JP4780745B2 - Solar radiation sensor and output adjustment method of solar radiation sensor - Google Patents

Solar radiation sensor and output adjustment method of solar radiation sensor Download PDF

Info

Publication number
JP4780745B2
JP4780745B2 JP2001206731A JP2001206731A JP4780745B2 JP 4780745 B2 JP4780745 B2 JP 4780745B2 JP 2001206731 A JP2001206731 A JP 2001206731A JP 2001206731 A JP2001206731 A JP 2001206731A JP 4780745 B2 JP4780745 B2 JP 4780745B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
solar radiation
radiation sensor
element holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001206731A
Other languages
Japanese (ja)
Other versions
JP2003023167A (en
Inventor
功 角田
育生 高松
清光 石川
洋 高田
徳彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Stanley Electric Co Ltd
Original Assignee
Honda Motor Co Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Stanley Electric Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001206731A priority Critical patent/JP4780745B2/en
Publication of JP2003023167A publication Critical patent/JP2003023167A/en
Application granted granted Critical
Publication of JP4780745B2 publication Critical patent/JP4780745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、車両に空調機器などを設けるときに、外部環境の計測の一部として光量の計測に加えて、太陽の高度(仰角)、方位などを計測ることで外部環境の予測の精度を高め、空調装置の温度調整などを乗員に対して一層に快適なものとするために設けられる日射センサに関するものである。
【0002】
【従来の技術】
従来のこの種の日射センサ90の構成の例を示すものが図5及び図6であり、この日射センサ90は、複数、例えば4個の受光素子92(a〜d)が水平面内に所定のパターンとして配置された受光素子ホルダ91と、前記したように配置が行われた受光素子92(a〜d)の中心に光軸Xを鉛直方向として上方から覆い、凸面と凹面とから成る略メニスカスレンズ状とした集光レンズ93とから構成されている。
【0003】
そして、前記受光素子ホルダ91と集光レンズ93とを所定の位置として組立を行うために、受光素子ホルダ91側と集光レンズ93側とには円筒状とした嵌着部91a、93aが設けられ、受光素子ホルダ91側の嵌着部91aに集光レンズ93側の嵌着部93aが内径で嵌合するものとされると共に、例えば受光素子ホルダ91側の嵌着部91aには段差部91bが設けられ、集光レンズ93側の嵌着部93aの先端が当接し、受光素子ホルダ91と集光レンズ93との位置決めが行えるものとされている。
【0004】
このように構成された日射センサ90においては、太陽の仰角αにより各受光素子92(a〜d)からの出力に差異が生じるものとなるので、例えば、受光素子92aと受光素子92bとの出力を演算回路(図示せず)で比較、演算することで太陽の仰角αが測定できるものとなり、この演算結果により空調機器を制御することで乗員の快適性を一層に高めることが可能となる。
【0005】
【発明が解決しようとする課題】
しかしながら、前記した従来の構成では、第一に、前記受光素子92(a〜d)を受光素子ホルダ91に所定のパターンとして配置するときの前記受光素子92(a〜d)間の配置誤差。第二に、受光素子ホルダ91と受光素子92(a〜d)との位置誤差。第三に、受光素子ホルダ91と集光レンズ93との部品誤差及び組立誤差。などが積み重なり、その結果として、個々の日射センサ90間に図7に最大値Uと最小値Dで示す範囲のバラツキを生じ、空調機器などの制御にも期待する結果が得られないなどの課題を生じるものとなっていた。
【0006】
【課題を解決するための手段】
本発明は、前記した従来の課題を解決するための具体的手段として、所定のパターンとして配置された複数の受光素子と、該受光素子に対し光軸を鉛直方向として上方から覆う集光レンズとから成り、前記複数の受光素子間の出力比により太陽の仰角及び方位角を計測する日射センサにおいて、前記受光素子を配置しフランジ部を設けた受光素子ホルダと、前記フランジ部の外径より大きな内径を有し前記受光素子ホルダの側に突出した嵌着部を設けた前記集光レンズとには前記光軸に直交する面で接触し且つ前記受光素子ホルダと前記集光レンズとを、前記フランジ部の外径と前記嵌着部の内径との寸法差の隙間の範囲で摺動自在とする摺動面が設けられていることを特徴とする日射センサ、及び、上記の日射センサにおいて、前記光軸方向に基準光源を配置し、この基準光源からの光に対して前記複数の受光素子からの出力が全て等しくなるように集光レンズ、若しくは、受光素子ホルダを前記摺動面に沿い摺動させ、出力差が可及的に低減された時点で前記集光レンズと受光素子ホルダとを固定して成ることを特徴とする日射センサの出力調整方法を提供することで、個々の日射センサ間にバラツキを生じないものとして課題を解決するものである。
【0007】
【発明の実施の形態】
つぎに、本発明を図に示す実施形態に基づいて詳細に説明する。図1、図2に符号1で示すものは本発明に係る日射センサであり、この日射センサ1は、例えば4個など複数の受光素子2(a〜d)と、この受光素子2(a〜d)が所定の配置として設置される受光素子ホルダ3と、前記受光素子ホルダ3を上方から覆うようにして取付けられる集光レンズ4とから成るものである点は従来例のものと同様である。
【0008】
ここで、本発明では前記受光素子ホルダ3にフランジ部3aを設けると共に、前記集光レンズ4には略円筒状とした嵌着部4aを設けるものであり、このときに、前記受光素子ホルダ3に設けられるフランジ部3aは、後に説明する集光レンズ4の嵌着部4aの内径φ1よりも適宜に小さい外径φ2として形成され、同時にフランジ部3aの上面、即ち、集光レンズ4に対持する側の面は平面とした摺動面3bとされている。
【0009】
また、集光レンズ4に設けられる嵌着部4aは、上記にも説明したように略円筒状に下方、即ち、受光素子ホルダ3の側に向い突出して形成されるものとされているが、同時に外周寄りの適宜範囲には平面状とされたホルダ突接部4bが集光レンズ1の光軸Xと直交する平面として設けられ、前記受光素子ホルダ3の摺動面3bと突接させた状態で、集光レンズ4と受光素子2(a〜d)とに所定の間隔が与えられるものとされている。
【0010】
上記の説明のように、受光素子ホルダ3と集光レンズ4とを構成したことで、図2にも示すように、受光素子ホルダ3と集光レンズ4とを組合わせたときには、受光素子ホルダ3と集光レンズ4とは、(嵌着部4aの内径φ1)−(フランジ部3aの外径φ2)=ΔYだけの水平方向へ移動の自由を与えられるものとなり、且つ、移動によって受光素子2(a〜d)ろ集光レンズ4との距離は変らないものとなる。
【0011】
そして、本発明では図3に示す出力調整方法を行うことで、個々の日射センサ1間に生じていた特性のバラツキを補正するものである。以下、上記の構成とした本発明の日射センサ1に対する出力調整方法を、実際の実施の手順に従い詳細に説明する。
【0012】
先ず、第一の手順として、集光レンズ4の光軸X上に基準光源10を位置させて固定し、そして、摺動面3bとホルダ突接部4bとが突接する状態として受光素子ホルダ3を、例えばマニピュレータ11など平面上で自在な位置に受光素子ホルダ3を設定可能とする機器に保持させ、例えば高感度の電流計などで、図4に示すように受光素子2(a〜d)それぞれからの出力Ia、Ib、Ic、Idを計測する。
【0013】
このとき、最初の状態では、大部分の場合、それぞれの受光素子2(a〜d)からの出力には差を生じているのが通常であるので、第二の手順としては、例えば(受光素子2aの出力Ia)>(受光素子2bの出力Ib)となる場合であれば、受光素子2bが集光レンズ4の中心に向い、受光素子2aが集光レンズ4の中心から遠ざかるように、受光素子ホルダ3を前記マニピュレータ11で移動させ、両者の出力が同一となるようにする。
【0014】
同様にして、各受光素子2(a〜d)間の出力の比較を行いながら、受光素子ホルダ3を移動させることで、全ての受光素子2(a〜d)からの出力差が最も少なくなる集光レンズ4と受光素子ホルダ3との相互位置が求められるものとなり、本発明では、それが得られた時点で、第三の手順として、例えば接着などにより集光レンズ4と受光素子ホルダ3とを固定する。
【0015】
尚、前記基準光源10について補足を行えば、この基準光源10は日射センサ1の実際の使用状態でを車載して使用する状態である太陽光線に近似させるために、平行光線で且つ均一な照度を得られるものが好ましく、これは、例えばコリメータなどを使用することで目的が達せられるものとなる。
【0016】
図4は、以上説明の出力調整方法を全ての日射センサ1に施した後の、複数の日射センサ1間における仰角測定値のバラツキを示すグラフであり、従来例の日射センサで示したバラツキ(図7参照)に比較して、本発明に係る日射センサ1では最大値Uと最小値Dが近接し、格段にバラツキは減少するものとなり、何れの日射センサ1を使用した場合においても、ほぼ同一な空調機器の制御が行えるものとなることが明らかである。
【0017】
【発明の効果】
以上に説明したように本発明により、受光素子を配置した受光素子ホルダと集光レンズとには光軸に直交する面で接触し且つ受光素子ホルダと集光レンズとを接触面で摺動自在とする調整面が設けられている日射センサとし、これに加えて、集光レンズの光軸方向に基準光源を配置し、この基準光源からの光に対して複数の受光素子からの出力が等しくなるように集光レンズ、若しくは、受光素子ホルダを接触面に沿い摺動させ、出力差が可及的に低減された時点で集光レンズと受光素子ホルダとを固定して成る日射センサの出力調整方法を実施することで、個々の日射センサ間に太陽仰角の測定結果にバラツキを生じないものとして、空調機器などに対する制御の精度を向上させるという極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 本発明に係る日射センサの実施形態を示す平面図である。
【図2】 図1のA−A線に沿う断面図である。
【図3】 同じく本発明に係る日射センサの出力調整方法を示す説明図である。
【図4】 本発明に係る日射センサのバラツキの状態を示すグラフである。
【図5】 従来例を示す平面図である。
【図6】 図5のB−B線に沿う断面図である。
【図7】 従来例のバラツキの状態を示すグラフである。
【符号の説明】
1……日射センサ
2(a〜d)……受光素子
3……受光素子ホルダ
3a……フランジ部
3b……摺動面
4……集光レンズ
4a……嵌着部
4b……ホルダ突接部
10……基準光源
X……光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention improves the accuracy of prediction of the external environment by measuring the altitude (elevation angle), direction, etc. of the sun in addition to the measurement of the amount of light as part of the measurement of the external environment when installing an air conditioner or the like on the vehicle. The present invention relates to a solar radiation sensor provided to increase the temperature of an air conditioner and make it more comfortable for passengers.
[0002]
[Prior art]
5 and 6 show an example of the configuration of a conventional solar sensor 90 of this type. The solar sensor 90 includes a plurality of, for example, four light receiving elements 92 (a to d) in a horizontal plane. The light receiving element holder 91 arranged as a pattern and the light receiving element 92 (ad) arranged as described above are covered from above with the optical axis X in the vertical direction, and a substantially meniscus composed of a convex surface and a concave surface. It is comprised from the condensing lens 93 made into the lens form.
[0003]
In order to assemble the light receiving element holder 91 and the condensing lens 93 at predetermined positions, cylindrical fitting portions 91a and 93a are provided on the light receiving element holder 91 side and the condensing lens 93 side. The fitting portion 93a on the condenser lens 93 side is fitted to the fitting portion 91a on the light receiving element holder 91 side with an inner diameter, and for example, a step portion is formed on the fitting portion 91a on the light receiving element holder 91 side. 91b is provided, the tip of the fitting portion 93a on the condenser lens 93 side abuts, and the light receiving element holder 91 and the condenser lens 93 can be positioned.
[0004]
In the solar radiation sensor 90 configured in this manner, the output from each light receiving element 92 (ad) varies depending on the elevation angle α of the sun. For example, the output from the light receiving element 92a and the light receiving element 92b Can be measured by an arithmetic circuit (not shown), and the elevation angle α of the sun can be measured. By controlling the air-conditioning equipment based on the calculation result, the passenger comfort can be further enhanced.
[0005]
[Problems to be solved by the invention]
However, in the conventional configuration described above, first, an arrangement error between the light receiving elements 92 (a to d) when the light receiving elements 92 (a to d) are arranged in the light receiving element holder 91 as a predetermined pattern. Second, a positional error between the light receiving element holder 91 and the light receiving elements 92 (a to d). Third, component errors and assembly errors between the light receiving element holder 91 and the condenser lens 93. As a result, there is a variation in the range indicated by the maximum value U and the minimum value D in FIG. 7 between the individual solar radiation sensors 90, and a result that is not expected in control of an air conditioner or the like cannot be obtained. Was supposed to occur.
[0006]
[Means for Solving the Problems]
The present invention provides, as specific means for solving the above-described conventional problems, a plurality of light receiving elements arranged as a predetermined pattern, and a condensing lens that covers the light receiving elements from above with the optical axis in the vertical direction. A solar radiation sensor for measuring an elevation angle and an azimuth angle of the sun based on an output ratio between the plurality of light receiving elements, a light receiving element holder in which the light receiving elements are disposed and provided with a flange portion, and a larger than an outer diameter of the flange portion to said condenser lens having a fitting portion which protrudes to the side of the light receiving element holder having an inner diameter is, the contact and the light receiving element holder in a plane perpendicular to the optical axis and the condenser lens, In the solar radiation sensor, wherein the solar radiation sensor is provided with a sliding surface that is slidable within a gap of a dimensional difference between the outer diameter of the flange portion and the inner diameter of the fitting portion . , The optical axis A reference light source is arranged in the direction, and the condenser lens or the light receiving element holder is slid along the sliding surface so that the outputs from the plurality of light receiving elements are all equal to the light from the reference light source. Providing a method for adjusting the output of the solar radiation sensor, wherein the condenser lens and the light receiving element holder are fixed when the output difference is reduced as much as possible. The problem is solved as a result of no variation.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, this invention is demonstrated in detail based on embodiment shown in a figure. 1 and 2 indicate a solar radiation sensor according to the present invention. The solar radiation sensor 1 includes, for example, a plurality of light receiving elements 2 (a to d) such as four and the light receiving elements 2 (a to 2). d) is similar to the conventional example in that it comprises a light receiving element holder 3 installed in a predetermined arrangement and a condenser lens 4 attached so as to cover the light receiving element holder 3 from above. .
[0008]
Here, in the present invention, the light receiving element holder 3 is provided with a flange portion 3a, and the condensing lens 4 is provided with a substantially cylindrical fitting portion 4a. At this time, the light receiving element holder 3 is provided. The flange portion 3a provided on the flange portion 3a is formed as an outer diameter φ2 that is appropriately smaller than the inner diameter φ1 of the fitting portion 4a of the condenser lens 4 to be described later. The holding surface is a sliding surface 3b which is a flat surface.
[0009]
Further, as described above, the fitting portion 4a provided in the condenser lens 4 is formed in a substantially cylindrical shape so as to protrude downward, that is, toward the light receiving element holder 3, At the same time, a flat holder contact portion 4b is provided in an appropriate range near the outer periphery as a plane orthogonal to the optical axis X of the condenser lens 1, and is in contact with the sliding surface 3b of the light receiving element holder 3. In this state, a predetermined interval is given to the condenser lens 4 and the light receiving element 2 (ad).
[0010]
Since the light receiving element holder 3 and the condenser lens 4 are configured as described above, as shown in FIG. 2, when the light receiving element holder 3 and the condenser lens 4 are combined, the light receiving element holder 3 and the condensing lens 4 are given the freedom of movement in the horizontal direction by (the inner diameter φ1 of the fitting portion 4a) − (the outer diameter φ2 of the flange portion 3a) = ΔY. The distance to the condenser lens 4 is not changed.
[0011]
In the present invention, the output adjustment method shown in FIG. 3 is performed to correct the characteristic variation that has occurred between the individual solar radiation sensors 1. Hereinafter, an output adjustment method for the solar radiation sensor 1 of the present invention having the above-described configuration will be described in detail according to an actual implementation procedure.
[0012]
First, as a first procedure, the reference light source 10 is positioned and fixed on the optical axis X of the condenser lens 4, and the light receiving element holder 3 is in a state in which the sliding surface 3 b and the holder contact portion 4 b are in contact. Is held by a device capable of setting the light receiving element holder 3 at a free position on a plane such as the manipulator 11, and the light receiving element 2 (a to d) as shown in FIG. Outputs Ia, Ib, Ic, and Id from each are measured.
[0013]
At this time, in the first state, in most cases, it is normal that there is a difference in the output from the respective light receiving elements 2 (a to d). If the output Ia of the element 2a)> (output Ib of the light receiving element 2b), the light receiving element 2b faces the center of the condenser lens 4 and the light receiving element 2a moves away from the center of the condenser lens 4. The light receiving element holder 3 is moved by the manipulator 11 so that both outputs are the same.
[0014]
Similarly, the output difference from all the light receiving elements 2 (a to d) is minimized by moving the light receiving element holder 3 while comparing the outputs between the light receiving elements 2 (a to d). The mutual position of the condensing lens 4 and the light receiving element holder 3 is obtained, and in the present invention, when it is obtained, as a third procedure, the condensing lens 4 and the light receiving element holder 3 are bonded by, for example, bonding. And fix.
[0015]
In addition, if it supplements about the said reference light source 10, in order to approximate this reference light source 10 to the sunlight which is the state which mounts and uses the actual use condition of the solar radiation sensor 1, it is a parallel light ray and uniform illumination intensity. It is preferable to use a collimator or the like, and the purpose can be achieved.
[0016]
FIG. 4 is a graph showing variations in elevation angle measurement values among a plurality of solar radiation sensors 1 after the above-described output adjustment method is applied to all solar radiation sensors 1, and the variation shown in the conventional solar radiation sensor ( In comparison with the solar radiation sensor 1 according to the present invention, the maximum value U and the minimum value D are close to each other, and the variation is greatly reduced. Even when any solar radiation sensor 1 is used, the solar radiation sensor 1 is almost the same. It is clear that the same air conditioner can be controlled.
[0017]
【The invention's effect】
As described above, according to the present invention, the light receiving element holder in which the light receiving element is disposed and the condensing lens are in contact with each other at a surface orthogonal to the optical axis, and the light receiving element holder and the condensing lens are slidable on the contact surface. In addition, a reference light source is arranged in the optical axis direction of the condenser lens, and the outputs from the plurality of light receiving elements are equal to the light from the reference light source. The output of a solar sensor that consists of a condensing lens or a light receiving element holder that is slid along the contact surface and the condensing lens and the light receiving element holder are fixed when the output difference is reduced as much as possible. By carrying out the adjustment method, the solar elevation angle measurement result does not vary between the individual solar radiation sensors, and an extremely excellent effect of improving the accuracy of control for an air conditioner or the like is achieved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an embodiment of a solar radiation sensor according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is an explanatory view showing a method for adjusting the output of the solar radiation sensor according to the present invention.
FIG. 4 is a graph showing a variation state of a solar radiation sensor according to the present invention.
FIG. 5 is a plan view showing a conventional example.
6 is a cross-sectional view taken along line BB in FIG.
FIG. 7 is a graph showing a variation state of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Solar radiation sensor 2 (ad) ... Light receiving element 3 ... Light receiving element holder 3a ...... Flange part 3b ... Sliding surface 4 ... Condensing lens 4a ... Fitting part 4b ... Holder contact Part 10: Reference light source X: Optical axis

Claims (2)

所定のパターンとして配置された複数の受光素子と、該受光素子に対し光軸を鉛直方向として上方から覆う集光レンズとから成り、前記複数の受光素子間の出力比により太陽の仰角及び方位角を計測する日射センサにおいて、前記受光素子を配置しフランジ部を設けた受光素子ホルダと、前記フランジ部の外径より大きな内径を有し前記受光素子ホルダの側に突出した嵌着部を設けた前記集光レンズとには前記光軸に直交する面で接触し且つ前記受光素子ホルダと前記集光レンズとを、前記フランジ部の外径と前記嵌着部の内径との寸法差の隙間の範囲で摺動自在とする摺動面が設けられていることを特徴とする日射センサ。A plurality of light receiving elements arranged as a predetermined pattern and a condensing lens covering the light receiving element from above with the optical axis as a vertical direction, and an elevation angle and an azimuth angle of the sun depending on an output ratio between the plurality of light receiving elements In the solar radiation sensor for measuring the light receiving element, a light receiving element holder in which the light receiving element is arranged and provided with a flange portion, and a fitting portion having an inner diameter larger than the outer diameter of the flange portion and protruding toward the light receiving element holder side are provided. on said condensing lens, the gap dimension difference between the and the condenser lens and the contact and the light receiving element holder in a plane perpendicular to the optical axis, the outer diameter and inner diameter of the fitting portion of the flange portion A solar radiation sensor comprising a sliding surface that is slidable within the range of 請求項1記載の日射センサにおいて、前記光軸方向に基準光源を配置し、この基準光源からの光に対して前記複数の受光素子からの出力が全て等しくなるように集光レンズ、若しくは、受光素子ホルダを前記摺動面に沿い摺動させ、出力差が可及的に低減された時点で前記集光レンズと受光素子ホルダとを固定して成ることを特徴とする日射センサの出力調整方法。  2. The solar radiation sensor according to claim 1, wherein a reference light source is arranged in the optical axis direction, and a condensing lens or a light receiving device is provided so that outputs from the plurality of light receiving elements are all equal to light from the reference light source. A method for adjusting the output of a solar radiation sensor comprising: sliding an element holder along the sliding surface; and fixing the condenser lens and the light receiving element holder when an output difference is reduced as much as possible. .
JP2001206731A 2001-07-06 2001-07-06 Solar radiation sensor and output adjustment method of solar radiation sensor Expired - Fee Related JP4780745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206731A JP4780745B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor and output adjustment method of solar radiation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206731A JP4780745B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor and output adjustment method of solar radiation sensor

Publications (2)

Publication Number Publication Date
JP2003023167A JP2003023167A (en) 2003-01-24
JP4780745B2 true JP4780745B2 (en) 2011-09-28

Family

ID=19042819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206731A Expired - Fee Related JP4780745B2 (en) 2001-07-06 2001-07-06 Solar radiation sensor and output adjustment method of solar radiation sensor

Country Status (1)

Country Link
JP (1) JP4780745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891985B2 (en) * 2012-07-20 2016-03-23 株式会社デンソー Adjustment method of optical sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113444A (en) * 1984-06-29 1986-01-21 Hitachi Ltd Automatic adjusting device
JPH0438532A (en) * 1990-06-04 1992-02-07 Fujitsu Ltd Data checking system for parity generation using table

Also Published As

Publication number Publication date
JP2003023167A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
US7111996B2 (en) Stereo camera arrangement in a motor vehicle
US6828560B2 (en) Integrated light concentrator
US6347458B1 (en) Displaceable X/Y coordinate measurement table
US9366587B2 (en) Optical force sensor and apparatus using optical force sensor
JP2000298066A (en) Spectrometer
EP0449936A1 (en) Sensor for an air-conditioning system in a vehicle.
US11252316B2 (en) System and method for optical alignment and calibration of an infrared camera lens
JP2016540196A (en) Ranging camera using common substrate
TWI621924B (en) Euv imaging apparatus
JP4780745B2 (en) Solar radiation sensor and output adjustment method of solar radiation sensor
US20180010960A1 (en) Optical sensor
US5065015A (en) Solar radiation sensor for use in an automatic air conditioner
JP2008536733A (en) Sensor device in car door mirror
US6087650A (en) Solar sensor for measuring low angle solar heating of vehicle occupants
JP2001091353A (en) Insolation sensor
JPH0735619A (en) Radiation temperature detector
JP2582494Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP2735249B2 (en) Solar radiation detector for automotive air conditioners
JP2785619B2 (en) Solar radiation sensor for automotive air conditioner
JP2003021559A (en) Solar radiation sensor
EP3665454B1 (en) Geometric and radiometric calibration and test apparatus for testing electro-optical thermal-ir instruments
JP2002296107A (en) Sunshine sensor
CN109324408A (en) Optical device, projection optical system, exposure device and article manufacturing method
JP2005037239A (en) Mounting structure of sensor device
WO2024042712A1 (en) Measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees