JP4781803B2 - Orientation control method of organic microcrystal - Google Patents

Orientation control method of organic microcrystal Download PDF

Info

Publication number
JP4781803B2
JP4781803B2 JP2005358389A JP2005358389A JP4781803B2 JP 4781803 B2 JP4781803 B2 JP 4781803B2 JP 2005358389 A JP2005358389 A JP 2005358389A JP 2005358389 A JP2005358389 A JP 2005358389A JP 4781803 B2 JP4781803 B2 JP 4781803B2
Authority
JP
Japan
Prior art keywords
organic
dispersion
acid
orientation
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005358389A
Other languages
Japanese (ja)
Other versions
JP2007161828A (en
Inventor
悟 島田
祐司 金子
龍実 木村
宏雄 松田
裕之 横井
洋三 角舘
恒信 小野寺
均 笠井
修司 岡田
英俊 及川
八郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005358389A priority Critical patent/JP4781803B2/en
Publication of JP2007161828A publication Critical patent/JP2007161828A/en
Application granted granted Critical
Publication of JP4781803B2 publication Critical patent/JP4781803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機化合物の微結晶(以下、有機微結晶とする)を直交する3つの結晶軸に関して異方性配向制御する方法並びに、その方法で製造された有機微結晶配向分散体に関するものである。さらに詳しくは、磁場と電場を同時に印加することにより、有機微結晶の3つの結晶軸に関して異方性配向を誘起させる方法、並びにその方法で製造された直交した3つの結晶軸に関して結晶が異方性配向されて、高分子分散媒中に分散固定されていることを特徴とする有機微結晶分散体に関するものである。   The present invention relates to a method for controlling anisotropic orientation of microcrystals of an organic compound (hereinafter referred to as organic microcrystals) with respect to three orthogonal crystal axes, and an organic microcrystal orientation dispersion produced by the method. is there. More specifically, a method of inducing anisotropic orientation with respect to three crystal axes of an organic microcrystal by simultaneously applying a magnetic field and an electric field, and an anisotropic crystal with respect to three orthogonal crystal axes produced by the method. The present invention relates to an organic microcrystalline dispersion characterized by being oriented and dispersed and fixed in a polymer dispersion medium.

有機色素や有機顔料などの有機化合物の微結晶が分散した分散系の材料は、電気的、磁気的、光学的な異方性と分散系全体としての等方性を有しており、誘電体、磁性体、カラーフィルタ−、有機二次非線形光学材料、三次元ディスプレイなど様々な光学・表示材料としての利用が期待されている。   Dispersion materials in which fine crystals of organic compounds such as organic dyes and organic pigments are dispersed have electrical, magnetic, and optical anisotropy and isotropic properties of the entire dispersion system. It is expected to be used as various optical and display materials such as magnetic materials, color filters, organic second-order nonlinear optical materials, and three-dimensional displays.

この出願の発明者らは、二次非線形光学結晶を用いた有機微結晶分散系に注目し、二次非線形光学効果による第二高調波を利用するという全く新しい原理に基づく三次元画像の表示方法と立体ディスプレイを考案した(特許文献1)。   The inventors of this application pay attention to organic microcrystal dispersion using a second-order nonlinear optical crystal, and display a three-dimensional image based on a completely new principle of using the second harmonic due to the second-order nonlinear optical effect. And a three-dimensional display (Patent Document 1).

また、偏光カラーフィルターの材料として、この有機色素や有機顔料の有機微結晶分散系に注目し、透過率や偏光機能の向上を図ることのできる、有機色素または有機顔料微粒子の分散系からなる新しい偏光カラーフィルターとその製造方法を提案した(特許文献2)。   In addition, as a material for polarizing color filters, we focused on organic microcrystal dispersions of organic dyes and organic pigments, and a new dispersion of organic dyes or organic pigment fine particles that can improve transmittance and polarization function. A polarizing color filter and a manufacturing method thereof have been proposed (Patent Document 2).

さらに、有機色素や有機顔料の微結晶を、置換基を有していてもよいアルキルアクリル酸のモノマーまたはオリゴマーの固定用分散媒に混合し、磁場または電場印加による異方性配向を誘起させて光硬化により固定化することを特徴とする有機微結晶配向分散体の製造方去を提案した(特許文献3)。   Furthermore, microcrystals of organic dyes or organic pigments are mixed with a dispersion medium for fixing an alkylacrylic acid monomer or oligomer which may have a substituent to induce anisotropic orientation by applying a magnetic field or an electric field. The manufacturing method of the organic microcrystal orientation dispersion characterized by fixing by photocuring was proposed (patent document 3).

一般的に有機色素や有機顔料などの有機結晶は、有機分子が三次元的な周期性を持って規則正しく配列してできていることから、その微結晶も三次元的な異方性を有している。したがって、物性を外部信号として効率的に取り出すためには、通常は方向が揃っていない個々の微結晶の向きを制御することが重要である(図1)。   In general, organic crystals such as organic dyes and organic pigments have three-dimensional anisotropy because organic molecules are regularly arranged with a three-dimensional periodicity. ing. Therefore, in order to efficiently extract physical properties as external signals, it is important to control the orientation of individual microcrystals that are not normally aligned (FIG. 1).

これまで微結晶の配向制御の方法としては、電場(特許文献4、非特許文献1〜3)あるいは磁場(特許文献5〜8、非特許文献4)を印加することにより異方性を制御する手法が知られている(図2)。   Conventionally, as a method for controlling the orientation of microcrystals, anisotropy is controlled by applying an electric field (Patent Document 4, Non-Patent Documents 1 to 3) or a magnetic field (Patent Documents 5 to 8, Non-Patent Document 4). The technique is known (FIG. 2).

電場印加による配向制御は、結晶が電気双極子を有する場合、電場を印加することにより微結晶が電場に沿って配向する現象を利用するものである。   The orientation control by applying an electric field utilizes a phenomenon in which a microcrystal is oriented along an electric field by applying an electric field when the crystal has an electric dipole.

磁場印加による配向制御は、外部磁場により結晶に反磁性磁気双極子が誘起される場合、外部磁場と誘起反磁性磁気双極子との反発作用により、結晶が配向する現象を利用している。   The orientation control by applying a magnetic field utilizes a phenomenon in which a crystal is oriented by a repulsive action between an external magnetic field and an induced diamagnetic magnetic dipole when a diamagnetic magnetic dipole is induced in the crystal by an external magnetic field.

しかしながら、これらの電場あるいは磁場を印加する方法では、結晶の直交する3つの結晶軸のうち、1つの軸についてのみ結晶の向きを揃えることができるにすぎず、結晶の直交する3つの結晶軸のすべてに関して結晶の方向の制御を実現する手法は依然として未踏のものであった。
特開2003−287711号公報 特願2002−276179号出願、特開2004−109951号公報 特願2004−245947号出願、特開2005−171221号公報 特願2004−103039号出願、特開2005−288214号公報 特願平7−99895号出願、特開平8−213233号公報、特許3576263号公報 特願平8−134320号出願、特開平9−297330号公報、特許3577388号公報 特願2003−349352号出願、特開2005−113205号公報 特願2005−76110号出願、特開2005−297556号公報 S. Fujita, H. Kasai, S. Okada, H. Oikawa, T. Fukuda, H. Matsuda, S. K. Tripathy, H. Nakanishi, Jpn. J. Appl. Phys. 1999, 38, L659-L661. H. Oikawa, S. Fujita, H. Kasai, S. Okada, S. K. Tripathy, H. Nakanishi, Colloids and Surfaces A: Physicochem. Eng. Aspects 2000, 169, 251-258. T. Onodera, M. Yoshida, S. Okazoe, S. Fujita, H. Kasai, S. Okada, H. Oikawa, H. Nakanishi, Int. J. Nanoscience 2002, 1, 737-741. Y. Kaneko, T. Fukuda, T. Onodera, H. Kasai, S. Okada, H. Oikawa, H. Nakanishi, H. Matsuda, Jpn. J. Appl. Phys. 2003, 42, L1343-L1345.
However, these methods of applying an electric field or magnetic field can only align the orientation of the crystal with respect to one of the three crystal axes orthogonal to each other. In all cases, the technique for realizing the control of the crystal orientation was still unexplored.
JP 2003-287711 A Japanese Patent Application No. 2002-276179, Japanese Patent Application Laid-Open No. 2004-109951 Japanese Patent Application No. 2004-245947, Japanese Patent Application Laid-Open No. 2005-171221 Japanese Patent Application No. 2004-103039, Japanese Patent Application Laid-Open No. 2005-288214 Japanese Patent Application No. 7-99895, Japanese Patent Application Laid-Open No. 8-213233, Japanese Patent No. 3576263 Japanese Patent Application No. Hei 8-134320, Japanese Patent Application Laid-Open No. 9-297330, Japanese Patent No. 3577388 Japanese Patent Application No. 2003-349352, Japanese Patent Application Laid-Open No. 2005-113205 Japanese Patent Application No. 2005-76110, Japanese Patent Application Laid-Open No. 2005-297556 S. Fujita, H. Kasai, S. Okada, H. Oikawa, T. Fukuda, H. Matsuda, SK Tripathy, H. Nakanishi, Jpn. J. Appl. Phys. 1999, 38, L659-L661. H. Oikawa, S. Fujita, H. Kasai, S. Okada, SK Tripathy, H. Nakanishi, Colloids and Surfaces A: Physicochem. Eng. Aspects 2000, 169, 251-258. T. Onodera, M. Yoshida, S. Okazoe, S. Fujita, H. Kasai, S. Okada, H. Oikawa, H. Nakanishi, Int. J. Nanoscience 2002, 1, 737-741. Y. Kaneko, T. Fukuda, T. Onodera, H. Kasai, S. Okada, H. Oikawa, H. Nakanishi, H. Matsuda, Jpn. J. Appl. Phys. 2003, 42, L1343-L1345.

発明が解決しょうとする課題Problems to be solved by the invention

この出願の発明は上記の背景によりなされたものであって、誘電体、磁性体、カラ−フィルタ−や有機二次非線形光学材料、様々な光学・表示材料としての利用が期待されている、有機色素または有機顔料などの有機化合物の微結晶分散系からなる新しい有機微結晶配向分散共重合体を製造するために重要な、有機微結晶の直交する3つの結晶軸に関して異方性を制御する方法を提供することを課題としている。   The invention of this application was made based on the above background, and is expected to be used as a dielectric, magnetic material, color filter, organic second-order nonlinear optical material, and various optical / display materials. A method for controlling anisotropy with respect to three orthogonal crystal axes of an organic microcrystal, which is important for producing a new organic microcrystal orientation-dispersed copolymer comprising a microcrystal dispersion of an organic compound such as a dye or an organic pigment It is an issue to provide.

この出願の発明は、上記の課題を解決するものとして、第1には、有機化合物の微結晶が分散媒中に分散されている有機微結晶分散体に、磁場と電場を同時に印加することにより、有機微結晶が直交する3つの結晶軸に関して異方性配向することを特徴とする有機微結晶の配向制御法を提供する。   The invention of this application is to solve the above-mentioned problem. First, by applying a magnetic field and an electric field simultaneously to an organic microcrystal dispersion in which microcrystals of an organic compound are dispersed in a dispersion medium. An organic microcrystal orientation control method is provided, wherein the organic microcrystal is anisotropically oriented with respect to three orthogonal crystal axes.

電場印加による誘起微結晶の配向制御は結晶の電気双極子に基づくものと考えられるが、その起源は結晶を構成する有機分子の分子分極やイオン性分極、あるいは微結晶表面の帯電によるものと推測される。   Control of the orientation of the induced microcrystal by applying an electric field is considered to be based on the electric dipole of the crystal, but it is assumed that the origin is due to the molecular or ionic polarization of the organic molecules constituting the crystal or the surface of the microcrystal. Is done.

磁場印加による配向制御は誘起反磁性磁気双極子に基づくものと考えられるが、その起源は有機分子中の芳香環や不飽和結合のパイ電子の流れにより誘起される磁気双極子であると推測される。   Orientation control by applying a magnetic field is thought to be based on an induced diamagnetic magnetic dipole, but it is assumed that its origin is a magnetic dipole induced by the flow of pi electrons in an aromatic ring or unsaturated bond in an organic molecule. The

したがって一般的にはこれら二つの双極子は結晶中で互いに独立しており、外部電場と外部磁場の2つの外場を制御することにより、直交する3つの結晶軸すべてに関して微結晶の配向を制御することが可能となる(図3)。   Therefore, in general, these two dipoles are independent of each other in the crystal, and by controlling the two external fields of the external electric field and the external magnetic field, the orientation of the microcrystal is controlled with respect to all three orthogonal crystal axes. (FIG. 3).

本発明に係る有機微結晶の配向制御方法は、より具体的には、有機化合物の微結晶が分散媒中に分散されている有機微結晶分散系に、磁場と電場を同時に印加することにより、直交する3つの結晶軸に関して結晶が異方性配向させることを特徴とする。   The organic microcrystal orientation control method according to the present invention is more specifically, by simultaneously applying a magnetic field and an electric field to an organic microcrystal dispersion system in which microcrystals of an organic compound are dispersed in a dispersion medium, The crystal is anisotropically oriented with respect to three orthogonal crystal axes.

また、本発明に係る有機微結晶配向分散体は、有機化合物の微結晶が、磁場と電場を同時に印加することにより直交する3つの結晶軸に関して異方性配向され、分散媒とする高分子中に分散固定されていることを特徴とする。   Further, the organic microcrystalline orientation dispersion according to the present invention is a polymer in which a microcrystal of an organic compound is anisotropically oriented with respect to three orthogonal crystal axes by simultaneously applying a magnetic field and an electric field, and serves as a dispersion medium. It is characterized by being distributed and fixed to.

上記のとおりのこの出願の発明によって、誘電体、磁性体、カラ−フィルタ−や有機二次非線形光学材料、様々な光学・表示材料としてとして有用な、有機色素または有機顔料微粒子の分散系からなる新しい有機微結晶配向分散体の製造に必要な有機微結晶の直交する3つの結晶軸の配向制御法が提供される。   According to the invention of this application as described above, it consists of a dispersion system of organic dyes or organic pigment fine particles useful as dielectrics, magnetic substances, color filters, organic second-order nonlinear optical materials, and various optical / display materials. A method for controlling the orientation of three orthogonal crystal axes of organic microcrystals necessary for the production of a new organic microcrystal orientation dispersion is provided.

以上のとおりこの出願の発明の有機微結晶の配向制御法は、図3に模式的に例示したように、有機化合物の微結晶分散系に対して、磁場と電場を同時に印加することにより誘起される微結晶の異方性配向効果を利用する。   As described above, the organic microcrystal orientation control method of the invention of this application is induced by simultaneously applying a magnetic field and an electric field to a microcrystal dispersion system of an organic compound as schematically illustrated in FIG. The anisotropic orientation effect of microcrystals is used.

このような特徴を有するこの出願の発明について、以下のその実施の形態について説明する。   An embodiment of the invention of this application having such characteristics will be described below.

まずこの出願の発明においては、有機化合物は、結晶性であれば特に制限はないが、好ましくは有機色素あるいは有機顔料、たとえば液晶ディスプレイに用いられるカラーフィルター用の色素や顔料、二次非線形光学材料用の色素、有機電界発光素子用の発光色素、蛍光色素をはじめとして各種のものであってよい。好ましくは、全てのスチリルピリジニウム色素類:例えばDAST、ポリジアセチレン類、ポリ1,6一ジ(n一カルバゾイル)−2,4−ヘキサジエン:Poly(DCHD)、多環芳香族化合物(アントラセン、テトラセン、ペンタセン、コロネン)、フタロシアニン類、ポルフィリン類等が挙げられる。これらの有機色素や有機顔料のナノサイズの微結晶、つまり、この出願の発明においては、一般的には数ナノメーター(nm)から1ミクロン(l000nm)以下のサイズの微結晶が分散媒中に安定に分散されたコロイド分散液が用いられるが、短時間でも分散状態が維持できるのであれば、1ミクロンより大きな結晶であってもよく、好ましくは1―200ミクロンのサイズである。   First, in the invention of this application, the organic compound is not particularly limited as long as it is crystalline, but preferably an organic dye or organic pigment, for example, a dye or pigment for a color filter used in a liquid crystal display, or a second-order nonlinear optical material. Various dyes may be used, including dyes for use in organic electroluminescence devices, luminescent dyes for use in organic electroluminescent elements, and fluorescent dyes. Preferably, all styrylpyridinium dyes such as DAST, polydiacetylenes, poly 1,6 mono-di (n-carbazoyl) -2,4-hexadiene: Poly (DCHD), polycyclic aromatic compounds (anthracene, tetracene, Pentacene, coronene), phthalocyanines, porphyrins and the like. Nanosized microcrystals of these organic dyes and organic pigments, that is, in the invention of this application, generally, microcrystals having a size of several nanometers (nm) to 1 micron (l000 nm) or less are contained in the dispersion medium. Although a stably dispersed colloidal dispersion is used, a crystal larger than 1 micron may be used as long as the dispersed state can be maintained even for a short time, and preferably a size of 1 to 200 microns.

ここで、分散媒としては、上記有機化合物の微結晶を溶解せず分散させることができるものであれば特に限定されることはないが、誘電率の低い有機溶剤が好ましい。例えば、デカリンや流動パラフィンなどの炭化水素系溶剤が主に用いられる。また、以下に説明する固定化用の媒体であってもよい。即ち、分散媒中に分散固定した有機微結晶配向分散体とする場合には、固定化用の媒体が用いられる。この場合の固定化用の媒体としては、置換基を有していてもよいアルキルアクリル酸のモノマーまたはオリゴマーであって、なかでも光により架橋硬化が行われるものが用いられる。モノマーの具体例としては、全てのアクリル酸エステル類を含み、例えば、炭素数7以上のアルキル基を有するオクチルアクリル酸、ラウリルアクリル酸、ラウリルメタクリル酸等の直鎖または分枝鎖状の長鎖アルキルアクリル酸や、エチレングリコキシアクリル酸、フッ素化アルキルアクリル酸等のジアクリル酸やハロゲン原子、アルコキシ基等の各種の置換基を有する、アルキルアクリル酸あるいはアルキルメタクリル酸類が望ましい。ここでアルキルアクリル酸モノマーと例えばジアクリル酸モノマー誘導体を併用することで光硬化する率が向上し効率良く固定化される。ジアクリル酸モノマー誘導体の使用量としてはアルキルアクリル酸モノマーに対して数%が好ましく、例えば1〜2%が好適である。以上これらの分散媒は分散系における分散状態を破壊しない範囲と種類のものと光重合開始剤を用いて混合される。   The dispersion medium is not particularly limited as long as it can disperse the fine crystals of the organic compound without dissolving it, but an organic solvent having a low dielectric constant is preferable. For example, hydrocarbon solvents such as decalin and liquid paraffin are mainly used. Moreover, the medium for fixation demonstrated below may be sufficient. That is, when the organic microcrystal orientation dispersion is dispersed and fixed in a dispersion medium, a fixing medium is used. As the immobilization medium in this case, a monomer or oligomer of alkylacrylic acid which may have a substituent, and among them, a medium which is crosslinked and cured by light is used. Specific examples of the monomer include all acrylic esters, for example, octylacrylic acid, laurylacrylic acid, laurylmethacrylic acid or the like having an alkyl group having 7 or more carbon atoms. Alkyl acrylic acid, alkylacrylic acid or alkylmethacrylic acid having various substituents such as diacrylic acid such as ethyleneglycoxyacrylic acid and fluorinated alkylacrylic acid, halogen atoms and alkoxy groups are desirable. Here, by using an alkylacrylic acid monomer in combination with, for example, a diacrylic acid monomer derivative, the photocuring rate is improved and the immobilization is efficiently performed. The amount of the diacrylic acid monomer derivative used is preferably several percent with respect to the alkylacrylic acid monomer, and preferably 1 to 2%, for example. As described above, these dispersion media are mixed using a photopolymerization initiator with a range and type that do not destroy the dispersion state in the dispersion.

光重合開始剤としては、例えば、2,2,−アゾビスイソブチロニトリル(AIBN)等のアゾ化合物、過酸化ベンゾイル(BPO)等の過酸化物、トリクロロアセトフェノン、トリス(トリクロロメチル)−5−トリアジン等のボリハロゲン化合物、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等のアシルホスフィンオキシド化合物、ベンゾインアルキルエーテル、ベンゾフェノン等のケトン類、ビスペンタジエチルチタニウムジ(ベンタフルオロフェニル)等の有機金属化合物が挙げられる。   Examples of the photopolymerization initiator include azo compounds such as 2,2, -azobisisobutyronitrile (AIBN), peroxides such as benzoyl peroxide (BPO), trichloroacetophenone, and tris (trichloromethyl) -5. -Polyhalogen compounds such as triazine, acylphosphine oxide compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ketones such as benzoin alkyl ether and benzophenone, and organic metals such as bispentadiethyltitanium di (bentafluorophenyl) Compounds.

この出願の発明は、このような分散媒中に分散された状態で、磁場と電場を同時に印加し、微結晶に異方性配向を誘起させるものである。または、以上のような混合の状態で.磁場と電場を同時に印加し、微結晶に無力性配向を誘起させて前記固定化用の媒体を固化させるものである。これによって、硬化後は、透明であり、さらに加工性も優れたポリマーを得ることができる。   In the invention of this application, a magnetic field and an electric field are simultaneously applied while being dispersed in such a dispersion medium to induce anisotropic orientation in the microcrystal. Or in the mixed state as above. A magnetic field and an electric field are simultaneously applied to induce a forceless orientation in the microcrystal to solidify the fixing medium. Thereby, a polymer which is transparent after curing and excellent in processability can be obtained.

この場合の磁場については、その磁界方向、磁場強度は適宜であってよく、磁場強度は大きいほどよい。結晶が配向する効果は結晶の誘起磁気双極子の大きさに依存するので、一般的には結晶が大きいほど必要な磁場強度は小さくてよい。たとえば、数百ミクロンの大きさの結晶の場合は、永久磁石による数百ミリテスラから、電磁石による数テスラで十分であり、1ミクロン以下の結晶の場合は超電導マグネットによる数十テスラ程度の磁場を適用する。   Regarding the magnetic field in this case, the magnetic field direction and the magnetic field strength may be appropriate, and the larger the magnetic field strength, the better. Since the effect of crystal orientation depends on the size of the induced magnetic dipole of the crystal, generally, the larger the crystal, the smaller the required magnetic field strength. For example, in the case of a crystal of a size of several hundred microns, a magnetic field of about several tens of Tesla using a superconducting magnet is applied to a crystal of 1 micron or less. To do.

電場については、交流(AC)、直流(DC)のどちらを印加してもよいが、電場の強度が大きいほど結晶の配向の程度は大きくなる。直流では電極間の電場強度1−3KV/cm、交流の場合は、電場強度1−10KV/cm、周波数10−10000Hzが好ましいが、これに限定されるものではない。   As the electric field, either alternating current (AC) or direct current (DC) may be applied, but the degree of crystal orientation increases as the electric field strength increases. In the case of direct current, the electric field strength between the electrodes is preferably 1 to 3 KV / cm, and in the case of alternating current, the electric field strength is 1 to 10 KV / cm and the frequency is 10 to 10000 Hz, but is not limited thereto.

以上のようなこの出願の発明によって、磁場と電場を同時に印加することにより、直交する3つの結晶軸に関して結晶が異方性配向することを特徴とする有機微結晶の配向制御法と、直交する3つの結晶軸に関して異方性配向され、分散媒とする高分子中に分散固定されていることを特徴とする有機微結晶配向分散体が実現される。   According to the invention of this application as described above, an orientation control method for organic microcrystals is characterized in that crystals are anisotropically oriented with respect to three orthogonal crystal axes by simultaneously applying a magnetic field and an electric field. An organic microcrystal orientation dispersion characterized by being anisotropically oriented with respect to three crystal axes and being dispersed and fixed in a polymer as a dispersion medium is realized.

この出願の発明が提供する有機微結晶配向分散体は、直交する3つの結晶軸に関して異方性を有しているという従来にない異方性材料を提供するものである。すなわち、この異方性材料について、本願の発明者は鋭意研究の結果、以上のような有機微結晶配向分散体が製造できることを見出し、本願発明に至ったものである。この異方性材料は、たとえば、これまで困難であった有機結晶の直交する3つの結晶軸それぞれの方向からの物性を効率良く取り出すことを可能にするものである。   The organic microcrystalline orientation dispersion provided by the invention of this application provides an unprecedented anisotropic material having anisotropy with respect to three orthogonal crystal axes. That is, the inventors of the present application have found that the above-mentioned organic microcrystalline alignment dispersion can be produced as a result of intensive studies on this anisotropic material, and have reached the present invention. This anisotropic material, for example, makes it possible to efficiently extract physical properties from the directions of three orthogonal crystal axes of an organic crystal, which has been difficult until now.

そこで以下に実施例を示し、さらに詳しく発明の実施の形態について説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, examples will be shown below, and the embodiments of the invention will be described in more detail. Of course, the invention is not limited by the following examples.

DAST (trans-4-[4-(dimethylamino)]stilbezolium-p-toluenesulfonate)の微結晶分散系は、5mM のn-dodecyl-trimethyl ammonium chloride を含む5mM DASTエタノール溶液0.05 mlを5mlのlauryl acrylate monomerに攪拌しながら注入することによって作製された(図4)。DAST微結晶の配向挙動は、電場(E)および磁場(B)の両方が印加可能な中で分光学的手法を用いて観測した。図5に測定セルの簡略図を示す。配向挙動観測のために、磁場の方向に対して平行な偏光(0deg.)を用い、磁場と電場が両方フォークト配置の場合 (1)[図5(a)]と磁場がフォークト配置、電場が磁場に対して垂直に印加する配置の場合(2)[図5(b)]の偏光スペクトル、また磁場の方向に対して垂直な偏光(90deg.)を用い、磁場と電場が両方フォークト配置の場合(3)[図5(a)]と磁場がフォークト配置、電場が磁場に対して垂直に印加する配置の場合(4)[図5(b)]の偏光スペクトルの測定を行なった。例えば、磁場が最大2T、電場が最大DCで0.2kV/8mmで印加させて、(DAST微結晶の)配向挙動を観測した。   The microcrystalline dispersion of DAST (trans-4- [4- (dimethylamino)] stilbezolium-p-toluenesulfonate) is prepared by adding 0.05 ml of 5 mM DAST ethanol solution containing 5 mM n-dodecyl-trimethyl ammonium chloride to 5 ml lauryl acrylate. It was made by pouring into the monomer with stirring (Figure 4). The orientation behavior of DAST microcrystals was observed using a spectroscopic technique while both an electric field (E) and a magnetic field (B) were applicable. FIG. 5 shows a simplified diagram of the measurement cell. In order to observe the orientation behavior, polarized light (0 deg.) Parallel to the direction of the magnetic field is used, and both the magnetic field and electric field are forked. (1) [Fig. 5 (a)] and the magnetic field are forked. In the case of an arrangement in which the magnetic field is applied perpendicularly to the magnetic field (2) The polarization spectrum of [Fig. 5 (b)] or the polarized light perpendicular to the direction of the magnetic field (90 deg.) Is used. Case (3) [Fig. 5 (a)] and the case where the magnetic field is a Forked arrangement and the electric field is applied perpendicular to the magnetic field (4) [Fig. 5 (b)] The polarization spectrum was measured. For example, the orientation behavior (of DAST crystallites) was observed by applying a magnetic field of 2T at maximum and an electric field of 0.2 kV / 8 mm at maximum DC.

外場による有機ナノ結晶の何らかの配向が起これば、可視紫外偏光スペクトルに変化が生じる。この観点を利用して外場下におけるナノ結晶の可視紫外偏光スペクトル測定を行なった。図6に磁場および電場下におけるDAST微結晶分散系の偏光スペクトルを示す。磁場または電場のみを印加させた場合には、すでに報告されているように、(1)および(2)の磁場印加のみのときは吸光度の増加が観測され、(3)および(4)のときは吸光度の減少が観測された。(1)および(3)の電場印加のみのときは吸光度の増加が観測され(図6ab)、(2)および(4)の電場印加のみのときは吸光度の減少が観測された(図6cd)。   If any orientation of the organic nanocrystal due to an external field occurs, a change occurs in the visible ultraviolet polarization spectrum. Using this point of view, we measured the visible ultraviolet polarization spectrum of nanocrystals in an external field. FIG. 6 shows a polarization spectrum of a DAST microcrystal dispersion system under a magnetic field and an electric field. When only a magnetic field or an electric field is applied, as already reported, an increase in absorbance is observed when only the magnetic field is applied (1) and (2), and when (3) and (4). A decrease in absorbance was observed. When only the electric field of (1) and (3) was applied, an increase in absorbance was observed (FIG. 6ab), and when only the electric field was applied (2) and (4), a decrease in absorbance was observed (FIG. 6cd). .

また(1)の場合、磁場または電場が印加されているとき、さらに電場または磁場が同時印加されると吸光度の増加が観測された(図6e)。これは、微結晶に電場と磁場が同方向に印加されることで、結晶の双極子相互作用と反磁性相互作用の両方が一致する異方的配向状態に変化したことを示した。(2)の場合、磁場と電場の両方が印加されると、全く外場が印加されないときに比べて吸収極大波長の吸光度が減少し、500nm以下および600nm以上の吸光度の増加が観測された(図6f)。これは反磁性的異方性と電気双極子相互作用による異方性が相反する形となり、相互の強い吸収帯が波長に現れたためである。(4)の場合、磁場と電場の両方が印加されると、異方的配向した微結晶の吸収遷移モーメントが最も小さいところに偏光が入射されるために吸光度の大きな減少が観測された(図6g)。このように電場と磁場を同時に印加すると、微結晶は電場による双極子相互作用による異方的配向と磁場による反磁気的異方性配向を両方受けた配向状態をとることが明らかとなった。   In the case of (1), when a magnetic field or an electric field was applied, an increase in absorbance was observed when an electric field or a magnetic field was further applied simultaneously (FIG. 6e). This indicates that the electric field and the magnetic field applied to the microcrystal in the same direction changed the anisotropic orientation state in which both the dipole interaction and diamagnetic interaction of the crystal coincided. In the case of (2), when both a magnetic field and an electric field were applied, the absorbance at the absorption maximum wavelength decreased compared to when no external field was applied, and an increase in absorbance at 500 nm or less and 600 nm or more was observed ( FIG. 6f). This is because the diamagnetic anisotropy and the anisotropy due to the electric dipole interaction are in conflict with each other, and a strong mutual absorption band appears in the wavelength. In the case of (4), when both a magnetic field and an electric field are applied, a large decrease in absorbance is observed because polarized light is incident at the place where the absorption transition moment of anisotropically oriented microcrystals is the smallest (Fig. 6g). When the electric field and magnetic field were applied simultaneously, the crystallites were found to be in an orientation state that received both anisotropic orientation due to dipole interaction due to the electric field and diamagnetic anisotropic orientation due to the magnetic field.

次に、2軸配向されたDASTの微結晶分散系バルク重合体の作製の実施例ついて述べる。DASTの微結晶分散系の作製は、実施例1に従って同様に作製された。微結晶分散系の配向固定化は、基本的には前記特許文献3に示された方法と同様に行われた。光硬化は、実施例1で作製された分散系に、例えば光重合開始剤としてベンゾインイソプロピルエーテルを加えて(例えば0.1mol/l)、窒素ガス置換後、図5に示される方向から磁場(超伝導磁石を用いて最大17テスラ)と電場(ACまたはDC)を同時に印加させながら、超高圧水銀灯照射により行われた。図7に例えば磁場15テスラと電場AC3kV/cmを同時印加させて作製した、 DAST微結晶分散系バルク重合体の(1)、(2)、(3)、(4)、(5)[磁場と電場が両方ファラデー配置で偏光子が0deg.の場合]、(6)[90deg.の場合]、(7)[磁場がファラデー配置、電場が磁場に対して垂直に印加する配置で偏光子が0deg.の場合]、(8)[90 deg.の場合]の配置における偏光スペクトルを示す。   Next, an example of producing a biaxially oriented DAST microcrystalline dispersion bulk polymer will be described. The DAST microcrystal dispersion was similarly prepared according to Example 1. The orientation fixation of the microcrystalline dispersion was basically performed in the same manner as the method disclosed in Patent Document 3. For photocuring, for example, benzoin isopropyl ether as a photopolymerization initiator is added to the dispersion prepared in Example 1 (for example, 0.1 mol / l), and after replacing with nitrogen gas, a magnetic field (from the direction shown in FIG. The superconducting magnet was used to irradiate an ultrahigh pressure mercury lamp while simultaneously applying an electric field (AC or DC) up to 17 Tesla. FIG. 7 shows, for example, (1), (2), (3), (4), (5) [magnetic field of DAST microcrystalline dispersion bulk polymer prepared by simultaneously applying a magnetic field of 15 Tesla and an electric field of AC 3 kV / cm. And the electric field are both Faraday arrangements and the polarizer is 0 deg.], (6) [90 deg.], (7) [Magnetic field is Faraday arrangement, and the electric field is applied perpendicular to the magnetic field. 0 deg.], (8) [90 deg.] Shows the polarization spectrum in the arrangement.

磁場印加時の配向による偏光スペクトル強度の差、約0.4(Y. kaneko, S. Shimada, T. Fukuda, T. Kimura, H. Yokoi, H. Matsuda, T. Onodera, H. Kasai, S. Okada, H. Oikawa, and H. Nakanishi, Adv. Mater. 2005, 17, 160-163.)に比べると、磁場と電場を同じ方向に同時に印加した場合(図7の(3)と(1)の吸収強度の差、約0.61)のほうが大きくなった。また、磁場に対して垂直方向から電場を印加した時(図7の(2)と(4)の吸収強度の差、約0.65)は、結晶の双極子相互作用と反磁性相互作用の両方が一致する異方的配向状態に変化したためにさらに増加した。実施例1の場合と少し結果が異なるのは、磁場15テスラと電場AC3kV/cmを同時印加させた場合、磁場の強度が、電場の強度よりも大きいため、配向が反磁性相互作用に支配的であったためである。つまり、微結晶の配向は、印加磁場の強度と印加電場の強度のバランスで如何様にも決めることができる。このように、磁場と電場を同時に印加することにより微結晶の2軸を制御でき、その配向状態を保持した微結晶分散系重合体を作製することができた。   Difference in polarization spectrum intensity due to orientation when a magnetic field is applied, approximately 0.4 (Y. kaneko, S. Shimada, T. Fukuda, T. Kimura, H. Yokoi, H. Matsuda, T. Onodera, H. Kasai, S Compared with Okada, H. Oikawa, and H. Nakanishi, Adv. Mater. 2005, 17, 160-163.) (3) and (1) in FIG. ) Difference in absorption intensity, approximately 0.61) was greater. When an electric field is applied from the direction perpendicular to the magnetic field (difference in absorption intensity between (2) and (4) in FIG. 7, approximately 0.65), the dipole interaction and diamagnetic interaction of the crystal It increased further due to the change in the anisotropic orientation state where both coincided. The result is slightly different from that in Example 1. When a magnetic field of 15 Tesla and an electric field of AC 3 kV / cm are applied simultaneously, the strength of the magnetic field is greater than the strength of the electric field, so the orientation is dominant in the diamagnetic interaction. Because it was. That is, the orientation of the microcrystal can be determined in any way by the balance between the strength of the applied magnetic field and the strength of the applied electric field. Thus, by applying a magnetic field and an electric field at the same time, the two axes of the microcrystal could be controlled, and a microcrystalline dispersion polymer that maintained the orientation state could be produced.

本発明による有機微結晶配向分散体は、誘電体、磁性体、カラ−フィルタ−や有機二次非線形光学材料、様々な光学・表示材料として有用な、有機色素または有機顔料微粒子の分散系からなる新しい有機微結晶配向分散体として用いることができ、本発明による有機微結晶の配向制御方法はそれらの有機微結晶配向分散体の製造に必要な有機微結晶の直交する3つの結晶軸の配向制御法として利用することができる。   The organic microcrystalline orientation dispersion according to the present invention comprises a dispersion system of organic dyes or organic pigment fine particles useful as dielectrics, magnetic substances, color filters, organic second-order nonlinear optical materials, and various optical / display materials. It can be used as a new organic microcrystal orientation dispersion, and the method for controlling the orientation of organic microcrystals according to the present invention controls the orientation of three orthogonal crystal axes of organic microcrystals necessary for the production of the organic microcrystal orientation dispersion. It can be used as a law.

有機微結晶分散系中の結晶の乱雑な配向状態を例示した図である。It is the figure which illustrated the disordered orientation state of the crystal | crystallization in an organic microcrystal dispersion system. 有機微結晶分散系に磁場あるいは電場を印加することにより結晶が1つの結晶軸に沿って配向した状態を例示した図である。It is the figure which illustrated the state where the crystal | crystallization was orientated along one crystal axis by applying a magnetic field or an electric field to an organic microcrystal dispersion system. 有機微結晶分散系に電場と磁場を同時印加することにより直交した3つの結晶軸に関して結晶が配向した有機微結晶配向分散体の概念を模式的に例示した図である。It is the figure which illustrated typically the concept of the organic microcrystal orientation dispersion | distribution in which the crystal | crystallization was orientated about three crystal axes orthogonal by applying an electric field and a magnetic field simultaneously to an organic microcrystal dispersion system. 有機微結晶分散系の作製方法を例示した図である。It is the figure which illustrated the preparation methods of an organic microcrystal dispersion system. 有機微結晶分散系への電場と磁場の印加方向と吸収スペクトル測定の位置関係を示した模式図である。It is the schematic diagram which showed the positional relationship of the application direction of an electric field and a magnetic field to an organic microcrystal dispersion system, and an absorption spectrum measurement. 実施例1で作製した磁場と電場印加下におけるDAST微結晶分散系の偏光スペクトルの吸光度変化を示した図である。FIG. 3 is a graph showing changes in absorbance of the polarization spectrum of the DAST microcrystal dispersion system under application of a magnetic field and an electric field prepared in Example 1. 実施例2で作製した磁場と電場印加下におけるDAST微結晶分散系バルク重合体の偏光スペクトルの吸光度変化を示した図である。It is the figure which showed the light absorbency change of the polarization spectrum of the DAST microcrystal dispersion bulk polymer under the magnetic field produced in Example 2, and an electric field application.

Claims (18)

スチリルピリジニウム色素類、ポリジアセチレン類、ポリ1,6−ジ(n−カルバゾイル)−2,4−ヘキサジエン:Poly(DCHD)、アントラセン、テトラセン、ペンタセン、コロネン、フタロシアニン類、ポルフィリン類から選択される1種又は2種以上の微結晶が分散媒中に分散されている有機微結晶分散系に、磁場と電場を同時に印加することにより、直交する3つの結晶軸に関して結晶が異方性配向させることを特徴とする有機微結晶の配向制御方法。 1 selected from styrylpyridinium dyes, polydiacetylenes, poly 1,6-di (n-carbazoyl) -2,4-hexadiene: Poly (DCHD), anthracene, tetracene, pentacene, coronene , phthalocyanines, porphyrins By applying a magnetic field and an electric field simultaneously to an organic microcrystal dispersion in which seeds or two or more kinds of microcrystals are dispersed in a dispersion medium, the crystals are anisotropically oriented with respect to three orthogonal crystal axes. A method for controlling the orientation of organic microcrystals. 前記磁場と前記電場互いに交差する方向に印可することを特徴とする請求項1記載の有機微結晶の配向制御方法。 Orientation control method according to claim 1, wherein the organic fine crystals, characterized by applying in a direction intersecting the electric and the magnetic field from each other. 前記分散媒として、誘電率の低い有機溶剤を用いることを特徴とする請求項1又は2に記載の有機微結晶の配向制御方法。   The organic microcrystal orientation control method according to claim 1, wherein an organic solvent having a low dielectric constant is used as the dispersion medium. 前記異方性配向させた後固化することを特徴とする請求項1乃至3のいずれか1項に記載の有機微結晶の配向制御方法。   The method for controlling the orientation of organic microcrystals according to any one of claims 1 to 3, wherein the solidification is performed after the anisotropic orientation. 前記分散媒として、光により架橋硬化が行われるアルキルアクリル酸のモノマーまたはオリゴマーを用いることを特徴とする請求項1乃至4のいずれか1項に記載の有機微結晶の配向制御方法。   The organic microcrystal orientation control method according to any one of claims 1 to 4, wherein a monomer or oligomer of alkylacrylic acid that is crosslinked and cured by light is used as the dispersion medium. 前記モノマーとして、炭素数7以上のアルキル基を有するオクチルアクリル酸、ラウリルアクリル酸、ラウリルメタクリル酸の直鎖または分枝鎖状の長鎖アルキルアクリル酸やエチレングリコキシアクリル酸、フッ素化アルキルアクリル酸のジアクリル酸やハロゲン原子、アルコキシ基の各種の置換基を有するアルキルアクリル酸あるいはアルキルメタクリル酸類のいずれかを用いることを特徴とする請求項5記載の有機微結晶の配向制御方法。 Examples of the monomer include octylacrylic acid, laurylacrylic acid, laurylmethacrylic acid linear or branched long-chain alkylacrylic acid, ethyleneglycoxyacrylic acid, and fluorinated alkylacrylic acid having an alkyl group having 7 or more carbon atoms. 6. The method of controlling orientation of organic microcrystals according to claim 5, wherein any one of diacrylic acid, halogen atom, and alkylacrylic acid or alkylmethacrylic acid having various substituents of alkoxy group is used. 前記モノマーとして、アルキルアクリル酸モノマーとジアクリル酸モノマー誘導体を併用することを特徴とする請求項5記載の有機微結晶の配向制御方法。   6. The method for controlling orientation of organic microcrystals according to claim 5, wherein an alkylacrylic acid monomer and a diacrylic acid monomer derivative are used in combination as the monomer. 前記分散媒は分散系における分散状態を破壊しないものと光重合開始剤を用いて混合することを特徴とする請求項1乃至7のいずれか1項に記載の有機微結晶の配向制御方法。   The method for controlling the orientation of organic microcrystals according to any one of claims 1 to 7, wherein the dispersion medium is mixed with a dispersion that does not destroy the dispersion state in the dispersion system using a photopolymerization initiator. 記分散媒として、2,2,−アゾビスイソブチロニトリル(AIBN)のアゾ化合物、過酸化ベンゾイル(BPO)の過酸化物、トリクロロアセトフェノン、トリス(トリクロロメチル)−5−トリアジンのボリハロゲン化合物、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドのアシルホスフィンオキシド化合物、ベンゾインアルキルエーテル、ベンゾフェノンのケトン類、ビスペンタジエチルチタニウムジ(ベンタフルオロフェニル)の有機金属化合物のいずれかを用いることを特徴とする請求項5記載の有機微結晶の配向制御方法。 As before Symbol partial dispersion medium, 2,2, - azo compound azo-bis-isobutyronitrile azobisisobutyronitrile (AIBN), peroxides benzoyl peroxide (BPO), trichloro acetophenone, tris (trichloromethyl) -5- triazine down Helsingborg halogen compounds, acylphosphine oxide compounds of the 2,4,6-trimethylbenzoyl diphenylphosphine oxy de, benzoin alkyl ethers, ketones benzophenone down, one of organometallic compounds of bis penta diethyl titanium di (preventor fluorophenyl) 6. The method for controlling orientation of organic microcrystals according to claim 5, wherein the method is used. スチリルピリジニウム色素類、ポリジアセチレン類、ポリ1,6−ジ(n−カルバゾイル)−2,4−ヘキサジエン:Poly(DCHD)、アントラセン、テトラセン、ペンタセン、コロネン、フタロシアニン類、ポルフィリン類から選択される1種又は2種以上の微結晶が、磁場と電場を同時に印加することにより直交する3つの結晶軸に関して異方性配向され、分散媒とする高分子中に分散固定されていることを特徴とする有機微結晶配向分散体。 1 selected from styrylpyridinium dyes, polydiacetylenes, poly 1,6-di (n-carbazoyl) -2,4-hexadiene: Poly (DCHD), anthracene, tetracene, pentacene, coronene , phthalocyanines, porphyrins A seed or two or more kinds of microcrystals are anisotropically oriented with respect to three orthogonal crystal axes by simultaneously applying a magnetic field and an electric field, and are dispersed and fixed in a polymer as a dispersion medium Organic microcrystalline alignment dispersion. 前記磁場と前記電場互いに交差する方向に印可することを特徴とする請求項10記載の有機微結晶配向分散体。 Organic crystallite orientation dispersion according to claim 10, wherein the to be applied in a direction crossing the electric field and the magnetic field from each other. 前記分散媒として、誘電率の低い有機溶剤を用いることを特徴とする請求項10又は11に記載の有機微結晶配向分散体。   The organic microcrystal orientation dispersion according to claim 10 or 11, wherein an organic solvent having a low dielectric constant is used as the dispersion medium. 前記異方性配向させた後固化することを特徴とする請求項10乃至12のいずれか1項に記載の有機微結晶配向分散体。   The organic microcrystal orientation dispersion according to any one of claims 10 to 12, which is solidified after the anisotropic orientation. 前記分散媒として、光により架橋硬化が行われるアルキルアクリル酸のモノマーまたはオリゴマーを用いることを特徴とする請求項10乃至13のいずれか1項に記載の有機微結晶配向分散体。   The organic microcrystalline alignment dispersion according to any one of claims 10 to 13, wherein an alkylacrylic acid monomer or oligomer that is crosslinked and cured by light is used as the dispersion medium. 前記モノマーとして、炭素数7以上のアルキル基を有するオクチルアクリル酸、ラウリルアクリル酸、ラウリルメタクリル酸の直鎖または分枝鎖状の長鎖アルキルアクリル酸やエチレングリコキシアクリル酸、フッ素化アルキルアクリル酸のジアクリル酸やハロゲン原子、アルコキシ基の各種の置換基を有するアルキルアクリル酸あるいはアルキルメタクリル酸類のいずれかを用いることを特徴とする請求項14記載の有機微結晶配向分散体。 Examples of the monomer include octylacrylic acid, laurylacrylic acid, laurylmethacrylic acid linear or branched long-chain alkylacrylic acid, ethyleneglycoxyacrylic acid, and fluorinated alkylacrylic acid having an alkyl group having 7 or more carbon atoms. 15. The organic microcrystalline alignment dispersion according to claim 14, wherein any one of diacrylic acid, halogen atom, and alkylacrylic acid or alkylmethacrylic acid having various substituents of alkoxy group is used. 前記モノマーとして、アルキルアクリル酸モノマーとジアクリル酸モノマー誘導体を併用することを特徴とする請求項14記載の有機微結晶配向分散体。   15. The organic microcrystalline alignment dispersion according to claim 14, wherein an alkyl acrylic acid monomer and a diacrylic acid monomer derivative are used in combination as the monomer. 前記分散媒は分散系における分散状態を破壊しないものと光重合開始剤を用いて混合することを特徴とする請求項10乃至16のいずれか1項に記載の有機微結晶配向分散体。   The organic microcrystalline alignment dispersion according to any one of claims 10 to 16, wherein the dispersion medium is mixed with a dispersion that does not destroy the dispersion state in the dispersion system using a photopolymerization initiator. 記分散媒として、2,2,−アゾビスイソブチロニトリル(AIBN)のアゾ化合物、過酸化ベンゾイル(BPO)の過酸化物、トリクロロアセトフェノン、トリス(トリクロロメチル)−5−トリアジンのボリハロゲン化合物、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシドのアシルホスフィンオキシド化合物、ベンゾインアルキルエーテル、ベンゾフェノンのケトン類、ビスペンタジエチルチタニウムジ(ベンタフルオロフェニル)の有機金属化合物のいずれかを用いることを特徴とする請求項14記載の有機微結晶配向分散体。 As before Symbol partial dispersion medium, 2,2, - azo compound azo-bis-isobutyronitrile azobisisobutyronitrile (AIBN), peroxides benzoyl peroxide (BPO), trichloro acetophenone, tris (trichloromethyl) -5- triazine down Helsingborg halogen compounds, acylphosphine oxide compounds of the 2,4,6-trimethylbenzoyl diphenylphosphine oxy de, benzoin alkyl ethers, ketones benzophenone down, one of organometallic compounds of bis penta diethyl titanium di (preventor fluorophenyl) 15. The organic microcrystal orientation dispersion according to claim 14, which is used.
JP2005358389A 2005-12-13 2005-12-13 Orientation control method of organic microcrystal Expired - Fee Related JP4781803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358389A JP4781803B2 (en) 2005-12-13 2005-12-13 Orientation control method of organic microcrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358389A JP4781803B2 (en) 2005-12-13 2005-12-13 Orientation control method of organic microcrystal

Publications (2)

Publication Number Publication Date
JP2007161828A JP2007161828A (en) 2007-06-28
JP4781803B2 true JP4781803B2 (en) 2011-09-28

Family

ID=38245101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358389A Expired - Fee Related JP4781803B2 (en) 2005-12-13 2005-12-13 Orientation control method of organic microcrystal

Country Status (1)

Country Link
JP (1) JP4781803B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197395A (en) * 1989-12-25 1991-08-28 Sumitomo Electric Ind Ltd Method for growing organic crystal
JPH06287461A (en) * 1993-04-07 1994-10-11 Toyota Central Res & Dev Lab Inc Dichroic crystal
JP3369715B2 (en) * 1994-04-20 2003-01-20 富士写真フイルム株式会社 Optical compensation sheet and method for producing the same
KR20020016829A (en) * 1999-06-11 2002-03-06 리타 버어그스트롬 Electro-optical device and variable transparent article with such device
JP4378910B2 (en) * 2002-02-28 2009-12-09 Dic株式会社 Method for producing optically anisotropic film with tilted optical axis
JP4576522B2 (en) * 2002-08-16 2010-11-10 独立行政法人物質・材料研究機構 Multilayer ceramic high-order structure and manufacturing method thereof
JP2004109951A (en) * 2002-09-20 2004-04-08 Japan Science & Technology Corp Polarizing color filter and manufacturing method therefor
JP3979500B2 (en) * 2003-11-21 2007-09-19 独立行政法人科学技術振興機構 Organic microcrystalline alignment dispersion, polarized fluorescent material, and production method thereof
JP2005288214A (en) * 2004-03-31 2005-10-20 Dainippon Ink & Chem Inc Method of producing hardened film
JP2006285068A (en) * 2005-04-04 2006-10-19 Nikkiso Co Ltd Conductive polarizing film
JP4933819B2 (en) * 2005-09-29 2012-05-16 協立化学産業株式会社 Method for producing light reflecting or shielding material using one or both of magnetic field and electric field

Also Published As

Publication number Publication date
JP2007161828A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
Luo et al. High-efficiency circularly polarized luminescence from chiral luminescent liquid crystalline polymers with aggregation-induced emission properties
Chen et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases
Xia et al. Direct visualization of chiral amplification of chiral aggregation induced emission molecules in nematic liquid crystals
Liu et al. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals
Du et al. Combination of photoinduced alignment and self-assembly to realize polarized emission from ordered semiconductor nanorods
Xing et al. Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer
KR20090116695A (en) Polymerizable composition
Du et al. Symmetric continuously tunable photonic band gaps in blue-phase liquid crystals switched by an alternating current field
Gim et al. Highly polarized fluorescent illumination using liquid crystal phase
US8711300B2 (en) Process for producing liquid crystal element, and liquid crystal element
Matsumori et al. Photoalignment of an azobenzene-based chromonic liquid crystal dispersed in triacetyl cellulose: single-layer alignment films with an exceptionally high order parameter
Li et al. Tunable circularly polarized luminescence with a high dissymmetry factor emitted from luminogen-bonded and electrically controlled polymer-stabilized cholesteric liquid crystals
Petrescu et al. Dynamic behavior of nematic liquid crystal mixtures with quantum dots in electric fields
Li et al. Highly sensitive mechanoresponsive smart windows driven by shear strain
Mishra et al. Comparative study of nanoparticles doped in Liquid Crystal Polymer System
JP2002501111A5 (en)
Yoon et al. Giant surfactants for the construction of automatic liquid crystal alignment layers
Kim et al. Dynamic magnetic field alignment and polarized emission of semiconductor nanoplatelets in a liquid crystal polymer
Dudka et al. Formulation of a Composite System of Liquid Crystals and Light‐Emitting Semiconductor Quantum Rods: From Assemblies in Solution to Photoaligned Films
Boamfa et al. Magnetic field alignment of liquid crystals for fast display applications
Manda et al. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
Wang et al. Inch-sized aligned polymer nanofiber films with embedded CH3NH3PbBr3 nanocrystals: Electrospinning fabrication using a folded aluminum foil as the collector
JP4781803B2 (en) Orientation control method of organic microcrystal
JP6641587B2 (en) Variable transmittance film, manufacturing method and use thereof
JP3979500B2 (en) Organic microcrystalline alignment dispersion, polarized fluorescent material, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees