JP4782744B2 - Adsorption member, adsorption device, and adsorption method - Google Patents

Adsorption member, adsorption device, and adsorption method Download PDF

Info

Publication number
JP4782744B2
JP4782744B2 JP2007218954A JP2007218954A JP4782744B2 JP 4782744 B2 JP4782744 B2 JP 4782744B2 JP 2007218954 A JP2007218954 A JP 2007218954A JP 2007218954 A JP2007218954 A JP 2007218954A JP 4782744 B2 JP4782744 B2 JP 4782744B2
Authority
JP
Japan
Prior art keywords
protective layer
base
adsorption
adsorbing
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007218954A
Other languages
Japanese (ja)
Other versions
JP2009054723A (en
Inventor
作人 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007218954A priority Critical patent/JP4782744B2/en
Publication of JP2009054723A publication Critical patent/JP2009054723A/en
Application granted granted Critical
Publication of JP4782744B2 publication Critical patent/JP4782744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、例えば、半導体製造に用いられる半導体ウエハや、液晶製造に用いられる液晶ガラス基板などを、支持、吸着・保持または吸着搬送等することが可能な吸着部材、吸着装置および吸着方法に関するものである。   The present invention relates to an adsorbing member, an adsorbing apparatus, and an adsorbing method capable of supporting, adsorbing / holding or adsorbing, for example, a semiconductor wafer used in semiconductor manufacturing, a liquid crystal glass substrate used in liquid crystal manufacturing, and the like. It is.

例えば半導体の製造工程や検査工程等において、シリコン等を原料とする半導体ウエハなどの試料は製造装置や検査装置の吸着部材上に、複数回、吸着・保持されることが一般的である。   For example, in a semiconductor manufacturing process or an inspection process, a sample such as a semiconductor wafer made of silicon or the like is generally adsorbed and held a plurality of times on an adsorption member of a manufacturing apparatus or an inspection apparatus.

吸着部材に試料である被吸着体を吸着する方法には、製造工程の種類に応じた吸着方法が提案されている。被吸着体を吸着する工程には、例えば、被吸着体をキズの無い鏡面に研磨する工程、波長を揃えた光や電子線等により、被吸着体上に塗布されたレジストと呼ばれる感光材を部分的に感光させる工程、その感光されたレジストを取り除く工程、および被吸着体を検査する工程等がある。ここで、被吸着体を保持する吸着部材は、大気、窒素、酸素等の気体に曝され、この場合の雰囲気の圧力は、大気圧から高真空(1×10Pa〜1×10−7Pa程度)である。 As a method of adsorbing an adsorbent as a sample to the adsorbing member, an adsorbing method corresponding to the type of manufacturing process has been proposed. In the step of adsorbing the adsorbent, for example, a step of polishing the adsorbent to a mirror surface without scratches, a photosensitive material called a resist coated on the adsorbent by light or electron beam with a uniform wavelength is used. There are a step of partially exposing, a step of removing the exposed resist, a step of inspecting an adsorbed body, and the like. Here, the adsorbing member that holds the adsorbent is exposed to a gas such as air, nitrogen, oxygen, and the pressure of the atmosphere in this case is from atmospheric pressure to high vacuum (1 × 10 5 Pa to 1 × 10 −7). About Pa).

上記工程や吸着部材の周囲の気体や圧力に応じて、従来、吸着部材は耐食性の高い材質から選択し、被吸着体を保持するための作用力をバネ等の機械的な力、差圧力、静電気力から選択していた。   According to the above process and the gas and pressure around the adsorption member, conventionally, the adsorption member is selected from a highly corrosion-resistant material, and the acting force for holding the adsorbent is mechanical force such as a spring, differential pressure, Had chosen from electrostatic force.

最近では、半導体は微細化,高密度化が進んでいるため、被吸着体を保持する際、被吸着体と吸着部材との摩擦摩耗により発生するパーティクルが被吸着体に付着すること、吸着部材の表面に存在するキズ,ボイド等に入り込んだパーティクルが振動等の外力により散発的に被吸着体へ再付着すること等の問題が生じている。   Recently, since semiconductors have been miniaturized and densified, particles generated by frictional wear between the adsorbent and the adsorbing member adhere to the adsorbent when holding the adsorbent, and the adsorbing member. As a result, there are problems such as particles adhering to scratches, voids, and the like existing on the surface of the surface of the surface adhering to the adsorbent sporadically due to external forces such as vibration.

吸着部材に被吸着体を載置する際に、被吸着体裏面と載置面との間にパーティクルが挟み込まれることにより、被吸着体の局所的な盛り上がりが発生することがある。この被吸着体の局部的な盛り上がりにより、例えば露光などを行う場合、露光の焦点が合わなくなり、露光パターンがぼけてしまい、被吸着体に形成する回路パターンが短絡するなどの半導体不良が発生する。この半導体不良による歩留まり低下を軽減するために、被吸着体裏面と吸着部材の載置面との接触面積を小さくする手法が採用されている。   When the object to be adsorbed is placed on the adsorbing member, local swell of the object to be adsorbed may occur due to particles being sandwiched between the back surface of the object to be adsorbed and the placement surface. Due to the local swell of the adsorbent, for example, when exposure is performed, the focus of the exposure is lost, the exposure pattern is blurred, and a semiconductor defect such as a short circuit of the circuit pattern formed on the adsorbent occurs. . In order to reduce the yield reduction due to this semiconductor defect, a method of reducing the contact area between the back surface of the attracted member and the mounting surface of the attracting member is employed.

例えば特許文献1には、セラミックスからなる吸着部材の保持面にある複数の突起を先細り形状に加工し、この突起の頂面が点または面積0.02mm以下である吸着装置が開示されている。また、突起の形状として、円錐台形状、角錐台形状、径の異なる円柱を積み重ねたものが開示されている。 For example, Patent Document 1 discloses a suction device in which a plurality of protrusions on a holding surface of a suction member made of ceramics are processed into a tapered shape, and the top surface of the protrusion is a point or an area of 0.02 mm 2 or less. . Further, as the shape of the protrusion, a truncated cone shape, a truncated pyramid shape, and a stack of cylinders having different diameters are disclosed.

また、基部の欠点を補うために表面に膜を設ける技術も開発されている。例えば、特許文献2には、焼結したSiCに所定厚さの表面層を化学的気相成長法(CVD;chemical vapor deposition)によって成膜し、ウエハと接触する部分を除く部分をエッチングによって除去して突起を形成した吸着部材が開示されている。
特開平10−242255号公報 特開平10−92738号公報
In addition, a technique for providing a film on the surface has been developed in order to compensate for the defects of the base. For example, in Patent Document 2, a surface layer having a predetermined thickness is formed on sintered SiC by chemical vapor deposition (CVD), and portions other than the portion in contact with the wafer are removed by etching. An adsorbing member having protrusions is disclosed.
Japanese Patent Laid-Open No. 10-242255 JP-A-10-92738

特許文献1に開示された吸着部材は、セラミックスを加工して突起を形成しているため、傷、クラック、ボイド等からなる微細な凹凸が突起に残存する。この凹凸に残存しているパーティクルが振動等によって外部へ飛散したり、吸着部材に振動が加わると傷やクラックに接するセラミックスの結晶やその一部が剥離してパーティクルとなる。このようなパーティクルが被吸着体であるウエハに付着することがあり、後工程等において悪影響を及ぼすことになる。   Since the adsorbing member disclosed in Patent Document 1 is processed with ceramics to form protrusions, fine irregularities made of scratches, cracks, voids, etc. remain on the protrusions. When the particles remaining on the unevenness are scattered to the outside due to vibration or the like, or when vibration is applied to the adsorption member, the ceramic crystal in contact with the scratches and cracks or a part thereof peels off to become particles. Such particles may adhere to the wafer, which is an adsorbent, and adversely affect subsequent processes.

特許文献2に開示された吸着部材は、焼結したSiCにCVDにより成膜した後、エッチングして突起を形成するので、突起を先細り形状にすることが困難である。特に突起を多段形状に形成することは困難である。このため上記のようなパーティクルが多く発生することがある。上記と同様に、後工程等において悪影響を及ぼすことになる。   Since the adsorbing member disclosed in Patent Document 2 is formed on a sintered SiC film by CVD and then etched to form protrusions, it is difficult to taper the protrusions. In particular, it is difficult to form the protrusions in a multistage shape. For this reason, many particles as described above may be generated. Similar to the above, it will have an adverse effect in the post-process and the like.

そこで上記課題に鑑み、本発明の一実施形態に係る吸着部材は、基体の表面に数の支持用突起を形成した吸着部材であって、前記支持用突起は、円錐台状をなす基部の上面および側面を覆う保護層を備えてなり、該保護層が、基部の上面中央部の上に、基部の上面よりも幅が小さく、且つ頂部に平面を具備する突出部を有することを特徴とする。
Therefore in view of the above problems, the suction member according to an embodiment of the present invention, there is provided a suction member formed with multiple supporting projection on the surface of the substrate, the supporting projection is, of the base forming a frustoconical Ri Na a protection layer covering the upper surface and the side surface, wherein the protective layer is, on the upper central portion of the base portion, smaller in width than the upper surface of the base, it and has a protruding portion having a plane top And

本発明の吸着装置は、上記吸着部材と、該吸着部材に被吸着体を吸着させるための吸着手段とを備えてなる。
Adsorption apparatus of the present invention is formed by including the above-described suction member, and suction means for attracting the object adsorber adsorbing member.

本発明の吸着方法は、上記吸着部材を用いて、被吸着体を前記支持用突起で支持するようにしたことを特徴とする。
Adsorption method of the present invention, with reference to the suction member, characterized by being adapted to support an object to be adsorbent in said support protrusions.

本発明の第1の吸着部材によれば、前記支持用突起は、円錐台状をなす基部の上面中央部の上に突出部を有する保護層を備えてなるので、前記基部と保護層からなる突出部とが強固に密着される。このため、保護層の剥離によって発生するパーティクルを少なくすることができる。   According to the first adsorbing member of the present invention, the supporting protrusion includes the protective layer having a protruding portion on the center of the upper surface of the base portion having a truncated cone shape, and thus includes the base portion and the protective layer. The protrusion is firmly attached to the protrusion. For this reason, the particle | grains which generate | occur | produce by peeling of a protective layer can be decreased.

本発明の吸着装置および吸着方法によれば、パーティクルの発生が少ない信頼性等に優れた吸着装置および吸着方法を提供できる。   According to the adsorption device and the adsorption method of the present invention, it is possible to provide an adsorption device and an adsorption method excellent in reliability and the like with less generation of particles.

以下、本発明の最良の実施形態について模式的に示した図面を参照しつつ詳細に説明する。   Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings schematically shown.

<第1の吸着部材>
本発明に係る第1の吸着部材について説明する。図1(a)に本発明の吸着部材の斜視図(斜線部は一部を切り欠いて断面を示す)を示す。図1(b)に(a)の断面Aにおける支持用突起(以下、支持用凸部という)2の拡大断面図を示す。なお、図1(b)における下方部は図示を省略している。
<First adsorption member>
The first suction member according to the present invention will be described. FIG. 1A shows a perspective view of the adsorbing member of the present invention (the hatched portion shows a cross section with a part cut away). FIG. 1B shows an enlarged cross-sectional view of a supporting protrusion (hereinafter referred to as a supporting convex portion) 2 in the cross section A of FIG. In addition, the lower part in FIG.1 (b) is abbreviate | omitting illustration.

円盤状をなす吸着部材10は、基体1の上面に多数の支持用凸部2を形成した吸着部材である。ここで、、支持用凸部2は、円錐台状をなす基部3の上面中央部が突出部(以下、小凸部という)4となるように保護層5を形成してなるものである。このように、基部3と保護層5からなる小凸部4とは強固に密着されていることにより、保護層5が剥離することが無く、発生するパーティクルを少なくすることができる。   The adsorbing member 10 having a disk shape is an adsorbing member in which a large number of supporting convex portions 2 are formed on the upper surface of the base 1. Here, the supporting convex portion 2 is formed by forming the protective layer 5 so that the central portion of the upper surface of the base portion 3 having a truncated cone shape becomes a protruding portion (hereinafter referred to as a small convex portion) 4. Thus, since the base 3 and the small convex portion 4 made of the protective layer 5 are firmly adhered, the protective layer 5 is not peeled off and the generated particles can be reduced.

基体1は、吸着部材10の本体であり、載置した被吸着体が変形しない特性を有することが求められる。そのため、基体1は高剛性、高硬度、高強度であることが好ましい。基体1の材質としては、コージェライト質焼結体、ジルコニア質焼結体、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体、結晶化ガラス、炭化珪素質焼結体などが挙げられる。これらのうち、炭化珪素を主成分(50質量%超)とする炭化珪素質焼結体が最適である。なぜなら、炭化珪素質焼結体は、熱伝導率が高く放熱性に優れているので、被吸着体の温度変化が少ないこと、電気伝導性を備えているので静電気が発生しにくくパーティクルが静電付着しにくいこと等において優れているからである。   The substrate 1 is a main body of the adsorption member 10 and is required to have a characteristic that the adsorbed object placed thereon does not deform. Therefore, it is preferable that the base body 1 has high rigidity, high hardness, and high strength. The material of the substrate 1 is cordierite sintered body, zirconia sintered body, alumina sintered body, silicon nitride sintered body, aluminum nitride sintered body, crystallized glass, silicon carbide sintered body Etc. Of these, a silicon carbide based sintered body containing silicon carbide as a main component (greater than 50% by mass) is optimal. This is because the silicon carbide sintered body has high thermal conductivity and excellent heat dissipation, so that the temperature change of the adsorbent is small, and since it has electrical conductivity, it is difficult to generate static electricity and the particles are electrostatic. It is because it is excellent in being hard to adhere.

また、基部3は、基体1と一体的に同材質のもので形成され、基体1の上面に設けられている円錐台状の突起である。基体1の表面に保護層5が形成されている。   The base 3 is a truncated cone-shaped protrusion formed on the upper surface of the base body 1 and formed of the same material as the base body 1. A protective layer 5 is formed on the surface of the substrate 1.

支持用凸部2は、基体1の上面で被吸着体(不図示)を吸着・保持するための凸部である。被吸着体と基体1の接触面積を小さくするために、被吸着体は多数の支持用凸部2によって支持される。こように接触面積を小さくすることが好ましいのは、被吸着体を吸着した際に、被吸着体と支持用凸部2の間にパーティクルが介在して被吸着体の平面度を悪化させないためである。   The supporting convex part 2 is a convex part for adsorbing and holding an object to be adsorbed (not shown) on the upper surface of the substrate 1. In order to reduce the contact area between the object to be adsorbed and the substrate 1, the object to be adsorbed is supported by a large number of supporting convex portions 2. It is preferable to reduce the contact area in this way, when adsorbing the object to be adsorbed, particles do not intervene between the object to be adsorbed and the supporting convex part 2 to deteriorate the flatness of the object to be adsorbed. It is.

基部3の上に形成された小凸部4は保護層5からなり、基部3の上面中央部が円錐台状の小凸部4に形成されたものである。基部3の上面中央に小凸部4を形成することによって、基体1と被吸着体の接触面積を小さくすることができる。また、基部3の上にさらに小凸部4が形成されているので、基体の上面に垂直方向に支持用凸部2を高く形成することができる。このように支持用凸部2を高く形成できることにより、被吸着体を真空吸着する際の真空応答性(被吸着体を吸着部材に載置してから真空吸着されるまでの時間を短くすること)を向上させることができる。   The small convex portion 4 formed on the base portion 3 is formed of a protective layer 5, and the central portion of the upper surface of the base portion 3 is formed into the truncated cone-shaped small convex portion 4. By forming the small convex portion 4 at the center of the upper surface of the base portion 3, the contact area between the base 1 and the adsorbed body can be reduced. Further, since the small convex portion 4 is further formed on the base portion 3, the supporting convex portion 2 can be formed high in the vertical direction on the upper surface of the base. Since the supporting convex part 2 can be formed high in this way, the vacuum response when the object to be adsorbed is vacuum adsorbed (the time from when the object to be adsorbed is placed on the adsorbing member until it is vacuum adsorbed is shortened. ) Can be improved.

保護層5は基体1の表面に形成されている。保護層5の機能は、基体1に傷、微細な凹凸に入り込んだパーティクルが振動等の外力によって被吸着体に付着するのを防止すること、および保護層5の表面から発生するパーティクルを少なくすることである。したがって、保護層5はその表面が緻密で凹凸が少なく、基体1との密着性が良好であることが求められる。   The protective layer 5 is formed on the surface of the substrate 1. The function of the protective layer 5 is to prevent the particles that have been scratched into the substrate 1 and have entered fine irregularities from adhering to the adsorbent due to external forces such as vibration, and to reduce the particles generated from the surface of the protective layer 5. That is. Therefore, the protective layer 5 is required to have a dense surface, less irregularities, and good adhesion to the substrate 1.

保護層5の成膜方法としては、化学的気相成長法(CVD)、物理的気相成長法(PVD)、めっき、蒸着、プラズマイオン注入法、イオンプレーティング法などがある。このうち、化学的気相成長法がベストである。なぜなら、形成される保護層が極めて緻密でかつ表面に微細な凹凸が殆ど無いので、吸着部材から発生するパーティクルを極めて少なくすることができるからである。   Examples of the method for forming the protective layer 5 include chemical vapor deposition (CVD), physical vapor deposition (PVD), plating, vapor deposition, plasma ion implantation, and ion plating. Of these, chemical vapor deposition is the best. This is because the protective layer to be formed is very dense and there are almost no fine irregularities on the surface, so that particles generated from the adsorbing member can be extremely reduced.

保護層5は、例えばボイドレスの平滑面を成すことができる膜であり、膜の剥がれやクラックの発生することなく、成膜できることが求められる。特に、前記基体1と前記保護層5の間の熱膨張率の差が大きいと、成膜時に保護層5に剥がれやクラックが起こり、良好な成膜ができないため、基体1と保護層5の熱膨張率の差を小さくすることが重要である。   The protective layer 5 is a film that can form, for example, a smooth surface of a boyless, and is required to be able to be formed without peeling or cracking of the film. In particular, if the difference in coefficient of thermal expansion between the substrate 1 and the protective layer 5 is large, the protective layer 5 may be peeled off or cracked during film formation, so that good film formation cannot be performed. It is important to reduce the difference in coefficient of thermal expansion.

保護層5の材質としては、DLC(ダイヤモンドライクカーボン),アモルファスシリコン、炭化珪素膜が挙げられるが、DLCでは、成膜は可能だが、基体1表面の傷や穴を完全に除去することができないので、他の材質の方が好ましい。これらのうち、炭化珪素を主成分とする炭化珪素膜が好ましい。この理由は、被吸着体を吸着した際に、高熱伝導率のため放熱が容易で、高剛性のため変形が少なく、基体1と同材質であるため、基体1との熱膨張率に差がないためである。また、炭化珪素膜であれば、ボイドが殆どない無い表面が得られるので、支持用凸部2の表面にパーティクルが付着し難くなる。さらに、表面に帯電する静電気を逃がすことも可能となり、パーティクルの付着が低減することができる。   Examples of the material of the protective layer 5 include DLC (diamond-like carbon), amorphous silicon, and a silicon carbide film. DLC can form a film, but cannot completely remove scratches and holes on the surface of the substrate 1. Therefore, other materials are preferable. Of these, a silicon carbide film containing silicon carbide as a main component is preferable. The reason for this is that when adsorbing an adsorbent, heat dissipation is easy due to its high thermal conductivity, deformation is small due to its high rigidity, and because it is made of the same material as the base 1, there is a difference in the coefficient of thermal expansion from the base 1. This is because there is not. In addition, since a surface having almost no voids can be obtained with a silicon carbide film, it is difficult for particles to adhere to the surface of the supporting convex portion 2. Furthermore, static electricity charged on the surface can be released, and adhesion of particles can be reduced.

保護層を30〜200μmの厚さにすると、次の点で好適である。保護層5の厚さのばらつきが小さいことにより、保護層5の色調が均一になる。また、保護層5の比熱容量が少ないので、複数の小凸部4の頂部の平面度を低下させることがない。さらに、保護層5の熱膨張率が保護層表面全体にわたって均一になるので、保護層5に応力が発生しにくく、保護層5の剥離が特に防止される。   When the thickness of the protective layer is 30 to 200 μm, it is preferable in the following points. Since the variation in the thickness of the protective layer 5 is small, the color tone of the protective layer 5 becomes uniform. Moreover, since the specific heat capacity of the protective layer 5 is small, the flatness of the top portions of the plurality of small convex portions 4 is not lowered. Furthermore, since the coefficient of thermal expansion of the protective layer 5 is uniform over the entire surface of the protective layer, stress is hardly generated in the protective layer 5, and peeling of the protective layer 5 is particularly prevented.

吸着部材10の製造方法を具体的に説明する。研削やサンドブラスト加工、放電加工などの手段を用いて、基体1に基部3を形成する。   The manufacturing method of the adsorption member 10 will be specifically described. The base 3 is formed on the base 1 using means such as grinding, sand blasting, and electric discharge machining.

次に、保護層を30〜200μm成膜した後、研削やサンドブラスト加工、放電加工などの手段を用いて、小凸部4の形状に加工する。ここで、仮に成膜時や、基部3の加工時に、基体1にごく僅かな反りが生じて複数の小凸部4の頂部が面一にならなかった場合でも、このように頂部を研削加工することによって、複数の頂部を面一に修復することができる。   Next, after forming a protective layer to a thickness of 30 to 200 μm, the protective layer is processed into the shape of the small convex portion 4 by using means such as grinding, sandblasting, and electric discharge machining. Here, even if the substrate 1 is slightly warped during film formation or when the base portion 3 is processed, the top portions are ground in this way even if the top portions of the plurality of small convex portions 4 are not flush with each other. By doing so, a plurality of top portions can be repaired flush.

また、基体1と保護層5は同材質であることが好ましい。なぜなら、熱膨張率の差がなくなるので、吸着部材の変形量が小さくなるからである。また、保護層5を30〜200μmの厚さに成膜するには、基体1と保護層5が同材質であることが好ましい。特に、炭化珪素の基体1に炭化珪素の膜を化学的気相成長法で30〜200μmの厚さで成膜する方法が好ましい。吸着部材の変形量が小さくなるからである。   The base 1 and the protective layer 5 are preferably made of the same material. This is because there is no difference in the coefficient of thermal expansion, and the amount of deformation of the adsorption member is reduced. In order to form the protective layer 5 with a thickness of 30 to 200 μm, it is preferable that the substrate 1 and the protective layer 5 are made of the same material. In particular, a method of forming a silicon carbide film on the silicon carbide substrate 1 by a chemical vapor deposition method to a thickness of 30 to 200 μm is preferable. This is because the amount of deformation of the adsorption member is reduced.

<第2の吸着部材>
次に、本発明に係る第2の吸着部材について説明する。なお、特に説明しない場合を除いて、上述した第1の吸着部材と同様の態様とする。図2に第2の吸着部材の一部拡大断面図を示す。なお、吸着部材10の外観は、前記第1の吸着部材で説明した図1(a)とほぼ同じであるが、被吸着体を支持する支持用凸部の構造が大きく異なる。
<Second adsorption member>
Next, the 2nd adsorption member concerning the present invention is explained. In addition, it is set as the aspect similar to the 1st adsorption | suction member mentioned above except the case where it does not demonstrate in particular. FIG. 2 shows a partially enlarged sectional view of the second adsorption member. The external appearance of the adsorbing member 10 is substantially the same as that of FIG. 1A described for the first adsorbing member, but the structure of the supporting convex portion for supporting the object to be adsorbed is greatly different.

吸着部材10は、基体1の表面に多数の支持用凸部2を形成した吸着部材であって、支持用凸部2は、上面中央部に小凸部4を形成した円錐台状をなす基部3に、少なくとも小凸部4の表面を覆う保護層5を形成してなるものである。基部3および小凸部4と、保護層5からなる小凸部4とは、強固に密着されている。このため、保護層の剥離によって発生するパーティクルを少なくすることができる。また、小凸部4の頂部以外の面を必ずしも加工する必要がないので、この頂部以外から発生するパーティクルが特に減少する。   The adsorbing member 10 is an adsorbing member in which a large number of supporting convex portions 2 are formed on the surface of the base 1, and the supporting convex portion 2 is a base having a truncated cone shape in which a small convex portion 4 is formed at the center of the upper surface. 3 is formed by forming a protective layer 5 covering at least the surface of the small convex portion 4. The base 3 and the small convex portion 4 and the small convex portion 4 made of the protective layer 5 are firmly adhered. For this reason, the particle | grains which generate | occur | produce by peeling of a protective layer can be decreased. Further, since it is not always necessary to process the surface other than the top of the small convex portion 4, particles generated from other than the top are particularly reduced.

なお、基体1は、基部3の形状を除き第1の吸着部材で説明したものと同じである。また、保護層5は、小凸部の内部の構造を除き第1の吸着部材で説明したものと同じである。   The base 1 is the same as that described for the first adsorption member except for the shape of the base 3. The protective layer 5 is the same as that described in the first adsorption member except for the structure inside the small convex portion.

支持用凸部2は、上面中央部に小凸部4を形成した円錐台状をなす基部3に形成されている。また、支持用凸部2は、基部3、小凸部4、およびこれらの表面に沿って形成された保護層5から構成されている。   The supporting convex portion 2 is formed on a base portion 3 having a truncated cone shape having a small convex portion 4 formed at the center of the upper surface. The supporting convex part 2 is composed of a base part 3, a small convex part 4, and a protective layer 5 formed along these surfaces.

このように、基部3の形状を円錐台形状とすることで、小凸部2の変形を抑制できる。また、図2の構造の支持用凸部2は、基部3の上に小凸部2を形成し、さらにその上に保護層5を形成しているので、基体の上面に垂直方向に支持用凸部2をさらに高く形成することができる。支持用凸部2をさらに高く形成できることにより、被吸着体を真空吸着する際の真空応答性(被吸着体を吸着部材に載置してから真空吸着されるまでの時間を短くすること)をさらに向上させることができる。   Thus, the deformation | transformation of the small convex part 2 can be suppressed by making the shape of the base 3 into a truncated cone shape. Further, the supporting convex portion 2 having the structure shown in FIG. 2 has the small convex portion 2 formed on the base portion 3 and the protective layer 5 formed thereon, so that the supporting convex portion 2 is vertically supported on the upper surface of the substrate. The convex portion 2 can be formed higher. Since the supporting convex portion 2 can be formed higher, the vacuum responsiveness when the object to be adsorbed is vacuum-adsorbed (to shorten the time from when the object to be adsorbed is placed on the adsorbing member until it is vacuum adsorbed). Further improvement can be achieved.

小凸部4の表面に形成された部分の保護層5の厚さは、前記第1の吸着部材の保護層よりも薄く、保護層5の厚さは基体1の表面全体にわたってほぼ均一である。このため、前記第1の吸着部材と比較して、さらに次の点で優れている。   The thickness of the protective layer 5 formed on the surface of the small convex portion 4 is thinner than the protective layer of the first adsorption member, and the thickness of the protective layer 5 is substantially uniform over the entire surface of the substrate 1. . For this reason, compared with the said 1st adsorption | suction member, it is further excellent in the following points.

保護層5の厚さのばらつきがさらに小さくなる。保護層5の色調がさらに均一になる。保護層5の比熱容量がさらに少ないので、熱の影響を受ける状態下で使用したときに変形しにくい。これにより、複数の小凸部4の頂部の平面度を低下させることが殆どない。保護層5の熱膨張率が保護層表面全体にわたってさらに均一になるので、保護層5に応力が発生しにくく、保護層5の剥離が最も防止される。   The variation in the thickness of the protective layer 5 is further reduced. The color tone of the protective layer 5 becomes more uniform. Since the specific heat capacity of the protective layer 5 is even smaller, it is less likely to be deformed when used under conditions affected by heat. Thereby, the flatness of the top part of the several small convex part 4 is hardly reduced. Since the thermal expansion coefficient of the protective layer 5 becomes more uniform over the entire surface of the protective layer, stress is not easily generated in the protective layer 5, and peeling of the protective layer 5 is most prevented.

保護層5は、保護層をCVD等で形成した後、必ずしも加工する必要がないので、さらに保護層5表面の平滑性を十分に向上させることができる。この理由は次の通りである。   Since the protective layer 5 is not necessarily processed after the protective layer is formed by CVD or the like, the smoothness of the surface of the protective layer 5 can be further improved sufficiently. The reason is as follows.

CVD法により成膜した保護層は種々の結晶配向を有しているので、結晶配向によって原子密度が異なり、研削加工時の抵抗に異方性がある。例えば、ミラー指数で(111)面は原子密度が高く研削抵抗が高いので、他の結晶配向面に比べ加工されにくい。このため、例えばCVDにより成膜した炭化珪素膜をサンドブラスト加工した場合、加工面に多数の凹凸が形成され、この凹凸に微小のパーティクルが入り込み、被吸着体に再付着するおそれがある。   Since the protective layer formed by the CVD method has various crystal orientations, the atomic density differs depending on the crystal orientation, and the resistance during grinding is anisotropic. For example, since the (111) plane has a high atomic density and a high grinding resistance in terms of Miller index, it is harder to process than other crystal orientation planes. For this reason, when a silicon carbide film formed by, for example, CVD is sandblasted, a large number of irregularities are formed on the processed surface, and fine particles may enter the irregularities and reattach to the adsorbent.

図2に示した支持用凸部2を有する吸着部材10は、CVDにより保護層5を成膜した後、保護層を加工しなければ保護層5表面の平滑性を十分に向上させることができる。   The adsorbing member 10 having the supporting convex portion 2 shown in FIG. 2 can sufficiently improve the smoothness of the surface of the protective layer 5 unless the protective layer is processed after the protective layer 5 is formed by CVD. .

<第3の吸着部材>
本発明の第3の吸着部材について説明する。なお、特に説明しない場合を除いて、上述した第1の吸着部材と同様とする。図3に吸着部材10の一部拡大断面図を示す。
<Third adsorption member>
The 3rd adsorption member of the present invention is explained. Unless otherwise specified, the first adsorption member is the same as that described above. FIG. 3 shows a partially enlarged sectional view of the adsorption member 10.

吸着部材10は、基体1の表面に多数の支持用凸部2を形成した吸着部材であって、支持用凸部2は、上部を細長円柱状とする小凸部4、下部を円錐状に広がる形状とする基部3からなり、これらの表面に保護層5を形成している。   The adsorbing member 10 is an adsorbing member in which a large number of supporting convex portions 2 are formed on the surface of the base 1, and the supporting convex portion 2 has a small convex portion 4 whose upper portion is an elongated cylindrical shape, and a lower portion having a conical shape. It consists of a base 3 that has an expanding shape, and a protective layer 5 is formed on these surfaces.

基部3と保護層5は強固に密着されている。このため、保護層の剥離によって発生するパーティクルを極めて少なくすることができる。また、支持用凸部2の頂部以外の面を必ずしも加工する必要がないので、この頂部以外から発生するパーティクルが特に減少する。さらに、この頂部から支持用凸部2の間の距離を基体1の垂直方向に長くすることができるので、この間に形成される空間を広くでき、その結果、被吸着体を真空吸着するときにこの空間を短時間で所望の真空度に到達させることができる。なお、基体1の材質、保護層5の材質と厚さは、第2の吸着部材で説明したものと同じである。   The base 3 and the protective layer 5 are firmly adhered. For this reason, the particle | grains which generate | occur | produce by peeling of a protective layer can be decreased very much. Further, since it is not always necessary to process the surface other than the top of the supporting convex portion 2, particles generated from other than the top are particularly reduced. Furthermore, since the distance between the top and the supporting convex portion 2 can be increased in the vertical direction of the substrate 1, the space formed between them can be widened. As a result, when the object to be adsorbed is vacuum-adsorbed This space can be reached to a desired degree of vacuum in a short time. The material of the substrate 1 and the material and thickness of the protective layer 5 are the same as those described for the second adsorption member.

支持用凸部2は、小凸部4と基部3とが一体的に形成された凹曲面および小凸部の頂部に保護層5が形成されている。このため、支持用凸部の剛性を高めることができると共に、被吸着体と吸着部材10の接触面積を小さくすることができる。   The supporting convex portion 2 has a concave curved surface in which the small convex portion 4 and the base portion 3 are integrally formed and a protective layer 5 on the top of the small convex portion. For this reason, while being able to raise the rigidity of the convex part for support, the contact area of a to-be-adsorbed body and the adsorption | suction member 10 can be made small.

前記第2の吸着部材と同様に、小凸部4の表面に形成された部分の保護層5の厚さは、前記第1の吸着部材の保護層の頂部よりも薄く、保護層5の厚さは基体1の表面全体にわたってほぼ均一である。このため、前記第1の吸着部材と比較して、前記第2の吸着部材と同様に優れている。   Similar to the second adsorbing member, the thickness of the protective layer 5 in the portion formed on the surface of the small convex portion 4 is thinner than the top of the protective layer of the first adsorbing member, and the thickness of the protective layer 5 is smaller. The thickness is substantially uniform over the entire surface of the substrate 1. For this reason, it is superior to the first adsorption member in the same manner as the second adsorption member.

図3に示す吸着部材10は次のように作製することができる。研削やサンドブラスト加工などの手段を用いて、基体1に基部3および小凸部4を形成した後、前記基部3および前記小凸部4の表面を覆う保護層を30〜200μm成膜する。   The adsorbing member 10 shown in FIG. 3 can be manufactured as follows. After forming the base 3 and the small protrusions 4 on the substrate 1 using means such as grinding or sandblasting, a protective layer covering the surfaces of the base 3 and the small protrusions 4 is formed to a thickness of 30 to 200 μm.

また、前記第1および第2の吸着部材は、基部3が円錐台形状を成すことから、第3の吸着部材に対して、支持用凸部2の剛性、強度という点で、より有利である。   The first and second suction members are more advantageous in terms of the rigidity and strength of the supporting convex portion 2 than the third suction member because the base 3 has a truncated cone shape. .

<吸着部材のより好ましい態様等>
次に、上記第1,第2の吸着部材のさらに好ましい態様について説明する。図4に小凸部4の頂部の上面周囲を面取り加工した様子の側面図を示す。
<The more preferable aspect etc. of an adsorption member>
Next, a more preferable aspect of the first and second adsorption members will be described. FIG. 4 is a side view showing a state where the periphery of the top surface of the top of the small convex portion 4 is chamfered.

図に示すように、吸着部材を構成する支持用凸部2の頂部である上面周囲6が面取り加工されているので、被吸着体が吸着部材の支持用凸部2に接触しても、被吸着体に局所的に強い応力が加わることがない。なお、このような被吸着体の支持用凸部2への接触は、例えば被吸着体の吸着および搬送時に起こる。   As shown in the figure, since the upper surface periphery 6 that is the top of the supporting convex portion 2 constituting the adsorbing member is chamfered, even if the object to be adsorbed contacts the supporting convex portion 2 of the adsorbing member, Strong stress is not locally applied to the adsorbent. Such contact of the object to be adsorbed with the supporting convex portion 2 occurs, for example, when the object to be adsorbed is adsorbed and transported.

これにより、被吸着体が吸着部材10によって削れることによるパーティクルを少なくすることができる。この面取り加工は、例えばダイヤモンド砥石などによる研磨加工法を用いればよい。   Thereby, the particle | grains by which a to-be-adsorbed body is scraped by the adsorption | suction member 10 can be decreased. For this chamfering, for example, a polishing method using a diamond grindstone or the like may be used.

図5に上記第3の吸着部材で説明した吸着部材の基部の上部において上面周囲を面取り加工した様子を示す。この吸着部材は、上面周囲6が面取りされているので、吸着部材に接触する被吸着体に局所的強い応力が加わることがない。このため、被吸着体が吸着部材によって削れて発生するパーティクルを少なくすることができる。面取りは、公知の研磨加工法、例えばダイヤモンド砥石などにて加工すればよい。   FIG. 5 shows a state where the periphery of the upper surface is chamfered at the upper part of the base of the adsorption member described in the third adsorption member. Since the upper surface periphery 6 is chamfered in this adsorbing member, local strong stress is not applied to the adsorbent to be in contact with the adsorbing member. For this reason, it is possible to reduce particles generated by the object to be adsorbed by the adsorbing member. The chamfering may be performed by a known polishing method such as a diamond grindstone.

次に、上記本発明の第3の吸着部材の好ましい形態について説明する。基部3の頂部である上部の上面周囲6を面取り加工した吸着部材10は、吸着部材10に接触する被吸着体に局所的に応力が加わることがないので、被吸着体が吸着部材10によって削れることを極力防止することができる。   Next, the preferable form of the said 3rd adsorption | suction member of this invention is demonstrated. The adsorbing member 10 obtained by chamfering the upper surface periphery 6 of the upper portion that is the top of the base 3 does not locally apply stress to the adsorbed member that contacts the adsorbing member 10, so that the adsorbed member is scraped by the adsorbing member 10. This can be prevented as much as possible.

基体1および支持用凸部2のそれぞれを、炭化珪素を主成分で形成することが好ましい。この理由について補足する。基体1を炭化珪素を主成分とするセラミックスは室温における熱伝導率を150W/(m・K)以上にすることができるので、被吸着体に局所的に熱が加わったときに吸着部材を通して十分に放熱され、その結果、被吸着体が熱膨張して歪むことが抑制される。このため、例えばウエハの露光の際に、発熱による露光精度の悪化を抑制することができる。ここで、室温における熱伝導率とは、概ね15〜30℃、好ましくは22〜24℃の範囲で測定した熱伝導率である。炭化珪素は室温を超える環境においても、熱伝導率を高い値で保持することができ、例えば600℃以上での用途でも、熱伝導率60W/(m・K)以上を保つことができる。   Each of base 1 and supporting convex portion 2 is preferably formed of silicon carbide as a main component. This reason will be supplemented. The ceramic whose main component is silicon carbide as the substrate 1 can have a thermal conductivity of 150 W / (m · K) or more at room temperature, so that sufficient heat can be passed through the adsorbing member when heat is locally applied to the object to be adsorbed. As a result, it is suppressed that the adsorbent is thermally expanded and distorted. For this reason, for example, when the wafer is exposed, it is possible to suppress deterioration in exposure accuracy due to heat generation. Here, the thermal conductivity at room temperature is a thermal conductivity measured in the range of approximately 15 to 30 ° C, preferably 22 to 24 ° C. Silicon carbide can maintain a high thermal conductivity even in an environment exceeding room temperature. For example, it can maintain a thermal conductivity of 60 W / (m · K) or higher even in applications at 600 ° C. or higher.

機械的強度を向上させ、パーティクルをさらに低減するためには、炭化珪素を主成分とするセラミックスの平均結晶粒径は3〜10μmの範囲が好ましい。なぜなら、3μm未満であると、機械的強度、剛性が低くなるため、載置された被吸着体の平面度を精度良く保つことができなくなるおそれがある。また、平均結晶粒径が10μmよりも大きいと、結晶粒子間にボイドが多く残留するおそれがあるため、このボイド内に残留したパーティクルが被吸着体に付着するおそれがあるからである。さらに好ましくは、結晶粒径は3〜7μmの範囲とする。   In order to improve the mechanical strength and further reduce the particles, the average crystal grain size of the ceramic mainly composed of silicon carbide is preferably in the range of 3 to 10 μm. This is because if the thickness is less than 3 μm, the mechanical strength and rigidity are low, and the flatness of the placed adsorbent may not be accurately maintained. In addition, if the average crystal grain size is larger than 10 μm, a large amount of voids may remain between the crystal particles, so that the particles remaining in the voids may adhere to the adsorbent. More preferably, the crystal grain size is in the range of 3 to 7 μm.

基部3および保護層5を、炭化珪素を主成分とするセラミックスで形成すると、基体1の密度を3.18g/cm以上、ヤング率を440GPa以上、比剛性を135GPa・cm/g以上とすることができる。このような吸着部材10は、小凸部4の頂部に載置される被吸着体の平面度を精度良く保つことができる。 When the base 3 and the protective layer 5 are formed of ceramics mainly composed of silicon carbide, the density of the substrate 1 is 3.18 g / cm 3 or more, the Young's modulus is 440 GPa or more, and the specific rigidity is 135 GPa · cm 3 / g or more. can do. Such an adsorbing member 10 can maintain the flatness of the object to be adsorbed placed on the top of the small convex portion 4 with high accuracy.

基体1の線膨張係数は室温で2.6×10−6/℃以下であることが好ましい。 The linear expansion coefficient of the substrate 1 is preferably 2.6 × 10 −6 / ° C. or less at room temperature.

また、支持用凸部2の高さは0.5mm以上が望ましい。これにより、被吸着体を真空吸着する際の真空応答性が向上する。   Further, the height of the supporting convex portion 2 is desirably 0.5 mm or more. Thereby, the vacuum response at the time of vacuum-adsorbing a to-be-adsorbed body improves.

なお、吸着部材における頂面の平坦度の加工の研削代を確保するため、小凸部4の高さは0.05mm以上が好ましい。   In addition, in order to ensure the grinding allowance for the processing of the flatness of the top surface of the adsorption member, the height of the small convex portion 4 is preferably 0.05 mm or more.

<吸着装置および吸着方法>
本発明の吸着装置は、上述した優れた吸着部材10と、この吸着部材10に被吸着体を吸着させるための吸着手段とを備えてなるものである。ここで、吸着手段は、被吸着体を保持するための作用力として、バネ等の機械的な力、差圧力、静電気力等を用いることのできる手段をいうものする。
<Adsorption device and adsorption method>
The adsorbing device of the present invention comprises the above-described excellent adsorbing member 10 and adsorbing means for adsorbing an adsorbent to the adsorbing member 10. Here, the adsorption means refers to a means that can use a mechanical force such as a spring, a differential pressure, an electrostatic force, or the like as an acting force for holding the object to be adsorbed.

本発明の吸着装置として、例えば被吸着体を吸着するための吸気孔を備えてなる吸着部材10と、前記吸気孔から吸気を行わせるため真空ポンプ等の吸気手段とを備えたものとすることができ、例えば真空チャック装置に適用することも可能である。   The adsorption device of the present invention includes, for example, an adsorption member 10 having an intake hole for adsorbing an object to be adsorbed, and an intake means such as a vacuum pump for inhaling air from the intake hole. For example, the present invention can be applied to a vacuum chuck device.

また、本発明の吸着方法は、吸着部材を用いて、被吸着体を支持用凸部2で支持するようにしたことを特徴とする。   Further, the adsorption method of the present invention is characterized in that the object to be adsorbed is supported by the supporting convex portion 2 using an adsorption member.

これら吸着装置および吸着方法により、保護層5の剥がれやクラックがなく、保護層5の剥がれやクラックがないので長寿命とすることができ、パーティクルの発生を極力低減できる。   By these adsorption device and adsorption method, there is no peeling or cracking of the protective layer 5, and there is no peeling or cracking of the protective layer 5, so that a long life can be achieved and the generation of particles can be reduced as much as possible.

以下に本発明をさらに具体化した実施例について説明する。   Examples in which the present invention is further embodied will be described below.

<実施例1>
公知の方法で炭化珪素からなる成形体を作製し、この成形体を1900〜2100℃、Arガス中で焼結し、直径400mmの炭化珪素焼結体を作製した。支持用凸部2の最終形状は、図1(b)に示す形状とした。
<Example 1>
A formed body made of silicon carbide was prepared by a known method, and the formed body was sintered in 1900 to 2100 ° C. in Ar gas to prepare a silicon carbide sintered body having a diameter of 400 mm. The final shape of the supporting convex portion 2 was the shape shown in FIG.

また、化学的気相成長法による成膜の前に、支持用凸部の高さを0.6mm、ピッチを2mm、基部の径φ0.38mmとし、基部の径は目標形状よりも120μm小さいサイズにサンドブラストで加工した。   Further, before the film formation by chemical vapor deposition, the height of the supporting convex portions is 0.6 mm, the pitch is 2 mm, the base diameter is 0.38 mm, and the base diameter is 120 μm smaller than the target shape. Processed by sandblasting.

次に、1300℃で化学的気相成長法にて、60μmの炭化珪素膜を成膜した。その後、再びサンドブラストにて加工し、小凸部を高さ0.05mm、径φ0.15mmとした。   Next, a 60 μm silicon carbide film was formed at 1300 ° C. by chemical vapor deposition. Then, it processed again by sandblasting, and the small convex part was made into 0.05 mm in height and diameter 0.15 mm.

その後、例えばダイヤモンド砥石などの、公知の研磨法によって、小凸部の上面周囲を0.02mm面取り加工した後、支持用凸部の頂部をラップ加工して平面度を3μm以下とし、吸着部材からなる被吸着体を得た。   Then, after chamfering 0.02 mm around the upper surface of the small convex portion by a known polishing method such as a diamond grindstone, the top portion of the convex portion for support is lapped to obtain a flatness of 3 μm or less. The adsorbent to be obtained was obtained.

得られた被吸着体を用いて、高温槽中で被吸着体を500℃、10回繰り返し加熱する試験を行ったところ、支持用凸部において膜に剥がれやクラックが生じることは皆無であった。   Using the obtained adsorbent, a test in which the adsorbent was repeatedly heated at 500 ° C. for 10 times in a high-temperature bath was performed. As a result, there was no peeling or cracking on the film on the supporting convex portion. .

<実施例2>
実施例1と同様にして、炭化珪素焼結体を作製した。支持用凸部の最終形状は、図2に示す形状とした。
<Example 2>
In the same manner as in Example 1, a silicon carbide sintered body was produced. The final shape of the supporting convex portion was the shape shown in FIG.

化学的気相成長法による成膜の前に、支持用凸部の高さを0.6mm、ピッチを2mm、小凸部4の高さを0.05mm、基部3の径を直径0.38mm、小凸部4の直径を0.05mmと、基部の径は目標形状より120μm小さいサイズでサンドブラストにて加工をした。   Prior to film formation by chemical vapor deposition, the height of the supporting projections is 0.6 mm, the pitch is 2 mm, the height of the small projections 4 is 0.05 mm, and the diameter of the base 3 is 0.38 mm in diameter. The diameter of the small convex part 4 was 0.05 mm, and the diameter of the base part was processed by sandblasting with a size 120 μm smaller than the target shape.

次に、実施例1と同じ化学的気相成長法にて、60μmの炭化珪素膜を成膜した。成膜後、例えばダイヤモンド砥石などの、公知の研磨法によって、小凸部上面周囲を0.02mm面取り加工した後、支持用凸部の頂部をラップ加工して平面度を3μm以下とし、吸着部材からなる被吸着体を得た。   Next, a 60 μm silicon carbide film was formed by the same chemical vapor deposition method as in Example 1. After film formation, after chamfering 0.02 mm around the upper surface of the small convex portion by a known polishing method such as a diamond grindstone, the top of the convex portion for support is lapped to obtain a flatness of 3 μm or less. An adsorbent comprising:

得られた被吸着体を用いて、高温槽中で被吸着体を500℃、10回繰り返し加熱する試験を行ったところ、支持用凸部において膜に剥がれやクラックが生じることは皆無であった。   Using the obtained adsorbent, a test in which the adsorbent was repeatedly heated at 500 ° C. for 10 times in a high-temperature bath was performed. As a result, there was no peeling or cracking on the film on the supporting convex portion. .

<実施例3>
実施例1と同様にして、炭化珪素焼結体を作製した。支持用凸部の最終形状は図3の形状とした。
<Example 3>
In the same manner as in Example 1, a silicon carbide sintered body was produced. The final shape of the supporting convex portion was the shape shown in FIG.

放電加工により支持用凸部の高さを0.6mm、ピッチを2mm、小凸部の直径を0.05mmに加工した。   The height of the supporting protrusions was processed to 0.6 mm, the pitch was 2 mm, and the diameter of the small protrusions was 0.05 mm by electric discharge machining.

次に、実施例1と同じ化学的気相成長法にて、60μmの炭化珪素膜を成膜した。成膜後、例えばダイヤモンド砥石などの、公知の研磨法によって、小凸部上面周囲0.02mm面取り加工した後、支持用凸部の頂部をラップ加工して平面度を3μm以下とし、吸着部材からなる被吸着体を得た。   Next, a 60 μm silicon carbide film was formed by the same chemical vapor deposition method as in Example 1. After film formation, after chamfering 0.02 mm around the upper surface of the small convex portion by a known polishing method such as a diamond grindstone, the top portion of the supporting convex portion is lapped to obtain a flatness of 3 μm or less. The adsorbent to be obtained was obtained.

得られた被吸着体を用いて、高温槽中で被吸着体を500℃、10回繰り返し加熱する試験を行ったところ、支持用凸部において膜に剥がれやクラックが生じることは皆無であった。   Using the obtained adsorbent, a test in which the adsorbent was repeatedly heated at 500 ° C. for 10 times in a high-temperature bath was performed. As a result, there was no peeling or cracking on the film on the supporting convex portion. .

<比較例>
一方、比較例として、図6に示す吸着部材20を製作した。図6(a)は吸着部材20斜視図、(b)は(a)の一部拡大断面図をそれぞれ示す。
<Comparative example>
On the other hand, the adsorption member 20 shown in FIG. 6 was manufactured as a comparative example. 6A is a perspective view of the adsorbing member 20, and FIG. 6B is a partially enlarged sectional view of FIG.

吸着部材20は、基体21の上面に多数の支持用凸部22を形成した吸着部材であって、支持用凸部22は、円錐台部23と外円錐台部23の上面中央部に形成された、小凸部24からなるものとした。   The adsorbing member 20 is an adsorbing member in which a large number of supporting convex portions 22 are formed on the upper surface of the base body 21, and the supporting convex portions 22 are formed at the center of the upper surface of the truncated cone portion 23 and the outer truncated cone portion 23. The small convex portion 24 is used.

前記支持用凸部22は化学的気相成長法によって成膜された、炭化珪素からなる800μmの厚さを持つ保護層25を研削加工して形成した。   The supporting convex portion 22 was formed by grinding a protective layer 25 made of silicon carbide and having a thickness of 800 μm formed by chemical vapor deposition.

既知の手法による成形で成形体を得て、1900〜2100℃、Ar等の不活性雰囲気中で焼結し、φ400の焼結体を得た。   A molded body was obtained by molding according to a known technique, and sintered in an inert atmosphere such as Ar at 1900 to 2100 ° C. to obtain a sintered body having a diameter of 400.

次に、化学的気相成長法にて、800μmの炭化珪素膜を成膜した。成膜後、支持用凸部22の高さを0.6mm、ピッチを2mmで、サンドブラストにて形成した。加工後、例えばダイヤモンド砥石などの、公知の研磨法によって、前期小凸部24を0.02mm面取り加工した後、被吸着体載置面をラップして平面度を3μm以下にした。   Next, an 800 μm silicon carbide film was formed by chemical vapor deposition. After the film formation, the supporting convex portions 22 were formed by sandblasting with a height of 0.6 mm and a pitch of 2 mm. After processing, the small convex portion 24 was chamfered by 0.02 mm by a known polishing method such as a diamond grindstone, and then the adsorbent mounting surface was wrapped to make the flatness 3 μm or less.

化学的気相成長法による炭化珪素膜で形成された保護層25は、厚さが800μmと非常に厚いため、厚さや結晶配向のバラツキが大きいものであった。このため、成膜後、吸着部材20の被吸着体載置面には、著しい色むらが発生した。これは、サンドブラストによって、支持用凸部22を形成した後も消えることはなかった。また、前記保護層25は膜内の残留応力が大きく、支持用凸部22の形成した際、多数のクラックを生じ、これらの不具合が発生したため、良品を得ることはできなかった。   The protective layer 25 formed of a silicon carbide film by a chemical vapor deposition method has a very large thickness of 800 μm, and thus has a large variation in thickness and crystal orientation. For this reason, after film formation, remarkable color unevenness occurred on the adsorbed member mounting surface of the adsorbing member 20. This did not disappear even after the support protrusions 22 were formed by sandblasting. Further, the protective layer 25 had a large residual stress in the film, and when the supporting convex portion 22 was formed, a large number of cracks were generated, and these defects occurred, so that a good product could not be obtained.

以上のように、実施例1〜3が、表面が保護層で被覆され、パーティクルを低減でき、かつ保護層の剥がれを生じることのない優れた吸着部材を作製するのに有効であることが確認できた。   As described above, it is confirmed that Examples 1 to 3 are effective for producing an excellent adsorbing member whose surface is covered with a protective layer, particles can be reduced, and the protective layer does not peel off. did it.

本発明の第1の吸着部材の一実施形態を模式的に説明する図であり、(a)は本発明の吸着部材の一部を切断して示した斜視図であり、(b)は同図(a)のA部拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically one Embodiment of the 1st adsorption | suction member of this invention, (a) is the perspective view which cut and showed a part of adsorption | suction member of this invention, (b) is the same It is the A section expanded sectional view of figure (a). 本発明の第2の吸着部材の一実施形態を模式的に説明する図であり、第2の吸着部材を構成する支持用突起の拡大断面図である。It is a figure explaining one embodiment of the 2nd adsorption member of the present invention typically, and is an expanded sectional view of the projection for support which constitutes the 2nd adsorption member. 本発明の第3の吸着部材の一実施形態を模式的に説明する図であり、第3の吸着部材を構成する支持用突起の拡大断面図である。It is a figure explaining one embodiment of the 3rd adsorption member of the present invention typically, and is an expanded sectional view of the projection for support which constitutes the 3rd adsorption member. 本発明の第1、第2の吸着部材の好適例を模式的に説明する図であり、吸着部材を構成する支持用突起の一部側面図である。It is a figure which illustrates typically the suitable example of the 1st, 2nd adsorption | suction member of this invention, and is a partial side view of the support protrusion which comprises an adsorption | suction member. 本発明の第3の吸着部材の好適例を模式的に説明する図であり、吸着部材を構成する支持用突起の一部側面図である。It is a figure which illustrates typically the suitable example of the 3rd adsorption member of this invention, and is a partial side view of the support protrusion which comprises an adsorption member. 従来の吸着部材を模式的に説明する図であり、(a)は吸着部材の一部を切断して示した斜視図であり、(b)は同図(a)のA部拡大断面図である。It is a figure which illustrates the conventional adsorption | suction member typically, (a) is the perspective view which cut and showed a part of adsorption member, (b) is the A section expanded sectional view of the figure (a). is there.

符号の説明Explanation of symbols

1,21:基体
2,22:支持用突起(支持用凸部)
3,23:基部
4,24:突出部(小凸部)
5,25:保護層
6:小凸部上面周囲
7,27:小凸部上面
10,20: 吸着部材
1, 21: Base 2, 22: Supporting protrusion (supporting convex part)
3, 23: Base 4, 24: Protruding part (small convex part)
5, 25: Protective layer 6: Small convex part upper surface periphery 7, 27: Small convex part upper surface 10, 20: Adsorption member

Claims (9)

基体の表面に数の支持用突起を形成した吸着部材であって、
前記支持用突起は、円錐台状をなす基部の上面および側面を覆う保護層を備えてなり、
該保護層が、基部の上面中央部の上に、基部の上面よりも幅が小さく、且つ頂部に平面を具備する突出部を有することを特徴とする吸着部材。
A suction member formed with multiple supporting projection on the surface of the substrate,
The supporting protrusion, Ri Na comprises a protective layer covering the upper surface and the side surface of the base portion forming a frustoconical,
The adsorbing member , wherein the protective layer has a protruding portion having a width smaller than the upper surface of the base portion and having a flat surface on the top portion on the central portion of the upper surface of the base portion .
前記突出部は、円錐台状であることを特徴とする請求項1に記載の吸着部材。The suction member according to claim 1, wherein the protruding portion has a truncated cone shape. 前記保護層、前記基体および前記基部は、同材質であることを特徴とする請求項1に記載の吸着部材。The adsorption member according to claim 1, wherein the protective layer, the base, and the base are made of the same material. 前記保護層、前記基体および前記基部は、炭化珪素を主成分とすることを特徴とする請求項3に記載の吸着部材。The adsorbing member according to claim 3, wherein the protective layer, the base, and the base are mainly composed of silicon carbide. 前記保護層は、化学的気相成長法で形成した炭化珪素膜でありThe protective layer is a silicon carbide film formed by chemical vapor deposition
前記基体および前記基部は、炭化珪素質焼結体であることを特徴とする請求項4に記載の吸着部材。The adsorbing member according to claim 4, wherein the base and the base are silicon carbide sintered bodies.
被吸着体を吸着するための吸気孔を備えてなることを特徴とする請求項1に記載の吸着部材。The adsorption member according to claim 1, further comprising an intake hole for adsorbing the adsorbed body. 請求項1乃至のいずれかに記載の吸着部材と、被吸着体を該吸着部材に吸着させるための吸着手段とを備えてなる吸着装置。 A suction member according to any one of claims 1 to 5, the suction device comprising a suction means for attracting the adsorbing member of the adsorber. 請求項6に記載の吸着部材と、前記吸気孔から吸気を行わせるための吸気手段とを備えてなる吸着装置。 An adsorbing device comprising the adsorbing member according to claim 6 and an intake means for causing intake through the intake hole. 請求項1乃至のいずれかに記載の吸着部材を用いて、被吸着体を前記支持用突起で支持するようにしたことを特徴とする吸着方法。 Using suction member according to any one of claims 1 to 6, the adsorption method is characterized in that so as to support the object to be adsorbent in said support protrusions.
JP2007218954A 2007-08-24 2007-08-24 Adsorption member, adsorption device, and adsorption method Active JP4782744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218954A JP4782744B2 (en) 2007-08-24 2007-08-24 Adsorption member, adsorption device, and adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218954A JP4782744B2 (en) 2007-08-24 2007-08-24 Adsorption member, adsorption device, and adsorption method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011115151A Division JP5063797B2 (en) 2011-05-23 2011-05-23 Adsorption member, adsorption device, and adsorption method

Publications (2)

Publication Number Publication Date
JP2009054723A JP2009054723A (en) 2009-03-12
JP4782744B2 true JP4782744B2 (en) 2011-09-28

Family

ID=40505557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218954A Active JP4782744B2 (en) 2007-08-24 2007-08-24 Adsorption member, adsorption device, and adsorption method

Country Status (1)

Country Link
JP (1) JP4782744B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137912A (en) 2015-12-25 2017-12-13 니혼도꾸슈도교 가부시키가이샤 Substrate holding member

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148084B2 (en) * 2013-06-26 2017-06-14 京セラ株式会社 Adsorption member
JP6239296B2 (en) * 2013-07-19 2017-11-29 株式会社日立ハイテクノロジーズ Method for manufacturing stage of plasma processing apparatus
NL2016873A (en) * 2015-07-02 2017-01-17 Asml Netherlands Bv A Substrate Holder, a Lithographic Apparatus and Method of Manufacturing Devices.
WO2017110660A1 (en) * 2015-12-25 2017-06-29 日本特殊陶業株式会社 Substrate holding member
JP2017129848A (en) * 2016-01-18 2017-07-27 Hoya株式会社 Substrate holding device, drawing device, photomask inspection device, and manufacturing method of photomask
KR102206687B1 (en) * 2017-06-26 2021-01-22 니뽄 도쿠슈 도교 가부시키가이샤 Substrate holding member
JP7096031B2 (en) * 2017-06-26 2022-07-05 日本特殊陶業株式会社 Board holding member
WO2019120921A1 (en) * 2017-12-20 2019-06-27 Asml Holding N.V. Lithography supports with defined burltop topography
WO2020169326A1 (en) * 2019-02-19 2020-08-27 Asml Holding N.V. Laser roughening: engineering the roughness of the burl top

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903428A (en) * 1997-09-25 1999-05-11 Applied Materials, Inc. Hybrid Johnsen-Rahbek electrostatic chuck having highly resistive mesas separating the chuck from a wafer supported thereupon and method of fabricating same
JP2000311933A (en) * 1999-04-27 2000-11-07 Canon Inc Substrate-retaining device, substrate-carrying system, projection aligner, coating device, device-manufacturing method, and substrate-retaining part cleaning method
EP1510868A1 (en) * 2003-08-29 2005-03-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5011736B2 (en) * 2006-01-31 2012-08-29 住友大阪セメント株式会社 Electrostatic chuck device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170137912A (en) 2015-12-25 2017-12-13 니혼도꾸슈도교 가부시키가이샤 Substrate holding member
US10468289B2 (en) 2015-12-25 2019-11-05 Ngk Spark Plug Co., Ltd. Substrate holding member

Also Published As

Publication number Publication date
JP2009054723A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5063797B2 (en) Adsorption member, adsorption device, and adsorption method
JP4782744B2 (en) Adsorption member, adsorption device, and adsorption method
TWI728977B (en) Substrate support assembly with deposited surface features
JP4739039B2 (en) Electrostatic chuck device
KR101673039B1 (en) Electrostatic chuck
KR101680787B1 (en) Electrostatic chuck with polymer protrusions
JP2003224180A (en) Wafer support member
JPH10242255A (en) Vacuum chuck device
US20080138504A1 (en) Coatings for components of semiconductor wafer fabrication equipment
JP2010016176A (en) Test piece holder
JP4782788B2 (en) Sample holder, sample adsorption device using the same, and sample processing method using the same
JP3121886B2 (en) Vacuum suction device
JP2001308075A (en) Wafer support
US6835415B2 (en) Compliant layer chucking surface
JP4695145B2 (en) Sample holder, sample adsorption device using the same, sample processing method, and method for manufacturing sample holder
JP5014495B2 (en) Sample holder
JPH10229115A (en) Vacuum chuck for wafer
JP2019009418A (en) Substrate holding member
EP0908932B1 (en) Semiconductor wafer holder with cvd silicon carbide film coating
KR102338223B1 (en) electrostatic chuck device
JPH09260471A (en) Semiconductor wafer vacuum chuck made of sintered silicon carbide substrate coated with chemically vaporized silicon carbide
JP2007258668A (en) Test piece holder
CN109119372B (en) Substrate holding member
JP2004322218A (en) Vacuum suction device
JP2005032977A (en) Vacuum chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150