JP4781909B2 - Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof - Google Patents

Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof Download PDF

Info

Publication number
JP4781909B2
JP4781909B2 JP2006144975A JP2006144975A JP4781909B2 JP 4781909 B2 JP4781909 B2 JP 4781909B2 JP 2006144975 A JP2006144975 A JP 2006144975A JP 2006144975 A JP2006144975 A JP 2006144975A JP 4781909 B2 JP4781909 B2 JP 4781909B2
Authority
JP
Japan
Prior art keywords
recess
substrate
printed circuit
circuit board
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006144975A
Other languages
Japanese (ja)
Other versions
JP2007317827A (en
Inventor
佐藤  茂樹
保明 関
茂 道脇
孝一 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Meiko Co Ltd
Original Assignee
Victor Company of Japan Ltd
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Meiko Co Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2006144975A priority Critical patent/JP4781909B2/en
Publication of JP2007317827A publication Critical patent/JP2007317827A/en
Application granted granted Critical
Publication of JP4781909B2 publication Critical patent/JP4781909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、プリント基板及びその製造方法、電子部品収納基板及びその製造方法に関する。   The present invention relates to a printed circuit board and a manufacturing method thereof, an electronic component storage board and a manufacturing method thereof.

近年、電子機器に搭載するプリント基板の高密度化や信号処理の高速化に伴い、電子部品実装面積の削減や発生ノイズの低減を目的として、プリント基板内に電子部品を収納した電子部品収納基板が用いられている。   In recent years, with the increase in the density of printed circuit boards mounted on electronic devices and the speeding up of signal processing, electronic component storage boards in which electronic components are stored in printed circuit boards for the purpose of reducing the mounting area of electronic components and noise generated. Is used.

プリント基板内に収納される電子部品は、通常、市販されている表面実装型のチップ部品であり、チップ抵抗,チップコンデンサ,チップコイル等がある。
このようなチップ部品は、一般的に、長手を有する形状であり、長手方向の両端にそれぞれ電極部を有している。
Electronic components housed in a printed circuit board are usually surface-mounted chip components that are commercially available, and include chip resistors, chip capacitors, chip coils, and the like.
Such a chip component generally has a longitudinal shape, and has electrode portions at both ends in the longitudinal direction.

上述した電子部品収納基板の一例が特許文献1に記載されている。
特開平9−312478号公報
An example of the electronic component storage board described above is described in Patent Document 1.
JP-A-9-31478

ここで、特許文献1に記載されているような電子部品収納基板を従来例として、図13を用いて説明する。図13は、電子部品収納基板の従来例を説明するための模式的断面図であり、(a)は第1従来例を、(b)は第2従来例をそれぞれ説明するための模式的断面図である。   Here, an electronic component storage board as described in Patent Document 1 will be described as a conventional example with reference to FIG. FIGS. 13A and 13B are schematic cross-sectional views for explaining a conventional example of an electronic component storage board. FIG. 13A is a schematic cross-sectional view for explaining a first conventional example and FIG. 13B is a schematic cross-sectional view for explaining a second conventional example. FIG.

まず、第1従来例の電子部品収納基板について図13(a)を用いて説明する。
電子部品収納基板201は、プリント基板210の貫通孔211にチップ部品220が収納され、プリント基板210のランド部211aとチップ部品220の電極部221aとが半田230aによって電気的に接続され、プリント基板210のランド部211bとチップ部品220の電極部221bとが半田230bによって電気的に接続されている。
First, the electronic component storage board of the first conventional example will be described with reference to FIG.
In the electronic component storage substrate 201, the chip component 220 is stored in the through hole 211 of the printed circuit board 210, and the land portion 211a of the printed circuit board 210 and the electrode portion 221a of the chip component 220 are electrically connected by the solder 230a. The land portion 211b of 210 and the electrode portion 221b of the chip component 220 are electrically connected by solder 230b.

しかしながら、この電子部品収納基板201に、IC等の他の電子部品235を実装する際、プリント基板210の表面210a,210bよりも半田230a,230bが突出しているので、突出している高さが高いとこの突出した半田230a,230bに他の電子部品235が当たってしまう。
このため、他の電子部品235とプリント基板210のランド部211c,211dとを半田230cによって接続することができないので、他の電子部品235を貫通孔211及びチップ部品220を跨いで実装することが困難になる。
従って、この電子部品収納基板201に他の電子部品235を実装する場合、チップ部品220が収納されている範囲を除いて他の電子部品235を実装しなければならないため、電子部品の高密度実装化に対するさらなる改善が望まれる。
However, when another electronic component 235 such as an IC is mounted on the electronic component storage substrate 201, the solder 230a and 230b protrude from the surfaces 210a and 210b of the printed circuit board 210, and thus the protruding height is high. Then, another electronic component 235 hits the protruding solders 230a and 230b.
For this reason, since the other electronic component 235 and the land portions 211c and 211d of the printed circuit board 210 cannot be connected by the solder 230c, the other electronic component 235 can be mounted across the through hole 211 and the chip component 220. It becomes difficult.
Accordingly, when other electronic components 235 are mounted on the electronic component storage board 201, the other electronic components 235 must be mounted except for the range in which the chip components 220 are stored. Further improvement is desired.

また、上述の電子部品収納基板201は、チップ部品220の電極部221a,221bと半田230a,230bとがそれぞれ接続面222a,222bで接続されているが、接続面222a,222bの面積がそれぞれ小さいので、この電子部品収納基板201に熱ストレスが与えられた際に、電子部品収納基板201の厚さ方向におけるプリント基板210とチップ部品220との熱膨張係数の差によってこの接続面222a,222bに熱応力が生じる。
この熱応力によって、チップ部品220の電極部221a,221bと半田230a,230bとがこの接続面222a,222bで剥離する場合がある。
ここで、上述した電子部品収納基板201に熱ストレスが与えられた際とは、電子部品収納基板201に他の電子部品235をリフロー炉等を用いて半田付けする場合や電子部品収納基板201に信頼性試験の1つである熱衝撃試験を行った場合等である。
In the electronic component storage board 201 described above, the electrode portions 221a and 221b of the chip component 220 and the solders 230a and 230b are connected by connection surfaces 222a and 222b, respectively, but the areas of the connection surfaces 222a and 222b are small. Therefore, when thermal stress is applied to the electronic component storage board 201, the connection surfaces 222a and 222b are caused by the difference in thermal expansion coefficient between the printed circuit board 210 and the chip component 220 in the thickness direction of the electronic component storage board 201. Thermal stress is generated.
Due to this thermal stress, the electrode portions 221a and 221b of the chip component 220 and the solders 230a and 230b may be peeled off at the connection surfaces 222a and 222b.
Here, when the above-described electronic component storage board 201 is subjected to thermal stress, when the electronic component storage board 201 is soldered with another electronic component 235 using a reflow furnace or the like, For example, a thermal shock test, which is one of reliability tests, is performed.

次に、第2従来例の電子部品収納基板について図13(b)を用いて説明する。
電子部品収納基板251は、プリント基板260の貫通孔261にチップ部品220が収納され、プリント基板260のランド部261aとチップ部品220の電極部221aとが半田230aによって電気的に接続され、プリント基板260のランド部261bとチップ部品220の電極部221bとが半田230bによって電気的に接続されている。
この電子部品収納基板251は、第1従来例の電子部品収納基板201に対して、プリント基板260の厚さをチップ部品220よりも厚くしているため、プリント基板260の表面よりも半田230a,230bが突出することを防止できる。
Next, a second conventional example electronic component storage board will be described with reference to FIG.
In the electronic component storage board 251, the chip component 220 is stored in the through hole 261 of the printed circuit board 260, and the land portion 261a of the printed circuit board 260 and the electrode portion 221a of the chip component 220 are electrically connected by the solder 230a. The land portions 261b of 260 and the electrode portions 221b of the chip component 220 are electrically connected by solder 230b.
Since this electronic component storage board 251 is thicker than the chip component 220 with respect to the electronic component storage board 201 of the first conventional example, the solder 230a, Protruding 230b can be prevented.

しかしながら、電子部品収納基板251は、半田230a,230bとチップ部品220の電極部221a,221bとの接続面222c,222dの面積がそれぞれ小さいため、この電子部品収納基板251に熱ストレスが与えられた際に、半田230a,230bとチップ部品220の電極部221a,221bとがこの接続面222c,222dで剥離する場合がある。   However, since the electronic component storage board 251 has small areas of the connection surfaces 222c and 222d between the solders 230a and 230b and the electrode portions 221a and 221b of the chip component 220, thermal stress is applied to the electronic component storage board 251. At this time, the solders 230a and 230b and the electrode portions 221a and 221b of the chip component 220 may be separated at the connection surfaces 222c and 222d.

そこで、本発明が解決しようとする課題は、電子部品を収納した際に、基板の表面から半田等の導電性材料が突出することを抑制し、また、導電性材料とチップ部品の電極部との接続強度を向上させるプリント基板及びその製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to suppress the conductive material such as solder from protruding from the surface of the substrate when the electronic component is accommodated, and the conductive material and the electrode part of the chip component. An object of the present invention is to provide a printed circuit board and a method for manufacturing the same, which can improve the connection strength.

また、本発明が解決しようとする課題は、基板の表面から半田等の導電性材料が突出することを抑制し、また、導電性材料とチップ部品の電極部との接続強度を向上させる電子部品収納基板及びその製造方法を提供することにある。   In addition, the problem to be solved by the present invention is to suppress the protruding of a conductive material such as solder from the surface of the substrate, and to improve the connection strength between the conductive material and the electrode part of the chip component. An object of the present invention is to provide a storage substrate and a manufacturing method thereof.

上記の課題を解決するために、本願各発明は次の手段を有する。
1)基板(15)と、該基板の一面側に形成された第1の凹部(21)と、前記基板の他面側に、前記第1の凹部と対向して形成された第2の凹部(22)と、前記第1の凹部の内面を覆う第1の導電層からなる第1のランド部(36)と、前記第2の凹部の内面を覆う第2の導電層からなる第2のランド部(37)と、前記第1の凹部及び前記第2の凹部が形成された範囲内において、前記第1の導電層、前記基板及び前記第2の導電層を貫通する貫通孔(35)と、を有しており、前記貫通孔の内周面は、前記基板を穿つことで形成されたセンター切削面部と、前記第1及び第2の導電層を穿つことで形成されたエンド切削面部とを含むことを特徴とするプリント基板(50)である。
2)プリント基板の製造方法において、基板(15)の一面側に、第1の凹部(21)を形成する第1凹部形成工程と、前記基板の他面側に、前記第1の凹部と対向して第2の凹部(22)を形成する第2凹部形成工程と、前記第1の凹部及び前記第2の凹部の各内面を覆うように、前記基板の両面に導電層(26a,26b)をそれぞれ形成する導電層形成工程と、前記基板における前記第1の凹部及び前記第2の凹部が形成された範囲内に、前記基板を貫通する貫通孔(35)を穿設する貫通孔穿設工程と、を有することを特徴とするプリント基板(50)の製造方法である。
3)プリント基板の製造方法において、基板(15)の一面側に、複数の穴(91a〜91m)が連結されてなる環状の第1の凹部(91)を形成する第1凹部形成工程と、前記基板の他面側に、前記第1の凹部に対向して、複数の穴(92a〜92m)が連結されてなる環状の第2の凹部(92)を形成する第2凹部形成工程と、前記第1の凹部及び前記第2の凹部の各内面を覆うように、前記基板の両面に導電層(26a,26b)をそれぞれ形成する導電層形成工程と、前記基板における前記第1の凹部及び前記第2の凹部が形成された範囲内に、前記第1の凹部及び前記第2の凹部がそれぞれ開口縁となるように、前記基板を貫通する貫通孔(95)を穿設する貫通孔穿設工程と、を有することを特徴とするプリント基板(100)の製造方法である。
4)1)項記載のプリント基板と、長手を有すると共に該長手の両端にそれぞれ電極部(62a,62b)を有し、前記長手の方向が前記貫通孔の軸方向となるように前記貫通孔に収納された電子部品(60)と、前記第1のランド部と該第1のランド部側の前記電極部とを電気的に接続する第1の接続部と、前記第2のランド部と該第2のランド部側の前記電極部とを電気的に接続する第2の接続部と、を有することを特徴とする電子部品収納基板(70)である。
5)2)又は3)項記載のプリント基板の製造方法により得られたプリント基板前記貫通孔に、長手を有すると共に該長手の両端にそれぞれ電極部(62a,62b)を有する電子部品(60)を、前記長手の方向が前記貫通孔の軸方向となるように挿入する挿入工程と、前記第1の凹部に形成された導電層からなる第1のランド部と該第1のランド部側の前記電極部とを電気的に接続するように、前記第1の凹部に導電性材料(68a)を供給する第1接続工程と、前記第2の凹部に形成された導電層からなる第2のランド部と該第2のランド部側の前記電極部とを電気的に接続するように、前記第2の凹部に導電性材料(68b)を供給する第2接続工程と、を有することを特徴とする電子部品収納基板(70)の製造方法である。
In order to solve the above problems, each invention of the present application has the following means.
1) A substrate (15), a first recess (21) formed on one surface of the substrate, and a second recess formed on the other surface of the substrate so as to face the first recess. (22) and, before Symbol first land portion of a first conductive layer covering the inner surface of the first recess (36), a second of a second conductive layer covering the inner surface of the second recess And a through hole (35) that penetrates the first conductive layer, the substrate, and the second conductive layer within a range where the first concave portion and the second concave portion are formed. ) and it has to have a inner peripheral surface of the through hole, and a center cutting surface formed by drilling the substrate, end cutting formed by drilling said first and second conductive layers It is a printed circuit board (50) characterized by including a surface part .
2) In the method for manufacturing a printed circuit board, a first recess forming step of forming a first recess (21) on one surface side of the substrate (15), and facing the first recess on the other surface side of the substrate A second recess forming step of forming the second recess (22), and conductive layers (26a, 26b) on both surfaces of the substrate so as to cover the inner surfaces of the first recess and the second recess. And forming a through hole for forming a through hole (35) penetrating the substrate within a range where the first recess and the second recess are formed in the substrate. A process for producing a printed circuit board (50).
3) In the printed circuit board manufacturing method, a first recess forming step of forming an annular first recess (91) formed by connecting a plurality of holes (91a to 91m) on one surface side of the substrate (15); A second recess forming step of forming an annular second recess (92) formed by connecting a plurality of holes (92a to 92m) on the other surface side of the substrate so as to face the first recess; A conductive layer forming step of forming conductive layers (26a, 26b) on both surfaces of the substrate so as to cover respective inner surfaces of the first recess and the second recess, and the first recess and the Through-hole drilling for forming a through-hole (95) that penetrates the substrate so that the first recess and the second recess each have an opening edge within the range where the second recess is formed. A printed circuit board (100) characterized by comprising: It is a manufacturing method.
4) The printed circuit board according to 1), having a length and electrode portions (62a, 62b) at both ends of the length, and the through hole so that the longitudinal direction is the axial direction of the through hole. An electronic component (60) housed in the first land portion, a first connection portion that electrically connects the first land portion and the electrode portion on the first land portion side, and the second land portion. An electronic component storage board (70), comprising: a second connection portion that electrically connects the electrode portion on the second land portion side.
The through hole of the printed circuit board obtained by 5) 2) or 3) A method of manufacturing a printed circuit board according to claim, the electronic component having an electrode portion, respectively (62a, 62b) at both ends of the long hand and having a longitudinal (60 ) In such a manner that the longitudinal direction is the axial direction of the through hole, and a first land portion made of a conductive layer formed in the first recess and the first land portion side A first connection step of supplying a conductive material (68a) to the first recess so as to electrically connect the electrode portion of the second electrode, and a second layer comprising a conductive layer formed in the second recess . A second connection step of supplying a conductive material (68b) to the second recess so as to electrically connect the land portion of the second land portion and the electrode portion on the second land portion side. It is a manufacturing method of the electronic component storage board (70) characterized.

本発明によれば、特に、基板に凹部を形成し、この凹部の内面を覆う導電層を形成し、凹部が形成された範囲内に基板を貫通する貫通孔を形成し、この貫通孔に電子部品を挿入し、電子部品の電極と導電層とを凹部を埋めるように形成された半田によって電気的に接続することによって、電子部品収納基板の表面から半田等の導電性材料が突出することを抑制し、導電性材料とチップ部品の電極部との接続強度が向上するという効果を奏する。   According to the present invention, in particular, a concave portion is formed in the substrate, a conductive layer covering the inner surface of the concave portion is formed, a through hole penetrating the substrate is formed in a range where the concave portion is formed, and an electron is formed in the through hole. By inserting the component and electrically connecting the electrode of the electronic component and the conductive layer with solder formed so as to fill the recess, the conductive material such as solder protrudes from the surface of the electronic component storage board. This produces an effect that the connection strength between the conductive material and the electrode part of the chip component is improved.

本発明の実施の形態を、好ましい実施例により図1〜図12を用いて説明する。
本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法を、第1実施例及び第2実施例として以下に説明する。
図1〜図8は、本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA1工程〜A8工程をそれぞれ説明するための模式的断面図である。
図9〜図12は、本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第2実施例におけるB1工程〜B4工程をそれぞれ説明するための模式的断面図である。
The preferred embodiments of the present invention will be described with reference to FIGS.
A printed circuit board and a manufacturing method thereof, an electronic component storage board and a manufacturing method thereof according to the present invention will be described below as a first embodiment and a second embodiment.
FIGS. 1-8 is typical sectional drawing for demonstrating each A1 process-A8 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method.
FIGS. 9-12 is typical sectional drawing for demonstrating the B1 process-B4 process in 2nd Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method, respectively.

<第1実施例>
まず、第1実施例をA1工程〜A8工程として図1〜図8を用いて説明する。
第1実施例において、チップ部品を収納可能なプリント基板50は以下に説明するA1工程〜A5工程により作製することができ、このプリント基板50にチップ部品60が収納された電子部品収納基板70はプリント基板50にさらにA6工程〜A8工程を施すことにより作製することができる。
また、大判のコア材にA1工程〜A5工程を行った後にこのコア材を分断することによって複数のプリント基板50を得るが、図1〜図5では、説明をわかりやすくするために工程の始めから単体のプリント基板50を示すこととする。
<First embodiment>
First, the first embodiment will be described as steps A1 to A8 with reference to FIGS.
In the first embodiment, the printed circuit board 50 capable of storing chip components can be manufactured by processes A1 to A5 described below. An electronic component storage board 70 in which the chip components 60 are stored in the printed circuit board 50 is as follows. The printed circuit board 50 can be manufactured by further performing steps A6 to A8.
In addition, a plurality of printed circuit boards 50 are obtained by dividing the core material after performing steps A1 to A5 on the large-sized core material. In FIGS. A single printed circuit board 50 is shown.

(A1工程)[図1参照]
まず、コア材2の両面に銅箔3a,3bが貼り合わされた、所謂、両面銅貼り板(単に、両面板という場合もある)1を準備する。
第1実施例では、コア材2の厚さt2を0.5mm、銅箔3a,3bの厚さをそれぞれ18μmとした。コア材2は、ガラスクロスにエポキシ樹脂を含浸させたものであり、図1では、ガラスクロスを破線で模式的に表している。
(Step A1) [See FIG. 1]
First, a so-called double-sided copper-clad plate (sometimes simply referred to as a double-sided plate) 1 in which copper foils 3a and 3b are bonded to both surfaces of a core material 2 is prepared.
In the first example, the thickness t2 of the core material 2 was 0.5 mm, and the thicknesses of the copper foils 3a and 3b were each 18 μm. The core material 2 is obtained by impregnating a glass cloth with an epoxy resin. In FIG. 1, the glass cloth is schematically represented by a broken line.

次に、両面銅貼り板1の所定位置に、両面銅貼り板1を厚さ方向に貫通する貫通孔5を穿設する。この貫通孔5は、ドリル加工やレーザ加工等により穿設することができる。第1実施例では、ドリル加工により、その直径が0.2mmとなるように貫通孔5を穿設した。   Next, a through hole 5 that penetrates the double-sided copper-clad plate 1 in the thickness direction is formed at a predetermined position of the double-sided copper-clad plate 1. The through hole 5 can be drilled by drilling, laser processing, or the like. In the first embodiment, the through-hole 5 was drilled so that the diameter was 0.2 mm by drilling.

(A2工程)[図2参照]
銅箔3a,3bの各表面及び貫通孔5の内面に、例えば銅からなる第1めっき層7a,7bを形成する。この第1めっき層7a,7bは、例えば、無電解銅めっきを行った後さらに電解銅めっきを行うことで形成することができる。
内面が第1めっき層7a,7bで覆われた貫通孔5をIVH(Interstitial Via Hole)10と称す。
(Process A2) [Refer to FIG. 2]
First plating layers 7 a and 7 b made of, for example, copper are formed on each surface of the copper foils 3 a and 3 b and the inner surface of the through hole 5. The first plating layers 7a and 7b can be formed, for example, by performing electroless copper plating after performing electroless copper plating.
The through hole 5 whose inner surface is covered with the first plating layers 7 a and 7 b is referred to as an IVH (Interstitial Via Hole) 10.

次に、IVH10の内部に充填材9を充填する。
詳しくは、充填材9である孔埋め用インクを、例えばスクリーン印刷法により、IVH10の内部に充填させた後に硬化させる。その後、第1めっき層7a,7bの各表面より突出して硬化した余分なインクを、例えばバフ研磨により除去することによって、充填材9が充填された後の両面銅貼り板1の各表面を略平坦な面にする。
孔埋め用インクとしては市販の孔埋め用インクを使用することができ、孔埋め用インクを充填する他の充填方法としてロールコート法等を用いることができる。
Next, the filler 9 is filled into the IVH 10.
Specifically, the hole filling ink which is the filler 9 is filled into the IVH 10 by, for example, screen printing, and then cured. Thereafter, excess ink that protrudes and hardens from each surface of the first plating layers 7a and 7b is removed by, for example, buffing, so that each surface of the double-sided copper-clad plate 1 after filling with the filler 9 is substantially omitted. Make the surface flat.
As the hole-filling ink, a commercially available hole-filling ink can be used, and a roll coating method or the like can be used as another filling method for filling the hole-filling ink.

(A3工程)[図3参照]
フォトリソ法により、第1めっき層7a及び銅箔3aを選択的にエッチングして第1配線層11を形成し、また、第1めっき層7b及び銅箔3bを選択的にエッチングして第2配線層12を形成する。
この第1配線層11及び第2配線層12は、IVH10によって互いに電気的に接続されている。第1配線層11の厚さt11及び第2配線層12の厚さt12はそれぞれ30μmである。
(Step A3) [Refer to FIG. 3]
The first plating layer 7a and the copper foil 3a are selectively etched by the photolithography method to form the first wiring layer 11, and the first plating layer 7b and the copper foil 3b are selectively etched to form the second wiring. Layer 12 is formed.
The first wiring layer 11 and the second wiring layer 12 are electrically connected to each other by the IVH 10. The thickness t11 of the first wiring layer 11 and the thickness t12 of the second wiring layer 12 are each 30 μm.

次に、第1配線層11及び第2配線層12をそれぞれ覆うように、両面銅貼り板1の両面に第1絶縁層17及び第2絶縁層18を形成する。
第1絶縁層17の厚さt17(第1配線層11の表面上の厚さ)及び第2絶縁層18の厚さt18(第2配線層12の表面上の厚さ)はそれぞれ60μmである。
上述の工程を経た両面銅貼り板1を両面配線板15と称す。
Next, the 1st insulating layer 17 and the 2nd insulating layer 18 are formed in both surfaces of the double-sided copper-clad board 1 so that the 1st wiring layer 11 and the 2nd wiring layer 12 may be covered, respectively.
The thickness t17 (thickness on the surface of the first wiring layer 11) of the first insulating layer 17 and the thickness t18 (thickness on the surface of the second wiring layer 12) of the second insulating layer 18 are each 60 μm. .
The double-sided copper-clad board 1 that has undergone the above-described steps is referred to as a double-sided wiring board 15.

(A4工程)[図4参照]
両面配線板15の一面15a側に、円錐状の凹み部21をドリル加工により形成する。また、両面配線板15の他面15b側に、その中心が凹み部21の中心と略一致する円錐状の凹み部22をドリル加工により形成する。
第1実施例では、凹み部21,22の開口角度θ21,θ22がそれぞれ120°になるように、先端部の角度が120°であるドリルを用いた。
凹み部21,22の開口径R21,R22はそれぞれ0.7mmである。
(Step A4) [Refer to FIG. 4]
A conical recess 21 is formed on one side 15a of the double-sided wiring board 15 by drilling. Further, a conical recess 22 whose center substantially coincides with the center of the recess 21 is formed on the other surface 15b side of the double-sided wiring board 15 by drilling.
In the first embodiment, a drill having a tip portion angle of 120 ° was used so that the opening angles θ21 and θ22 of the recess portions 21 and 22 were 120 °, respectively.
The opening diameters R21 and R22 of the recesses 21 and 22 are 0.7 mm, respectively.

次に、第1絶縁層17の所定位置にレーザ加工を行って第1配線層11が露出するように有底穴23を形成し、第2絶縁層18の所定位置にレーザ加工を行って第2配線層12が露出するように有底穴24を形成する。
有底穴23,24の開口径はそれぞれ90μmである。
Next, laser processing is performed at a predetermined position of the first insulating layer 17 to form a bottomed hole 23 so that the first wiring layer 11 is exposed, and laser processing is performed at a predetermined position of the second insulating layer 18 to perform first processing. The bottomed hole 24 is formed so that the two wiring layers 12 are exposed.
Each of the bottomed holes 23 and 24 has an opening diameter of 90 μm.

その後、凹み部21,22及び有底穴23,24の各内面を覆うように、第1絶縁層17及び第2絶縁層18の各表面に、例えば銅からなる第2めっき層26a,26bを形成する。この第2めっき層26a,26bは、例えば、無電解銅めっきを行った後さらに電解銅めっきを行うことで形成することができる。
内面が第2めっき層26a,26bで覆われた有底穴23及び有底穴24をLVH(Laser Via Hole)28及びLVH29と称す。
Thereafter, second plating layers 26 a and 26 b made of, for example, copper are formed on the surfaces of the first insulating layer 17 and the second insulating layer 18 so as to cover the inner surfaces of the recessed portions 21 and 22 and the bottomed holes 23 and 24. Form. The second plating layers 26a and 26b can be formed, for example, by performing electroless copper plating after performing electroless copper plating.
The bottomed hole 23 and the bottomed hole 24 whose inner surfaces are covered with the second plating layers 26a and 26b are referred to as LVH (Laser Via Hole) 28 and LVH29.

ところで、A4工程では、凹み部21,22を形成した後に有底穴23,24を形成したが、これに限定されるものではなく、有底穴23,24を形成した後に凹み部21,22を形成するようにしてもよい。   In the A4 process, the bottomed holes 23 and 24 are formed after the recesses 21 and 22 are formed. However, the present invention is not limited to this, and the recesses 21 and 22 are formed after the bottomed holes 23 and 24 are formed. May be formed.

(A5工程)[図5参照]
フォトリソ法により、第2めっき層26aを選択的にエッチングして第3配線層31とし、また、第2めっき層26bを選択的にエッチングして第4配線層32とする。
第1実施例では、第3配線層31及び第4配線層32の厚さをそれぞれ20μmとした。
(Step A5) [Refer to FIG. 5]
By the photolithography method, the second plating layer 26a is selectively etched to form the third wiring layer 31, and the second plating layer 26b is selectively etched to form the fourth wiring layer 32.
In the first embodiment, the thicknesses of the third wiring layer 31 and the fourth wiring layer 32 are each 20 μm.

次に、凹み部21,22の各中心を通って両面配線板15を貫通する貫通孔35をドリル加工により形成する。この貫通孔35は、後述するチップ部品60を収納するための収納部35となる。
第1実施例では、貫通孔(収納部)35の孔径R35を0.36mmとした。
Next, the through-hole 35 which penetrates the double-sided wiring board 15 through each center of the dent parts 21 and 22 is formed by drilling. The through hole 35 serves as a storage portion 35 for storing a chip component 60 described later.
In the first embodiment, the hole diameter R35 of the through hole (housing portion) 35 is set to 0.36 mm.

第3配線層31において、凹み部21の内面をリング状に覆う範囲を第1ランド部36と称す。
また、第4配線層32において、凹み部22の内面をリング状に覆う範囲を第2ランド部37と称す。
In the third wiring layer 31, a range covering the inner surface of the recessed portion 21 in a ring shape is referred to as a first land portion 36.
Further, in the fourth wiring layer 32, a range covering the inner surface of the recessed portion 22 in a ring shape is referred to as a second land portion 37.

さらに、両面配線板15の両面に、所定の開口部41a,41bを有するソルダーレジスト40a,40bを形成する。
第1実施例では、感光性を有する液状またはインク状のソルダーレジストをスクリーン印刷法を用いて両面配線板15の両面に塗布して乾燥させた後、フォトリソ法を用いて、第3配線層31が露出してなる開口部41aを有するソルダーレジスト40aを形成し、また、第4配線層32が露出してなる開口部41bを有するソルダーレジスト40bを形成した。
Further, solder resists 40a and 40b having predetermined openings 41a and 41b are formed on both surfaces of the double-sided wiring board 15.
In the first embodiment, a liquid or ink-like solder resist having photosensitivity is applied to both surfaces of the double-sided wiring board 15 using a screen printing method and dried, and then the third wiring layer 31 is used using a photolithographic method. The solder resist 40a having the opening 41a formed by exposing the fourth wiring layer 32 was formed, and the solder resist 40b having the opening 41b formed by exposing the fourth wiring layer 32 was formed.

ところで、A5工程では、まず第3配線層31及び第4配線層32を形成し、次に貫通孔35を形成し、その後ソルダーレジスト40a,40bを形成したがこれに限定されるものではない。
例えば、第3配線層31及び第4配線層32、ソルダーレジスト40a,40b、貫通孔35の順に形成してもよい。
By the way, in the A5 process, first, the third wiring layer 31 and the fourth wiring layer 32 are formed, then the through hole 35 is formed, and then the solder resists 40 a and 40 b are formed. Absent.
For example, the third wiring layer 31 and the fourth wiring layer 32, a solder resist 40 a, 40 b, but it may also be formed in this order through hole 35.

上述したA1工程〜A5工程により、後述するチップ部品60を収納可能な収納部35を有するプリント基板50を得る。   The printed circuit board 50 having the storage portion 35 that can store a chip component 60 to be described later is obtained by the above-described steps A1 to A5.

次に、上述したプリント基板50の収納部35に後述するチップ部品60が収納された電子部品収納基板70について説明する。   Next, an electronic component storage board 70 in which a chip component 60 described later is stored in the storage portion 35 of the printed circuit board 50 described above will be described.

(A6工程)[図6参照]
まず、上述したプリント基板50の収納部35に収納する電子部品であるチップ部品を準備する。このようなチップ部品として、チップ抵抗,チップコンデンサ,及びチップコイル等の受動部品がある。
(Step A6) [Refer to FIG. 6]
First, a chip component which is an electronic component stored in the storage unit 35 of the printed circuit board 50 described above is prepared. Such chip components include passive components such as chip resistors, chip capacitors, and chip coils.

ここで、上述したプリント基板50の収納部35に収納するチップ部品について図6を用いて説明する。
チップ部品は、その形状から、一般的に、図6(a)に示すような角形チップ部品60と、図6(b)に示すような円筒形チップ部品65とに分類することができる。
Here, the chip components housed in the housing portion 35 of the printed circuit board 50 described above will be described with reference to FIG.
The chip parts can be generally classified into square chip parts 60 as shown in FIG. 6A and cylindrical chip parts 65 as shown in FIG.

まず、角形チップ部品60について説明する。
図6(a)に示すように、角形チップ部品60は、主の構成材料がセラミックである本体部61と、主の構成材料がSn(スズ)である電極部62a,62bとにより構成されている。
ここで、図6(a)において、本体部61の長手方向の各端面を端面61a,61b、上側の面を表(おもて)面61c、下側の面を裏面61dと称することとする。
電極部62aは、本体部61の端面61aを覆うように表面61cから裏面61dに跨って形成されており、電極部62bは、端面61bを覆うように表面61cから裏面61dに跨って形成されている。
First, the square chip component 60 will be described.
As shown in FIG. 6A, the rectangular chip component 60 includes a main body portion 61 whose main constituent material is ceramic, and electrode portions 62a and 62b whose main constituent material is Sn (tin). Yes.
Here, in FIG. 6A, the end surfaces 61a and 61b in the longitudinal direction of the main body 61 are referred to as end surfaces 61a and 61b, the upper surface is referred to as a front surface 61c, and the lower surface is referred to as a back surface 61d. .
The electrode portion 62a is formed from the front surface 61c to the back surface 61d so as to cover the end surface 61a of the main body 61, and the electrode portion 62b is formed from the front surface 61c to the back surface 61d so as to cover the end surface 61b. Yes.

次に、円筒形チップ部品65について説明する。
図6(b)に示すように、円筒形チップ部品65は、主の構成材料がセラミックである本体部66と、主の構成材料がSn(スズ)である電極部67a,67bとにより構成されている。
ここで、図6(b)において、本体部66の長手方向の各端面を端面66a,66b、周方向の面を側面66cと称することとする。
電極部67aは、本体部66の端面66aを覆うように側面66cに跨って形成されており、電極部67bは、端面66bを覆うように側面66cに跨って形成されている。
Next, the cylindrical chip component 65 will be described.
As shown in FIG. 6B, the cylindrical chip component 65 includes a main body portion 66 whose main constituent material is ceramic and electrode portions 67a and 67b whose main constituent material is Sn (tin). ing.
Here, in FIG. 6B, the end surfaces in the longitudinal direction of the main body 66 are referred to as end surfaces 66a and 66b, and the circumferential surfaces are referred to as side surfaces 66c.
The electrode portion 67a is formed over the side surface 66c so as to cover the end surface 66a of the main body 66, and the electrode portion 67b is formed over the side surface 66c so as to cover the end surface 66b.

第1実施例では、プリント基板50の収納部35に収納されるチップ部品として、図6(a)に示す角形チップ部品60を用いることとした。
第1実施例で用いる角形チップ部品60は、長さL60が0.6mm,幅W60が0.3mm,厚さt60が0.3mmである。即ち、角形チップ部品60の対角長X60は約0.42mmである。
In the first embodiment, the rectangular chip component 60 shown in FIG. 6A is used as the chip component stored in the storage portion 35 of the printed circuit board 50.
The rectangular chip component 60 used in the first embodiment has a length L60 of 0.6 mm, a width W60 of 0.3 mm, and a thickness t60 of 0.3 mm. That is, the diagonal length X60 of the square chip component 60 is about 0.42 mm.

(A7工程)[図7]
プリント基板50の収納部35に角形チップ部品60を挿入する。
収納部35の孔径R35(0.36mm)が角形チップ部品60の対角長X60(約0.42mm)よりも小さいので、挿入された角形チップ部品60は収納部35に強嵌合させる。
なお、図7中の挿入図A1は、第1ランド部36近傍を図7における上側から見たときの平面図であり、挿入図B1は、第2ランド部37近傍を図7における下側から見たときの平面図である。
(Step A7) [FIG. 7]
The square chip component 60 is inserted into the storage portion 35 of the printed circuit board 50.
Since the hole diameter R35 (0.36 mm) of the storage part 35 is smaller than the diagonal length X60 (about 0.42 mm) of the square chip part 60, the inserted square chip part 60 is strongly fitted into the storage part 35.
7 is a plan view when the vicinity of the first land portion 36 is viewed from the upper side in FIG. 7, and the insertion diagram B1 is the vicinity of the second land portion 37 from the lower side in FIG. It is a top view when seen.

第1実施例では、収納部35の孔径R35を0.36mmとし、角形チップ部品60の対角長X60を約0.42mmとしたがこれに限定されるものではなく、発明者らが鋭意実験した結果、チップ部品60の対角長X60と収納部35の孔径R35との差(X60−R35)が40〜80μmの範囲内になるように設定することにより、チップ部品60を破損させることなく収納部35に強嵌合させることができることを見出した。   In the first embodiment, the hole diameter R35 of the storage portion 35 is set to 0.36 mm, and the diagonal length X60 of the square chip component 60 is set to about 0.42 mm. However, the present invention is not limited to this, and the inventors have conducted extensive experiments. As a result, by setting the difference (X60−R35) between the diagonal length X60 of the chip component 60 and the hole diameter R35 of the storage portion 35 to be in the range of 40 to 80 μm, the chip component 60 is not damaged. It has been found that the housing portion 35 can be strongly fitted.

(A8工程)[図8]
図8(a)に示すように、プリント基板50の第1ランド部36とチップ部品60の電極部62aとを半田68aによって電気的に接続し、また、第2ランド部37と電極部62bとを半田68bによって電気的に接続することにより、第3配線層31と第4配線層32とがこのチップ部品60を介して電気的に接続されてなる電子部品収納基板70を得る。
なお、図8(a)中の挿入図A2は、第1ランド部36近傍を図8(a)における上側から見たときの平面図であり、挿入図B2は、第2ランド部37近傍を図8(a)における下側から見たときの平面図である。
(Process A8) [FIG. 8]
As shown in FIG. 8A, the first land portion 36 of the printed circuit board 50 and the electrode portion 62a of the chip component 60 are electrically connected by solder 68a, and the second land portion 37 and the electrode portion 62b are electrically connected. Are electrically connected by the solder 68b to obtain the electronic component housing substrate 70 in which the third wiring layer 31 and the fourth wiring layer 32 are electrically connected through the chip component 60.
In addition, inset A2 in FIG. 8A is a plan view when the vicinity of the first land portion 36 is viewed from above in FIG. 8A, and inset B2 shows the vicinity of the second land portion 37. It is a top view when it sees from the lower side in Fig.8 (a).

電子部品収納基板70において、半田68aはプリント基板50の凹み部21を埋めるように形成されるので、この半田68aが電子部品収納基板70の表面からの突出することを抑制して、プリント基板50の第1ランド部36とチップ部品60の電極部62aとを電気的に接続することができる。
同様に、半田68bはプリント基板50の凹み部22を埋めるように形成されるので、この半田68bが電子部品収納基板70の表面からの突出することを抑制して、プリント基板50の第2ランド部37とチップ部品60の電極部62bとを電気的に接続することができる。
In the electronic component storage board 70, the solder 68 a is formed so as to fill the recess 21 of the printed board 50. Therefore, the solder 68 a is prevented from protruding from the surface of the electronic component storage board 70, and the printed board 50. The first land portion 36 and the electrode portion 62a of the chip component 60 can be electrically connected.
Similarly, since the solder 68b is formed so as to fill the recess 22 of the printed board 50, the solder 68b is prevented from protruding from the surface of the electronic component storage board 70, and the second land of the printed board 50 is suppressed. The part 37 and the electrode part 62b of the chip component 60 can be electrically connected.

従って、図8(b)に示すように、この電子部品収納基板70に他の電子部品80,81を実装する際、他の電子部品80,81がこの半田68a,68bに当たらないので、収納部35及びチップ部品60を跨いで他の電子部品80,81を実装することが可能となる。   Therefore, as shown in FIG. 8B, when other electronic components 80 and 81 are mounted on the electronic component storage board 70, the other electronic components 80 and 81 do not hit the solder 68a and 68b. Other electronic components 80 and 81 can be mounted across the part 35 and the chip component 60.

また、電子部品収納基板70において、半田68aは、チップ部品60(図6参照)の本体部61の表面61cから裏面61dに亘って電極部62aと接続するため、電極部62aと半田68aとの接続面積を従来よりも大きくすることができると共に、アンカー効果により、電極部62aと半田68aとの接続強度を従来よりも大きくすることができる。
同様に、半田68bは、チップ部品60の本体部61の表面61cから裏面61dに亘って電極部62bと接続するため、電極部62bと半田68bとの接続面積を従来よりも大きくすることができると共に、アンカー効果により、電極部62bと半田68bとの接続強度を従来よりも大きくすることができる。
Further, in the electronic component storage substrate 70, the solder 68a is connected to the electrode portion 62a from the front surface 61c to the back surface 61d of the main body portion 61 of the chip component 60 (see FIG. 6), and therefore the electrode portion 62a and the solder 68a are connected. The connection area can be made larger than before, and the connection strength between the electrode portion 62a and the solder 68a can be made larger than before due to the anchor effect.
Similarly, since the solder 68b is connected to the electrode portion 62b from the front surface 61c to the back surface 61d of the main body portion 61 of the chip component 60, the connection area between the electrode portion 62b and the solder 68b can be made larger than before. At the same time, the connection strength between the electrode portion 62b and the solder 68b can be increased by the anchor effect.

従って、上述した電子部品収納基板70に熱ストレスを与えた場合、例えば、電子部品収納基板70に他の電子部品をリフロー炉等を用いて半田付けする場合や電子部品収納基板70に信頼性試験の1つである熱衝撃試験を行った場合に、チップ部品60の電極部62aと半田68aとの接続面における剥離を防止することができ、また、電極部62bと半田68bとの接続面における剥離を防止することができる。   Therefore, when a thermal stress is applied to the electronic component storage board 70 described above, for example, when another electronic component is soldered to the electronic component storage board 70 using a reflow furnace or the like, or the electronic component storage board 70 is subjected to a reliability test. When the thermal shock test, which is one of the above, is performed, it is possible to prevent peeling at the connection surface between the electrode portion 62a and the solder 68a of the chip component 60, and at the connection surface between the electrode portion 62b and the solder 68b. Peeling can be prevented.

また、電子部品収納基板70において、半田付けの際の半田の表面張力によって、半田68a,68bが収納部35とチップ部品60との隙間に入り込まないので、この隙間を樹脂等で充填しなくてもよい。   Also, in the electronic component storage board 70, the solder 68a and 68b do not enter the gap between the storage portion 35 and the chip component 60 due to the surface tension of the solder during soldering. Also good.

<第2実施例>
次に、第2実施例をB1工程〜B4工程として図9〜図12を用いて説明する。
第2実施例は、第1実施例に対して、収納部の特に凹み部の形状及びその形成方法が異なる。
なお、第1実施例と同じ構成部には同じ符号を付す。
<Second embodiment>
Next, a second embodiment will be described as steps B1 to B4 with reference to FIGS.
The second embodiment is different from the first embodiment in the shape of the storage portion, particularly the recess, and the method of forming the recess.
In addition, the same code | symbol is attached | subjected to the same structure part as 1st Example.

(B1工程)[図9参照]
まず、上述した第1実施例のA1工程〜A2工程と同様の工程を行った後、フォトリソ法により、第1めっき層7a及び銅箔3aを選択的にエッチングして第1配線層11を形成し、また、第1めっき層7b及び銅箔3bを選択的にエッチングして第2配線層12を形成する。
この第1配線層11及び第2配線層12は、IVH10によって互いに電気的に接続されている。第1配線層11の厚さt11及び第2配線層12の厚さt12はそれぞれ30μmである。
また、第1配線層11は、後述する有底穴91a,91b,91c,91d,91e,91f,91g,91h,91i,91j,91k,91mを形成するためのパッド部11aを有しており、第2配線層12は、パッド部11aと対応する位置に、後述する有底穴92a,92b,92c,92d,92e,92f,92g,92h,92i,92j,92k,92mを形成するためのパッド部12aを有している。
(Step B1) [Refer to FIG. 9]
First, after performing the same steps as the steps A1 to A2 of the first embodiment described above, the first wiring layer 11 is formed by selectively etching the first plating layer 7a and the copper foil 3a by photolithography. In addition, the first wiring layer 12 is formed by selectively etching the first plating layer 7b and the copper foil 3b.
The first wiring layer 11 and the second wiring layer 12 are electrically connected to each other by the IVH 10. The thickness t11 of the first wiring layer 11 and the thickness t12 of the second wiring layer 12 are each 30 μm.
The first wiring layer 11 has a pad portion 11a for forming bottomed holes 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h, 91i, 91j, 91k, 91m, which will be described later. The second wiring layer 12 is for forming bottom holes 92a, 92b, 92c, 92d, 92e, 92f, 92g, 92h, 92i, 92j, 92k, 92m, which will be described later, at positions corresponding to the pad portion 11a. It has a pad portion 12a.

次に、第1配線層11及び第2配線層12をそれぞれ覆うように、両面銅貼り板1の両面に第1絶縁層17及び第2絶縁層18を形成する。
第1絶縁層17の厚さt17(第1配線層11の表面上の厚さ)及び第2絶縁層18の厚さt18(第2配線層12の表面上の厚さ)はそれぞれ60μmである。
上述の工程を経た両面銅貼り板1を両面配線板90と称す。
Next, the 1st insulating layer 17 and the 2nd insulating layer 18 are formed in both surfaces of the double-sided copper-clad board 1 so that the 1st wiring layer 11 and the 2nd wiring layer 12 may be covered, respectively.
The thickness t17 (thickness on the surface of the first wiring layer 11) of the first insulating layer 17 and the thickness t18 (thickness on the surface of the second wiring layer 12) of the second insulating layer 18 are each 60 μm. .
The double-sided copper-clad board 1 that has undergone the above-described steps is referred to as a double-sided wiring board 90.

(B2工程)[図10]
第1絶縁層17におけるパッド部11aが形成されている範囲に、環状に所定の間隔でレーザ加工を行い、複数の有底穴91a,91b,91c,91d,91e,91f,91g,91h,91i,91j,91k,91mが環状に連結してなる凹み部91を形成する。
同様に、第2絶縁層18におけるパッド部11bが形成されている範囲に、環状に所定の間隔でレーザ加工を行い、複数の有底穴92a,92b,92c,92d,92e,92f,92g,92h,92i,92j,92k,92mが環状に連結してなる凹み部92を形成する。
なお、図10中の挿入図A3は、凹み部91近傍を図10における上側から見たときの平面図であり、挿入図B3は、凹み部92近傍を図10における下側から見たときの平面図である。
(Process B2) [FIG. 10]
Laser processing is performed annularly at a predetermined interval in a range where the pad portion 11a is formed in the first insulating layer 17, and a plurality of bottomed holes 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h, 91i are formed. , 91j, 91k, 91m are formed in a recess 91 formed in an annular shape.
Similarly, laser processing is performed annularly at a predetermined interval in the range where the pad portion 11b is formed in the second insulating layer 18, and a plurality of bottomed holes 92a, 92b, 92c, 92d, 92e, 92f, 92g, 92h, 92i, 92j, 92k, and 92m form a recess 92 formed by connecting them in an annular shape.
In addition, inset A3 in FIG. 10 is a plan view when the vicinity of the recess 91 is viewed from the upper side in FIG. 10, and the inset B3 is when the vicinity of the recess 92 is viewed from the lower side in FIG. It is a top view.

次に、第1絶縁層17の所定位置にレーザ加工を行って第1配線層11が露出するように有底穴23を形成し、第2絶縁層18の所定位置にレーザ加工を行って第2配線層12が露出するように有底穴24を形成する。   Next, laser processing is performed at a predetermined position of the first insulating layer 17 to form a bottomed hole 23 so that the first wiring layer 11 is exposed, and laser processing is performed at a predetermined position of the second insulating layer 18 to perform first processing. The bottomed hole 24 is formed so that the two wiring layers 12 are exposed.

各有底穴91a,91b,91c,91d,91e,91f,91g,91h,91i,91j,91k,91m,92a,92b,92c,92d,92e,92f,92g,92h,92i,92j,92k,92m,23,24は、開口している側の直径Raが約90μmであり、底面側の直径Rbが約80μmである。即ち、上述の凹み部91,92は、深さ方向にそれぞれテーパ形状を有している。   Each bottomed hole 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h, 91i, 91j, 91k, 91m, 92a, 92b, 92c, 92d, 92e, 92f, 92g, 92h, 92i, 92j, 92k, In 92m, 23, and 24, the diameter Ra on the open side is about 90 μm, and the diameter Rb on the bottom side is about 80 μm. That is, the above-mentioned dent parts 91 and 92 each have a taper shape in the depth direction.

また、有底穴91a,91b,91c,91d,91e,91f,91g,91h,91i,91j,91k,91mの各中心を通る凹み部91の直径R91は0.36mmであり、有底穴92a,92b,92c,92d,92e,92f,92g,92h,92i,92j,92k,92mの各中心を通る凹み部92の直径R92は0.36mmである。   Moreover, the diameter R91 of the recessed part 91 which passes through each center of bottomed hole 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h, 91i, 91j, 91k, 91m is 0.36 mm, and bottomed hole 92a , 92b, 92c, 92d, 92e, 92f, 92g, 92h, 92i, 92j, 92k, and 92m, the diameter R92 of the recess 92 that passes through each center is 0.36 mm.

その後、凹み部91,92及び有底穴23,24の各内面を覆うように、第1絶縁層17及び第2絶縁層18の各表面に、例えば銅からなる第2めっき層26a,26bを形成する。この第2めっき層26a,26bは、例えば、無電解銅めっきを行った後さらに電解銅めっきを行うことで形成することができる。
内面が第2めっき層26a,26bで覆われた有底穴23及び有底穴24をLVH(Laser Via Hole)28及びLVH29と称す。
Thereafter, second plating layers 26a and 26b made of, for example, copper are formed on the surfaces of the first insulating layer 17 and the second insulating layer 18 so as to cover the inner surfaces of the recessed portions 91 and 92 and the bottomed holes 23 and 24, respectively. Form. The second plating layers 26a and 26b can be formed, for example, by performing electroless copper plating after performing electroless copper plating.
The bottomed hole 23 and the bottomed hole 24 whose inner surfaces are covered with the second plating layers 26a and 26b are referred to as LVH (Laser Via Hole) 28 and LVH29.

ところで、B2工程では、凹み部91,92を形成した後に有底穴23,24を形成したが、これに限定されるものではなく、有底穴23,24を形成した後に凹み部91,92を形成するようにしてもよい。   By the way, in the B2 process, the bottomed holes 23 and 24 are formed after the recessed portions 91 and 92 are formed. However, the present invention is not limited to this, and the recessed portions 91 and 92 are formed after the bottomed holes 23 and 24 are formed. May be formed.

(B3工程)[図11]
フォトリソ法により、第2めっき層26aを選択的にエッチングして第3配線層31とし、また、第2めっき層26bを選択的にエッチングして第4配線層32とする。
第2実施例では、第3配線層31及び第4配線層32の厚さをそれぞれ20μmとした。
なお、図11中の挿入図A4は、第1ランド部96近傍を図11における上側から見たときの平面図であり、挿入図B4は、第2ランド部97近傍を図11における下側から見たときの平面図である。
(Step B3) [FIG. 11]
By the photolithography method, the second plating layer 26a is selectively etched to form the third wiring layer 31, and the second plating layer 26b is selectively etched to form the fourth wiring layer 32.
In the second embodiment, the thickness of each of the third wiring layer 31 and the fourth wiring layer 32 is 20 μm.
In addition, inset A4 in FIG. 11 is a plan view when the vicinity of the first land portion 96 is viewed from the upper side in FIG. 11, and inset B4 is the vicinity of the second land portion 97 from the lower side in FIG. It is a top view when seen.

次に、凹み部91及び凹み部92の各中心を通って有底穴91a,91b,91c,91d,91e,91f,91g,91h,91i,91j,91k,91m及び有底穴92a,92b,92c,92d,92e,92f,92g,92h,92i,92j,92k,92mをそれぞれ分断するように、両面配線板90を貫通する貫通孔95をドリル加工により形成する。この貫通孔95は、チップ部品60を収納するための収納部95となる。
貫通孔(収納部)95の孔径R95は0.36mmである。
Next, bottomed holes 91a, 91b, 91c, 91d, 91e, 91f, 91g, 91h, 91i, 91j, 91k, 91m and bottomed holes 92a, 92b, through the centers of the recessed portion 91 and the recessed portion 92, A through-hole 95 that penetrates the double-sided wiring board 90 is formed by drilling so as to divide 92c, 92d, 92e, 92f, 92g, 92h, 92i, 92j, 92k, and 92m. The through hole 95 serves as a storage portion 95 for storing the chip component 60.
The hole diameter R95 of the through hole (storage part) 95 is 0.36 mm.

第3配線層31において、凹み部91の内面をリング状に覆う範囲を第1ランド部96と称す。
また、第4配線層32において、凹み部92の内面をリング状に覆う範囲を第2ランド部97と称す。
In the third wiring layer 31, a range covering the inner surface of the recessed portion 91 in a ring shape is referred to as a first land portion 96.
Further, in the fourth wiring layer 32, a range covering the inner surface of the recessed portion 92 in a ring shape is referred to as a second land portion 97.

その後、両面配線板90の両面に、所定の開口部41a,41bを有するソルダーレジスト40a,40bを形成する。
第2実施例では、感光性を有する液状またはインク状のソルダーレジストをスクリーン印刷法を用いて両面配線板90の両面に塗布して乾燥させた後、フォトリソ法を用いて、第3配線層31が露出してなる開口部41aを有するソルダーレジスト40aを形成し、また、第4配線層32が露出してなる開口部41bを有するソルダーレジスト40bを形成した。
Thereafter, solder resists 40a and 40b having predetermined openings 41a and 41b are formed on both surfaces of the double-sided wiring board 90, respectively.
In the second embodiment, a liquid or ink-like solder resist having photosensitivity is applied to both surfaces of the double-sided wiring board 90 using a screen printing method and dried, and then the third wiring layer 31 is used using a photolithographic method. The solder resist 40a having the opening 41a formed by exposing the fourth wiring layer 32 was formed, and the solder resist 40b having the opening 41b formed by exposing the fourth wiring layer 32 was formed.

ところで、B3工程では、まず第3配線層31及び第4配線層32を形成し、次に貫通孔95を形成し、その後ソルダーレジスト40a,40bを形成したがこれに限定されるものではない。
例えば、第3配線層31及び第4配線層32、ソルダーレジスト40a,40b、貫通孔95の順に形成してもよい。
By the way, in the B3 process, first, the third wiring layer 31 and the fourth wiring layer 32 are formed, then the through hole 95 is formed, and then the solder resists 40 a and 40 b are formed. However, the present invention is not limited to this. Absent.
For example, the third wiring layer 31 and the fourth wiring layer 32, a solder resist 40 a, 40 b, but it may also be formed in this order through hole 95.

上述したB1工程〜B3工程により、チップ部品60を収納可能な収納部95を有するプリント基板100を得る。   The printed circuit board 100 having the storage portion 95 that can store the chip component 60 is obtained by the above-described steps B1 to B3.

(B4工程)[図12]
上述したプリント基板100に、第1実施例のA6工程〜A8工程と同様の工程を行うことにより、図12(a)に示すように、チップ部品60が収納された電子部品収納基板120を得る。
図12(a)中の挿入図A5は、第1ランド部96近傍を図12(a)における上側から見たときの平面図であり、挿入図B5は、第2ランド部97近傍を図12(a)における下側から見たときの平面図である。
(Process B4) [FIG. 12]
By performing the same steps as the steps A6 to A8 of the first embodiment on the printed circuit board 100 described above, as shown in FIG. 12A, an electronic component storage substrate 120 in which the chip component 60 is stored is obtained. .
An inset A5 in FIG. 12A is a plan view when the vicinity of the first land portion 96 is viewed from the upper side in FIG. 12A, and the inset B5 in the vicinity of the second land portion 97 is FIG. It is a top view when it sees from the lower side in (a).

電子部品収納基板120において、半田68aはプリント基板100の凹み部91を埋めるように形成されるので、この半田68aが電子部品収納基板120の表面からの突出することを抑制して、プリント基板100の第1ランド部96とチップ部品60の電極部62aとを電気的に接続することができる。
同様に、半田68bはプリント基板100の凹み部92を埋めるように形成されるので、この半田68bが電子部品収納基板120の表面からの突出することを抑制して、プリント基板100の第2ランド部97とチップ部品60の電極部62bとを電気的に接続することができる。
In the electronic component storage board 120, the solder 68 a is formed so as to fill the recessed portion 91 of the printed circuit board 100, so that the solder 68 a is prevented from protruding from the surface of the electronic component storage board 120, and the printed circuit board 100. The first land portion 96 and the electrode portion 62a of the chip component 60 can be electrically connected.
Similarly, since the solder 68b is formed so as to fill the recessed portion 92 of the printed circuit board 100, the solder 68b is prevented from protruding from the surface of the electronic component housing board 120, and the second land of the printed circuit board 100 is suppressed. The part 97 and the electrode part 62b of the chip component 60 can be electrically connected.

従って、図12(b)に示すように、この電子部品収納基板120に他の電子部品80,81を実装する際、他の電子部品80,81がこの半田68a,68bに当たらないので、収納部95及びチップ部品60を跨いで他の電子部品80,81を実装することが可能となる。   Accordingly, as shown in FIG. 12B, when other electronic components 80, 81 are mounted on the electronic component storage board 120, the other electronic components 80, 81 do not hit the solder 68a, 68b. Other electronic components 80 and 81 can be mounted across the part 95 and the chip component 60.

また、電子部品収納基板120において、半田68aは、チップ部品60(図6参照)の本体部61の表面61cから裏面61dに亘って電極部62aと接続するため、電極部62aと半田68aとの接続面積を従来よりも大きくすることができると共に、アンカー効果により、電極部62aと半田68aとの接続強度を従来よりも大きくすることができる。
同様に、半田68bは、チップ部品60の本体部61の表面61cから裏面61dに亘って電極部62bと接続するため、電極部62bと半田68bとの接続面積を従来よりも大きくすることができると共に、アンカー効果により、電極部62bと半田68bとの接続強度を従来よりも大きくすることができる。
Further, in the electronic component storage substrate 120, the solder 68a is connected to the electrode portion 62a from the front surface 61c to the back surface 61d of the main body portion 61 of the chip component 60 (see FIG. 6), and therefore the electrode portion 62a and the solder 68a are connected. The connection area can be made larger than before, and the connection strength between the electrode portion 62a and the solder 68a can be made larger than before due to the anchor effect.
Similarly, since the solder 68b is connected to the electrode portion 62b from the front surface 61c to the back surface 61d of the main body portion 61 of the chip component 60, the connection area between the electrode portion 62b and the solder 68b can be made larger than before. At the same time, the connection strength between the electrode portion 62b and the solder 68b can be increased by the anchor effect.

従って、上述した電子部品収納基板120に熱ストレスを与えた場合、例えば、電子部品収納基板120に他の電子部品をリフロー炉等を用いて半田付けする場合や電子部品収納基板120に信頼性試験の1つである熱衝撃試験を行った場合に、チップ部品60の電極部62aと半田68aとの接続面における剥離を防止することができ、また、電極部62bと半田68bとの接続面における剥離を防止することができる。   Accordingly, when thermal stress is applied to the electronic component storage board 120 described above, for example, when another electronic component is soldered to the electronic component storage board 120 using a reflow furnace or the like, or a reliability test is performed on the electronic component storage board 120. When the thermal shock test, which is one of the above, is performed, it is possible to prevent peeling at the connection surface between the electrode portion 62a and the solder 68a of the chip component 60, and at the connection surface between the electrode portion 62b and the solder 68b. Peeling can be prevented.

また、電子部品収納基板120は、第1実施例の電子部品収納基板70に対して、プリント基板100の第1ランド部96と半田68aとの接続面積をより大きくすることができるので、電子部品収納基板70よりも第1ランド部96と半田68aとの接続強度をさらに大きくすることができる。
同様に、電子部品収納基板120は、第1実施例の電子部品収納基板70に対して、プリント基板100の第2ランド部97と半田68bとの接続面積をより大きくすることができるので、電子部品収納基板70よりも第2ランド部97と半田68bとの接続強度をさらに大きくすることができる。
Further, the electronic component storage board 120 can increase the connection area between the first land portion 96 of the printed circuit board 100 and the solder 68a with respect to the electronic component storage board 70 of the first embodiment. The connection strength between the first land portion 96 and the solder 68a can be further increased as compared with the storage substrate 70.
Similarly, the electronic component storage board 120 can increase the connection area between the second land portion 97 of the printed circuit board 100 and the solder 68b with respect to the electronic component storage board 70 of the first embodiment. The connection strength between the second land portion 97 and the solder 68b can be further increased as compared with the component storage board 70.

なお、電子部品収納基板120において、半田付けの際の半田の表面張力によって、半田68a,68bが収納部95とチップ部品60との隙間に入り込まないので、この隙間を樹脂等で充填しなくてもよい。   In the electronic component storage board 120, the solder 68a and 68b do not enter the gap between the storage portion 95 and the chip component 60 due to the surface tension of the solder during soldering. Also good.

本発明の実施例は、上述した構成及び手順に限定されるものではなく、本発明の要旨を逸脱しない範囲において変形例としてもよいのは言うまでもない。   The embodiment of the present invention is not limited to the configuration and procedure described above, and it goes without saying that modifications may be made without departing from the scope of the present invention.

例えば、第1実施例において、A1工程〜A5工程により作製したプリント基板50が複数面付けされた大判の状態でA6工程〜A8工程を行った後、分断することによって複数の電子部品収納基板70を得るようにしてもよいし、A1工程〜A5工程を行った後に、この大判状態の基板を分断して単体のプリント基板50を複数得た後、単体のプリント基板50それぞれにA6工程〜A8工程を行って複数の電子部品収納基板70を得るようにしてもよい。
分断後の全てのプリント基板50を所定の検査基準に基づいて検査して良品のプリント基板50を選別し、この良品のプリント基板50のみにA6工程〜A8工程を行うことによって、チップ部品等の部材のロスを低減できると共に、生産性を向上させることができるため、生産コストを低減することができる。
For example, in the first embodiment, after the A6 process to the A8 process are performed in a large state in which a plurality of printed circuit boards 50 manufactured by the A1 process to the A5 process are applied, a plurality of electronic component storage boards 70 are divided. Alternatively, after performing steps A1 to A5, the large-sized substrate is divided to obtain a plurality of single printed circuit boards 50, and then each of the single printed circuit boards 50 is subjected to steps A6 to A8. You may make it obtain the some electronic component storage board | substrate 70 by performing a process.
All the printed boards 50 after the division are inspected based on a predetermined inspection standard, and the non-defective printed boards 50 are selected, and the A6 process to the A8 process are performed only on the non-defective printed boards 50 to Since the loss of members can be reduced and the productivity can be improved, the production cost can be reduced.

また、第2実施例において、B1工程〜B3工程により作製したプリント基板100が複数面付けされた大判の状態でB4工程を行った後、分断することによって複数の電子部品収納基板120を得るようにしてもよいし、B1工程〜B3工程を行った後に、この大判状態の基板を分断して単体のプリント基板100を複数得た後、単体のプリント基板100それぞれにB4工程を行って複数の電子部品収納基板120を得るようにしてもよい。
分断後の全てのプリント基板100を所定の検査基準に基づいて検査して良品のプリント基板100を選別し、この良品のプリント基板100のみにB4工程を行うことによって、チップ部品等の部材のロスを低減できると共に、生産性を向上させることができるため、生産コストを低減することができる。
Further, in the second embodiment, after the B4 step is performed in a large state in which a plurality of printed circuit boards 100 manufactured by the B1 step to the B3 step are attached, a plurality of electronic component storage substrates 120 are obtained by dividing. Alternatively, after performing the B1 process to the B3 process, the large-sized substrate is divided to obtain a plurality of single printed circuit boards 100, and then a plurality of single printed circuit boards 100 are subjected to the B4 process. The electronic component storage board 120 may be obtained.
All the printed circuit boards 100 after the division are inspected based on a predetermined inspection standard, and the non-defective printed circuit boards 100 are selected, and the B4 process is performed only on the non-defective printed circuit boards 100, so that the loss of members such as chip parts is lost. Can be reduced, and the productivity can be improved, so that the production cost can be reduced.

また、第1実施例及び第2実施例では、プリント基板50の収納部35及びプリント基板100の収納部95にそれぞれ収納されるチップ部品として、図6(a)に示すような角形チップ部品60を用いたが、これに限定されるものではなく、例えば、図6(b)に示すような円筒形チップ部品65を用いることもできる。   In the first and second embodiments, the rectangular chip component 60 as shown in FIG. 6A is used as the chip component stored in the storage unit 35 of the printed circuit board 50 and the storage unit 95 of the printed circuit board 100, respectively. However, the present invention is not limited to this. For example, a cylindrical chip component 65 as shown in FIG. 6B can also be used.

また、第1実施例及び第2実施例では、プリント基板50のランド部36,37とチップ部品60の電極部62a,62bとを半田68a,68bによって電気的に接続し、プリント基板100のランド部96,97とチップ部品60の電極部62a,62bとを半田68a,68bによって電気的に接続したが、これに限定されるものではなく、例えば、半田の代わりに銅ペースト等のペースト状またはインク状の導電性樹脂をランド部に塗布して硬化させることによって、プリント基板50及び100の各ランド部とチップ部品60の各電極部とを電気的に接続するようにしてもよい。
導電性樹脂は、印刷法やディスペンス法等の周知の塗布方法によって塗布することができる。
In the first and second embodiments, the land portions 36 and 37 of the printed circuit board 50 and the electrode portions 62a and 62b of the chip component 60 are electrically connected by the solders 68a and 68b. The parts 96 and 97 and the electrode parts 62a and 62b of the chip component 60 are electrically connected by the solders 68a and 68b. However, the present invention is not limited to this. For example, instead of the solder, The land portions of the printed circuit boards 50 and 100 and the electrode portions of the chip component 60 may be electrically connected by applying an ink-like conductive resin to the land portions and curing.
The conductive resin can be applied by a known application method such as a printing method or a dispensing method.

本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA1工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the A1 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA2工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating A2 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA3工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating A3 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA4工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating A4 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA5工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating A5 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA6工程を説明するための斜視図である。It is a perspective view for demonstrating A6 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA7工程を説明するための模式的断面図及び平面図である。It is typical sectional drawing and top view for demonstrating A7 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第1実施例におけるA8工程を説明するための模式的断面図及び平面図である。It is typical sectional drawing and top view for demonstrating A8 process in 1st Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第2実施例におけるB1工程を説明するための模式的断面図である。It is typical sectional drawing for demonstrating B1 process in 2nd Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第2実施例におけるB2工程を説明するための模式的断面図及び平面図である。It is typical sectional drawing and top view for demonstrating B2 process in 2nd Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第2実施例におけるB3工程を説明するための模式的断面図及び平面図である。It is typical sectional drawing and a top view for demonstrating B3 process in 2nd Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 本発明のプリント基板及びその製造方法、電子部品収納基板及びその製造方法の第2実施例におけるB4工程を説明するための模式的断面図及び平面図である。It is typical sectional drawing and a top view for demonstrating B4 process in 2nd Example of the printed circuit board of this invention, its manufacturing method, an electronic component storage board, and its manufacturing method. 電子部品収納基板の従来例を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the prior art example of an electronic component storage board | substrate.

符号の説明Explanation of symbols

1 両面銅貼り板、 2 コア材、 3a,3b 銅箔、 5 貫通孔、 7a,7b,26a,26b めっき層、 9 充填材、 10 IVH、 11,12,31,32 配線層、 17,18 絶縁層、 15 両面配線板、 15a,15b 面、 21 ,22 凹み部、 23,24 有底穴、 28,29 LVH、 35 収納部(貫通孔)、 36,37 ランド部、 40a,40b ソルダーレジスト、 41a,41b 開口部、 50 プリント基板、 60,65 チップ部品、 61,66 本体部、 61a,61b,61c,61d,66a,66b,66c 面、 62a,62b,67a,67b 電極部、 68a,68b 半田、 70 電子部品収納基板、 t2,t11,t12,t17,t18,t60 厚さ、 θ21,θ22 開口角度、 R21,R22 開口径、 R35 孔径、 L60 長さ、 W60 幅、 X60 対角長 DESCRIPTION OF SYMBOLS 1 Double-sided copper paste board, 2 Core material, 3a, 3b Copper foil, 5 Through-hole, 7a, 7b, 26a, 26b Plating layer, 9 Filling material, 10 IVH, 11, 12, 31, 32 Wiring layer, 17, 18 Insulating layer, 15 double-sided wiring board, 15a and 15b faces, 21 and 22 recessed parts, 23 and 24 bottomed holes, 28 and 29 LVH, 35 storage parts (through holes), 36 and 37 land parts, 40a and 40b solder resist , 41a, 41b opening, 50 printed circuit board, 60, 65 chip parts, 61, 66 body, 61a, 61b, 61c, 61d, 66a, 66b, 66c surface, 62a, 62b, 67a, 67b electrode part, 68a, 68b solder, 70 electronic component storage board, t2, t11, t12, t17, t18, t60 thickness, θ21, 22 the opening angle, R21, R22 opening diameter, R35 pore size, L60 length, W60 width, X60 diagonal length

Claims (5)

基板と、
該基板の一面側に形成された第1の凹部と、
前記基板の他面側に、前記第1の凹部と対向して形成された第2の凹部と
記第1の凹部の内面を覆う第1の導電層からなる第1のランド部と、
前記第2の凹部の内面を覆う第2の導電層からなる第2のランド部と、
前記第1の凹部及び前記第2の凹部が形成された範囲内において、前記第1の導電層、前記基板及び前記第2の導電層を貫通する貫通孔と、
を有しており、
前記貫通孔の内周面は、前記基板を穿つことで形成されたセンター切削面部と、前記第1及び第2の導電層を穿つことで形成されたエンド切削面部とを含む
ことを特徴とするプリント基板。
A substrate,
A first recess formed on one side of the substrate;
A second recess formed on the other surface of the substrate so as to face the first recess ;
A first land portion of a first conductive layer covering the inner surface of the front Symbol first recess,
A second land portion comprising a second conductive layer covering the inner surface of the second recess;
A through hole penetrating the first conductive layer, the substrate and the second conductive layer within a range where the first concave portion and the second concave portion are formed;
And have a,
The inner peripheral surface of the through hole includes a center cutting surface portion formed by punching the substrate and an end cutting surface portion formed by punching the first and second conductive layers. Printed circuit board characterized by
プリント基板の製造方法において、
基板の一面側に、第1の凹部を形成する第1凹部形成工程と、
前記基板の他面側に、前記第1の凹部と対向して第2の凹部を形成する第2凹部形成工程と、
前記第1の凹部及び前記第2の凹部の各内面を覆うように、前記基板の両面に導電層をそれぞれ形成する導電層形成工程と、
前記基板における前記第1の凹部及び前記第2の凹部が形成された範囲内に、前記基板を貫通する貫通孔を穿設する貫通孔穿設工程と、
を有することを特徴とするプリント基板の製造方法。
In the method for manufacturing a printed circuit board,
A first recess forming step of forming a first recess on one side of the substrate;
A second recess forming step of forming a second recess facing the first recess on the other surface side of the substrate;
A conductive layer forming step of forming conductive layers on both sides of the substrate so as to cover each inner surface of the first recess and the second recess,
A through-hole drilling step of drilling a through-hole penetrating the substrate in a range where the first recess and the second recess are formed in the substrate;
A printed circuit board manufacturing method comprising:
プリント基板の製造方法において、
基板の一面側に、複数の穴が連結されてなる環状の第1の凹部を形成する第1凹部形成工程と、
前記基板の他面側に、前記第1の凹部に対向して、複数の穴が連結されてなる環状の第2の凹部を形成する第2凹部形成工程と、
前記第1の凹部及び前記第2の凹部の各内面を覆うように、前記基板の両面に導電層をそれぞれ形成する導電層形成工程と、
前記基板における前記第1の凹部及び前記第2の凹部が形成された範囲内に、前記第1の凹部及び前記第2の凹部がそれぞれ開口縁となるように、前記基板を貫通する貫通孔を穿設する貫通孔穿設工程と、
を有することを特徴とするプリント基板の製造方法。
In the method for manufacturing a printed circuit board,
A first recess forming step of forming an annular first recess formed by connecting a plurality of holes on one surface side of the substrate;
A second recess forming step for forming an annular second recess formed by connecting a plurality of holes on the other surface side of the substrate so as to face the first recess;
A conductive layer forming step of forming conductive layers on both sides of the substrate so as to cover each inner surface of the first recess and the second recess,
A through-hole penetrating the substrate is provided in the range where the first recess and the second recess are formed in the substrate so that the first recess and the second recess each have an opening edge. A through hole drilling step for drilling; and
A printed circuit board manufacturing method comprising:
請求項1記載のプリント基板と、
長手を有すると共に該長手の両端にそれぞれ電極部を有し、前記長手の方向が前記貫通孔の軸方向となるように前記貫通孔に収納された電子部品と、
前記第1のランド部と該第1のランド部側の前記電極部とを電気的に接続する第1の接続部と、
前記第2のランド部と該第2のランド部側の前記電極部とを電気的に接続する第2の接続部と、
を有することを特徴とする電子部品収納基板。
The printed circuit board according to claim 1;
An electronic component that has a length and has electrode portions at both ends of the length, and is housed in the through hole so that the longitudinal direction is the axial direction of the through hole;
A first connection portion that electrically connects the first land portion and the electrode portion on the first land portion side;
A second connecting portion for electrically connecting the second land portion and the electrode portion on the second land portion side;
An electronic component storage board comprising:
請求項2又は3に記載のプリント基板の製造方法により得られたプリント基板前記貫通孔に、長手を有すると共に該長手の両端にそれぞれ電極部を有する電子部品を、前記長手の方向が前記貫通孔の軸方向となるように挿入する挿入工程と、
前記第1の凹部に形成された導電層からなる第1のランド部と該第1のランド部側の前記電極部とを電気的に接続するように、前記第1の凹部に導電性材料を供給する第1接続工程と、
前記第2の凹部に形成された導電層からなる第2のランド部と該第2のランド部側の前記電極部とを電気的に接続するように、前記第2の凹部に前記導電性材料を供給する第2接続工程と、
を有することを特徴とする電子部品収納基板の製造方法。
In the through hole of the printed circuit board obtained by the production method of the printed circuit board according to claim 2 or 3, the electronic components each having electrodes at both ends of the long hand and having a longitudinal, direction of the longitudinal said through An insertion step of inserting so as to be in the axial direction of the hole;
A conductive material is applied to the first recess so as to electrically connect the first land portion made of a conductive layer formed in the first recess and the electrode portion on the first land portion side. Supplying a first connection step;
The conductive material is provided in the second recess so as to electrically connect a second land portion made of a conductive layer formed in the second recess and the electrode portion on the second land portion side. A second connection step for supplying
The manufacturing method of the electronic component storage board | substrate characterized by having.
JP2006144975A 2006-05-25 2006-05-25 Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof Expired - Fee Related JP4781909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144975A JP4781909B2 (en) 2006-05-25 2006-05-25 Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144975A JP4781909B2 (en) 2006-05-25 2006-05-25 Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007317827A JP2007317827A (en) 2007-12-06
JP4781909B2 true JP4781909B2 (en) 2011-09-28

Family

ID=38851437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144975A Expired - Fee Related JP4781909B2 (en) 2006-05-25 2006-05-25 Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4781909B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140569A (en) * 1984-12-13 1986-06-27 Idemitsu Kosan Co Ltd Triazine derivative, preparation thereof, and herbicide containing said derivative as active component
JPS61140568A (en) * 1984-12-14 1986-06-27 Mitsui Petrochem Ind Ltd Quinazoline derivative, and hypotensor containing said derivative as active component
JPH05136541A (en) * 1991-11-11 1993-06-01 Nippon Avionics Co Ltd Printed wiring board
JPH0946019A (en) * 1995-08-03 1997-02-14 Kuwabara Seisakusho:Kk Printed wiring board

Also Published As

Publication number Publication date
JP2007317827A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
KR100733253B1 (en) High density printed circuit board and manufacturing method thereof
US8431833B2 (en) Printed wiring board and method for manufacturing the same
KR100754080B1 (en) Rigid-flexible printed circuit board and manufacturing method therefor
JP4203435B2 (en) Multilayer resin wiring board
JP2011003888A (en) Multilayer printed circuit board and perforating method for the same
KR20090115774A (en) Multilayer printed wiring board
US8431831B2 (en) Bond strength and interconnection in a via
JP4818888B2 (en) Manufacturing method of printed wiring board with built-in resistor
JP5074089B2 (en) Electronic component housing substrate and manufacturing method thereof
JPH04348595A (en) Method for repairing multilayer printed circuit board
JP2001274556A (en) Printed wiring board
JP4781909B2 (en) Printed circuit board and manufacturing method thereof, electronic component storage board and manufacturing method thereof
JP2018163901A (en) Print circuit board
JP5037970B2 (en) Electronic component storage board
KR100693145B1 (en) Printed circuit board making method
JP2002076636A (en) Wiring board and its manufacturing method
JP3173385B2 (en) Multilayer printed wiring board
JP2008187080A (en) Manufacturing method of electronic component storage substrate and electronic component storage substrate
JP2008135650A (en) Printed circuit board and electronic apparatus
JP5168863B2 (en) Printed wiring board manufacturing method
JPH0786751A (en) Manufacture of multilayer printed-wiring board
JP2004335726A (en) Method of manufacturing multilayer printed wiring board with cavity
JP2005327895A (en) Printed wiring board
JP2004063956A (en) Printed board and manufacturing method thereof
JP4895668B2 (en) Printed circuit board and electronic component storage board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees