raw material gas fed into the adsorption tower 2 to a constant amount (for example, 2 SLM), The initial adsorption time is divided into several stages, for example, five stages within the range from the maximum amount (for example, 4 SLM) to the minimum amount (for example, 0.2 SLM) during the final time point until the adsorption saturation starts, and the initial amount of adsorption (4 SLM) The adsorption operation is performed in order, and the adsorption operation is sequentially performed while controlling the flow rate to 2 SLM, 1 SLM, 0.5 SLM, and 0.2 SLM step by step.

このように段階的に流量制御させて吸着操作することによって、一定量(2SLM)で吸着させた場合と比較して、満量に至る吸着量は同じにもかかわらず吸着時間を大幅に短縮可能となることが明らかになった。なお、流量制御する際の流量転換のタイミングは、実際の吸着運転の下での吸着破過曲線が急勾配かつ滑らかな飽和曲線になるように監視下で行わせることで一応実現できるが、具体的には下記のように制御することによって確実にしかも円滑に実行可能である。   By performing the adsorption operation with the flow rate controlled step by step in this way, the adsorption time can be greatly shortened compared to the case where adsorption is performed at a constant amount (2 SLM) even though the adsorption amount reaching the full amount is the same. It became clear that Note that the flow rate switching timing when controlling the flow rate can be realized by supervising so that the adsorption breakthrough curve under the actual adsorption operation becomes a steep and smooth saturation curve. In practice, the following control can be performed reliably and smoothly.

即ち、放電式オゾナイザー3の特性から決まる各段階における単位時間当たりの原料ガス流入量(4SLM,2SLM,1SLM,0.5SLM,0.2SLM)をパラメータとしたときの原料ガスオゾン濃度と、該オゾン濃度の1/2値の範囲内に存する各基準濃度値D1〜D5(図6参照)をそれぞれ設定し、これ等の各基準濃度値D1〜D5を流量転換点とするように吸着塔2の原料ガス流入量を段階的に流量制御するようにしたものである。   That is, the raw material gas ozone concentration when the raw material gas inflow amount (4 SLM, 2 SLM, 1 SLM, 0.5 SLM, 0.2 SLM) per unit time in each stage determined from the characteristics of the discharge type ozonizer 3 is used as a parameter, and the ozone concentration Each of the reference concentration values D1 to D5 (see FIG. 6) existing in the range of ½ value of each is set, and the raw materials of the adsorption tower 2 are set so that these reference concentration values D1 to D5 are used as flow rate turning points. The gas inflow rate is controlled in stages.

上述する如き段階的な流量制御の下で吸着運転を行わせるには以下のようにすることで実現可能である。図1を参照して、吸着塔2の吸着操作中を通じてオゾン濃度計測手段10により吸着塔2の出口オゾン濃度を計測し、その計測信号を制御手段11にインプットする。制御手段11では、予め演算・記憶してなる原料ガス流入量と該原料ガス流入量に対応する基準濃度値の情報値と入力された計測信号とを比較の結果、流量制御器6に対して流量制御出力を発信する。この流量制御出力を受けた流量制御器6は、各基準濃度値D1〜D5を流量転換点とするように吸着塔2への原料ガス流入量を段階的に流量制御させることとなり、かくして、図7に示されるように、吸着破過曲線Aに沿った流量変更による吸着運転が行われるものであって、この吸着破過曲線Aは、0.2SLM一定時の吸着破過曲線Cに略類似してしかも横軸の左方向に大きく移動した状態であって、これは効率良くかつ吸着完了時間が大幅(1/2程度)に短縮されて吸着運転が行われている結果を明示している。   In order to perform the adsorption operation under the stepwise flow rate control as described above, it can be realized as follows. Referring to FIG. 1, the ozone concentration measurement means 10 measures the outlet ozone concentration of the adsorption tower 2 during the adsorption operation of the adsorption tower 2, and inputs the measurement signal to the control means 11. In the control means 11, the raw material gas inflow amount calculated and stored in advance, the information value of the reference concentration value corresponding to the raw material gas inflow amount and the input measurement signal are compared with each other as a result of comparison with the flow rate controller 6. Send flow control output. The flow rate controller 6 that has received this flow rate control output controls the flow rate of the raw material gas into the adsorption tower 2 stepwise so that the reference concentration values D1 to D5 are used as flow rate change points. 7, the adsorption operation is performed by changing the flow rate along the adsorption breakthrough curve A. The adsorption breakthrough curve A is substantially similar to the adsorption breakthrough curve C at a constant 0.2 SLM. In addition, it is in a state where it has moved greatly to the left of the horizontal axis, which clearly shows the result of the adsorption operation being performed efficiently and the adsorption completion time has been greatly shortened (about 1/2). .

上述のように出口オゾン濃度による制御に代えて、原料ガス流入量と原料ガス流入時間との関係を利用する吸着運転を行わせることも可能である。つまり、図8に示すように流量調整とタイマーを組合せた制御器を配置し、吸着破過曲線Aを予め実測あるいは演算により求め、吸着時間に対応する原料ガスの流量と流量転換のタイミングのデータを図示しない記憶装置に記憶させておき、この記憶装置のデータに基づき流量制御することで、オゾン濃度を計測することなく吸着操作を制御できる。この場合、高価なオゾン濃度計を使用しなくて良いことから、設備コストを抑えることができる。   As described above, in place of the control based on the outlet ozone concentration, it is possible to perform an adsorption operation using the relationship between the amount of inflow of the source gas and the inflow time of the source gas. That is, as shown in FIG. 8, a controller that combines a flow rate adjustment and a timer is arranged, and the adsorption breakthrough curve A is obtained in advance by actual measurement or calculation, and the flow rate of the raw material gas corresponding to the adsorption time and the flow rate change timing data. Can be stored in a storage device (not shown), and the adsorption operation can be controlled without measuring the ozone concentration by controlling the flow rate based on the data stored in the storage device. In this case, since it is not necessary to use an expensive ozone densitometer, the equipment cost can be suppressed.

また、前述では段階的な流量制御を示したが、流量転換点をより細かく設定することで実質的連続に近い流量制御による吸着運転を行うことも可能である。   In the above description, stepwise flow rate control is shown, but it is also possible to perform adsorption operation by flow rate control that is substantially continuous by setting the flow rate turning point more finely.

更にオゾン濃度を計測しないで流量制御する方法として、単位時間当たりの原料ガス流入量値と出口ガス流量値の差を用いることが挙げられる。つまり、図9に示すように、吸着塔出口側に流量指示計を配置し、原料ガス流量値と「原料量ガス流量−原料ガス流量×オゾン濃度値×1/2」の式で示される値の範囲内に流量転換点として基準流量値を設定し、出口側流量値が基準流量値を越えた際に、吸着塔2への原料ガス流入量を段階的に流量制御するものである。この場合も、流量転換点をより細かく設定することで実質的連続に近い流量制御が可能である。   Further, as a method of controlling the flow rate without measuring the ozone concentration, it is possible to use a difference between the raw material gas inflow value per unit time and the outlet gas flow rate value. That is, as shown in FIG. 9, a flow rate indicator is arranged at the outlet side of the adsorption tower, and the raw material gas flow value and the value represented by the formula of “raw material amount gas flow rate−raw material gas flow rate × ozone concentration value × 1/2”. A reference flow rate value is set as a flow rate turning point within the range of, and when the outlet flow rate value exceeds the reference flow rate value, the flow rate of the raw material gas flowing into the adsorption tower 2 is controlled stepwise. Also in this case, the flow rate control close to substantially continuous is possible by setting the flow rate turning point more finely.

続いて、図10は本発明の第4の実施形態に係る吸着装置の概略構成図である。また、図11は吸着塔の圧力依存性を示す出口オゾン濃度−吸着操作時間関係線図であり、図12は吸着塔の吸着圧力変化によるオゾン吸着量−吸着操作時間関係線図である。図10に図示する第4の実施形態に係る吸着装置において、図1図示の前記吸着装置に類似し対応する部材には同一の参照符号を付して詳細な説明は省略する。   Next, FIG. 10 is a schematic configuration diagram of an adsorption device according to a fourth embodiment of the present invention. FIG. 11 is an outlet ozone concentration-adsorption operation time relationship diagram showing the pressure dependency of the adsorption tower, and FIG. 12 is an ozone adsorption amount-adsorption operation time relationship diagram due to an adsorption pressure change of the adsorption tower. In the suction device according to the fourth embodiment shown in FIG. 10, the same reference numerals are assigned to the corresponding members similar to those in the suction device shown in FIG. 1, and detailed description thereof is omitted.

上記の第4の実施形態に係る吸着装置において特徴づけられる構成は、ガス排出ライン4に設けられる圧力制御弁9と、吸着塔2内の吸着圧力を計測する吸着圧力計測手段12と、前記圧力制御弁9の弁開度を制御する制御手段13から形成される吸着塔ガス流出量制御系統を備えてなる点である。   The configuration characterized in the adsorption apparatus according to the fourth embodiment includes a pressure control valve 9 provided in the gas discharge line 4, an adsorption pressure measuring means 12 for measuring the adsorption pressure in the adsorption tower 2, and the pressure. The point is that an adsorption tower gas outflow amount control system formed by the control means 13 for controlling the valve opening degree of the control valve 9 is provided.

前記圧力制御弁9は、吸着塔2からの単位時間当たりのガス流出量を増減調節するために該吸着塔2の出口に接続したガス排出ライン4に設けられる。吸着圧力計測手段12は、吸着塔2内の吸着圧力を計測するためとして該吸着塔2に関連させて設けられる。前記制御手段13は、吸着圧力計測手段12が計測した吸着塔2内の吸着圧力に基づき前記圧力制御弁9の弁開度を制御する制御回路を備えて、吸着塔2内の吸着圧力を吸着操作の初期から終期に至る間において吸着運転に適正な一定値に保持させるように吸着塔2からのガス流出量を流量制御させる機能を有している。   The pressure control valve 9 is provided in the gas discharge line 4 connected to the outlet of the adsorption tower 2 in order to increase / decrease the gas outflow amount per unit time from the adsorption tower 2. The adsorption pressure measuring means 12 is provided in association with the adsorption tower 2 in order to measure the adsorption pressure in the adsorption tower 2. The control means 13 includes a control circuit for controlling the valve opening degree of the pressure control valve 9 based on the adsorption pressure in the adsorption tower 2 measured by the adsorption pressure measuring means 12 and adsorbs the adsorption pressure in the adsorption tower 2. It has a function of controlling the flow rate of the gas outflow from the adsorption tower 2 so as to maintain a constant value suitable for the adsorption operation during the period from the beginning to the end of the operation.

図11を参照して、吸着塔2においては吸着圧力を高めた場合、吸着飽和に至る時間は長くなるが吸着操作の初期は吸着量は増加する。しかしながら、放電式オゾナイザー3の吸着圧力は機構上の耐圧の問題から0.05Mpa(1100Torr)までしか上げることができない。そこで、耐圧面での許容範囲内におけるできるだけ高い圧力、例えば大気圧近辺の圧力を維持しながら吸着操作を行わせることにするのである。   Referring to FIG. 11, when the adsorption pressure is increased in the adsorption tower 2, the adsorption saturation time increases, but the adsorption amount increases at the initial stage of the adsorption operation. However, the adsorption pressure of the discharge type ozonizer 3 can only be increased to 0.05 Mpa (1100 Torr) due to the problem of pressure resistance in the mechanism. Therefore, the adsorption operation is performed while maintaining as high a pressure as possible within the allowable range on the pressure-resistant surface, for example, a pressure around atmospheric pressure.

図11に示すように、吸着操作の初期は原料ガス中の全量のオゾンが効率よく吸着されることから、図10を参照して、吸着塔2へのガス流入量を低くするべく圧力制御弁9の弁開度を絞らせて吸着圧力を吸着運転に適正な一定値に保持させるのである。例えば、5%オゾンで2SLM、1000Torrでの初期吸着の場合、吸着塔出口流量は1.95SLMとなるが、未吸着オゾンが吸着塔から流出し始めると出口流量が2SLMに近づき吸着圧力が下がろうとする為、1000Torrを維持させるべく吸着圧力計測手段12の計測信号を受ける制御手段13の指令に基づき圧力制御弁9の弁開度を開かせるように調節する。このようにして、図12に比較示される如く、同じ吸着量を求めるとすると吸着圧力を上げることで吸着時間の短縮が図れるのである。   As shown in FIG. 11, since the entire amount of ozone in the raw material gas is efficiently adsorbed at the initial stage of the adsorption operation, a pressure control valve is used to reduce the amount of gas flowing into the adsorption tower 2 with reference to FIG. The valve opening of 9 is throttled to keep the adsorption pressure at a constant value appropriate for the adsorption operation. For example, in the case of initial adsorption at 2 SLM and 1000 Torr with 5% ozone, the adsorption tower outlet flow rate is 1.95 SLM, but when the unadsorbed ozone begins to flow out of the adsorption tower, the outlet flow rate approaches 2 SLM and the adsorption pressure decreases. Therefore, in order to maintain 1000 Torr, the valve opening of the pressure control valve 9 is adjusted to be opened based on the command of the control means 13 that receives the measurement signal of the adsorption pressure measurement means 12. Thus, as shown in comparison in FIG. 12, if the same adsorption amount is obtained, the adsorption time can be shortened by increasing the adsorption pressure.

本発明の第1の実施形態に係る吸着装置の概略構成図。The schematic block diagram of the adsorption | suction apparatus which concerns on the 1st Embodiment of this invention. 吸着塔の吸着破過曲線図。The adsorption breakthrough curve figure of an adsorption tower. 吸着塔のオゾン濃度一定の場合の吸着破過曲線図。An adsorption breakthrough curve diagram when the ozone concentration of the adsorption tower is constant. ラングミュア吸着理論図。Langmuir adsorption theory diagram. 放電式オゾナイザーの流量依存性を示す吐出オゾン濃度線図。The discharge ozone density | concentration diagram which shows the flow volume dependency of a discharge type ozonizer. 吸着塔のガス流入量をパラメータとする出口オゾン濃度−吸着操作時間関係線図。The outlet ozone concentration-adsorption operation time relationship diagram using the gas inflow amount of the adsorption tower as a parameter. 吸着塔のガス流入量変化による出口オゾン濃度−吸着操作時間関係線図。The outlet ozone concentration-adsorption operation time relationship diagram by the gas inflow change of an adsorption tower. 本発明の第2の実施形態に係る吸着装置の概略構成図。The schematic block diagram of the adsorption | suction apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る吸着装置の概略構成図。The schematic block diagram of the adsorption | suction apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第4の実施形態に係る吸着装置の概略構成図。The schematic block diagram of the adsorption | suction apparatus which concerns on the 4th Embodiment of this invention. 吸着塔の圧力依存性を示す出口オゾン濃度−吸着操作時間関係線図。The outlet ozone concentration-adsorption operation time relationship diagram which shows the pressure dependence of an adsorption tower. 吸着塔の吸着圧力変化によるオゾン吸着量−吸着操作時間関係線図。The ozone adsorption amount by the adsorption pressure change of an adsorption tower-adsorption operation time relationship diagram.

1…ガス給送ライン
2…吸着塔
3…放電式オゾナイザー
4…ガス排出ライン
5…減圧弁
6…流量制御器
7…低温冷却装置
8…開閉弁
9…圧力制御弁
10…オゾン濃度計測手段
11…制御手段
12…吸着圧力計測手段
13…制御手段
14…圧力計
15…開閉弁
16…開閉弁
B…酸素ボンベ
D1〜D3…基準濃度値イ〜ホ…吸着破過曲線
DESCRIPTION OF SYMBOLS 1 ... Gas feed line 2 ... Adsorption tower 3 ... Discharge-type ozonizer 4 ... Gas discharge line 5 ... Pressure-reducing valve 6 ... Flow controller 7 ... Low temperature cooling device 8 ... On-off valve 9 ... Pressure control valve 10 ... Ozone concentration measuring means 11 ... Control means 12 ... Adsorption pressure measuring means 13 ... Control means 14 ... Pressure gauge 15 ... Open / close valve 16 ... Open / close valve B ... Oxygen cylinder D1-D3 ... Reference concentration value A-E ... Adsorption breakthrough curve

Claims (3)

酸素流量が多くなるほどオゾン発生濃度が低下し、酸素流量が少くなるほどオゾン発生濃度が増加する特性をもつオゾナイザー(3)を使用し、そのオゾナイザー(3)が放出するオゾンガス含有酸素を原料ガスとし、その原料ガスからオゾンガスを吸着塔(2)の吸着剤に吸着させる吸着方法であって、
前記吸着塔(2)への単位時間当りの原料ガス流入量を吸着操作の初期においては大きくなるように、終期においては小さくなるように連続的あるいは段階的に流量制御するに当たり、単位時間当たりの原料ガス流入量をパラメータとして使用し、前記原料ガス流入量を流量制御する際の流量転換点を、吸着塔出口のオゾンガスの基準濃度値が、オゾナイザーの特性によって決まる原料ガスのオゾン濃度と該オゾン濃度の1/2値の範囲内となるように、吸着塔への原料ガス流入開始時刻を起点として、流入時間により流量制御することを特徴とする低濃度オゾンガスの吸着方法。
The ozone generation concentration decreases as the oxygen flow rate increases and the ozone generation concentration increases as the oxygen flow rate decreases. The ozone gas-containing oxygen released by the ozonizer (3) is used as the source gas. An adsorption method for adsorbing ozone gas from the raw material gas to the adsorbent of the adsorption tower (2),
The raw material gas inflow amount per unit time of the to the adsorption tower (2) to be large in the initial adsorbing operation, strikes the continuously or stepwise flow control so as to become smaller in the end, per unit time Using the raw material gas inflow as a parameter, the flow rate change point when controlling the flow of the raw material gas, the ozone concentration of the raw material gas determined by the characteristics of the ozonizer, and the ozone concentration A method for adsorbing low-concentration ozone gas, characterized in that the flow rate is controlled by the inflow time starting from the starting time of inflow of the raw material gas into the adsorption tower so as to be within a range of ½ value of the concentration.
酸素流量が多くなるほどオゾン発生濃度が低下し、酸素流量が少なくなるほどオゾン発生濃度が増加する特性をもつオゾナイザー(3)と、そのオゾナイザー(3)が放出するオゾンガス含有酸素を原料ガスとして給送するガス給送ライン(1)に入口が接続されて内部にオゾンガスを吸着するための吸着剤が収蔵される吸着塔(2)と、吸着塔(2)の原料ガス流入量を増減調節するために前記ガス給送ライン(1)に設けられる流量制御器(6)と、吸着塔(2)の出口に接続したガス排出ライン(4)に介設されて吸着塔(2)の出口流量を計測する流量計測手段(14)と、流量計測手段(14)が計測した吸着塔(2)の出口流量に基づき前記流量制御器(6)の制御流量を連続的あるいは数段階的に制御する制御手段(11)を含み、前記制御手段(11)は、前記流量制御する際の流量転換点を、吸着塔出口の流量が原料ガス流量値と「原料ガス流量−原料ガス流量×オゾン濃度値×1/2」の式で示される値の範囲内となるように、原料ガス流入量を連続的あるいは段階的に流量制御させる演算・制御手段を備えることを特徴とする低濃度オゾンガスの吸着装置。The ozone generation concentration decreases as the oxygen flow rate increases and the ozone generation concentration increases as the oxygen flow rate decreases, and the ozone gas-containing oxygen released by the ozonizer (3) is fed as a raw material gas. In order to increase / decrease the amount of raw material gas inflow in the adsorption tower (2) in which the inlet is connected to the gas feed line (1) and the adsorbent for adsorbing ozone gas is stored inside, and the adsorption tower (2) The flow rate controller (6) provided in the gas supply line (1) and the gas discharge line (4) connected to the outlet of the adsorption tower (2) are interposed to measure the outlet flow rate of the adsorption tower (2). And a control means for controlling the control flow rate of the flow rate controller (6) continuously or in several steps based on the outlet flow rate of the adsorption tower (2) measured by the flow rate measurement means (14). (11), and the control means (11) is configured to control the flow rate. The flow rate turning point at the time of adsorption is within the range of the raw material gas flow rate value and the value indicated by the formula of “raw material gas flow rate−raw material gas flow rate × ozone concentration value × 1/2”. An adsorption device for low-concentration ozone gas, comprising an operation / control means for controlling the flow rate of the raw material gas continuously or stepwise. 数%程度の一定低濃度のオゾンガスを含有する原料ガスを給送するガス給送ライン(1)に入口が接続されて内部にオゾンガスを吸着するための吸着剤が収蔵される吸着塔(2)と、吸着塔(2)のガス流出量を増減調節するために該吸着塔(2)の出口に接続したガス排出ライン(4)に設けられる圧力制御弁(9)と、前記吸着塔(2)に関連させ設けられて該吸着塔(2)内の吸着圧力を計測する吸着圧力計測手段(12)と、吸着圧力計測手段(12)が計測した吸着塔(2)内の吸着圧力に基づき前記圧力制御弁(9)の弁開度を制御する制御手段(13)を含み、前記制御手段(13)は、吸着塔(2)内の吸着圧力を吸着操作の初期から終期に至る間において吸着運転に適正な一定値に保持させるように吸着塔(2)のガス流出量を流量制御させる制御手段を備えることを特徴とする低濃度オゾンガスの吸着装置。An adsorption tower (2) in which an inlet is connected to a gas feed line (1) for feeding a raw material gas containing ozone gas having a constant low concentration of several percent, and an adsorbent for adsorbing ozone gas is stored inside A pressure control valve (9) provided in a gas discharge line (4) connected to the outlet of the adsorption tower (2) in order to increase or decrease the gas outflow amount of the adsorption tower (2), and the adsorption tower (2 ) And an adsorption pressure measuring means (12) for measuring the adsorption pressure in the adsorption tower (2), and the adsorption pressure in the adsorption tower (2) measured by the adsorption pressure measuring means (12). The control means (13) includes a control means (13) for controlling the valve opening degree of the pressure control valve (9). The control means (13) controls the adsorption pressure in the adsorption tower (2) during the period from the initial stage to the final stage of the adsorption operation. It is provided with a control means for controlling the flow rate of the gas outflow of the adsorption tower (2) so as to maintain a constant value appropriate for the adsorption operation. Adsorber low-concentration ozone gas according to symptoms.
JP2005090387A 2005-03-28 2005-03-28 Low concentration ozone gas adsorption method and adsorption device Active JP4783577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090387A JP4783577B2 (en) 2005-03-28 2005-03-28 Low concentration ozone gas adsorption method and adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090387A JP4783577B2 (en) 2005-03-28 2005-03-28 Low concentration ozone gas adsorption method and adsorption device

Publications (2)

Publication Number Publication Date
JP2006273589A JP2006273589A (en) 2006-10-12
JP4783577B2 true JP4783577B2 (en) 2011-09-28

Family

ID=37208692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090387A Active JP4783577B2 (en) 2005-03-28 2005-03-28 Low concentration ozone gas adsorption method and adsorption device

Country Status (1)

Country Link
JP (1) JP4783577B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317593A (en) * 1976-07-31 1978-02-17 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizers
JPS5323894A (en) * 1976-08-18 1978-03-04 Sumitomo Precision Prod Co Method of controlling oxygen recycle system ozonizer
JPS5328570A (en) * 1976-08-30 1978-03-16 Nippon Oxygen Co Ltd Method of supplying ozoneecontaining gas
JP3604245B2 (en) * 1996-12-03 2004-12-22 三菱電機株式会社 Intermittent ozone supply device
JP3692237B2 (en) * 1998-04-03 2005-09-07 三菱重工業株式会社 Ozone storage method and apparatus

Also Published As

Publication number Publication date
JP2006273589A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
KR101458395B1 (en) Oxygen concentrator
US5906672A (en) Closed-loop feedback control for oxygen concentrator
US6344130B1 (en) Method for continuously generating highly concentrated ozone gas
KR101528328B1 (en) Nitrogen Producer Apparatus For Possible Oxygen Content Control
TWI664011B (en) Method for controlling an adsorption phase of a gas generator and a gas generator applying such a method
JP5427412B2 (en) Ozone gas concentration method and apparatus
TW200300362A (en) Method and device for separating gas
JP2017087101A (en) Gas separator
RU2534086C2 (en) Method of regulating purity of oxygen, generated by adsorption unit, by control of flow consumption
WO2017170983A1 (en) Pressure swing adsorption type gas manufacturing device
JP4783577B2 (en) Low concentration ozone gas adsorption method and adsorption device
JP2007209868A (en) Stable operation method of pressure swing adsorption device
KR101969614B1 (en) Product gas supply method and product gas supply system
JP7008125B2 (en) Ozone generator and ozone generation method
WO2022065466A1 (en) Gas separation method and gas separation device
JP7291649B2 (en) Carbon dioxide recovery device, hydrocarbon production device, and carbon dioxide recovery method
JP2007054678A (en) Stabilization method for stabilizing concentration of gas and gas concentrator
JP2001279267A (en) Method for producing industrial gas by using pressure- varied adsorptive separation apparatus
KR101498269B1 (en) Nitrogen generator
JP7292554B1 (en) Ozone supply device and ozone supply method
JP6902522B2 (en) Control method of nitrogen gas separator and nitrogen gas separator
JP6537694B1 (en) HYDROGEN PRODUCTION DEVICE, HYDROGEN PRODUCTION DEVICE OPERATION METHOD, AND OPERATION PROGRAM
JPH08173745A (en) Operation method for pressure variation adsorption separator
JP2022106348A (en) Gas separation equipment and gas separation method
KR100372032B1 (en) An apparatus for controlling the oxygen purity

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250