JP2017087101A - Gas separator - Google Patents
Gas separator Download PDFInfo
- Publication number
- JP2017087101A JP2017087101A JP2015216701A JP2015216701A JP2017087101A JP 2017087101 A JP2017087101 A JP 2017087101A JP 2015216701 A JP2015216701 A JP 2015216701A JP 2015216701 A JP2015216701 A JP 2015216701A JP 2017087101 A JP2017087101 A JP 2017087101A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- pressure
- gas
- adsorption
- gas separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 66
- 230000001276 controlling effect Effects 0.000 claims abstract description 16
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 230000001747 exhibiting Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 176
- 238000000926 separation method Methods 0.000 claims description 62
- 238000003795 desorption Methods 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 241000894007 species Species 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 241000218220 Ulmaceae Species 0.000 claims description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 3
- 150000001345 alkine derivatives Chemical class 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atoms Chemical class [H]* 0.000 claims description 3
- 239000003463 adsorbent Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 235000019832 sodium triphosphate Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 230000001105 regulatory Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 210000003000 Inclusion Bodies Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229920001795 Coordination polymer Polymers 0.000 description 1
- -1 are widely used Chemical compound 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N precursor Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Abstract
Description
本発明はゲート現象を示す多孔性高分子錯体(以下、単に「ゲート型多孔性高分子錯体」ともいう)を用いたガス分離装置に関する。 The present invention relates to a gas separation apparatus using a porous polymer complex exhibiting a gate phenomenon (hereinafter also simply referred to as “gate type porous polymer complex”).
酸素や窒素等の産業上、重要なガスを製造する方法として、固体吸着材を用いて、圧力スウィング吸着(PSA: Pressure Swing Adsorption)システムが広く普及している。これは、たとえば二種のガスの混合物からガスを分離する場合に、二種のガスに対する吸着力に差がある固体吸着材を吸着塔に充填し、混合ガスを導入すると一方のガスが選択的に吸着された結果、気層には、吸着されなかったガスが多く残るため、これを減圧して回収するという原理に基づいている。このためにはゼオライトや活性炭などの、いわゆる多孔体と呼ばれる固体吸着材が広く利用され、酸素生成PSA、窒素生成PSA他、広く普及している(特許文献1等)。 A pressure swing adsorption (PSA) system using a solid adsorbent is widely used as a method for producing an important gas in industries such as oxygen and nitrogen. This is because, for example, when separating a gas from a mixture of two types of gas, if the adsorption tower is filled with a solid adsorbent that has a difference in adsorption power to the two types of gas and one of the gases is selectively introduced. As a result of the adsorption, a large amount of gas that has not been adsorbed remains in the gas layer. For this purpose, solid adsorbents called so-called porous bodies, such as zeolite and activated carbon, are widely used, and oxygen-producing PSA, nitrogen-producing PSA, etc. are widely used (Patent Document 1, etc.).
一般に、ゼオライトや活性炭などの既存の多孔体は、いわゆるIUPACの吸着等温線の6分類で分類可能である。すなわち、既存の多孔体は、圧力上昇に応じてガス吸着力が増加する特性を有しており、既存のPSAシステムは、このような特性に最適化されている。一方で、IUPACの6分類では分類できない、特殊な吸着等温線を示す材料が発表されている。これらは、金属イオン、配位子から形成される多孔性高分子錯体(PCP: Porous Coordination Polymer)の一種で、ゲート型多孔性高分子錯体、柔軟性多孔性高分子錯体などと呼ばれ、これらが示す特殊なガス吸着挙動はゲート現象、ゲート吸着と呼ばれている。 In general, existing porous bodies such as zeolite and activated carbon can be classified into six categories of so-called IUPAC adsorption isotherms. That is, the existing porous body has a characteristic that the gas adsorption force increases with an increase in pressure, and the existing PSA system is optimized to such a characteristic. On the other hand, materials exhibiting special adsorption isotherms that cannot be classified by the 6 classifications of IUPAC have been announced. These are a kind of porous polymer complex (PCP: Porous Coordination Polymer) formed from metal ions and ligands. These are called gate-type porous polymer complexes and flexible porous polymer complexes. The special gas adsorption behavior shown by is called the gate phenomenon, gate adsorption.
ゲート現象とは、主として、多孔性高分子錯体の構造が変化することで、ガスの吸着量が急激に変化する現象である。ガス圧が低圧の場合は、ゲート型多孔性高分子錯体はガスをほとんど吸着しないが、ガス圧が一定値(これの圧がゲート圧と呼ばれる)に達すると、PCPの構造が変化(例えば、積層がずれる、層間が広がる等)し、ガス分子が取り込まれる。このため、ゲート圧を境にガス吸着量は急激に増加する。これは、ゲート圧以下では、ゲート型多孔性高分子錯体とガス分子が別々に存在している方がエネルギー的に安定であるが、ゲート圧以上では、ゲート型多孔性高分子錯体とガス分子が別々に存在しているよりも、ガス分子がPCPの内部に取り込まれる方が、より安定な包摂体を形成し、エネルギー的に有利になるため為と考えられている。 The gate phenomenon is a phenomenon in which the gas adsorption amount changes abruptly due to a change in the structure of the porous polymer complex. When the gas pressure is low, the gate-type porous polymer complex hardly adsorbs the gas, but when the gas pressure reaches a certain value (this pressure is called the gate pressure), the structure of the PCP changes (for example, The stacking is shifted, the layers are spread, etc.), and gas molecules are taken in. For this reason, the amount of gas adsorption increases rapidly with the gate pressure as a boundary. Below the gate pressure, it is more energetically stable if the gate-type porous polymer complex and gas molecules exist separately, but above the gate pressure, the gate-type porous polymer complex and gas molecules are more stable. It is considered that gas molecules taken into the inside of PCP form a more stable inclusion and become energetically advantageous rather than being separately present.
ガス放出では逆の現象が生じる。すなわち、ガス圧がゲート圧以下に下がると、ゲート型多孔性高分子錯体に取り込まれていたガス分子が放出され、元のゲート型多孔性高分子錯体の構造に戻ろうとする為、ガスの放出が急激に生じる。すなわち、このようなゲート現象は、ゲート型多孔性高分子錯体構造の柔軟性に基づいており、この様な柔軟性を有していない既存多孔体であるゼオライトや活性炭ではゲート現象は生じない、ゲート型多孔高性分子錯体特有の現象である。 The opposite phenomenon occurs in gas release. In other words, when the gas pressure falls below the gate pressure, the gas molecules incorporated in the gate-type porous polymer complex are released, and the gas is released because it tries to return to the original structure of the gate-type porous polymer complex. Suddenly occurs. That is, such a gate phenomenon is based on the flexibility of the gate-type porous polymer complex structure, and the gate phenomenon does not occur in zeolite and activated carbon that are existing porous bodies that do not have such a flexibility. This is a phenomenon peculiar to the gate type porous high molecular complex.
このゲート現象を、ガス分離に適用した場合、主として2つの大きなメリットがある。一つ目は、ガスの吸着、放出が急激に生じる事による、高効率なガス分離である。既存の多孔体は、ガス圧と吸着量が概ね比例する様な吸着等温線を示す。この様な材料に吸着したガスを全量回収する為には、大きな圧力変動が必要となる。一方で、ゲート現象を示すゲート型多孔性高分子錯体では、非常に小さな圧力変動でガスを回収することができる(図1)。
ガス回収の際の圧力変動は、電力コストに直結している。すなわち、小さな圧力変動でガスを回収することができるゲート型多孔性高分子錯体は、低コストでガスを分離することができる材料である。
When this gate phenomenon is applied to gas separation, there are mainly two major advantages. The first is high-efficiency gas separation due to rapid gas adsorption and release. The existing porous body shows an adsorption isotherm in which the gas pressure and the adsorption amount are approximately proportional. In order to collect the entire amount of gas adsorbed on such a material, a large pressure fluctuation is required. On the other hand, in the case of a gate-type porous polymer complex that exhibits a gate phenomenon, gas can be recovered with very little pressure fluctuation (FIG. 1).
Pressure fluctuations during gas recovery are directly linked to power costs. That is, the gate-type porous polymer complex that can recover the gas with a small pressure fluctuation is a material that can separate the gas at a low cost.
2つめのメリットは、ガス分離効率の高さである。前述の通り、ゲート型多孔性高分子錯体のガス吸着は、従来のような、細孔の中にガス分子が取りこまれるという単純なメカニズムでは無く、ゲート型多孔性高分子錯体とガス分子が、一定ガス圧(ゲート圧)以上では、ゲート型多孔性高分子錯体と安定な包摂体を形成するというメカニズムに基づいている。既存多孔体の場合、二種のガスと異なる親和性があっても、細孔がある以上、親和性の低いガスも細孔内に取りこまれる共吸着現象が生じやすい。一方で、ゲート型多孔性高分子錯体は、共吸着現象によって、親和性が低いガス分子も取りこむと、包摂体の安定性が低下するため、親和性が高いガスを選択的に取りこみ、より安定な包摂体を形成しようとする特性を有している。このため、ゲート型多孔性高分子錯体は、ガス選択性が高く、PSAシステムに適用した場合、高効率で高純度なガスを製造することができる。 The second merit is high gas separation efficiency. As described above, the gas adsorption of the gate-type porous polymer complex is not a simple mechanism in which the gas molecules are taken into the pores as in the conventional case. Above a certain gas pressure (gate pressure), it is based on a mechanism of forming a stable inclusion body with a gate-type porous polymer complex. In the case of an existing porous body, even if it has an affinity different from that of the two kinds of gases, a co-adsorption phenomenon in which a gas having a low affinity is also taken into the pores tends to occur as long as there are pores. On the other hand, the gate-type porous polymer complex, due to the co-adsorption phenomenon, lowers the stability of the inclusion body when gas molecules with low affinity are also incorporated, so that the gas with high affinity is selectively incorporated, making it more stable. It has the characteristic of trying to form a complete inclusion body. For this reason, the gate-type porous polymer complex has high gas selectivity, and when applied to a PSA system, it is possible to produce a gas with high efficiency and high purity.
しかし、実際にこのゲート型多孔性高分子錯体をPSAシステムに適用した場合、種々の問題が生じてくる。既存多孔体材料であれば、ガスの吸着は圧力上昇に応じて徐々に生じる為、吸着塔内にガスを流した場合、吸着はガスの入り側から徐々に生じていく。一方で、ゲート型多孔性高分子錯体を使用した場合、ガスの吸着がゲート現象的に突然生じるため、吸着塔内の特定箇所で、温度やガス分圧が急激に変動する場合がある。しかしゲート圧力は、一般に温度、ガス分圧により大きく変動するため(非特許文献1)、吸着塔内の温度、ガス分圧が急激に変動すると、吸着塔内で、一旦吸着されたガスが急激に再放出される等の、既存多孔体材料では無かった異常な現象が生じうる。このような急激なガスの再放出現象が生じると、塔内の温度が下がり、再びゲート現象的にガス吸着が生じる様な、振動現象につながりうる。この結果、吸着塔内での温度やガス分圧の異常な分布ムラが生じてガス分離が困難になったり、分離したガス純度が低下する等の問題が生じる。このゲート型多孔性高分子錯体を利用したPSAシステムは未だ実用化されておらず、本課題も解決されていない。 However, when this gate type porous polymer complex is actually applied to a PSA system, various problems arise. In the case of an existing porous material, gas adsorption gradually occurs as the pressure rises. Therefore, when gas flows in the adsorption tower, adsorption gradually occurs from the gas entrance side. On the other hand, when a gate-type porous polymer complex is used, gas adsorption suddenly occurs as a gate phenomenon, so that the temperature and gas partial pressure may fluctuate rapidly at specific locations in the adsorption tower. However, since the gate pressure generally varies greatly depending on the temperature and gas partial pressure (Non-patent Document 1), when the temperature and gas partial pressure in the adsorption tower change rapidly, the gas once adsorbed in the adsorption tower rapidly An unusual phenomenon such as being re-released in the existing porous material may occur. When such a rapid gas re-release phenomenon occurs, the temperature in the tower is lowered, which may lead to a vibration phenomenon in which gas adsorption occurs again as a gate phenomenon. As a result, problems such as abnormal distribution unevenness of the temperature and gas partial pressure in the adsorption tower occur and gas separation becomes difficult, and the purity of the separated gas decreases. A PSA system using this gate type porous polymer complex has not yet been put into practical use, and this problem has not been solved.
本発明は、ゲート型多孔性高分子錯体を内部に収容してなるガス分離装置を提供することを目的とする。 An object of the present invention is to provide a gas separation device in which a gate type porous polymer complex is accommodated.
本発明者らは、前述のような問題点を解決すべく、鋭意研究を積み重ねた結果、PSAの吸着塔に、あらかじめゲート現象に伴うガス濃度分布変化、温度変化、圧力変化等を均質化するように、パラメータ(例えば、温度、圧力)の分布を能動的に引き起こさせ、ゲート現象の急激な発現を抑制する事で、安定的かつ高効率なガス分離ができることを見いだし、本発明を完成するに至った。本発明は、ゲート型多孔性高分子錯体を内部に収容してなる高効率なガス分離装置を提供する。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention homogenize the gas concentration distribution change, temperature change, pressure change, etc. accompanying the gate phenomenon in advance in the PSA adsorption tower. As described above, it is found that stable and highly efficient gas separation can be achieved by actively causing the distribution of parameters (for example, temperature and pressure) and suppressing the rapid development of the gate phenomenon. It came to. The present invention provides a highly efficient gas separation device in which a gate type porous polymer complex is housed.
すなわち本発明は下記に示すとおりである。 That is, the present invention is as follows.
(1)ゲート現象を示すゲート型多孔性高分子錯体を充填した吸着塔を含むガス分離装置であって、
複数種のガスを含む混合ガスを前記吸着塔に供給して該吸着塔内にゲート現象を起こさせるためのガス供給手段と、
前記ゲート現象の発現と関連するパラメータを制御して、前記ゲート現象を前記吸着塔内で均質に発現せるための前記パラメータ分布を制御する手段と
を少なくとも含むことを特徴とするガス分離装置。
(2)前記パラメータが、前記吸着塔内の温度もしくはガス圧又はその両方である、(1)記載のガス分離装置。
(3)ゲート現象の発現と関連する前記パラメータを制御する手段が、前記吸着塔内の全域に取付けられた温度センサ、温度コントローラ、加熱手段および冷却手段を含む(1)または(2)に記載のガス分離装置。
(4)ゲート現象の発現と関連する前記パラメータを制御する手段が、前記吸着塔内の全域に取付けられた圧力センサ、圧力コントローラ、加圧手段および減圧手段を含む(1)または(2)に記載のガス分離装置。
(5)ゲート現象の発現と関連する前記パラメータを制御する手段が、前記吸着塔内の全域に取付けられた圧力センサ、温度センサ、圧力コントローラ、温度コントローラ、加熱手段、冷却手段、加圧手段および減圧手段を含む(1)または(2)に記載のガス分離装置。
(6)前記ゲート型多孔性高分子錯体が、前記複数種の混合ガスの少なくとも1種に関してゲート型等温線を示す(1)〜(5)のいずれかに記載のガス分離装置。
(7)前記ゲート型多孔性高分子錯体が、ELM類、カゴメ類、MIL類、CID類から選ばれる(6)に記載のガス分離装置。
(8)前記ゲート型多孔性高分子錯体の吸着ゲート係数が、0.7〜75で、脱着ゲート係数が0.4〜80である、(7)記載のガス分離装置。
(9)前記ゲート型多孔性高分子錯体の吸着完了ゲート圧と脱着完了ゲート圧の圧力差が、2kPa〜8000kPaである、(7)記載のガス分離装置。
(10)前記ガス種が、酸素、窒素、アルゴン、二酸化炭素、一酸化炭素、水素、アルカン類、アルケン類、およびアルキン類のいずれかである、(1)〜(9)のいずれかに記載のガス分離装置。
(1) A gas separation device including an adsorption tower packed with a gate-type porous polymer complex exhibiting a gate phenomenon,
A gas supply means for supplying a mixed gas containing a plurality of gases to the adsorption tower to cause a gate phenomenon in the adsorption tower;
A gas separation apparatus comprising at least means for controlling a parameter distribution for controlling the parameter related to the onset of the gate phenomenon so that the gate phenomenon is uniformly expressed in the adsorption tower.
(2) The gas separation device according to (1), wherein the parameter is a temperature and / or a gas pressure in the adsorption tower.
(3) The means for controlling the parameter related to the onset of the gate phenomenon includes a temperature sensor, a temperature controller, a heating means, and a cooling means attached to the entire area in the adsorption tower (1) or (2) Gas separation device.
(4) The means for controlling the parameter related to the onset of the gate phenomenon includes a pressure sensor, a pressure controller, a pressurizing means, and a depressurizing means attached to the entire area of the adsorption tower. The gas separator described.
(5) The means for controlling the parameter related to the occurrence of the gate phenomenon is a pressure sensor, a temperature sensor, a pressure controller, a temperature controller, a heating means, a cooling means, a pressurizing means, and the like attached to the entire area of the adsorption tower The gas separation device according to (1) or (2), comprising a decompression means.
(6) The gas separation device according to any one of (1) to (5), wherein the gate-type porous polymer complex exhibits a gate-type isotherm with respect to at least one of the mixed gases.
(7) The gas separation device according to (6), wherein the gate-type porous polymer complex is selected from ELMs, kagome, MILs, and CIDs.
(8) The gas separator according to (7), wherein the gate-type porous polymer complex has an adsorption gate coefficient of 0.7 to 75 and a desorption gate coefficient of 0.4 to 80.
(9) The gas separation device according to (7), wherein the pressure difference between the adsorption completion gate pressure and the desorption completion gate pressure of the gate type porous polymer complex is 2 kPa to 8000 kPa.
(10) The gas species according to any one of (1) to (9), wherein the gas species is any one of oxygen, nitrogen, argon, carbon dioxide, carbon monoxide, hydrogen, alkanes, alkenes, and alkynes. Gas separation device.
本発明のゲート型多孔性高分子錯体を充填して成る装置は、高効率なガス分離を行うことができる。本発明のガス分離装置としては、圧力スイング吸着方式(以下「PSA方式」と略記)のガス分離装置が挙げられる。方式としては真空スウィング吸着(VSA: Vacuum Swing Adsorption)または圧力スウィング吸着(PSA)いずれも好適に利用できる。 An apparatus filled with the gate type porous polymer complex of the present invention can perform highly efficient gas separation. Examples of the gas separation device of the present invention include a pressure swing adsorption method (hereinafter abbreviated as “PSA method”) gas separation device. As a method, either vacuum swing adsorption (VSA) or pressure swing adsorption (PSA) can be suitably used.
本発明のゲート型多孔性高分子錯体は、ゲート型の等温線を示す材料である。ゲート型とは、主として構造変化により、図2に示すような変曲点を示す吸着およびまたは脱着等温線を意味する。ゲート型多孔性高分子錯体の等温線は、図2に示すように、吸着開始ゲート圧力、吸着完了ゲート圧力、ゲート吸着量、脱着開始ゲート圧力、脱着完了ゲート圧力、ゲート脱着量で定義される。 The gate type porous polymer complex of the present invention is a material showing a gate type isotherm. The gate type means an adsorption and / or desorption isotherm showing an inflection point as shown in FIG. 2 mainly due to structural change. As shown in FIG. 2, the isotherm of the gate type porous polymer complex is defined by the adsorption start gate pressure, the adsorption completion gate pressure, the gate adsorption amount, the desorption start gate pressure, the desorption completion gate pressure, and the gate desorption amount. .
吸着開始ゲート圧力とは、吸着工程において、吸着初期の吸着量−圧力の比例関係が急激に大きくなる(ガスの圧力増分に対し、吸着量増分が急に大きくなる)圧力である。吸着完了ゲート圧力とは、吸着工程において吸着開始ゲート圧力以降の吸着量−圧力の比例関係が急激に小さくなる(ガスの圧力増分に対し、脱着量増分が急に小さくなる)圧力である。ゲート吸着量とは、吸着開始ゲート圧から、吸着完了ゲート圧力の間の吸着量である。また、脱着開始ゲート圧力とは、脱着工程に於いて脱着初期の吸着量−圧力の比例関係が急激に大きくなる(ガスの圧力増分に対し、脱着量増分が急に大きくなる)圧力である。脱着完了ゲート圧力とは、脱着工程に於いて脱着開始ゲート圧力以降の吸着量−圧力の比例関係が急激に小さくなる(ガスの圧力増分に対し、脱着量増分が急に小さくなる)圧力であるである。ゲート脱着量とは、脱着開始ゲート圧力以降、脱着完了ゲート圧力までの脱着量である。 The adsorption start gate pressure is a pressure at which in the adsorption process, the proportional relationship between the adsorption amount and the pressure at the initial stage of adsorption suddenly increases (the adsorption amount increment suddenly increases with respect to the gas pressure increment). The adsorption completion gate pressure is a pressure in which the proportional relationship between the adsorption amount and the pressure after the adsorption start gate pressure in the adsorption step is abruptly reduced (the desorption amount increment is abruptly smaller than the gas pressure increment). The gate adsorption amount is an adsorption amount between the adsorption start gate pressure and the adsorption completion gate pressure. In addition, the desorption start gate pressure is a pressure at which the proportional relationship between the adsorption amount and the pressure at the initial stage of desorption in the desorption step increases abruptly (the desorption amount increment suddenly increases with respect to the gas pressure increment). The desorption completion gate pressure is a pressure in which the proportional relationship between the adsorption amount and the pressure after the desorption start gate pressure in the desorption step is abruptly reduced (the desorption amount increment is abruptly smaller than the gas pressure increment). It is. The gate desorption amount is a desorption amount from the desorption start gate pressure to the desorption completion gate pressure.
また、ゲートのゲート型多孔性高分子錯体吸着特性および脱着特性は、以下の2式で定義することができる。 The gate-type porous polymer complex adsorption property and desorption property of the gate can be defined by the following two formulas.
式1:吸着ゲート係数=(吸着完了ゲート圧での吸着量−吸着開始ゲート圧での吸着量)/(吸着完了ゲート圧−吸着開始ゲート圧)
式2:脱着ゲート係数=(脱着開始ゲート圧での吸着量−脱着完了ゲート圧での吸着量)/(脱着開始ゲート圧−脱着完了ゲート圧)
注)吸着量は測定ガスの測定温度における吸着量で単位はmL/g(STP)である。
注)圧力はkPaである。
Formula 1: Adsorption gate coefficient = (Adsorption amount at adsorption completion gate pressure−Adsorption amount at adsorption start gate pressure) / (Adsorption completion gate pressure−Adsorption start gate pressure)
Formula 2: Desorption gate coefficient = (Adsorption amount at desorption start gate pressure−Adsorption amount at desorption completion gate pressure) / (Desorption start gate pressure−Desorption completion gate pressure)
Note) The adsorption amount is the adsorption amount at the measurement temperature of the measurement gas, and the unit is mL / g (STP).
Note) Pressure is kPa.
ゲート型多孔性高分子錯体として、現在知られているものは、ELM(Elastic Layer-structured metal organic frameworks)類、カゴメ類、MIL類、CID類、その他がある。これらのゲート型多孔性高分子錯体の文献は以下の通りである。ELMは、上代らの、Int. J. Mol. Sci. 2010, 11,3803の文献に示されている。カゴメ類は、佐藤らの、SCIENCE(2014)343、167、及びZaworotkoらの、Chem. Commun., 2004, 2534の文献に示されている。MIL類は、Fereyら、Chem. Soc. Rev., 2009, 38, 1380の文献に示されている。CID類は、Inubushiら、Chem. Commun., 2010, 46, 9229、及びNakagawaら、Chem. Commun., 2010, 46, 4258の文献に示されている。その他の例は、Kitauraら、Angew. Chem. Int. Ed. 2003, 42, 428の文献に示されている。これらの中でもELM類、カゴメ類、MIL類、CID類が、ゲート現象が明確であり、本発明の効果が高い点で好ましい。 Currently known gate-type porous polymer complexes include ELM (Elastic Layer-structured metal organic frameworks), Kagome, MILs, CIDs, and others. The literature of these gate type porous polymer complexes is as follows. ELM is described in the literature of Int. J. Mol. Sci. 2010, 11,3803. Kagome species are described in Sato et al., SCIENCE (2014) 343, 167, and Zaworotko et al., Chem. Commun., 2004, 2534. MILs are shown in the literature of Ferey et al., Chem. Soc. Rev., 2009, 38, 1380. CIDs are shown in the literature of Inubushi et al., Chem. Commun., 2010, 46, 9229, and Nakagawa et al., Chem. Commun., 2010, 46, 4258. Other examples are given in the literature of Kitaura et al., Angew. Chem. Int. Ed. 2003, 42, 428. Among these, ELMs, Kagome, MILs, and CIDs are preferable in that the gate phenomenon is clear and the effect of the present invention is high.
ELM−11を例にして、ゲート係数を、図3を用いて説明する。ELM−11の273Kにおける二酸化炭素の吸脱着等温線は図3に示す通りである。x軸が、圧力(kPa)であり、y軸が、吸着量(mL/g(STP))である。この場合、各等温線は、以下の点を通ることから、それらの等温線は下記の式で近似できる。 Taking the ELM-11 as an example, the gate coefficient will be described with reference to FIG. The adsorption / desorption isotherm of carbon dioxide at 273 K of ELM-11 is as shown in FIG. The x-axis is the pressure (kPa), and the y-axis is the adsorption amount (mL / g (STP)). In this case, since each isotherm passes the following points, those isotherms can be approximated by the following equation.
吸着ゲート前吸着等温線:
代表的な通過点1:x=5.23,y=0.188;通過点2:x=27.4,y=0.665であり、近似式y=0.022x+0.0753である。
吸着ゲート後吸着等温線:
代表的な通過点1:x=34.2,y=23.3;通過点2:x=35.2,y=50.7であり、近似式y=27.4x−913である。
Adsorption isotherm before adsorption gate:
Typical passing point 1: x = 5.23, y = 0.188; passing point 2: x = 27.4, y = 0.665, and approximate expression y = 0.0002x + 0.0753.
Adsorption isotherm after adsorption gate:
Typical passing point 1: x = 34.2, y = 23.3; passing point 2: x = 35.2, y = 50.7, and approximate expression y = 27.4x−913.
上記連立方程式を解いて、x(「吸着開始ゲート圧」)=33.4kPa(ゲート前吸着量は1.1mL/g(STP))である。
同様に等温線から算出された「吸着完了ゲート圧」は、36.0kPaであり、その時点での吸着量は74.4mLである。
上記から吸着ゲート係数=(77.4−1.1)/(36.0−33.4)=29.3と算出される。
同様に脱着開始ゲート圧=28.41kPa(吸着量は75.2mL/g(STP))である。また、脱着完了ゲート圧=26.20kPa(吸着量は2.71mL/g(STP))である。
上記から脱着ゲート係数=(75.2−2.71)/(28.41−26.20)=32.8と算出される。
Solving the above simultaneous equations, x (“adsorption start gate pressure”) = 33.4 kPa (adsorption amount before gate is 1.1 mL / g (STP)).
Similarly, the “adsorption completion gate pressure” calculated from the isotherm is 36.0 kPa, and the adsorption amount at that time is 74.4 mL.
From the above, the adsorption gate coefficient = (77.4-1.1) / (36.0-33.4) = 29.3.
Similarly, the desorption start gate pressure is 28.41 kPa (adsorption amount is 75.2 mL / g (STP)). Desorption completion gate pressure = 26.20 kPa (adsorption amount is 2.71 mL / g (STP)).
From the above, the desorption gate coefficient = (75.2-2.71) / (28.41-26.20) = 32.8 is calculated.
本発明のガス分離装置に用いることができるゲート型多孔性高分子錯体は、吸着ゲート係数が0.7〜75で、脱着ゲート係数が0.4〜80であることが好ましい。
吸着ゲート係数が0.7未満である場合は、圧力変動に対する吸着量の変動量が小さすぎ、一般的な吸着材との明確な差が得られず、ゲート型挙動とは言いがたい。また吸着ゲート係数75を超える場合は、圧力変動に対する吸着量の変動量が急峻過ぎ、急激な吸着熱の発生や、急激な特定ガスの吸着による混合ガスの濃度比の急激な変化があり、ガス分離材料としては実用的に使いづらい(制御しづらい)。脱着ゲート係数が0.4未満である場合は、圧力変動に対する吸着量の変動量が小さすぎ、一般的な吸着材との明確な差が得られず、ゲート型挙動とは言いがたい。また脱着ゲート係数が80を超える場合は、圧力変動に対する脱着量の変動量が急峻過ぎ、急激な脱着熱による温度低下や、急激な特定ガスの放出による混合ガスの濃度比の急激な変化があり、ガス分離材料としては実用的に使いづらい(制御しづらい)。
The gate-type porous polymer complex that can be used in the gas separation device of the present invention preferably has an adsorption gate coefficient of 0.7 to 75 and a desorption gate coefficient of 0.4 to 80.
When the adsorption gate coefficient is less than 0.7, the fluctuation amount of the adsorption amount with respect to the pressure fluctuation is too small, and a clear difference from a general adsorbent cannot be obtained. When the adsorption gate coefficient exceeds 75, the amount of fluctuation of the adsorption amount with respect to the pressure fluctuation is too steep and there is a sudden change in the concentration ratio of the mixed gas due to sudden heat generation or sudden adsorption of the specific gas. It is practically difficult to use as a separation material (hard to control). When the desorption gate coefficient is less than 0.4, the amount of fluctuation of the adsorption amount with respect to the pressure fluctuation is too small, and a clear difference from a general adsorbent cannot be obtained, so it is difficult to say a gate type behavior. When the desorption gate coefficient exceeds 80, the desorption amount fluctuation amount with respect to pressure fluctuation is too steep, and there is a drastic change in the concentration ratio of the mixed gas due to rapid desorption heat and a sudden release of a specific gas. As a gas separation material, it is difficult to use practically (hard to control).
本発明のガス分離装置に用いることができるゲート型多孔性高分子錯体では、吸着完了ゲート圧と脱着完了ゲート圧の圧力差が、2kPa〜8000kPaであることが好ましい。吸着完了ゲート圧と脱着完了ゲート圧の圧力差が2kPa未満である場合は、吸着圧力と脱着圧力が近接しすぎており、PSA装置で制御仕切れない。一方、8000kPaを超える場合は、吸着圧力と脱着圧力が離れすぎており、このような材料から吸着ガスを回収するためには非常に大きな圧力変動を行う必要があり、このための電力コストおよび操作時間が大きく、ゲート現象をガス分離に使うメリットが無い。 In the gate type porous polymer complex that can be used in the gas separation apparatus of the present invention, the pressure difference between the adsorption completion gate pressure and the desorption completion gate pressure is preferably 2 kPa to 8000 kPa. When the pressure difference between the adsorption completion gate pressure and the desorption completion gate pressure is less than 2 kPa, the adsorption pressure and the desorption pressure are too close to each other and cannot be controlled by the PSA device. On the other hand, if it exceeds 8000 kPa, the adsorption pressure and the desorption pressure are too far apart, and in order to recover the adsorbed gas from such a material, it is necessary to perform a very large pressure fluctuation. Time is large and there is no merit of using the gate phenomenon for gas separation.
本発明のゲート型多孔性高分子錯体を充填して成る装置は、様々なガスの分離に適用することができる。ガス種としては、例えば、酸素、窒素、アルゴン、二酸化炭素、一酸化炭素、水素、アルカン類、アルケン類、アルキン類等が挙げられる。本発明のゲート型多孔性高分子錯体を充填して成る装置をガス分離に適用した場合は、ゲート現象を利用して容易かつ高効率で高純度のガスを分離することができる。 The apparatus filled with the gate type porous polymer complex of the present invention can be applied to separation of various gases. Examples of the gas species include oxygen, nitrogen, argon, carbon dioxide, carbon monoxide, hydrogen, alkanes, alkenes, alkynes, and the like. When the apparatus filled with the gate type porous polymer complex of the present invention is applied to gas separation, a high-purity gas can be easily separated with high efficiency using the gate phenomenon.
本発明のゲート型多孔性高分子錯体を充填して成るガス分離装置における、容器形状や容器材質、ガスバルブの種類などに関しては、特に特別の装置を用いなくてもよく、ガス分離装置に用いられているものを用いることができる。また、ゲート現象に伴う、ガス分離装置のガス濃度分布変化に伴う圧力変化、温度変化を均質化するための、これらの装置内に温度勾配や圧力勾配を形成する手段は、その温度勾配、圧力勾配が適切に制御されれば、既存のどのような技術を用いてもよい。ただし、各種装置の改良を排除するものではなく、いかなる装置を用いたとしても、本発明のガス高分子金属錯体を用いている限りにおいて、本発明の技術的範囲に包含されるものである。 In the gas separation apparatus filled with the gate type porous polymer complex of the present invention, the container shape, the container material, the type of the gas valve, etc. need not be particularly used, and are used in the gas separation apparatus. Can be used. In addition, the means for forming a temperature gradient or pressure gradient in these devices to homogenize the pressure change and temperature change accompanying the gas concentration distribution change of the gas separation device accompanying the gate phenomenon is the temperature gradient, pressure Any existing technique may be used as long as the gradient is properly controlled. However, improvement of various apparatuses is not excluded, and any apparatus is included in the technical scope of the present invention as long as the gas polymer metal complex of the present invention is used.
本発明のゲート型多孔性高分子錯体を充填してなるガス分離装置は、能動的にパラメータの分布を引き起こさせた装置である。ここで、「能動的にパラメータの分布を引き起こす」とは、例えば、加熱装置等により、吸着塔の入り側高温、出側低温(あるいはその逆)に設定する事、あるいは隔壁等の利用により吸着塔の入り側高圧、出側低圧(あるいはその逆)の状態にすることの意味である。本発明のゲート型多孔性高分子錯体を用いるガス分離装置内で発現するゲート現象を制御するパラメータとしては、典型的に、温度、圧力が挙げられる。 The gas separation apparatus filled with the gate type porous polymer complex of the present invention is an apparatus that actively causes parameter distribution. Here, “actively causing parameter distribution” means, for example, by setting a high temperature on the entrance side of the adsorption tower, a low temperature on the exit side (or vice versa) with a heating device, or by using a partition wall or the like. It means that the high pressure on the entrance side of the tower and the low pressure on the exit side (or vice versa). Typical parameters for controlling the gate phenomenon that occurs in the gas separation apparatus using the gate type porous polymer complex of the present invention include temperature and pressure.
これらのパラメータ値を塔内にどのように分布させるかは、ゲート現象が塔内のどこで生じるかにより決められるが、ゲート現象が塔内のどこで生じるかは、ゲート型多孔性高分子錯体の特性(吸着ゲート圧や脱着ゲート圧等のゲート圧、ガス吸着や脱着に伴う発熱量や吸熱量、伝熱特性等)および、混合ガスの混合比、ガス流量、ガス温度で大きく変動するため、一義的に決める事はできない。しかし、実際に吸着塔内のパラメータを測定し、それに応じたパラメータ勾配を能動的に付与することで、分離ガスの濃度を向上させて、回収率を向上させることができる。 How these parameter values are distributed in the tower depends on where the gate phenomenon occurs in the tower, but where the gate phenomenon occurs in the tower depends on the characteristics of the gated porous polymer complex. (The gate pressure such as adsorption gate pressure and desorption gate pressure, the amount of heat generated and absorbed by gas adsorption and desorption, heat transfer characteristics, etc.) and the mixture ratio, gas flow rate, and gas temperature of the mixed gas are largely different. Cannot be decided. However, by actually measuring the parameters in the adsorption tower and actively applying a parameter gradient corresponding to the measured parameters, the concentration of the separation gas can be improved and the recovery rate can be improved.
パラメータ勾配を能動的に付与する方法の一つとして、パラメータが温度の場合、温度制御を行っていない状態で、ゲート型多孔性高分子錯体を充填した吸着塔に混合ガスを通し、吸着塔の温度を温度センサで実測し、その温度の値に応じてゲート現象の発現との関係で、温度が高い部分を冷却するか、または温度が低い部分を加熱する方法が挙げられる。これは、温度が高い部分ではゲート現象が起こりにくくなるため、冷却することでゲート現象が起こりにくくするのを防止し、また、吸着完了後の塔内の温度分布を均質化させることで振動現象を停止させる方法である。また、逆の手段として、温度が高い部分を加熱するか、または温度が低い部分から冷却する方法も挙げられる。これは前述の手法とは逆に、ゲートが起こりにくい高温部をさらに加熱する事で、能動的にゲートが起こりやすい部分と起こりにくい部分を塔内に作り分けし、温度分布を固定化する事で振動現象を抑制する方法である。どちらの手法がより有効であるかは、使用するゲート型多孔性高分子錯体の材料特性および吸着するガス種の、分圧、ガス流速、温度等の実操業条件により決める事ができる。 As one of the methods for actively providing the parameter gradient, when the parameter is temperature, the mixed gas is passed through the adsorption tower packed with the gate-type porous polymer complex without temperature control, and the adsorption tower A method of measuring the temperature with a temperature sensor and cooling a portion having a high temperature or heating a portion having a low temperature in relation to the occurrence of a gate phenomenon according to the value of the temperature can be mentioned. This is because the gate phenomenon is less likely to occur at high temperatures, so it is possible to prevent the gate phenomenon from becoming difficult by cooling, and the vibration phenomenon by homogenizing the temperature distribution in the tower after completion of adsorption. It is a method of stopping. Moreover, the method of heating a part with high temperature or cooling from a part with low temperature as a reverse means is also mentioned. Contrary to the method described above, by further heating the high-temperature part where the gate is unlikely to occur, the part where the gate is prone to actively occur and the part where the gate is unlikely to occur are created separately in the tower, and the temperature distribution is fixed. This is a method for suppressing the vibration phenomenon. Which method is more effective can be determined by the material characteristics of the gate-type porous polymer complex to be used and the actual operating conditions such as the partial pressure, gas flow rate, and temperature of the gas species to be adsorbed.
吸着塔を加熱または冷却する手法は、実質的にゲート型多孔性高分子錯体の材料温度を上昇または低下させられる方法であればよく、手法は限定されない。好ましい手法としては、外部に加熱または冷却装置を設置する方法、内部に加熱または冷却装置を設置する方法、蓄熱材等を材料中に分散させる方法等が挙げられる。また別の手法として、発熱を抑制するために、温度を下げたい場所には、ゲート型多孔性高分子錯体に、ガス吸着性が低い材料を混合使用する方法、2種類の、ゲート特性が異なるゲート型多孔性高分子錯体を混合使用する方法、非ゲート型の吸着材を混合使用する方法も挙げられる。加熱をしたい場合には、発熱量の多い吸着材を混合使用する方法も挙げられる。 The method for heating or cooling the adsorption tower may be any method that can substantially increase or decrease the material temperature of the gate-type porous polymer complex, and the method is not limited. Preferred methods include a method of installing a heating or cooling device outside, a method of installing a heating or cooling device inside, a method of dispersing a heat storage material or the like in the material, and the like. As another method, in order to suppress heat generation, a method of mixing and using a low gas adsorbing material in a gate-type porous polymer complex is used in a place where the temperature is to be lowered. A method using a mixture of gate type porous polymer complexes and a method using a mixture of non-gate type adsorbents are also included. When heating is desired, a method of mixing and using an adsorbent with a large calorific value is also included.
上記のような温度制御を行った結果、ゲート型多孔性高分子錯体のゲートが急激に開いて、発熱する位置が塔内を移動する場合がある。この場合は、再度、温度測定に基づいた能動的な温度制御を行い、これを繰り返していく事で、ガス分離効率等を最大化することができる。例えば、ゲート型多孔性高分子錯体を充填した吸着塔内の全域に温度センサを取付け、温度センサからの信号とゲート現象発現温度の所定の信号とを比較して差分の信号を得る温度コントローラにより、加熱装置または冷却装置を制御して、吸着塔の特定位置の温度を制御することができる。 As a result of performing the temperature control as described above, the gate of the gate-type porous polymer complex may suddenly open, and the position of heat generation may move in the tower. In this case, the active temperature control based on the temperature measurement is performed again, and this is repeated to maximize the gas separation efficiency and the like. For example, by using a temperature controller that attaches a temperature sensor to the entire area of the adsorption tower packed with the gate type porous polymer complex and compares the signal from the temperature sensor with a predetermined signal of the gate phenomenon expression temperature to obtain a difference signal The temperature of a specific position of the adsorption tower can be controlled by controlling the heating device or the cooling device.
能動的な温度制御を行う前、あるいは行った後に、高温部が複数箇所有る場合は、それぞれの箇所に対して温度制御を行う事で最適化を行う事ができる。 When there are a plurality of high temperature portions before or after performing active temperature control, optimization can be performed by performing temperature control on each location.
パラメータ勾配を能動的に付与する方法の一つとして、パラメータが圧力の場合、例えば、オリフィス等の設置により、塔内に圧力勾配を作り出す方法が挙げられる。これは、圧力が低い部分ではゲート現象が起こりにくくなるため、昇圧することでゲート現象が起こりにくくするのを防止し、また、吸着完了後の塔内の圧力分布を均質化する事で振動現象を停止させる方法である。また、逆の手段として、圧力が低い部分を減圧するか、または圧力が高い部分を加圧する方法も挙げられる。これは前述の手法とは逆に、ゲートが起こりにくい低圧部をさらに減圧する事で、能動的にゲートが起こりやすい部分と起こりにくい部分を塔内に作り分けし、圧力の変動を抑制する事で振動現象を減少させる方法である。どちらの手法がより有効であるかは、使用するゲート型多孔性高分子錯体の材料特性および吸着するガス種の、分圧、ガス流速、温度等の実操業条件により決める事ができる。 One method of actively applying a parameter gradient is a method of creating a pressure gradient in the tower by installing an orifice or the like, for example, when the parameter is pressure. This is because the gate phenomenon is unlikely to occur at low pressure parts, so it is possible to prevent the gate phenomenon from becoming difficult by increasing the pressure, and the vibration phenomenon is achieved by homogenizing the pressure distribution in the tower after completion of adsorption. It is a method of stopping. Moreover, as a reverse means, a method of depressurizing a low pressure portion or pressurizing a high pressure portion can be mentioned. Contrary to the method described above, by further reducing the pressure of the low-pressure part where gates are unlikely to occur, the part where active gates are likely to occur and the part where they are less likely to occur are created separately in the tower to suppress pressure fluctuations. This is a method to reduce the vibration phenomenon. Which method is more effective can be determined by the material characteristics of the gate-type porous polymer complex to be used and the actual operating conditions such as the partial pressure, gas flow rate, and temperature of the gas species to be adsorbed.
吸着塔を加圧または減圧する手法は、実質的に塔内圧力を上昇または低下させられる方法であればよく、手法は限定されない。好ましい手法としては、オリフィス等を塔内に設置することで圧力分布を形成させる方法、塔の途中に加圧用または減圧用のバルブを設置して圧力制御を行う方法が挙げられる。 The method of pressurizing or depressurizing the adsorption tower may be any method that can substantially increase or decrease the pressure in the tower, and the method is not limited. Preferred methods include a method of forming a pressure distribution by installing an orifice or the like in the tower, and a method of controlling pressure by installing a pressure or pressure reducing valve in the middle of the tower.
圧力制御の方法として、上記のような機械的な圧力操作以外に、ガス圧を下げたい部分に、ゲート型多孔性高分子錯体に対してガス吸着性が高い材料を混合使用することで、実質的にガス圧を下げる方法も推奨される。この際混合して使用される材料としては、既存のゼオライト、活性炭等の、非ゲート型吸着材や、非ゲート型およびまたは別種のゲート特性を有するゲート型の多孔性高分子錯体が利用できる。 As a pressure control method, in addition to the mechanical pressure operation as described above, by mixing and using a material having a high gas adsorptivity with respect to the gate type porous polymer complex in a portion where the gas pressure is desired to be reduced, A method to lower the gas pressure is also recommended. As a material used by mixing at this time, a non-gate type adsorbent such as an existing zeolite or activated carbon, or a gate type porous polymer complex having a non-gate type and / or another type of gate characteristics can be used.
上記のような圧力制御を行った結果、急激にゲートが開いて圧力が変動する位置が塔内を移動する場合がある。この場合は、再度、圧力測定に基づいた能動的な圧力制御を行い、これを繰り返していく事で、ガス分離効率等を最大化することができる。例えば、ゲート型多孔性高分子錯体を充填した吸着塔内の全域に圧力センサを取付け、圧力センサからの信号とゲート現象発現圧力の所定の信号とを比較して差分の信号を得る圧力コントローラにより、加圧装置または減圧装置を制御して、吸着塔の特定位置の圧力を制御することができる。 As a result of the pressure control as described above, the position where the gate suddenly opens and the pressure fluctuates may move in the tower. In this case, the active pressure control based on the pressure measurement is performed again, and this is repeated to maximize the gas separation efficiency and the like. For example, by using a pressure controller that attaches a pressure sensor to the entire area of the adsorption tower packed with a gate-type porous polymer complex and compares the signal from the pressure sensor with a predetermined signal of the gate phenomenon expression pressure to obtain a difference signal The pressure at a specific position of the adsorption tower can be controlled by controlling the pressurizing device or the decompressing device.
能動的な圧力制御を行う前、あるいは行った後に、高圧部が複数箇所有る場合は、それぞれの箇所に対して圧力制御を行う事で最適化を行う事ができる。 When there are a plurality of high-pressure parts before or after active pressure control is performed, optimization can be performed by performing pressure control on each part.
本発明のガス分離装置は、既存のPSA式ガス分離装置と同様の構成を有することができる。本発明のガス分離装置の一例を模式図として図4に示す。図4に示すガス分離装置は、第1吸着塔1、第2吸着塔11、第1分離ガス貯留容器2、第2分離ガス貯留容器3、ガス圧縮装置4、弁2〜4、弁12〜14、弁7〜9および圧力計5、6から構成されている。この例では、吸着塔が2つあるが、ゲート現象を示すゲート型多孔性高分子錯体を用いる本発明では、吸着塔における吸着モードと再生モードを短時間に切り替えることができるので、吸着塔は1つであってもよく、また3つ以上であってもよい。分離対象となる混合ガスは、ガス供給手段であるガス圧縮装置4から吸着塔1、11にそれぞれ供給される。
The gas separation device of the present invention can have the same configuration as an existing PSA type gas separation device. An example of the gas separation apparatus of the present invention is shown in FIG. 4 as a schematic diagram. The gas separation apparatus shown in FIG. 4 includes a first adsorption tower 1, a
複数の吸着塔には、内部にゲート型多孔性高分子錯体が充填されている。処理される混合ガスは、ガス圧縮装置4によって圧縮されて、各吸着塔の入口に設けられた導入弁3及び13から吸着塔1、11に導入される。吸着塔1、11で分離されたガスの一方は、排出弁2、12を通って第1分離ガス貯留容器2に送られる。第1分離ガス貯留容器2の下流には、圧力調整弁7が設けられている。分離されたガスのもう一方は、排出弁4、14を通り、入口弁8を通って第2分離ガス貯留容器3に送られる。第2分離ガス貯留容器3には圧力計5が取付けられており、圧力計5は、第2分離ガス貯留容器3内の圧力に基づいた信号を出す。第2分離ガス貯留容器3の下流には、圧力調整弁9が設けられている。圧力調整弁9には圧力計6が取り付けられており、圧力計5および6からの信号に基づいて、圧力調整弁9は制御される。
The plurality of adsorption towers are filled with a gate type porous polymer complex. The mixed gas to be treated is compressed by the gas compression device 4 and introduced into the adsorption towers 1 and 11 from the
本発明は、ゲート現象により生じる塔内のパラメータ分布の不均一性を解消するか、または固定化するようなパラメータ制御を行う事で、ガス分離の特性を制御する方法および装置である。パラメータとして温度と圧力を示したが、これら以外のパラメータに関しても、同様に正または負の制御を行う事で、よりガス分離特性の向上や回収率の向上が行える。 The present invention is a method and apparatus for controlling the characteristics of gas separation by performing parameter control to eliminate or fix the nonuniformity of parameter distribution in the tower caused by the gate phenomenon. Although the temperature and pressure are shown as parameters, it is possible to further improve the gas separation characteristics and the recovery rate by performing positive or negative control in the same manner for other parameters.
実施例1(発明例)
入り側、出側および中間地点に、幅2センチのリボンヒータが巻き付けられた、内径30mm、長さ100ミリの吸着塔に、ゲート型多孔性高分子錯体前駆体preELM−11(東京化成工業株式会社より購入)10gを、グラスフィルターと焼結フィルターにより、粉が飛散しない様に塔内に装填した。本吸着塔を窒素ガスフロー(50mL/分)で120℃、3時間加熱し、preELM−11を、吸着作用を有するELM−11に変換した。
Example 1 (invention example)
A gate-type porous polymer complex precursor preELM-11 (Tokyo Chemical Industry Co., Ltd.) is attached to an adsorption tower having an inner diameter of 30 mm and a length of 100 mm, in which a ribbon heater having a width of 2 centimeters is wound around an entrance side, an exit side, and an intermediate point. (Purchased from the company) 10 g was loaded into the tower using a glass filter and a sintered filter so that the powder was not scattered. The adsorption tower was heated with nitrogen gas flow (50 mL / min) at 120 ° C. for 3 hours to convert preELM-11 to ELM-11 having an adsorption action.
室温25℃で、入り側、出側および中間地点の巻きつけたリボンヒータに通電して、吸着塔の入り側温度を50℃、出側温度を30℃に設定し、中間温度は入り側温度と出側温度の平均温度に設定した。窒素、CO2混合ガス(混合比2/1(v/v)、純度>99.99%)を出側流速2mL/分にて流通させた。CO2の破過時間は27分であった。
At
実施例2〜4(発明例)
用いたガス種、吸着塔の入側温度及び出側温度を変えて、実施例1と同じ操作を行った。
Examples 2 to 4 (Invention Examples)
The same operation as in Example 1 was performed by changing the gas type used, the inlet side temperature and the outlet side temperature of the adsorption tower.
実施例5(発明例)
吸着塔の入り側および出側の中間地点に、厚さ18ミリの焼結フィルターを設置することで、出側流速2mL/分にて、窒素、CO2混合ガスを流通させた時に、フィルター前で圧力1.4気圧、フィルター後で圧力1.0気圧になるように調整した。表1に示す条件にて、温度制御は行わずに実施例1と同じ操作を行った。
Example 5 (Invention)
By installing a sintered filter with a thickness of 18 mm at the intermediate point between the entrance side and the exit side of the adsorption tower, when the mixed gas of nitrogen and CO 2 is circulated at the exit side flow rate of 2 mL / min, before the filter The pressure was adjusted to 1.4 atm, and the pressure after the filter was adjusted to 1.0 atm. Under the conditions shown in Table 1, the same operation as in Example 1 was performed without performing temperature control.
実施例6〜9(発明例)
吸着剤としてC2F5−KGMを用いた。使用したガス種は表1に示す。吸着塔の入り側温度、出側温度を変えて、実施例1と同じ操作を行った。実施例6−9で使用した吸着剤「C2F5−KGM」は、国際公報第WO2014/069574号記載のC2F5基を側鎖として有するPCPである。
Examples 6 to 9 (invention examples)
C2F5-KGM was used as the adsorbent. The gas types used are shown in Table 1. The same operation as in Example 1 was performed by changing the inlet side temperature and the outlet side temperature of the adsorption tower. The adsorbent “C2F5-KGM” used in Example 6-9 is a PCP having a C 2 F 5 group as a side chain described in International Publication No. WO2014 / 069574.
実施例10(発明例)
吸着剤としてC2F5−KGMを用い、使用したガス種がN2/CO=1/2であった以外は、表1に示す条件にて、温度制御は行わずに実施例5と同じ操作を行った。
Example 10 (Invention)
The same operation as in Example 5 was performed without performing temperature control under the conditions shown in Table 1 except that C2F5-KGM was used as the adsorbent and the gas type used was N 2 / CO = 1/2. It was.
実施例11(発明例)
入り側、出側および中間地点に、幅2センチのリボンヒータが巻き付けられた、内径30mm、長さ100ミリの吸着塔において、室温25℃で、入り側、出側および中間地点の巻きつけたリボンヒータに通電して、吸着塔の入り側温度を50℃、出側温度を30℃に設定した。中間温度は入り側温度と出側温度の平均温度に設定した。さらに吸着塔の入り側および出側の中間地点に、厚さ18ミリの焼結フィルターを設置することで、出側流速2mL/分にて、窒素、CO2混合ガスを流通させた時に、フィルター前で圧力1.4気圧、フィルター後で圧力1.0気圧になるように調整した。吸着材としてELM−11を用い、表1に示す条件で、窒素、CO2混合ガス(混合比2/1(v/v)、純度>99.99%)を出側流速2mL/分にて流通させた。CO2の破過時間は33分であった。
Example 11 (Invention)
In an adsorption tower having an inner diameter of 30 mm and a length of 100 mm, a ribbon heater having a width of 2 centimeters was wound around the entry side, the exit side, and the intermediate point. The ribbon heater was energized, and the inlet temperature of the adsorption tower was set to 50 ° C. and the outlet temperature was set to 30 ° C. The intermediate temperature was set to the average temperature of the inlet side temperature and the outlet side temperature. Furthermore, by installing a 18 mm thick sintered filter at the intermediate point between the entrance side and the exit side of the adsorption tower, when the nitrogen and CO 2 mixed gas is circulated at the exit side flow rate of 2 mL / min, the filter The pressure was adjusted to 1.4 atm in front and 1.0 atm after filter. Using ELM-11 as the adsorbent, nitrogen and CO 2 mixed gas (mixing
比較例1−4
比較例1−4は、表2に示す混合ガスを、発明例と同様に出側流速2mL/分にて流通させ、表2に示すような条件でガス分離を行った。
Comparative Example 1-4
In Comparative Example 1-4, the mixed gas shown in Table 2 was circulated at an outlet-side flow rate of 2 mL / min as in the inventive examples, and gas separation was performed under the conditions shown in Table 2.
表1、表2に示す破過時間の結果から分かるように、実施例と比較例とを比べると、いずれもパラメータ(温度、圧力)に勾配をつけた条件で、破過時間が長くなっており、すなわちゲート現象の振動等の異常現象を抑制する事で、目的とするガス種がより強く吸着される為、ガス分離が優れている事が分かった。 As can be seen from the results of the breakthrough times shown in Tables 1 and 2, when the Example and the Comparative Example are compared, the breakthrough time becomes longer under the condition that the parameters (temperature, pressure) are both graded. In other words, it was found that the gas separation is excellent because the target gas species are more strongly adsorbed by suppressing abnormal phenomena such as vibration of the gate phenomenon.
Claims (10)
複数種のガスを含む混合ガスを前記吸着塔に供給して該吸着塔内にゲート現象を起こさせるためのガス供給手段と、
前記ゲート現象の発現と関連するパラメータを制御して、前記ゲート現象を前記吸着塔内で均質に発現せるための前記パラメータ分布を制御する手段と
を少なくとも含むことを特徴とするガス分離装置。 A gas separation device including an adsorption tower packed with a gate-type porous polymer complex exhibiting a gate phenomenon,
A gas supply means for supplying a mixed gas containing a plurality of gases to the adsorption tower to cause a gate phenomenon in the adsorption tower;
A gas separation apparatus comprising at least means for controlling a parameter distribution for controlling the parameter related to the onset of the gate phenomenon so that the gate phenomenon is uniformly expressed in the adsorption tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015216701A JP6649040B2 (en) | 2015-11-04 | 2015-11-04 | Gas separation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015216701A JP6649040B2 (en) | 2015-11-04 | 2015-11-04 | Gas separation equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017087101A true JP2017087101A (en) | 2017-05-25 |
JP6649040B2 JP6649040B2 (en) | 2020-02-19 |
Family
ID=58767043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015216701A Active JP6649040B2 (en) | 2015-11-04 | 2015-11-04 | Gas separation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6649040B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018199240A1 (en) | 2017-04-26 | 2018-11-01 | シャープ株式会社 | Terminal device, base station device, and communication method |
JP2020018995A (en) * | 2018-08-03 | 2020-02-06 | 日本製鉄株式会社 | Gas separator using self thermal compensation type flexible pcp |
WO2020105242A1 (en) * | 2018-11-19 | 2020-05-28 | 住友精化株式会社 | Gas separation device and gas separation method |
CN111825065A (en) * | 2020-07-17 | 2020-10-27 | 盖斯伊科技(苏州)有限公司 | Modular nitrogen making machine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0852317A (en) * | 1994-08-11 | 1996-02-27 | Showa Eng Kk | Stable pressure fluctuation adsorption method |
JP2004074025A (en) * | 2002-08-19 | 2004-03-11 | Nippon Steel Corp | Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same |
JP2007021486A (en) * | 2005-06-14 | 2007-02-01 | Canon Inc | Gas separation method and production method for argon gas and nitrogen gas |
JP2009006255A (en) * | 2007-06-27 | 2009-01-15 | Ihi Corp | Method of uniforming pressure of oxygen concentrator |
JP2010058034A (en) * | 2008-09-03 | 2010-03-18 | Nippon Steel Corp | Characteristic-varying type switching material and switching method using the same |
JP2012228667A (en) * | 2011-04-27 | 2012-11-22 | Japan Science & Technology Agency | Metal complex and separating material including the same |
WO2014028574A2 (en) * | 2012-08-15 | 2014-02-20 | Arkema Inc. | Adsorption systems using metal-organic frameworks |
WO2014069574A1 (en) * | 2012-11-02 | 2014-05-08 | 新日鐵住金株式会社 | Porous polymer-metal complex, gas adsorbent, and gas separation device and gas storage device using same |
WO2015012068A1 (en) * | 2013-07-26 | 2015-01-29 | 昭和電工株式会社 | Molded article for hydrocarbon adsorption |
JP2015086217A (en) * | 2013-09-26 | 2015-05-07 | 新日鐵住金株式会社 | Fluorine-containing coordination high molecule complex, gas adsorbent and gas separation apparatus and gas storage apparatus using the same |
-
2015
- 2015-11-04 JP JP2015216701A patent/JP6649040B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0852317A (en) * | 1994-08-11 | 1996-02-27 | Showa Eng Kk | Stable pressure fluctuation adsorption method |
JP2004074025A (en) * | 2002-08-19 | 2004-03-11 | Nippon Steel Corp | Gas adsorbent, and gas separation apparatus and gas storage apparatus using the same |
JP2007021486A (en) * | 2005-06-14 | 2007-02-01 | Canon Inc | Gas separation method and production method for argon gas and nitrogen gas |
JP2009006255A (en) * | 2007-06-27 | 2009-01-15 | Ihi Corp | Method of uniforming pressure of oxygen concentrator |
JP2010058034A (en) * | 2008-09-03 | 2010-03-18 | Nippon Steel Corp | Characteristic-varying type switching material and switching method using the same |
JP2012228667A (en) * | 2011-04-27 | 2012-11-22 | Japan Science & Technology Agency | Metal complex and separating material including the same |
WO2014028574A2 (en) * | 2012-08-15 | 2014-02-20 | Arkema Inc. | Adsorption systems using metal-organic frameworks |
WO2014069574A1 (en) * | 2012-11-02 | 2014-05-08 | 新日鐵住金株式会社 | Porous polymer-metal complex, gas adsorbent, and gas separation device and gas storage device using same |
WO2015012068A1 (en) * | 2013-07-26 | 2015-01-29 | 昭和電工株式会社 | Molded article for hydrocarbon adsorption |
JP2015086217A (en) * | 2013-09-26 | 2015-05-07 | 新日鐵住金株式会社 | Fluorine-containing coordination high molecule complex, gas adsorbent and gas separation apparatus and gas storage apparatus using the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018199240A1 (en) | 2017-04-26 | 2018-11-01 | シャープ株式会社 | Terminal device, base station device, and communication method |
EP4188016A1 (en) | 2017-04-26 | 2023-05-31 | SHARP Kabushiki Kaisha | Terminal apparatus, base station apparatus, and communication method |
JP2020018995A (en) * | 2018-08-03 | 2020-02-06 | 日本製鉄株式会社 | Gas separator using self thermal compensation type flexible pcp |
JP7176683B2 (en) | 2018-08-03 | 2022-11-22 | 日本製鉄株式会社 | Gas Separator Using Self-Heat Compensating Flexible PCP |
WO2020105242A1 (en) * | 2018-11-19 | 2020-05-28 | 住友精化株式会社 | Gas separation device and gas separation method |
CN111825065A (en) * | 2020-07-17 | 2020-10-27 | 盖斯伊科技(苏州)有限公司 | Modular nitrogen making machine |
CN111825065B (en) * | 2020-07-17 | 2021-05-28 | 滁州广钢气体有限公司 | Modular nitrogen making machine |
Also Published As
Publication number | Publication date |
---|---|
JP6649040B2 (en) | 2020-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017087101A (en) | Gas separator | |
KR101681543B1 (en) | Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus | |
JP5009708B2 (en) | Pressure swing adsorption method and apparatus | |
CA2903112C (en) | Adsorbent composition for argon purification | |
JP5902920B2 (en) | Nitrogen gas production method, gas separation method and nitrogen gas production apparatus | |
CA2931300C (en) | A rtsa method using adsorbent structure for co2 capture from low pressure and low concentration sources | |
TWI238079B (en) | Method and device for separating gas | |
JP2013056810A (en) | Method and apparatus for concentrating ozone gas | |
CA2743951A1 (en) | Single-bed radial adsorbers in series | |
EP3185987B1 (en) | Method of drying a hydrogen gas mixture produced by an electrochemical hydrogen compressor | |
JP5991330B2 (en) | Argon gas recovery and purification method and argon gas recovery and purification apparatus from silicon single crystal manufacturing apparatus | |
JP2019034302A (en) | Rapid cycle pressure swing adsorption step and adsorptive laminate for use in the same | |
Jee et al. | Three‐bed PVSA process for high‐purity O2 generation from ambient air | |
JP5427412B2 (en) | Ozone gas concentration method and apparatus | |
Choi et al. | Incorporation of a valve equation into the simulation of a pressure swing adsorption process | |
Akulinin et al. | Numerical study of the dynamics of air separation process by pressure swing adsorption | |
TWI398292B (en) | Gas purification apparatus and gas purification method | |
Zabielska et al. | Adsorption equilibrium of carbon dioxide on zeolite 1X at high pressures | |
JP2013013497A (en) | Oxygen concentrator | |
KR102315166B1 (en) | Control of Swing Adsorption Process Cycle Time by Monitoring Ambient CO2 | |
Izumi et al. | Oxygen selectivity on Na-A type zeolite at low temperature | |
Jee et al. | Comparison of vacuum swing adsorption process for air separation using zeolite 10X and 13X | |
H Mhdi | Capture of CO2 from power plants Using Different Adsorbent materials | |
Ng et al. | The mass transfer zone in nitrogen PSA columns | |
JP2003342008A (en) | Nitrogen generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151218 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6649040 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |