WO2024042712A1 - Measurement system - Google Patents

Measurement system Download PDF

Info

Publication number
WO2024042712A1
WO2024042712A1 PCT/JP2022/032236 JP2022032236W WO2024042712A1 WO 2024042712 A1 WO2024042712 A1 WO 2024042712A1 JP 2022032236 W JP2022032236 W JP 2022032236W WO 2024042712 A1 WO2024042712 A1 WO 2024042712A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
rotation axis
support mechanism
measurement system
measurement
Prior art date
Application number
PCT/JP2022/032236
Other languages
French (fr)
Japanese (ja)
Inventor
智樹 宮川
岩田 浩志
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/032236 priority Critical patent/WO2024042712A1/en
Publication of WO2024042712A1 publication Critical patent/WO2024042712A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to the technical field of measurement systems.
  • Patent Document 1 a system having a laser tracker has been proposed (see Patent Document 1).
  • an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light, a first support mechanism that supports the mirror rotatably about a first rotation axis, and the a second support mechanism that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis; a movable part supported at both ends in the direction along the first rotation axis and rotated around the second rotation axis; and one side with respect to the first support mechanism in the direction along the second rotation axis.
  • the optical path of the measurement light is arranged on one side with respect to the mirror, and the electrical equipment of the first support mechanism is arranged on the other side with respect to the mirror in the direction along the second rotation axis.
  • a measurement system in which wiring connected to a component is arranged, the attitude of the mirror is changed using the first support mechanism and the second mechanism, and the measurement light is reflected toward the measurement target by the mirror. is provided.
  • an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light toward a measurement target, and a first mirror that supports the mirror rotatably about a first rotation axis.
  • a support mechanism a support mechanism; and a second support mechanism that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis, and the second support mechanism a rotational displacement sensor disposed on one side of the mirror in the direction of the rotation axis to detect rotational displacement of the mirror; and a rotational displacement sensor disposed on the other side of the mirror in the direction of the second rotation axis
  • the A measurement system is provided that includes a motor that rotates a mirror around the second rotation axis.
  • an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light toward a measurement target, and a first mirror that supports the mirror rotatably about a first rotation axis.
  • a support mechanism a support mechanism; and a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis, and the first support mechanism a motor disposed on one side of the mirror in the direction of the rotation axis to rotate the mirror around the first rotation axis; and a motor disposed on the other side of the mirror in the direction of the first rotation axis. and a rotational displacement sensor that detects rotational displacement of the mirror.
  • FIG. 1 is a perspective view showing the appearance of the measurement system.
  • FIG. 2 is a perspective view showing the internal structure of the measurement system.
  • FIG. 3 is a perspective view showing the main parts of the gimbal mechanism.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3.
  • 4 is a sectional view taken along line BB in FIG. 3.
  • FIG. 5 is a sectional view taken along line CC in FIG. 4.
  • FIG. It is a figure showing the groove part formed in the mirror holding member. It is a figure which shows the press-down point of a mirror presser spring. It is a figure which shows an example of the optical element and wiring arrange
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3.
  • 4 is a sectional view taken along line BB in FIG. 3.
  • FIG. 5 is a sectional view taken along line
  • FIG. 2 is a cross-sectional view showing an example of a cross section of a multilayer flexible wiring board. It is a perspective view which shows the through-hole formed in the movable part of a 2nd support mechanism, and the resin member inserted into this through-hole. It is a figure showing a specific example of a rotation regulation part. It is a figure showing an example of the irradiation range of measurement light. It is a figure showing one example of use of a measurement system. It is a figure showing an example of a reflector attached to a robot arm. It is a figure which shows another example of use of a measurement system.
  • FIG. 1 is a perspective view showing the external appearance of the measurement system 1.
  • FIG. 2 is a perspective view showing the internal configuration of the measurement system 1.
  • the measurement system 1 includes a main body 2 and a mirror accommodating section 3 that accommodates a mirror M.
  • the mirror accommodating portion 3 is rotatable around a ⁇ axis (see FIG. 3) extending along the Z axis.
  • the main body 2 houses an optical engine unit 40 and a control unit 50. Note that details of the optical engine unit 40 and control unit 50 will be described later.
  • the measurement system 1 also includes a gimbal mechanism 10 that includes a mirror accommodating section 3. Note that the Z-axis direction may be the direction of gravity.
  • the ⁇ axis does not have to extend along the Z axis (for example, the direction of gravity).
  • the ⁇ axis may extend along the X axis, for example.
  • a state in which the measurement system 1 is placed so that the ⁇ axis extends along the Z axis (for example, the direction of gravity) (see FIG. 1) is referred to as "vertical placement.”
  • the measurement system 1 may be placed “horizontally (for example, placed so that the ⁇ axis extends along the X axis)”.
  • FIG. 3 is a perspective view showing the main parts of the gimbal mechanism 10.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3.
  • FIG. 5 is a sectional view taken along line BB in FIG. 3.
  • FIG. 6 is a sectional view taken along line CC in FIG. 4.
  • the gimbal mechanism 10 moves the mirror M along a ⁇ axis (which may also be referred to as a "first rotation axis” or “elevation axis”) extending in a direction intersecting the Z axis (in FIG. 3, a direction along the X axis). ), and the first support mechanism 20 is supported rotatably around the ⁇ axis (which may also be referred to as a "second rotation axis" or “azimuth axis”).
  • a second support mechanism 30 is provided.
  • the second support mechanism 30 includes a movable part 31 and a fixed part 32.
  • the first support mechanism 20 and the movable part 31 constitute a part of the mirror accommodating part 3 mentioned above.
  • the direction in which the ⁇ axis extends i.e., the direction intersecting the Z axis
  • the direction in which the ⁇ axis extends changes according to the rotation of the first support mechanism 20 around the ⁇ axis. do.
  • the first support mechanism 20 includes a mirror holding member 21 that holds the mirror M, and portions 22a, 22b, and 22c. Note that the portions 22a, 22b, and 22c are rotatable around the ⁇ axis together with the mirror holding member 21 (in other words, integrally).
  • the movable part 31 has parts 31a, 31b, 31c, and 31d. Note that a cylindrical hollow portion 37 that constitutes a part of the optical path of the measurement light L is formed in the portion 31a.
  • the fixing portion 32 has portions 32a, 32b, and 32c.
  • the fixing part 32 includes a portion 32a (which may be referred to as a "first portion") disposed above the mirror M in FIG. and a portion 32c (which may be referred to as a “third portion”) that connects portions 32a and 32c.
  • the portions 32a, 32b, and 32c may be arranged such that the fixing portion 32 has a U-shape or a U-shape, for example.
  • the portions 32a, 32b, and 32c may be arranged such that the fixing portion 32 is, for example, H-shaped. With this configuration, the strength of the fixing portion 32 can be improved.
  • the portion 32a has a surface 321 facing the first support mechanism 20 and a surface 322 opposite to the surface 321.
  • the portion 32a has a tapered surface 323 that widens from the surface 321 toward the surface 322.
  • the portion 32b has a surface 324 facing the first support mechanism 20 and a surface 325 opposite to the surface 324.
  • Portion 32b has a tapered surface 326 that widens from surface 324 toward surface 325.
  • the portion 32c has a surface 327 facing the first support mechanism 20 and a surface 328 opposite to the surface 327.
  • Portion 32c has a tapered surface 329 that widens from surface 327 toward surface 328. Note that one or two of the portions 32a, 32b, and 32c may have a tapered surface, and the remaining portions may not have a tapered surface.
  • the chamfering angle of each tapered surface may be made the same. In this case, there is an advantage that processing costs can be suppressed. Furthermore, since the tapered surfaces of the portions 32a, 32b, and 32c are smoothly connected (in other words, form one surface), there is an advantage that the design of the measurement system 1 can be improved.
  • the fixed part 32 supports both ends of the movable part 31 in the direction along the ⁇ axis.
  • bearing members B1 and B2 such as ball bearings shown in FIG. 4, are arranged between the fixed part 32 and the movable part 31. ing.
  • the movable portion 31 of the second support mechanism 30 supports both ends of the first support mechanism 20 in the direction along the ⁇ axis (corresponding to line CC in FIG. 4).
  • a bearing member B3 such as a ball bearing shown in FIG. B4 is placed.
  • the first support mechanism 20 supported by the movable part 31 also rotates around the ⁇ axis.
  • the mirror M supported by the first support mechanism 20 also rotates around the ⁇ axis.
  • the first support mechanism 20 in the actual product has a plurality of configurations corresponding to the portions 22a, 22b, and 22c, respectively. It does not have to have any parts.
  • the first support mechanism 20 may include a component in which the mirror holding member 21 and the portions 22a, 22b, and 22c are integrally formed, instead of the portions 22a, 22b, and 22c.
  • the parts 31a, 31b, 31c, and 31d are numbered “31a,” “31b,” “31c,” and “31d,” but the parts corresponding to the movable part 31 in the actual product are parts 31a, 31b, 31c, and 31d. It is not necessary to include a plurality of component parts corresponding to the respective components.
  • the movable part 31 may be composed of one component, or may be composed of a plurality of components (not limited to four).
  • the parts corresponding to the fixing part 32 in the actual product are numbered “32a”, “32b”, and “32c”, but there are a plurality of parts corresponding to the parts 32a, 32b, and 32c, respectively. It does not have to contain any component parts.
  • the fixing part 32 may be composed of one component, or may be composed of a plurality of components (not limited to three).
  • the second support mechanism 30 includes a motor 33 that rotates the movable part 31 around the ⁇ axis, and an encoder 34 that detects the rotation angle of the movable part 31.
  • the encoder 34 includes a sensor section 34a and a wheel section 34b attached to a portion 31a of the movable section 31, for example. Note that various existing aspects can be applied to the encoder 34, so a detailed explanation thereof will be omitted. Encoder 34 may be referred to as a rotational displacement sensor.
  • the encoder 34 is placed on one side of the mirror M, and the motor 33 is placed on the other side of the mirror M in the direction in which the ⁇ axis extends (i.e., the Z-axis direction). . That is, only the encoder 34 may be placed on one side of the mirror M, and only the motor 33 may be placed on the other side of the mirror M. In other words, the motor 33 and the encoder 34 may be placed at positions sandwiching the mirror M therebetween.
  • the second support mechanism 30 further includes resin members 35 and 36 for dustproof and dripproof purposes. Note that the resin members 35 and 36 may be referred to as cover members. Note that the cover members 35 and 36 may be made of a metal member in addition to resin.
  • the first support mechanism 20 will be described with reference to FIGS. 6 to 8.
  • the first support mechanism 20 includes a motor 23 that rotates the mirror holding member 21 around the ⁇ axis, and an encoder 24 that detects the rotation angle of the mirror holding member 21.
  • the encoder 24 includes a sensor section 24a and a wheel section 24b attached to, for example, the section 22a. Note that various existing aspects can be applied to the encoder 24, so a detailed explanation thereof will be omitted. Encoder 24 may also be referred to as a rotational displacement sensor.
  • the motor 23 is arranged on the left side (also referred to as “one side") of the mirror M in the direction along the ⁇ axis.
  • the encoder 24 is arranged on the right side (also referred to as the “other side”) of the mirror M in the direction along the ⁇ axis.
  • the mass of the mirror holding member 21 is relatively light. Therefore, a relatively small motor (in other words, a motor with a relatively small maximum generated torque) can be used as the motor 23 that rotates the mirror holding member 21 around the ⁇ axis.
  • a relatively small motor in other words, a motor with a relatively small maximum generated torque
  • the motor 23 for example, a motor having substantially the same mass as the encoder 24 can be employed. In this case, by disposing the motor 23 on the left side of the mirror M and the encoder 24 on the right side of the mirror M in the direction along the ⁇ axis, the left and right masses of the first support mechanism 20 are balanced. can be made easier to maintain.
  • a space 4 that forms part of the optical path of the measurement light L is formed on the mirror holding member 21 on the reflective surface MS side of the mirror M. Therefore, in FIG. 6, the mass of the part of the first support member 20 above the reflection surface MS of the mirror M is greater than the mass of the other part of the first support member 20 below the reflection surface MS of the mirror M. becomes smaller. If no measures are taken, due to the shape of the mirror holding member 21, the center of gravity of the first support mechanism 20 will be located relatively away from the ⁇ axis (i.e., the rotation axis of the first support mechanism 20). Put it away.
  • the first support mechanism 20 has balance masses 25a and 25b. As long as the center of gravity of the first support mechanism 20 approaches the ⁇ axis, the masses and shapes of the balance masses 25a and 25b may be set as appropriate. In FIG. 6, the balance mass 25a is attached to the portion 22a, and the balance mass 25b is attached to the portion 22c, but the attachment positions of the balance masses 25a and 25b may be set as appropriate. However, it is desirable that the mounting positions of the balance masses 25a and 25b be set so that the center of gravity of the first support mechanism 20 approaches the intersection of the ⁇ -axis and the ⁇ -axis. Note that the number of balance masses is not limited to two, and may be one or three or more.
  • the first support mechanism 20 Since the first support mechanism 20 has the balance masses 25a and 25b, it is possible to suppress bias and variation in centrifugal force when the first support mechanism 20 operates, for example. As a result, for example, vibration of the measurement system 1 due to the operation of the first support mechanism 20 can be suppressed.
  • annular groove 21a is formed in a portion of the mirror holding member 21 surrounded by a dotted circle C1 in FIG.
  • the movable portion 31 of the second support mechanism 30 is formed with an annular convex portion 311 corresponding to the annular groove portion 21a.
  • the annular groove portion 21a is rotatably fitted into the annular convex portion 311.
  • the motor 23 and the encoder 24 are covered with a cover in order to be dustproof, dripproof, and prevent entanglement.
  • the mirror holding member 21 is in contact with the reflective surface MS of the mirror M at a portion surrounded by a dotted circle C2. Specifically, as shown in FIG. 8(a), the support points 211, 212, and 213 of the mirror holding member 21 are in contact with the reflective surface MS of the mirror M.
  • the mirror presser spring 26 presses down the surface of the mirror M opposite to the reflective surface MS. Note that the mirror presser spring 26 may also be referred to as an elastic member.
  • the pressing point 26a at which the mirror presser spring 26 applies its elastic force to the mirror M is the center of gravity of a triangle whose vertices are the three support points 211, 212, and 213.
  • the ratio of the distance between the support point 211 or 212 and the push-down point 26a and the distance between the support point 213 and the push-down point 26a in the left-right direction of FIG. 8(b) is approximately 1:2. becomes.
  • the optical engine unit 40 includes a light source 41, an interferometer head 42, and a detection section 43.
  • the light source 41 may include, for example, a light emitting element such as a laser diode.
  • the interferometer head 42 may include an optical element such as a half mirror, for example, and may emit part of the measurement light from the light source 41 and cause the other part to interfere with the measurement light L returned from the measurement target.
  • the detection unit 43 may include, for example, a photoelectric conversion element (also referred to as a "light receiving element") such as a photodiode, and may detect interference light from the interferometer head 42.
  • the light source 41 of the optical engine unit 40 may include an optical comb light source that can generate light (optical frequency comb) containing frequency components arranged at regular intervals on the frequency axis as pulsed light.
  • the optical engine unit 40 may be referred to as an illumination optical system.
  • a part of the measurement light L which is a laser beam or the like from the light source 41 via the interferometer head 42, is transmitted through the interferometer head 42 and the movable part 31 (specifically, the part) of the second support mechanism 30 shown in FIG.
  • the light enters the mirror M via the hollow portion 37 formed in the mirror M.
  • Optical elements 44 and 45 may be arranged in the hollow part 37, as shown in FIG. 9, for example. That is, optical elements 44 and 45 that transmit the measurement light L may be arranged above the mirror M in FIG. 9 . By arranging the optical elements 44 and 45 in the hollow portion 37, it is possible to prevent foreign matter such as dust or liquid from entering the interferometer head 42 from the mirror M side, for example.
  • the interferometer head 42 may have a portion 42a inserted into the hollow portion 37.
  • an optical member such as a lens, which transmits the measurement light L, may be arranged in the portion 42a.
  • the optical member disposed in the portion 42a may be a different optical member from the optical elements 44 and 45 described above.
  • a sealed space 46 may be formed by the optical elements 44 and 45.
  • the optical elements 44 and 45 may be made of parallel plane glass, for example. That is, each of the optical elements 44 and 45 may be a light-transmissive substrate having a first surface and a second surface through which the measurement light L passes, and the first surface and the second surface are parallel. Note that in order to reduce multiple interference between the first surface and the second surface, the first surface and the second surface may be slightly deviated from parallel.
  • the sealed space 46 may be a closed space without gas communication with the outside space.
  • the sealed space 46 may be a space in which gas flow with the external space is suppressed to such an extent that it can be considered to be substantially sealed.
  • an opening may be provided on the outer periphery of the hollow portion 37 to suppress the pressure difference between the sealed space 46 and the external space.
  • the optical element 44 by arranging the optical element 44 at an angle with respect to the optical path of the measurement light L, for example, some of the measurement light L emitted from the light source 41 is reflected on the surface of the optical element 44. Light can be prevented from entering the light source 41 and the detection unit 43.
  • the optical element A beam shift occurs in which the optical axis of the measurement light L that enters the optical element 44 and the optical axis of the measurement light L that has passed through the optical element 44 deviate from each other.
  • an optical element 45 is arranged in the hollow part 37 in addition to the optical element 44.
  • the optical element 45 is arranged to be tilted in a direction opposite to the direction in which the optical element 44 is tilted with respect to the optical path of the measurement light L.
  • control unit 50 will be described with reference to FIG. 2.
  • the control unit 50 includes a control section 51, a motor driver 52, a power supply section 53, and an exhaust fan 54.
  • the control unit 51 may include, for example, an FPGA (Field Programmable Gate Array) board.
  • the control unit 51 controls, for example, the optical engine unit 40 and the motor driver 52.
  • Motor driver 52 controls motors 23 and 33.
  • the power supply section 53 supplies power to, for example, the optical engine unit 40, the control section 51, the motor driver 52, and the exhaust fan 54.
  • the control unit 51 rotates the movable parts 31 of the first support mechanism 20 and the second support mechanism 30 by controlling the motors 23 and 33 via the motor driver 52. By rotating the first support mechanism 20 and the movable part 31, the attitude of the mirror M is changed. In other words, it can be said that the control unit 51 changes the attitude of the mirror M by controlling the motors 23 and 33 via the motor driver 52.
  • the control unit 51 acquires signals output from each of the sensor unit 24a of the encoder 24 and the sensor unit 34a of the encoder 34.
  • the control section 51 determines the rotation angle of the first support mechanism 30 and the rotation angle of the movable section 31 of the second support mechanism 30 based on the signals output from each of the sensor sections 24a and 34a.
  • the control unit 51 may specify the attitude of the mirror M based on the rotation angle of the first support mechanism 30 and the rotation angle of the movable part 31.
  • a part of the measurement light L from the light source 41 via the interferometer head 42 is incident on the mirror M.
  • the measurement light L enters the mirror M through a first optical path OP1 extending along the ⁇ axis.
  • the measurement light L reflected by the mirror M heads toward the measurement target through a second optical path OP2 extending along a direction that intersects both the direction in which the ⁇ -axis extends and the direction in which the ⁇ -axis extends.
  • the measurement light L reflected by the mirror M is irradiated onto the measurement target.
  • the attitude of the mirror M is changed using the first support mechanism 20 and the movable part 31 of the second support mechanism 30. That is, it can be said that in the measurement system 1, the posture of the mirror M is changed using the first support mechanism 20 and the second support mechanism 30, and the measurement light L is reflected by the mirror M toward the measurement target. In other words, it can be said that in the measurement system 1, the orientation of the mirror M is changed using the first support mechanism 20 and the second support mechanism 30, thereby changing the direction in which the second optical path OP2 is extended. Further, as shown in FIG. 10, it can be said that the mirror M is arranged at the intersection of the first optical path OP1 and the second optical path OP2.
  • a part of the optical path of the measurement light L (for example, the first optical path OP1) may be arranged on the ⁇ axis. Note that the first optical path OP1 may pass through the hollow section 37, or the first optical path OP1 may not pass through the hollow section 37.
  • the measurement light reflected by the measurement object (which may also be referred to as "return light”) follows a path that is approximately the same as the path taken by a portion of the measurement light L emitted from the light source 41 from the interferometer head 42 to the measurement object. It passes through the path and enters the interferometer head 42. The other part of the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target enter the detection unit 43 .
  • the detection unit 43 outputs a signal generated due to the other part of the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target to the control unit 51. Based on the signal output from the detection unit 43, the control unit 51 determines, for example, the phase difference between the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target. The control unit 51 may determine the distance from the measurement system 1 to the measurement target based on the determined phase difference.
  • the control unit 51 controls the distance from the measurement system 1 to the measurement target, the rotation angle of the first support mechanism 20 determined based on the signal output from the sensor unit 24a of the encoder 24, and the sensor unit 34a of the encoder 34.
  • the spatial coordinates of the measurement target may be determined based on the rotation angle of the movable portion 31 determined based on the signal output from the .
  • the spatial coordinates of the measurement target determined by the control unit 51 may be spatial coordinates in the coordinate system related to the measurement system 1.
  • control unit 50 may include a tilt sensor for detecting the tilt of the measurement system 1.
  • control unit 51 may correct the above-determined spatial coordinates of the measurement target based on the output of the tilt sensor.
  • the measurement system 1 can irradiate the measurement target with the measurement light L. For this reason, the measurement system 1 may be referred to as a beam irradiation system.
  • the control unit 51 uses the first support mechanism 20 and the second support mechanism 30 (specifically, the motor 22 that rotates the first support mechanism 20 around the ⁇ axis). , by controlling the motor 33 that rotates the movable part 31 of the second support mechanism 30 around the ⁇ axis) to change the attitude of the mirror M, irradiation of the measurement light L to the measurement target may be continued.
  • the optical engine unit 40 can output the measurement light L and can receive light from the measurement target, it may be referred to as a light transmitting/receiving optical system or as a light receiving optical system. Good too.
  • the mirror accommodating portion 3 is configured to be rotatable around the ⁇ axis. For example, if no measures are taken for the wiring connected to electrical components arranged inside the mirror housing 3, such as the motor 23 and the encoder 24, the wiring will move casually as the mirror housing 3 rotates. There is a risk that this may occur. As a result, for example, due to the wiring rubbing against the constituent members of the measurement system 1, the rotation of the mirror accommodating section 3 (in other words, the attitude of the mirror M) may be affected, or the wiring may be damaged. There is a possibility that dirt may adhere to the components of the measurement system 1.
  • a cylindrical hollow portion 38 is formed in the portion 31d of the movable portion 31 of the second support mechanism 30.
  • a wiring 61 shown in FIG. 9 may be arranged in this hollow part 38.
  • the wiring 61 may include, for example, a flexible printed wiring board.
  • the wiring 61 may have a spiral portion 61a arranged in a spiral around the ⁇ axis, and a straight portion 61b extending from the spiral portion 61a along the ⁇ axis.
  • “Extending along the ⁇ axis” does not necessarily mean “extending on the ⁇ axis", but also means “extending in parallel with the ⁇ axis (in other words, on another axis parallel to the ⁇ axis)" may be included.
  • the ⁇ axis may be translated as the optical axis of the measurement light L.
  • the straight portion 61b of the wiring 61 may be supported by the wiring support member 64. A portion of the wiring support member 64 may extend along the ⁇ axis.
  • the wiring support member 64 may be attached to the movable part 31, for example. In this case, the wiring support member 64 may extend from the movable part 31 or may be attached to a stay extending from the movable part 31. Note that the wiring support member 64 may be attached to the fixing part 32, for example. In this case, it can be said that the wiring support member 64 extends from the fixed part 32.
  • the wiring 61 may have another spiral portion between the straight portion 61b and the connector portion 63 instead of or in addition to the spiral portion 61a. That is, another spiral portion may be formed between the straight portion 61b and the connector portion 63.
  • the spiral portion 61a of the wiring 61 is wound or unwound as the movable portion 31 rotates around the ⁇ axis. If the spiral portion 61a were not present, a portion of the wiring 61 necessary for rotating the movable portion 31 around the ⁇ axis would have to be bent and placed (accommodated) in the hollow portion 38. On the other hand, since the wiring 61 has the spiral portion 61a, there is no need to bend a part of the wiring 61. In other words, it can be said that the spiral portion 61a absorbs the deflection.
  • Such characteristics of the spiral portion 61a of the wiring 61 prevent the wiring 61 from rubbing against the movable part 31 due to rotation of the movable part 31 around the ⁇ axis (in other words, rotation of the mirror housing part 3). be able to. Therefore, it is possible to prevent the wiring 61 from being damaged due to the rotation of the mirror accommodating portion 3. Further, it is possible to prevent dirt from adhering to the movable part 31 due to the rotation of the mirror accommodating part 3. Furthermore, the rotation of the mirror accommodating portion 3 can be prevented from being influenced by the wiring 61.
  • a connector portion 62 is provided at one end of the wiring 61.
  • a connector portion 63 is provided at the other end of the wiring 61.
  • the connector section 62 is connected to a connector section (not shown) arranged inside the main body section 2 of the measurement system 1 shown in FIG. 2.
  • the connector portion 63 is connected to a connector portion (not shown) disposed on at least one of the movable portion 31 of the second support mechanism 30 and the first support mechanism 20.
  • a wiring E1 connected to the connector portion 63 is connected to the motor 23.
  • a wiring E2 connected to the connector section 63 is connected to the sensor section 24a of the encoder 24. As shown in FIG.
  • a portion of the wiring 61 near the connector portion 62 may extend in the direction along the ⁇ axis outside the movable portion 31 (that is, within the main body portion 2).
  • the connector portion 62 and the portion of the wiring 61 near the connector portion 62 may be attached to a stay extending from the fixed portion, for example.
  • the stay may have a shape (for example, an L-shape) that follows the connector portion 62 and the portion of the wiring 61 near the connector portion 62 .
  • the wiring 61 may be, for example, a multilayer flexible printed wiring board including insulating layers 611, 613, and 615 and conductive layers 612 and 614, as shown in FIG.
  • the conductive layer 612 may constitute, for example, a part of an electric path connecting the motor 23 and the power supply section 53 and a signal path connecting the motor 23 and the motor driver 52.
  • the conductive layer 614 may constitute, for example, a part of an electric path connecting the sensor section 24a and the power supply section 53 and a signal path connecting the sensor section 24a and the control section 51.
  • other wiring may be arranged in the hollow portion 38. That is, two or more wirings may be arranged in the hollow portion 38.
  • the other wiring may be connected to either the motor 23 or the sensor part 24a of the first support mechanism 20, or the 23 and the sensor section 24a (not shown), or may be connected to an electrical component of the second support mechanism 30.
  • the wiring 61 is arranged in the hollow part 38 on the opposite side to the hollow part 37 that forms part of the optical path of the measurement light L. If the wiring 61 is placed in the hollow portion 37, the wiring 61 must be placed so as to avoid the optical path of the measurement light L. On the other hand, if the wiring 61 is placed in the hollow part 38, even if the optical path of the measurement light L coincides with the ⁇ axis (i.e., the rotation axis of the movable part 31), the wiring 61 The degree of freedom in design can be improved.
  • the wiring 61 is placed in the hollow part 37, a space for the optical path of the measurement light L and a space for the wiring 61 must be secured in the hollow part 37, so the diameter of the hollow part 37 must be There is a risk that it will become relatively large. Then, for example, the movable portion 31 of the second support member 30 may become relatively large.
  • the diameter of the hollow part 37 can be made relatively small. In addition, the diameter of the hollow portion 38 can also be made relatively small.
  • the wiring 61 and the wiring support member 64 can be placed near the ⁇ axis. Therefore, the force applied to the wiring 61 due to the rotation of the movable part 31 can be kept relatively small. As a result, it is possible to avoid, for example, increasing the thickness of the wiring 61 in order to increase the strength of the wiring 61 or increasing the strength of the fixing structure for fixing the wiring 61 to the wiring support member 64 too much.
  • the wiring 61 may move due to rotation of the movable part 31, for example. Then, rotation of the movable part 31 may be hindered due to the tension of the wiring 61. On the other hand, since the straight portion of the wiring 61 extending along the ⁇ axis is fixed to the wiring support member 64, smooth rotation of the movable portion 31 can be realized.
  • a through hole 39 extending along the ⁇ axis is formed in the movable portion 31 of the second support member 30.
  • the through hole 39 communicates with the hollow portion 38 .
  • a portion of the wiring 61 may be placed in the through hole 39 .
  • An opening 313 may be formed in the movable portion 31 due to the through hole 39 . By forming the opening 313, for example, the wiring 61 can be arranged relatively easily.
  • the resin member 36 is inserted into the through hole 39.
  • the wiring 61 is not visible from the outside of the measurement system 1 due to the presence of the resin member 36.
  • the opening 313 is closed by the resin member 36, it is possible to prevent, for example, dust or liquid from entering the hollow portion 38.
  • the portion of the resin member 36 that closes the opening 313 has a surface shape that smoothly connects to the surface shape of the movable portion 31. Therefore, by inserting the resin member 36 into the through hole 39, it can be expected that the shape and the like of the movable part 31 will be visually aesthetically pleasing.
  • the encoder 34 is disposed above (also referred to as “one side") with respect to the mirror M in the direction along the ⁇ axis, and the encoder 34 is arranged on the optical path of the measurement light L.
  • a hollow portion 37 that constitutes a part is formed.
  • a motor 33 is disposed below the mirror M (which may also be referred to as the "other side"), and a hollow portion 38 is formed.
  • the optical path of the measurement light L is arranged above the mirror M in the direction along the ⁇ axis.
  • wiring for example, wiring 61, etc. connected to electrical components of the first support mechanism 20, such as the motor 23 and the encoder 24, is arranged below the mirror M in the direction along the ⁇ axis. has been done.
  • the center of gravity of the gimbal mechanism 10 (and further, the center of gravity of the measurement system 1) can be made relatively low. Therefore, for example, the stability of the operation of the measurement system 1 can be improved.
  • the second support mechanism 30 may include two rotation regulation parts (not shown) that regulate rotation of the movable part 31 around the ⁇ axis.
  • Each of the two rotation regulating parts may include a rotor that rotates together with the movable part 31 and a stator whose position is fixed.
  • One of the two rotation regulating sections may be arranged near the encoder 34, for example.
  • the other rotation regulating section of the two rotation regulating sections may be arranged near the motor 33, for example. That is, one of the rotation regulating parts may be arranged above the mirror M in FIG. 4, for example.
  • the other rotation regulating section may be arranged below the mirror M in FIG. 4, for example.
  • One of the rotation regulating parts may regulate the rotation of the movable part 31, for example, when the movable part 31 rotates clockwise around the ⁇ axis when the movable part 31 is viewed from above in FIG. It can be said that the one rotation regulating section regulates the amount of rotation of the mirror M in the first rotation direction about the ⁇ axis.
  • the other rotation regulating section may regulate the rotation of the movable section 31 when the movable section 31 rotates to the left around the ⁇ axis when the movable section 31 is viewed from above in FIG. 3, for example. It can be said that the other rotation regulating section regulates the amount of rotation of the mirror M around the ⁇ axis in the second rotation direction opposite to the first rotation direction.
  • the rotation regulating portion may include a rotor 71 on which a protrusion 711 is formed, and a stator 72 on which a protrusion 721 that can come into contact with the protrusion 711 is formed.
  • the rotation of the movable part 31 may be restricted by the protrusion 711 of the rotor 71, which rotates as the movable part 31 rotates, coming into contact with the protrusion 721 of the stator 72.
  • the rotation regulating section may regulate, for example, the protrusions 711 and 721 from rotating the movable section 31 about the ⁇ axis by more than a predetermined rotation amount from the reference position.
  • the control section 51 instructs the motor driver 52 to rotate the motor 33, there is no change in the rotation angle of the movable section 31 based on the signal from the sensor section 34a of the encoder 34.
  • the motor driver 52 may be controlled to stop driving the motor 33.
  • a member 722 such as a shock absorber or a cushioning material may be disposed on the protrusion 721 of the stator 72.
  • the protrusion 721 of the stator 72 may be provided with a switch 723 that detects when the protrusion 711 of the rotor 71 contacts the protrusion 721 of the stator 72.
  • the switch 723 may transmit, for example, a signal indicating that the protrusion 711 has contacted the protrusion 721 to the control unit 51.
  • the control unit 51 When the control unit 51 receives the signal, it may control the motor driver 52 to stop driving the motor 33.
  • the positions of are different from each other.
  • the protrusion of the rotor 71a of the one rotation regulating part and the protrusion of the rotor 71b of the other rotation regulating part are arranged at different positions in the circumferential direction around the ⁇ axis.
  • One of the rotation regulating portions regulates the rotation of the movable portion 31 within the range of angle ⁇ 1 around the ⁇ axis.
  • the other rotation regulating portion regulates the rotation of the movable portion 31 within the range of angle ⁇ 2 around the ⁇ axis.
  • This overlapping area may be, for example, an area used for the stroke of a member 722 (shock absorber, buffer material, etc.) shown in FIG. 13(b).
  • the area may correspond to a range in which the movable part 31 rotates due to inertia when the rotation restriction part does not have a mechanical restriction member such as a protrusion.
  • the control unit 51 may control the motor driver 52 to stop driving the motor 33.
  • the encoder 34 may function as a rotation regulating section.
  • Such a rotation restricting portion can prevent, for example, the mirror housing portion 3 (in other words, the movable portion 31 of the second support mechanism 30) from rotating indefinitely to one side around the ⁇ axis.
  • wiring for example, wiring 61, E1, E2, etc.
  • the second support mechanism 30 With the second support mechanism 30 with the rotation regulating section, it is possible to prevent any problem from occurring in the wiring due to the rotation of the movable section 31.
  • the mirror holding member 21 may be freely rotatable around the ⁇ axis.
  • the fixing part 32 of the second support mechanism 30 may have a tapered surface (numerals "323” and “326” in FIG. 4 and symbol “329” in FIG. 5). reference).
  • the measurement system 1 can irradiate the measurement light L onto the measurement target existing within the range of angle ⁇ 3 around the ⁇ axis, as shown in FIG. 14(a).
  • the measurement system 1 is capable of irradiating the measurement light L onto the measurement target existing within the range of angle ⁇ 4 around the ⁇ axis, as shown in FIG. 14(b).
  • the position of the mirror M in a state where the normal direction of the mirror M and the normal direction of the surface 327 of the portion 32c of the fixed part 32 is Use as reference position.
  • the angle of the mirror M around the ⁇ axis is 0 degrees
  • the angle around the ⁇ axis is 0 degrees.
  • the range of the angle ⁇ 3 may be, for example, from +45 degrees to -45 degrees. It may be possible to irradiate measurement light in a range of +45 degrees or more and -45 degrees or more by providing a.
  • the range of the angle ⁇ 4 may be, for example, from +120 degrees to -120 degrees.
  • the portion 32c may be narrowed, the angle of the tapered surface may be made steeper, or an opening may be provided at a predetermined position on the surface 327 of the portion 32c. By doing so, it may be possible to irradiate measurement light in a range of +120 degrees or more and -120 degrees or more.
  • the fixed part 32 is formed with a tapered surface that narrows toward the mirror M side, the movable part 31 of the second support mechanism 30 is supported by the fixed part 32 on both sides in the direction in which the ⁇ axis extends. Also, the measurement range of the measurement system 1 can be made relatively wide. That is, according to the measurement system 1, it is possible to ensure the support strength of the movable part 31 by the fixed part 32 while making it possible to measure a relatively wide range.
  • the movable part 31 of the second support mechanism 30 constituting the mirror accommodating part 3 has a second support mechanism 31 on both one side and the other side in the direction in which the ⁇ axis extends. It is supported by a fixed part 32 of a mechanism 30. Therefore, in the direction in which the ⁇ axis extends, the rigidity of the second support mechanism 30 can be lowered compared to a case where only one of the movable parts 31 is supported by the fixed part 32.
  • the higher the rigidity the more susceptible to thermal deformation.
  • the rigidity of the second support mechanism 30 can be made relatively low, and the rigidity of the second support mechanism 30 can be made relatively low. can be made less susceptible to thermal deformation.
  • the rigidity of the second support mechanism 30 can be lowered, the components of the second support mechanism 30 (and the first support mechanism 20) can be made smaller. As a result, the measurement system 1 can be made smaller and lighter. Furthermore, the diameters of the bearing members B1, B2, B3, and B4 can be made relatively small. Then, the manufacturing accuracy of the bearing members B1, B2, B3, and B4 can be made relatively high. As a result, the accuracy of measurement results related to the measurement system 1 can be improved.
  • the mirror accommodating part 3 including the movable part 31 is rotatable, while the optical engine unit 40 and the like are housed in the main body part 2 different from the mirror accommodating part 3, for example.
  • the number of movable members can be minimized compared to a configuration in which the configuration corresponding to the optical engine unit 40 also moves due to the change in the attitude of the mirror.
  • a heat source and a vibration source such as the optical engine unit 40, can be placed at a relatively distant position from the rotatable mirror housing 3.
  • the measurement system 1 may be used, for example, to measure the positions of the workpiece W and the robot 81 shown in FIG. 15.
  • the robot 81 may process the workpiece W held by the jig 90.
  • the workpiece W may be a relatively large structure such as the fuselage of an aircraft, for example.
  • the measurement system 1 determines the position of the measurement object (the "spatial coordinates" in "4. ) can be measured.
  • a reflector r11 is attached to a jig 90 as a measurement target.
  • Reflectors r12 and r13 are attached to the work W as a measurement target. Note that while no reflector is attached to the workpiece W, at least three reflectors may be attached to the jig 90.
  • the measurement system 1 may measure the position of each of the reflectors r11, r12, and r13 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r11, r12, and r13.
  • the measurement system 1 may measure the position of each of the reflectors r21, r22, and r23 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r21, r22, and r23.
  • Measurement coordinate system means a coordinate system related to the measurement system 1 (in other words, unique to the measurement system 1).
  • the measurement coordinate system may be, for example, an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis that are orthogonal to each other.
  • measuring the position of the workpiece W is not limited to directly measuring the position of a specific point on the workpiece W, but also includes, for example, measuring the positions of reflectors r12 and r13 attached to the workpiece W. , the concept may include measuring the position of the reflector r11 attached to the jig 90 that holds the workpiece W.
  • “measuring the position of the robot 41” is not limited to directly measuring the position of a specific location on the robot 41, but includes, for example, the reflector module r2 (in other words, the reflector r21, r22 and r23). Note that the reflector module r2 may include reflectors r21, r22, and r23, and a member r2a on which the reflectors r21, r22, and r23 are arranged.
  • control unit 51 of the measurement system 1 shown in FIG. may be transmitted to the measurement control device 200.
  • the measurement control device 200 is configured to be able to communicate with a processing control device 300 that controls the robot 81 via a network (not shown).
  • the processing control device 300 controls the robot 81 under a robot coordinate system that is a coordinate system related to the robot 81, for example. Specifically, the processing control device 300 sets a path along which a point on the robot arm 810 of the robot 81 moves under the robot coordinate system. Processing control device 300 controls robot 81 so that one point on robot arm 810 moves along a set path.
  • the TCP roughly specifies the position of the portion of the end effector EE attached to the tip of the robot arm 810 that acts on the workpiece.
  • the robot coordinate system may be, for example, an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis that are orthogonal to each other.
  • the measurement system 1 and the processing control device 300 each use their own coordinate systems (i.e., measurement coordinate system, robot coordinate system). Therefore, in order to use the measurement results by the measurement system 1 (for example, the position of the reflector r11, etc.) in the processing control device 300, it is necessary to convert the measurement coordinate system and the robot coordinate system.
  • the positions of each of the reflectors r21, r22, and r23 measured by the measurement system 1 are different from the position of the TCP. Therefore, it is necessary to determine the position of the TCP based on the position of each of the reflectors r21, r22, and r23.
  • the measurement control device 200 based on the positions of each of the reflectors r11, r12, and r13 in the measurement coordinate system measured by the measurement system 1, and the positions of each of the reflectors r11, r12, and r13 in the robot coordinate system, Coordinate transformation information for transforming the position in the measurement coordinate system and the position in the robot coordinate system may be obtained. It is assumed that the positions of the reflectors r11, r12, and r13 in the robot coordinate system are known.
  • the position of the TCP may be measured, for example, as follows.
  • a jig 91 has a hole H into which a rod-shaped end effector EE is inserted.
  • a sensor S for measuring the end effector EE is arranged at the bottom of the hole H. It is assumed that the jig 91 is fixed so that its position does not change. For example, it is assumed that the position of the sensor S in the robot coordinate system, in other words, the position of the bottom surface of the hole H of the jig 91 is known.
  • the position of the TCP of the end effector EE is identified as the position of the sensor S. be done. In this way, the position of the TCP in the robot coordinate system may be measured.
  • the positional relationship between the position of each of the reflectors r21, r22, and r23 and the position of the TCP is uniquely determined.
  • the measurement control device 200 may acquire the positions of each of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 in the first state. For example, the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. .
  • the measurement control device 200 determines the position of the TCP based on the position of each of the reflectors r21, r22, and r23 in the robot coordinate system and the position of the TCP in the robot coordinate system. You may obtain location conversion information for
  • the measurement control device 200 may acquire the positions of each of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 in a second state different from the first state. For example, the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. . For example, the measurement control device 200 may determine the position of the TCP in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system.
  • the measurement control device 200 may transmit a position signal indicating the position of the TCP in the robot coordinate system to the processing control device 300.
  • the processing control device 300 may control the robot 81 based on the position of the TCP in the robot coordinate system.
  • the processing control device 300 may transmit position signals indicating the positions of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 to the processing control device 300 in the second state.
  • the processing control device 300 converts the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system based on the coordinate conversion information described above. good.
  • the processing control device 300 may determine the position of the TCP in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system.
  • the measurement system 1 changes the attitude of the mirror M using the first support mechanism 20 and the second support mechanism 30, for example, while the robot arm 810 of the robot 81 is moving, thereby measuring the reflectors r21, r22 and The irradiation of the measurement light L to at least one of r23 may be continued.
  • the measurement system 1 uses the first support mechanism 20 and the second support mechanism 30 to support the mirror M so that the measurement light L follows at least one of the reflectors r21, r22, and r23 as the measurement target. You may change your posture.
  • the first support mechanism 20 and the second support mechanism 30 are used so that at least one of the reflectors r21, r22, and r23 as a moving measurement target is located in the second optical path OP2.
  • the attitude of mirror M may be changed.
  • the workpiece W may be processed by a plurality of robots 81, 82, and 83.
  • the processing control device 300 may control a plurality of robots 81, 82, and 83, respectively.
  • the robot coordinate system described above may be a common coordinate system for the plurality of robots 81, 82, and 83, or a robot coordinate system may be set for each robot (i.e., a robot coordinate system may be set for each robot. (One robot coordinate system may be set, and another robot coordinate system may be set for another robot.)
  • a reflector module r2 including reflectors r21, r22, and r23 shown in FIG. 16 is attached to the robot arm 810 of the robot 81. However, in FIG. 17, illustration of the reflector module r2 is omitted. Similarly, a reflector module including three reflectors is attached to the robot arm 820 of the robot 82. A reflector module including three reflectors is attached to the robot arm 830 of the robot 83.
  • the measurement system 1 determines the positions of the reflectors r21, r22, and r23 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r21, r22, and r23 included in the reflector module r2 attached to the robot arm 810. measure.
  • the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. .
  • the measurement control device 200 determines the position of the TCP (see FIG. 16) related to the robot arm 810 in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system. You can ask for.
  • the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 810 in the robot coordinate system to the processing control device 300.
  • the processing control device 300 may control the robot 81 based on the position of the TCP related to the robot arm 810 in the robot coordinate system.
  • the measurement system 1 measures the position of each of the three reflectors in the measurement coordinate system based on the measurement light L irradiated to each of the three reflectors included in the reflector module attached to the robot arm 820.
  • the measurement control device 200 uses the coordinate conversion information described above to convert the positions of the three reflectors attached to the robot arm 820 in the measurement coordinate system to the positions of each of the three reflectors in the robot coordinate system. It's fine. For example, the measurement control device 200 determines the position of the robot based on the second position conversion information obtained in the same manner as the position conversion information described above and the positions of the three reflectors attached to the robot arm 820 in the robot coordinate system. The position of a TCP (not shown) associated with robot arm 820 in the coordinate system may be determined.
  • the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 820 in the robot coordinate system to the processing control device 300.
  • the processing control device 300 may control the robot 82 based on the position of the TCP related to the robot arm 820 in the robot coordinate system.
  • the measurement system 1 measures the position of each of the three reflectors in the measurement coordinate system based on the measurement light L irradiated to each of the three reflectors included in the reflector module attached to the robot arm 830.
  • the measurement control device 200 uses the coordinate conversion information described above to convert the positions of the three reflectors attached to the robot arm 830 in the measurement coordinate system to the positions of each of the three reflectors in the robot coordinate system. It's fine. For example, the measurement control device 200 determines the position of the robot based on the third position conversion information obtained in the same manner as the position conversion information described above and the positions of each of the three reflectors attached to the robot arm 830 in the robot coordinate system. The position of a TCP (not shown) associated with robot arm 830 in the coordinate system may be determined.
  • the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 830 in the robot coordinate system to the processing control device 300.
  • the processing control device 300 may control the robot 83 based on the position of the TCP related to the robot arm 830 in the robot coordinate system.
  • the second position conversion information is information for determining the position of the TCP related to the robot arm 820 based on the positions of each of the three reflectors attached to the robot arm 820.
  • the third position conversion information is information for determining the position of the TCP related to the robot arm 830 based on the positions of each of the three reflectors attached to the robot arm 830.
  • the optical engine unit 40 measures the rejection to the measurement target using an optical interference method, but there is also a method for measuring the TOF (Time of Flight) of the optical pulse, and the intensity, wavelength, etc. are modulated.
  • TOF Time of Flight
  • Various methods can be used, such as a method of measuring the arrival time of laser light.
  • An irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the second support mechanism includes: a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis; The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis.
  • the optical path of the measurement light is arranged on one side with respect to the mirror in the direction of the second rotation axis, Wiring connected to electrical components of the first support mechanism is arranged on the other side with respect to the mirror in the direction of the second rotation axis, A measurement system, wherein the first support mechanism and the second support mechanism are used to change the attitude of the mirror, and the mirror reflects the measurement light toward a measurement target.
  • a first hollow part is formed on the one side of the second support mechanism, A second hollow portion is formed on the other side of the second support mechanism, The measurement system according to supplementary note 1, wherein the wiring is arranged in the second hollow part.
  • An irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the second support mechanism includes: a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis; The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis. a fixed part that supports the measurement system.
  • An irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light toward a measurement target; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the second support mechanism includes: a motor disposed on one side of the mirror in the direction of the second rotation axis, the motor rotating the mirror around the second rotation axis; Wiring connected to electrical components of the first support mechanism is arranged on the one side in the direction of the second rotation axis; measurement system.
  • An irradiation optical system capable of outputting a beam, a mirror that reflects the beam; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the second support mechanism includes: a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis; The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis.
  • the optical path of the measurement light is arranged on one side with respect to the mirror in the direction of the second rotation axis, Wiring connected to electrical components of the first support mechanism is arranged on the other side with respect to the mirror in the direction of the second rotation axis, A beam irradiation system, wherein the first support mechanism and the second support mechanism are used to change the attitude of the mirror, and the mirror reflects the measurement light toward a measurement target.
  • An irradiation optical system capable of outputting a beam, a mirror that reflects the beam toward a measurement target; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the second support mechanism includes: a rotational displacement sensor that is disposed on one side of the mirror in the direction of the second rotation axis and detects rotational displacement of the mirror; a motor that is disposed on the other side of the mirror in the direction of the second rotation axis and rotates the mirror around the second rotation axis; Beam irradiation system.
  • An irradiation optical system capable of outputting a beam, a mirror that reflects the beam toward a measurement target; a first support mechanism that rotatably supports the mirror around a first rotation axis; a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
  • the first support mechanism includes: a motor that is disposed on one side of the mirror in the direction of the first rotation axis and rotates the mirror around the first rotation axis; a rotational displacement sensor that is disposed on the other side of the mirror in the direction of the first rotation axis and detects rotational displacement of the mirror; Beam irradiation system.
  • the second support mechanism includes: a movable part that supports the first support mechanism at both ends in a direction along the second rotation axis and rotates the first support mechanism around the second rotation axis;
  • the movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotated around the second rotation axis.
  • a fixed part capable of supporting has The optical path of the measurement light is arranged on one side with respect to the mirror in the direction along the second rotation axis, A measuring method, wherein wiring connected to electrical components of the first support mechanism is arranged on the other side of the mirror in the direction along the second rotation axis.
  • a measurement method in a measurement system comprising a mechanism, Outputting measurement light from the irradiation optical system; a rotational displacement sensor disposed on one side of the mirror in the direction of the second rotation axis, detecting rotational displacement of the mirror; A motor disposed on the other side of the mirror in the direction of the second rotation axis rotates the mirror around the second rotation axis; Measurement methods including.
  • a measurement method in a measurement system comprising a mechanism, Outputting measurement light from the irradiation optical system; A motor disposed on one side of the mirror in the direction of the first rotation axis rotates the mirror around the first rotation axis; a rotational displacement sensor disposed on the other side of the mirror in the direction of the first rotation axis, detecting rotational displacement of the mirror; Measurement methods including.
  • SYMBOLS 1 Measurement system, 2... Main body part, 3... Mirror housing part, 10... Gimbal mechanism, 20... First support mechanism, 21... Mirror holding member, 23, 33... Motor, 24, 34... Encoder, 30... Second Support mechanism, 31... Movable part, 32... Fixed part, 35, 36... Resin member, 37, 38... Hollow part, 40... Optical engine unit, 41... Light source, 42... Interferometer head, 43... Detecting part, 50... Control unit, 51...Control unit, 52...Motor driver, 53...Power supply unit, M...Mirror

Abstract

Provided is a measurement system comprising: an irradiation optical system capable of outputting measurement light; a mirror that reflects the measurement light; a first support mechanism that supports the mirror so that the mirror is rotatable around a first rotation axis; and a second support mechanism that supports the first support mechanism so that the first support mechanism is rotatable around a second rotation axis. The second support mechanism has: a movable portion that supports the first support mechanism at opposite ends in a direction along the first rotation axis and allows the first support mechanism to rotate around the second rotation axis; and a fixed portion that supports the movable portion at one side and an opposite side of the first support mechanism in a direction along the second rotation axis so that the movable portion is rotatable around the second rotation axis. The optical path of the measurement light is disposed at one side of the mirror in the direction along the second rotation axis. Wiring connected to an electrical component of the first support mechanism is disposed at an opposite side of the mirror in the direction along the second rotation axis. The measurement system changes the attitude of the mirror using the first support mechanism and the second support mechanism, so that the mirror reflects the measurement light toward an object being measured.

Description

計測システムmeasurement system
 本発明は、計測システムの技術分野に関する。 The present invention relates to the technical field of measurement systems.
 この種のシステムとして、レーザトラッカを有するシステムが提案されている(特許文献1参照)。 As this type of system, a system having a laser tracker has been proposed (see Patent Document 1).
国際公開第2003/62744号International Publication No. 2003/62744
 第1の態様によれば、計測光を出力可能な照射光学系と、前記計測光を反射するミラーと、前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、前記第2支持機構は、前記第1支持機構を、前記第1の回転軸に沿った方向の両端で支持し、前記第2の回転軸回りに回転させる可動部と、前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ、前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、を有し、前記第2の回転軸に沿った方向において、前記ミラーに対して一の側に、前記計測光の光路が配置され、前記第2の回転軸に沿った方向において、前記ミラーに対して他の側に、前記第1支持機構の電装部品に接続された配線が配置されており、前記第1支持機構と前記第2機構とを用いて前記ミラーの姿勢を変えて、前記ミラーで前記計測光を計測対象に向けて反射する計測システムが提供される。 According to the first aspect, an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light, a first support mechanism that supports the mirror rotatably about a first rotation axis, and the a second support mechanism that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis; a movable part supported at both ends in the direction along the first rotation axis and rotated around the second rotation axis; and one side with respect to the first support mechanism in the direction along the second rotation axis. and a fixed part that supports the movable part on the other side and rotatably supports the movable part around the second rotation axis, and a fixed part that supports the movable part in a direction along the second rotation axis. The optical path of the measurement light is arranged on one side with respect to the mirror, and the electrical equipment of the first support mechanism is arranged on the other side with respect to the mirror in the direction along the second rotation axis. A measurement system in which wiring connected to a component is arranged, the attitude of the mirror is changed using the first support mechanism and the second mechanism, and the measurement light is reflected toward the measurement target by the mirror. is provided.
 第2の態様によれば、計測光を出力可能な照射光学系と、前記計測光を計測対象に向けて反射するミラーと、前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備え、前記第2支持機構は、前記第2の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーの回転変位を検出する回転変位センサと、前記第2の回転軸の方向において、前記ミラーの他の側に配置され、前記ミラーを前記第2の回転軸回りに回転させるモータと、を備える計測システムが提供される。 According to the second aspect, there is provided an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light toward a measurement target, and a first mirror that supports the mirror rotatably about a first rotation axis. a support mechanism; and a second support mechanism that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis, and the second support mechanism a rotational displacement sensor disposed on one side of the mirror in the direction of the rotation axis to detect rotational displacement of the mirror; and a rotational displacement sensor disposed on the other side of the mirror in the direction of the second rotation axis, the A measurement system is provided that includes a motor that rotates a mirror around the second rotation axis.
 第3の態様によれば、計測光を出力可能な照射光学系と、前記計測光を計測対象に向けて反射するミラーと、前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備え、前記第1支持機構は、前記第1の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーを前記第1の回転軸回りに回転させるモータと、前記第1の回転軸の方向において、前記ミラーの他の側に配置され、前記ミラーの回転変位を検出する回転変位センサと、を備える計測システムが提供される。 According to the third aspect, there is provided an irradiation optical system capable of outputting measurement light, a mirror that reflects the measurement light toward a measurement target, and a first mirror that supports the mirror rotatably about a first rotation axis. a support mechanism; and a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis, and the first support mechanism a motor disposed on one side of the mirror in the direction of the rotation axis to rotate the mirror around the first rotation axis; and a motor disposed on the other side of the mirror in the direction of the first rotation axis. and a rotational displacement sensor that detects rotational displacement of the mirror.
計測システムの外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the measurement system. 計測システムの内部構造を示す透視図である。FIG. 2 is a perspective view showing the internal structure of the measurement system. ジンバル機構の要部を示す斜視図である。FIG. 3 is a perspective view showing the main parts of the gimbal mechanism. 図3のA-A線断面図である。FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3. 図3のB-B線断面図である。4 is a sectional view taken along line BB in FIG. 3. FIG. 図4のC-C線断面図である。5 is a sectional view taken along line CC in FIG. 4. FIG. ミラー保持部材に形成された溝部を示す図である。It is a figure showing the groove part formed in the mirror holding member. ミラー押さえばねの押下点を示す図である。It is a figure which shows the press-down point of a mirror presser spring. 第2支持機構に配置された光学素子及び配線の一例を示す図である。It is a figure which shows an example of the optical element and wiring arrange|positioned at the 2nd support mechanism. 計測光の光路の一例を示す図である。It is a figure showing an example of the optical path of measurement light. 多層フレキシブル配線板の断面の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a cross section of a multilayer flexible wiring board. 第2支持機構の可動部に形成された貫通孔と、該貫通孔に挿入される樹脂部材とを示す斜視図である。It is a perspective view which shows the through-hole formed in the movable part of a 2nd support mechanism, and the resin member inserted into this through-hole. 回転規制部の具体例を示す図である。It is a figure showing a specific example of a rotation regulation part. 計測光の照射範囲の一例を示す図である。It is a figure showing an example of the irradiation range of measurement light. 計測システムの一の使用例を示す図である。It is a figure showing one example of use of a measurement system. ロボットアームに取り付けられたリフレクタの一例を示す図である。It is a figure showing an example of a reflector attached to a robot arm. 計測システムの他の使用例を示す図である。It is a figure which shows another example of use of a measurement system.
 計測システムの実施形態について図面を参照して説明する。 An embodiment of the measurement system will be described with reference to the drawings.
 1.計測システムの概要
 実施形態に係る計測システム1の概要について図1及び図2を参照して説明する。図1は、計測システム1の外観を示す斜視図である。図2は、計測システム1の内部構成を示す透視図である。
1. Overview of Measurement System An overview of the measurement system 1 according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view showing the external appearance of the measurement system 1. As shown in FIG. FIG. 2 is a perspective view showing the internal configuration of the measurement system 1.
 図1において、計測システム1は、本体部2と、ミラーMを収容するミラー収容部3を備える。ミラー収容部3は、Z軸に沿って延びるφ軸(図3参照)回りに回転可能である。図2に示すように、本体部2には、光学エンジンユニット40と、制御ユニット50とが収容されている。尚、光学エンジンユニット40及び制御ユニット50の詳細については後述する。また、計測システム1は、ミラー収容部3を含むジンバル機構10を備える。尚、Z軸方向は、重力方向であってよい。 In FIG. 1, the measurement system 1 includes a main body 2 and a mirror accommodating section 3 that accommodates a mirror M. The mirror accommodating portion 3 is rotatable around a φ axis (see FIG. 3) extending along the Z axis. As shown in FIG. 2, the main body 2 houses an optical engine unit 40 and a control unit 50. Note that details of the optical engine unit 40 and control unit 50 will be described later. The measurement system 1 also includes a gimbal mechanism 10 that includes a mirror accommodating section 3. Note that the Z-axis direction may be the direction of gravity.
 尚、φ軸は、Z軸(例えば、重力方向)に沿って延びてなくてもよい。φ軸は、例えばX軸に沿って延びていてもよい。φ軸がZ軸(例えば、重力方向)に沿って延びるように計測システム1が置かれている状態(図1参照)を「縦置き」とする。計測システム1は、「横置き(例えば、φ軸がX軸に沿って延びるような置き方)」されてもよい。 Note that the φ axis does not have to extend along the Z axis (for example, the direction of gravity). The φ axis may extend along the X axis, for example. A state in which the measurement system 1 is placed so that the φ axis extends along the Z axis (for example, the direction of gravity) (see FIG. 1) is referred to as "vertical placement." The measurement system 1 may be placed “horizontally (for example, placed so that the φ axis extends along the X axis)”.
 2.ジンバル機構
 ジンバル機構10について図3乃至図6を参照して説明を加える。図3は、ジンバル機構10の要部を示す斜視図である。図4は、図3のA-A線断面図である。図5は、図3のB-B線断面図である。図6は、図4のC-C線断面図である。
2. Gimbal Mechanism The gimbal mechanism 10 will be described with reference to FIGS. 3 to 6. FIG. 3 is a perspective view showing the main parts of the gimbal mechanism 10. FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3. FIG. 5 is a sectional view taken along line BB in FIG. 3. FIG. 6 is a sectional view taken along line CC in FIG. 4.
 ジンバル機構10は、ミラーMを、Z軸と交わる方向(図3では、X軸に沿った方向)に延びるθ軸(“第1の回転軸”、“エレベーション軸”と称されてもよい)回りに回転可能に支持する第1支持機構20と、第1支持機構20をφ軸(“第2の回転軸”、“アジマス軸”と称されてもよい)回りに回転可能に支持する第2支持機構30とを備える。第2支持機構30は、可動部31及び固定部32を備える。第1支持機構20及び可動部31は、上述したミラー収容部3の一部を構成する。尚、第1支持機構20がφ軸回りに回転可能であるが故に、θ軸が延びる方向(即ち、Z軸と交わる方向)は、第1支持機構20のφ軸回りの回転に応じて変化する。 The gimbal mechanism 10 moves the mirror M along a θ axis (which may also be referred to as a "first rotation axis" or "elevation axis") extending in a direction intersecting the Z axis (in FIG. 3, a direction along the X axis). ), and the first support mechanism 20 is supported rotatably around the φ axis (which may also be referred to as a "second rotation axis" or "azimuth axis"). A second support mechanism 30 is provided. The second support mechanism 30 includes a movable part 31 and a fixed part 32. The first support mechanism 20 and the movable part 31 constitute a part of the mirror accommodating part 3 mentioned above. Note that since the first support mechanism 20 is rotatable around the φ axis, the direction in which the θ axis extends (i.e., the direction intersecting the Z axis) changes according to the rotation of the first support mechanism 20 around the φ axis. do.
 図4及び図6に示すように、第1支持機構20は、ミラーMを保持するミラー保持部材21と、部分22a、22b及び22cと、を有する。尚、部分22a、22b及び22cは、ミラー保持部材21と一緒に(言い換えれば、一体的に)、θ軸回りに回転可能である。 As shown in FIGS. 4 and 6, the first support mechanism 20 includes a mirror holding member 21 that holds the mirror M, and portions 22a, 22b, and 22c. Note that the portions 22a, 22b, and 22c are rotatable around the θ axis together with the mirror holding member 21 (in other words, integrally).
 図4に示すように、可動部31は、部分31a、31b、31c及び31dを有する。尚、部分31aには、計測光Lの光路の一部を構成する円筒形の中空部37が形成されている。図4に示すように、固定部32は、部分32a、32b及び32cを有する。つまり、固定部32は、図4におけるミラーMの上側に配置された部分32a(“第1部分”と称されてもよい)と、図4におけるミラーMの下側に配置された部分32b(“第2部分”と称されてもよい)と、部分32aと部分32cとを連結する部分32c(“第3部分”と称されてもよい)とを有する。 As shown in FIG. 4, the movable part 31 has parts 31a, 31b, 31c, and 31d. Note that a cylindrical hollow portion 37 that constitutes a part of the optical path of the measurement light L is formed in the portion 31a. As shown in FIG. 4, the fixing portion 32 has portions 32a, 32b, and 32c. In other words, the fixing part 32 includes a portion 32a (which may be referred to as a "first portion") disposed above the mirror M in FIG. and a portion 32c (which may be referred to as a “third portion”) that connects portions 32a and 32c.
 部分32a、32b及び32cは、固定部32が例えばU字型又はコの字型となるように、配置されてもよい。部分32a、32b及び32cは、固定部32が例えばH字型となるように、配置されてもよい。このように構成すれば、固定部32の強度を向上することができる。 The portions 32a, 32b, and 32c may be arranged such that the fixing portion 32 has a U-shape or a U-shape, for example. The portions 32a, 32b, and 32c may be arranged such that the fixing portion 32 is, for example, H-shaped. With this configuration, the strength of the fixing portion 32 can be improved.
 図4に示すように、部分32aは、第1支持機構20と対向する面321と、該面321とは反対側の面322とを有する。部分32aは、面321から面322に向かって広がるテーパ面323を有する。同様に、部分32bは、第1支持機構20と対向する面324と、該面324とは反対側の面325とを有する。部分32bは、面324から面325に向かって広がるテーパ面326を有する。図5に示すように、部分32cは、第1支持機構20と対向する面327と、該面327とは反対側の面328とを有する。部分32cは、面327から面328に向かって広がるテーパ面329を有する。尚、部分32a、32b及び32cのうち、一つ又は二つの部分がテーパ面を有し、残りの部分がテーパ面を有していなくてもよい。 As shown in FIG. 4, the portion 32a has a surface 321 facing the first support mechanism 20 and a surface 322 opposite to the surface 321. The portion 32a has a tapered surface 323 that widens from the surface 321 toward the surface 322. Similarly, the portion 32b has a surface 324 facing the first support mechanism 20 and a surface 325 opposite to the surface 324. Portion 32b has a tapered surface 326 that widens from surface 324 toward surface 325. As shown in FIG. 5, the portion 32c has a surface 327 facing the first support mechanism 20 and a surface 328 opposite to the surface 327. Portion 32c has a tapered surface 329 that widens from surface 327 toward surface 328. Note that one or two of the portions 32a, 32b, and 32c may have a tapered surface, and the remaining portions may not have a tapered surface.
 尚、部分32a、32b及び32c各々にテーパ面を形成する場合、例えば各テーパ面の面取り角度を共通にしてもよい。この場合、加工コストを抑制することができる利点がある。また、部分32a、32b及び32c各々のテーパ面がスムーズにつながる(言い換えれば、一の面を形成する)ので、当該計測システム1の意匠性を向上することができる利点がある。 Incidentally, when forming tapered surfaces on each of the portions 32a, 32b, and 32c, for example, the chamfering angle of each tapered surface may be made the same. In this case, there is an advantage that processing costs can be suppressed. Furthermore, since the tapered surfaces of the portions 32a, 32b, and 32c are smoothly connected (in other words, form one surface), there is an advantage that the design of the measurement system 1 can be improved.
 例えば図3に示すように、固定部32は、可動部31のφ軸に沿った方向の両端を支持する。固定部32が可動部31をφ軸回りに回転可能に支持するために、固定部32と可動部31との間には、例えば図4に示すボールベアリング等の軸受け部材B1及びB2が配置されている。 For example, as shown in FIG. 3, the fixed part 32 supports both ends of the movable part 31 in the direction along the φ axis. In order for the fixed part 32 to rotatably support the movable part 31 around the φ axis, bearing members B1 and B2, such as ball bearings shown in FIG. 4, are arranged between the fixed part 32 and the movable part 31. ing.
 例えば図4に示すように、第2支持機構30の可動部31は、第1支持機構20のθ軸(図4のC-C線に相当)に沿った方向の両端を支持する。可動部31が第1支持機構20をθ軸回りに回転可能に支持するために、可動部31と第1支持機構20との間には、例えば図6に示すボールベアリング等の軸受け部材B3及びB4が配置されている。 For example, as shown in FIG. 4, the movable portion 31 of the second support mechanism 30 supports both ends of the first support mechanism 20 in the direction along the θ axis (corresponding to line CC in FIG. 4). In order for the movable part 31 to rotatably support the first support mechanism 20 around the θ axis, a bearing member B3 such as a ball bearing shown in FIG. B4 is placed.
 第2支持機構30の可動部31がφ軸回りに回転することで、可動部31に支持されている第1支持機構20もφ軸回りに回転する。この結果、第1支持機構20により支持されているミラーMもφ軸回りに回転する。 As the movable part 31 of the second support mechanism 30 rotates around the φ axis, the first support mechanism 20 supported by the movable part 31 also rotates around the φ axis. As a result, the mirror M supported by the first support mechanism 20 also rotates around the φ axis.
 図面には、便宜上、“22a”、“22b”及び“22c”と符号を付しているが、実際の製品における第1支持機構20が、部分22a、22b及び22cに夫々対応する複数の構成部品を有してなくてよい。例えば、第1支持機構20は、部分22a、22b及び22cに代えて、ミラー保持部材21と部分22a、22b及び22cとが一体的に形成された部品を有していてよい。 Although the drawings are labeled with "22a," "22b," and "22c" for convenience, the first support mechanism 20 in the actual product has a plurality of configurations corresponding to the portions 22a, 22b, and 22c, respectively. It does not have to have any parts. For example, the first support mechanism 20 may include a component in which the mirror holding member 21 and the portions 22a, 22b, and 22c are integrally formed, instead of the portions 22a, 22b, and 22c.
 同様に、便宜上、“31a”、“31b”、“31c”及び“31d”と符号を付しているが、実際の製品における可動部31に相当する部品が、部分31a、31b、31c及び31dに夫々対応する複数の構成部品を含んでなくてよい。つまり、可動部31は、一つの部品により構成されていてもよいし、複数の構成部品(4つに限られない)により構成されていてもよい。 Similarly, for convenience, the parts 31a, 31b, 31c, and 31d are numbered "31a," "31b," "31c," and "31d," but the parts corresponding to the movable part 31 in the actual product are parts 31a, 31b, 31c, and 31d. It is not necessary to include a plurality of component parts corresponding to the respective components. In other words, the movable part 31 may be composed of one component, or may be composed of a plurality of components (not limited to four).
 同様に、便宜上、“32a”、“32b”及び“32c”と符号を付しているが、実際の製品における固定部32に相当する部品が、部分32a、32b及び32cに夫々対応する複数の構成部品を含んでいなくてよい。つまり、固定部32は、一つの部品により構成されていてもよいし、複数の構成部品(3つに限られない)により構成されていてもよい。 Similarly, for convenience, the parts corresponding to the fixing part 32 in the actual product are numbered "32a", "32b", and "32c", but there are a plurality of parts corresponding to the parts 32a, 32b, and 32c, respectively. It does not have to contain any component parts. In other words, the fixing part 32 may be composed of one component, or may be composed of a plurality of components (not limited to three).
 例えば図4に示すように、第2支持機構30は、可動部31をφ軸回りに回転させるモータ33と、可動部31の回転角度を検出するエンコーダ34とを有する。エンコーダ34は、センサ部34aと、例えば可動部31の部分31aに取り付けられたホイール部34bとを有する。尚、エンコーダ34には既存の各種態様を適用可能であるので、その詳細な説明は省略する。エンコーダ34は、回転変位センサと称されてもよい。 For example, as shown in FIG. 4, the second support mechanism 30 includes a motor 33 that rotates the movable part 31 around the φ axis, and an encoder 34 that detects the rotation angle of the movable part 31. The encoder 34 includes a sensor section 34a and a wheel section 34b attached to a portion 31a of the movable section 31, for example. Note that various existing aspects can be applied to the encoder 34, so a detailed explanation thereof will be omitted. Encoder 34 may be referred to as a rotational displacement sensor.
 図4に示すように、φ軸が延びる方向(即ち、Z軸方向)において、エンコーダ34はミラーMの一の側に配置されており、モータ33はミラーMの他の側に配置されている。つまり、ミラーMの一の側にはエンコーダ34だけが配置されてよく、ミラーMの他の側にはモータ33だけが配置されてよい。言い換えれば、モータ33及びエンコーダ34は、ミラーMを挟む位置に配置されてよい。第2支持機構30は、さらに、防塵及び防滴を目的とした樹脂部材35及び36を有する。尚、樹脂部材35及び36は、カバー部材と称されてもよい。なお、カバー部材35,36は樹脂のほか金属部材などであってもよい。 As shown in FIG. 4, the encoder 34 is placed on one side of the mirror M, and the motor 33 is placed on the other side of the mirror M in the direction in which the φ axis extends (i.e., the Z-axis direction). . That is, only the encoder 34 may be placed on one side of the mirror M, and only the motor 33 may be placed on the other side of the mirror M. In other words, the motor 33 and the encoder 34 may be placed at positions sandwiching the mirror M therebetween. The second support mechanism 30 further includes resin members 35 and 36 for dustproof and dripproof purposes. Note that the resin members 35 and 36 may be referred to as cover members. Note that the cover members 35 and 36 may be made of a metal member in addition to resin.
 2-1.第1支持機構の特徴
 第1支持機構20について図6乃至図8を参照して説明を加える。
2-1. Features of the first support mechanism The first support mechanism 20 will be described with reference to FIGS. 6 to 8.
 例えば図6に示すように、第1支持機構20は、ミラー保持部材21をθ軸回りに回転させるモータ23と、ミラー保持部材21の回転角度を検出するエンコーダ24とを有する。エンコーダ24は、センサ部24aと、例えば部分22aに取り付けられたホイール部24bとを有する。尚、エンコーダ24には既存の各種態様を適用可能であるので、その詳細な説明は省略する。エンコーダ24は、回転変位センサと称されてもよい。 For example, as shown in FIG. 6, the first support mechanism 20 includes a motor 23 that rotates the mirror holding member 21 around the θ axis, and an encoder 24 that detects the rotation angle of the mirror holding member 21. The encoder 24 includes a sensor section 24a and a wheel section 24b attached to, for example, the section 22a. Note that various existing aspects can be applied to the encoder 24, so a detailed explanation thereof will be omitted. Encoder 24 may also be referred to as a rotational displacement sensor.
 図6に示すように、θ軸に沿った方向において、ミラーMの左側(“一の側”と称されてもよい)にモータ23が配置されている。他方で、θ軸に沿った方向において、ミラーMの右側(“他の側”と称されてもよい)にエンコーダ24が配置されている。 As shown in FIG. 6, the motor 23 is arranged on the left side (also referred to as "one side") of the mirror M in the direction along the θ axis. On the other hand, the encoder 24 is arranged on the right side (also referred to as the "other side") of the mirror M in the direction along the θ axis.
 ここで、ミラー保持部材21の質量は比較的軽い。このため、ミラー保持部材21をθ軸回りに回転させるモータ23には、比較的小型の(言い換えれば、最大発生トルクの比較的小さい)モータを採用することができる。モータ23として、例えばエンコーダ24の質量と略同一の質量のモータを採用することができる。この場合に、θ軸に沿った方向において、ミラーMの左側にモータ23が配置されるとともに、ミラーMの右側にエンコーダ24が配置されることにより、第1支持機構20の左右の質量の均衡を保ちやすくすることができる。 Here, the mass of the mirror holding member 21 is relatively light. Therefore, a relatively small motor (in other words, a motor with a relatively small maximum generated torque) can be used as the motor 23 that rotates the mirror holding member 21 around the θ axis. As the motor 23, for example, a motor having substantially the same mass as the encoder 24 can be employed. In this case, by disposing the motor 23 on the left side of the mirror M and the encoder 24 on the right side of the mirror M in the direction along the θ axis, the left and right masses of the first support mechanism 20 are balanced. can be made easier to maintain.
 図6に示すように、ミラー保持部材21のミラーMの反射面MS側には、計測光Lの光路の一部を構成する空間4が形成されている。このため、図6において、ミラーMの反射面MSより上側の第1支持部材20の一部の質量は、ミラーMの反射面MSより下側の第1支持部材20の他の部分の質量より小さくなる。何らの対策も採らなければ、ミラー保持部材21の形状に起因して、第1支持機構20の重心位置がθ軸(即ち、第1支持機構20の回転軸)から比較的外れた位置になってしまう。 As shown in FIG. 6, a space 4 that forms part of the optical path of the measurement light L is formed on the mirror holding member 21 on the reflective surface MS side of the mirror M. Therefore, in FIG. 6, the mass of the part of the first support member 20 above the reflection surface MS of the mirror M is greater than the mass of the other part of the first support member 20 below the reflection surface MS of the mirror M. becomes smaller. If no measures are taken, due to the shape of the mirror holding member 21, the center of gravity of the first support mechanism 20 will be located relatively away from the θ axis (i.e., the rotation axis of the first support mechanism 20). Put it away.
 この問題に対処するために、第1支持機構20は、バランスマス25a及び25bを有する。第1支持機構20の重心位置がθ軸上に近づく限りにおいて、バランスマス25a及び25bの質量及び形状は適宜設定されてよい。図6では、部分22aにバランスマス25aが取り付けられており、部分22cにバランスマス25bが取り付けられているが、バランスマス25a及び25bの取り付け位置は適宜設定されてよい。ただし、第1支持機構20の重心位置がθ軸とφ軸との交点に近づくように、バランスマス25a及び25bの取り付け位置が設定されることが望ましい。尚、バランスマスは、2つに限らず、1つでもよいし、3つ以上でもよい。 In order to deal with this problem, the first support mechanism 20 has balance masses 25a and 25b. As long as the center of gravity of the first support mechanism 20 approaches the θ axis, the masses and shapes of the balance masses 25a and 25b may be set as appropriate. In FIG. 6, the balance mass 25a is attached to the portion 22a, and the balance mass 25b is attached to the portion 22c, but the attachment positions of the balance masses 25a and 25b may be set as appropriate. However, it is desirable that the mounting positions of the balance masses 25a and 25b be set so that the center of gravity of the first support mechanism 20 approaches the intersection of the θ-axis and the φ-axis. Note that the number of balance masses is not limited to two, and may be one or three or more.
 第1支持機構20がバランスマス25a及び25bを有することにより、例えば、第1支持機構20の動作時に遠心力の偏りやばらつきを抑制することができる。この結果、例えば、第1支持機構20の動作に起因して計測システム1が振動することを抑制することができる。 Since the first support mechanism 20 has the balance masses 25a and 25b, it is possible to suppress bias and variation in centrifugal force when the first support mechanism 20 operates, for example. As a result, for example, vibration of the measurement system 1 due to the operation of the first support mechanism 20 can be suppressed.
 図6においてミラー保持部材21の点線円C1で囲った部分には、図7に示すように円環状の溝部21aが形成されている。第2支持機構30の可動部31には、円環状の溝部21aに対応する円環状の凸部311が形成されている。第1支持機構20が可動部31に取り付けられる際には、円環状の溝部21aは、円環状の凸部311に対して回転可能に嵌合する。 As shown in FIG. 7, an annular groove 21a is formed in a portion of the mirror holding member 21 surrounded by a dotted circle C1 in FIG. The movable portion 31 of the second support mechanism 30 is formed with an annular convex portion 311 corresponding to the annular groove portion 21a. When the first support mechanism 20 is attached to the movable portion 31, the annular groove portion 21a is rotatably fitted into the annular convex portion 311.
 このように構成することにより、例えば、図6に示した空間4から、モータ23及びエンコーダ24の少なくとも一方の側へ埃や液体が入り込むことを防止することができる。尚、計測システム1では、図2に示したように防塵及び防滴、並びに、巻き込み防止を図るために、モータ23及びエンコーダ24はカバーで覆われている。 With this configuration, it is possible to prevent dust and liquid from entering at least one side of the motor 23 and the encoder 24 from the space 4 shown in FIG. 6, for example. In the measurement system 1, as shown in FIG. 2, the motor 23 and the encoder 24 are covered with a cover in order to be dustproof, dripproof, and prevent entanglement.
 図6において、ミラー保持部材21は、点線円C2で囲った部分においてミラーMの反射面MSと接している。具体的には、図8(a)に示すように、ミラー保持部材21の支持点211、212及び213と、ミラーMの反射面MSとが接している。ミラーMを固定するために、ミラー押さえばね26(図6も参照)は、ミラーMの、反射面MSとは反対側の面を押下する。尚、ミラー押さえばね26は、弾性部材と称されてもよい。 In FIG. 6, the mirror holding member 21 is in contact with the reflective surface MS of the mirror M at a portion surrounded by a dotted circle C2. Specifically, as shown in FIG. 8(a), the support points 211, 212, and 213 of the mirror holding member 21 are in contact with the reflective surface MS of the mirror M. In order to fix the mirror M, the mirror presser spring 26 (see also FIG. 6) presses down the surface of the mirror M opposite to the reflective surface MS. Note that the mirror presser spring 26 may also be referred to as an elastic member.
 図8(b)に示すように、ミラー押さえばね26が、ミラーMにその弾性による力を加える押下点26aは、3つの支持点211、212及び213を頂点とする三角形の重心位置である。このとき、図8(b)の左右方向における、支持点211又は212と押下点26aとの間の距離と、支持点213と押下点26aとの間の距離との比は、約1:2となる。 As shown in FIG. 8(b), the pressing point 26a at which the mirror presser spring 26 applies its elastic force to the mirror M is the center of gravity of a triangle whose vertices are the three support points 211, 212, and 213. At this time, the ratio of the distance between the support point 211 or 212 and the push-down point 26a and the distance between the support point 213 and the push-down point 26a in the left-right direction of FIG. 8(b) is approximately 1:2. becomes.
 このように構成することにより、3つの支持点211、212及び213各々に加わる力が略同一となる。この結果、図6において、ミラーMが上に凸になるように曲がるようなモーメントの発生を抑制することができる。つまり、ミラー押さえばね26がミラーMを押下することに起因して、ミラーMが曲がること(言い換えれば、反射面MSが歪むこと)を抑制することができる。別の言い方をすると、ミラー押さえばね26によってミラーMを固定する力を強めてもミラーM、ひいては反射面MSの歪みを抑制できるため、ミラーMを強固に固定してミラーMの動作速度(回転速度)を高めることができる。 With this configuration, the forces applied to each of the three support points 211, 212, and 213 are approximately the same. As a result, in FIG. 6, it is possible to suppress the generation of a moment that would cause the mirror M to bend upwardly. That is, it is possible to suppress the mirror M from being bent (in other words, the reflective surface MS from being distorted) due to the mirror presser spring 26 pressing down on the mirror M. In other words, even if the force for fixing the mirror M is strengthened by the mirror presser spring 26, the distortion of the mirror M and, by extension, the reflective surface MS can be suppressed. speed) can be increased.
 3.光学エンジンユニット
 光学エンジンユニット40について図2を参照して説明する。図2において、光学エンジンユニット40は、光源41、干渉計ヘッド42及び検出部43を有する。光源41は、例えばレーザダイオード等の発光素子を含んでいてよい。干渉計ヘッド42は、例えばハーフミラー等の光学素子を含み、光源41からの計測光の一部を射出し他の一部を計測対象から戻された計測光Lと干渉させるものであってよい。検出部43は、例えばフォトダイオード等の光電変換素子(“受光素子”と称されてもよい)を含み、干渉計ヘッド42からの干渉光を検出するものあってよい。ここで、光学エンジンユニット40の光源41は、周波数軸上で等間隔に並んだ周波数成分を含む光(光周波数コム)をパルス光として生成可能な光コム光源を含んでいてもよい。
3. Optical Engine Unit The optical engine unit 40 will be described with reference to FIG. 2. In FIG. 2, the optical engine unit 40 includes a light source 41, an interferometer head 42, and a detection section 43. The light source 41 may include, for example, a light emitting element such as a laser diode. The interferometer head 42 may include an optical element such as a half mirror, for example, and may emit part of the measurement light from the light source 41 and cause the other part to interfere with the measurement light L returned from the measurement target. . The detection unit 43 may include, for example, a photoelectric conversion element (also referred to as a "light receiving element") such as a photodiode, and may detect interference light from the interferometer head 42. Here, the light source 41 of the optical engine unit 40 may include an optical comb light source that can generate light (optical frequency comb) containing frequency components arranged at regular intervals on the frequency axis as pulsed light.
 尚、光源41、干渉計ヘッド42及び検出部43には、既存の各種態様を適用可能である。このため、光源41、干渉計ヘッド42及び検出部43についての詳細な説明は省略する。光学エンジンユニット40は、照射光学系と称されてもよい。 Note that various existing aspects can be applied to the light source 41, the interferometer head 42, and the detection section 43. Therefore, a detailed explanation of the light source 41, interferometer head 42, and detection section 43 will be omitted. The optical engine unit 40 may be referred to as an illumination optical system.
 干渉計ヘッド42を介した光源41からのレーザ光等である計測光Lの一部は、干渉計ヘッド42と、図4に示す第2支持機構30の可動部31(具体的には、部分31a)に形成された中空部37とを介して、ミラーMに入射する。 A part of the measurement light L, which is a laser beam or the like from the light source 41 via the interferometer head 42, is transmitted through the interferometer head 42 and the movable part 31 (specifically, the part) of the second support mechanism 30 shown in FIG. The light enters the mirror M via the hollow portion 37 formed in the mirror M.
 中空部37には、例えば図9に示すように、光学素子44及び45が配置されてよい。つまり、図9におけるミラーMの上側に、計測光Lを透過させる光学素子44及び45が配置されてよい。中空部37に光学素子44及び45が配置されることにより、例えば、ミラーM側から、干渉計ヘッド42に埃や液体等の異物が入り込むことを防止することができる。 Optical elements 44 and 45 may be arranged in the hollow part 37, as shown in FIG. 9, for example. That is, optical elements 44 and 45 that transmit the measurement light L may be arranged above the mirror M in FIG. 9 . By arranging the optical elements 44 and 45 in the hollow portion 37, it is possible to prevent foreign matter such as dust or liquid from entering the interferometer head 42 from the mirror M side, for example.
 尚、干渉計ヘッド42の一部である部分42aの少なくとも一部は、例えば図4に示すように中空部37内に挿入されていてもよい。言い換えれば、干渉計ヘッド42は、中空部37内に挿入される部分42aを有していてもよい。この場合、部分42aには、計測光Lを透過させる、例えばレンズ等の光学部材が配置されていてもよい。尚、部分42aに配置される光学部材は、上述した光学素子44及び45とは異なる光学部材であってもよい。 Incidentally, at least a portion of the portion 42a that is a part of the interferometer head 42 may be inserted into the hollow portion 37 as shown in FIG. 4, for example. In other words, the interferometer head 42 may have a portion 42a inserted into the hollow portion 37. In this case, an optical member such as a lens, which transmits the measurement light L, may be arranged in the portion 42a. Note that the optical member disposed in the portion 42a may be a different optical member from the optical elements 44 and 45 described above.
 光学素子44及び45により密閉空間46が形成されてよい。この場合、計測光Lの光路の一部は、光学エンジンユニット40とミラーMとの間にある密閉空間46に配置される、と言える。尚、光学素子44及び45は、例えば平行平面ガラス等であってよい。つまり、光学素子44及び45各々は、計測光Lが通過する第1面と第2面とを有し、第1面と第2面とが平行な光透過性の基板であってよい。尚、第1面と第2面との間の多重干渉を低減するために、第1面と第2面とは平行から僅かにずれていてもよい。 A sealed space 46 may be formed by the optical elements 44 and 45. In this case, it can be said that a part of the optical path of the measurement light L is arranged in the closed space 46 between the optical engine unit 40 and the mirror M. Note that the optical elements 44 and 45 may be made of parallel plane glass, for example. That is, each of the optical elements 44 and 45 may be a light-transmissive substrate having a first surface and a second surface through which the measurement light L passes, and the first surface and the second surface are parallel. Note that in order to reduce multiple interference between the first surface and the second surface, the first surface and the second surface may be slightly deviated from parallel.
 密閉空間46は、外部空間との気体流通がない閉ざされた空間であってよい。密閉空間46は、実質上密閉とみなせる程度に、外部空間との気体流通が抑制された空間であってよい。この場合、密閉空間46と外部空間との気圧差を抑制する開口が、中空部37の外周に設けられてもよい。 The sealed space 46 may be a closed space without gas communication with the outside space. The sealed space 46 may be a space in which gas flow with the external space is suppressed to such an extent that it can be considered to be substantially sealed. In this case, an opening may be provided on the outer periphery of the hollow portion 37 to suppress the pressure difference between the sealed space 46 and the external space.
 図9に示すように、光学素子44が計測光Lの光路に対して傾いて配置されることにより、例えば、光源41から射出された計測光Lのうち、光学素子44の表面で反射された光が、光源41及び検出部43に入射することを防止することができる。 As shown in FIG. 9, by arranging the optical element 44 at an angle with respect to the optical path of the measurement light L, for example, some of the measurement light L emitted from the light source 41 is reflected on the surface of the optical element 44. Light can be prevented from entering the light source 41 and the detection unit 43.
 ここで、中空部37に、光学素子44が配置される一方で、光学素子45が配置されない場合であって、光学素子44が計測光Lの光路に対して傾いて配置された場合、光学素子44に入射する計測光Lの光軸と、光学素子44を透過した計測光Lの光軸とがずれる、ビームシフトが発生する。 Here, in the case where the optical element 44 is arranged in the hollow part 37 but the optical element 45 is not arranged, and the optical element 44 is arranged at an angle with respect to the optical path of the measurement light L, the optical element A beam shift occurs in which the optical axis of the measurement light L that enters the optical element 44 and the optical axis of the measurement light L that has passed through the optical element 44 deviate from each other.
 当該計測システム1では、中空部37に、光学素子44に加えて光学素子45が配置されている。そして、光学素子45は、光学素子44が計測光Lの光路に対して傾いている方向とは反対方向に傾いて配置されている。このように構成することにより、図9の吹き出しF1に示すように、光学素子44に入射する計測光Lの光軸と、光学素子44及び45を透過した計測光Lの光軸とがずれることを抑制することができる。同様に、光学素子45に入射する計測光Lの光軸と、光学素子44及び45を透過した計測光Lの光軸とがずれることを抑制することができる。 In the measurement system 1, an optical element 45 is arranged in the hollow part 37 in addition to the optical element 44. The optical element 45 is arranged to be tilted in a direction opposite to the direction in which the optical element 44 is tilted with respect to the optical path of the measurement light L. With this configuration, the optical axis of the measurement light L that enters the optical element 44 and the optical axis of the measurement light L that has passed through the optical elements 44 and 45 are misaligned, as shown in balloon F1 in FIG. can be suppressed. Similarly, it is possible to prevent the optical axis of the measurement light L that enters the optical element 45 and the optical axis of the measurement light L that has passed through the optical elements 44 and 45 from misaligning.
 4.制御ユニット
 制御ユニット50について図2を参照して説明する。図2において、制御ユニット50は、制御部51、モータドライバ52、電源部53及び排気ファン54を有する。制御部51は、例えばFPGA(Field Programmable Gate Array)ボードを含んでいてよい。制御部51は、例えば光学エンジンユニット40及びモータドライバ52を制御する。モータドライバ52は、モータ23及び33を制御する。電源部53は、例えば光学エンジンユニット40、並びに、制御部51、モータドライバ52及び排気ファン54に電力を供給する。
4. Control Unit The control unit 50 will be described with reference to FIG. 2. In FIG. 2, the control unit 50 includes a control section 51, a motor driver 52, a power supply section 53, and an exhaust fan 54. The control unit 51 may include, for example, an FPGA (Field Programmable Gate Array) board. The control unit 51 controls, for example, the optical engine unit 40 and the motor driver 52. Motor driver 52 controls motors 23 and 33. The power supply section 53 supplies power to, for example, the optical engine unit 40, the control section 51, the motor driver 52, and the exhaust fan 54.
 尚、モータドライバ52、電源部53及び排気ファン54には、既存の各種態様を適用可能である。このため、モータドライバ52、電源部53及び排気ファン54についての詳細な説明は省略する。 Note that various existing aspects can be applied to the motor driver 52, the power supply section 53, and the exhaust fan 54. Therefore, detailed description of the motor driver 52, power supply section 53, and exhaust fan 54 will be omitted.
 制御部51は、モータドライバ52を介してモータ23及び33を制御することにより、第1支持機構20、及び、第2支持機構30の可動部31を回転させる。第1支持機構20及び可動部31が夫々回転することにより、ミラーMの姿勢が変更される。つまり、制御部51は、モータドライバ52を介してモータ23及び33を制御することにより、ミラーMの姿勢を変更する、と言える。 The control unit 51 rotates the movable parts 31 of the first support mechanism 20 and the second support mechanism 30 by controlling the motors 23 and 33 via the motor driver 52. By rotating the first support mechanism 20 and the movable part 31, the attitude of the mirror M is changed. In other words, it can be said that the control unit 51 changes the attitude of the mirror M by controlling the motors 23 and 33 via the motor driver 52.
 制御部51は、エンコーダ24のセンサ部24a、及び、エンコーダ34のセンサ部34a各々から出力された信号を取得する。制御部51は、センサ部24a及び34a各々から出力された信号に基づいて、第1支持機構30の回転角度、及び、第2支持機構30の可動部31の回転角度を求める。制御部51は、第1支持機構30の回転角度、及び、可動部31の回転角度に基づいて、ミラーMの姿勢を特定してよい。 The control unit 51 acquires signals output from each of the sensor unit 24a of the encoder 24 and the sensor unit 34a of the encoder 34. The control section 51 determines the rotation angle of the first support mechanism 30 and the rotation angle of the movable section 31 of the second support mechanism 30 based on the signals output from each of the sensor sections 24a and 34a. The control unit 51 may specify the attitude of the mirror M based on the rotation angle of the first support mechanism 30 and the rotation angle of the movable part 31.
 干渉計ヘッド42を介した光源41からの計測光Lの一部は、ミラーMに入射する。計測光Lは、図10に示すように、φ軸に沿って延びる第1の光路OP1を通ってミラーMに入射する。ミラーMにより反射された計測光Lは、θ軸が延びる方向とφ軸が延びる方向との両方と交わる方向に沿って延びる第2の光路OP2を通って計測対象に向かう。言い換えれば、ミラーMにより反射された計測光Lは、計測対象に照射される。 A part of the measurement light L from the light source 41 via the interferometer head 42 is incident on the mirror M. As shown in FIG. 10, the measurement light L enters the mirror M through a first optical path OP1 extending along the φ axis. The measurement light L reflected by the mirror M heads toward the measurement target through a second optical path OP2 extending along a direction that intersects both the direction in which the θ-axis extends and the direction in which the φ-axis extends. In other words, the measurement light L reflected by the mirror M is irradiated onto the measurement target.
 上述したように、ミラーMの姿勢は、第1支持機構20と第2支持機構30の可動部31とを用いて変更される。つまり、計測システム1では、第1支持機構20と第2支持機構30とを用いてミラーMの姿勢を変えて、ミラーMで計測光Lを計測対象に向けて反射する、と言える。別の言い方をすると、計測システム1では、第1支持機構20と第2支持機構30とを用いてミラーMの姿勢を変えて、第2の光路OP2の延ばされる方向を変える、と言える。また、図10に示すように、ミラーMは、第1の光路OP1と第2の光路OP2との交点に配置されている、と言える。計測光Lの光路の一部(例えば、第1の光路OP1)は、φ軸上に配置されていてよい。なお、第1の光路OP1は中空部37を通過してもよく、第1の光路OP1は中空部37を通過しなくてもよい。 As described above, the attitude of the mirror M is changed using the first support mechanism 20 and the movable part 31 of the second support mechanism 30. That is, it can be said that in the measurement system 1, the posture of the mirror M is changed using the first support mechanism 20 and the second support mechanism 30, and the measurement light L is reflected by the mirror M toward the measurement target. In other words, it can be said that in the measurement system 1, the orientation of the mirror M is changed using the first support mechanism 20 and the second support mechanism 30, thereby changing the direction in which the second optical path OP2 is extended. Further, as shown in FIG. 10, it can be said that the mirror M is arranged at the intersection of the first optical path OP1 and the second optical path OP2. A part of the optical path of the measurement light L (for example, the first optical path OP1) may be arranged on the φ axis. Note that the first optical path OP1 may pass through the hollow section 37, or the first optical path OP1 may not pass through the hollow section 37.
 計測対象により反射された計測光(“戻り光”と称されてもよい)は、光源41から射出された計測光Lの一部が干渉計ヘッド42から計測対象まで通った経路と略同一の経路を通り、干渉計ヘッド42に入射する。検出部43には、光源41から射出された計測光Lの他の一部と、計測対象により反射された計測光Lとが入射する。 The measurement light reflected by the measurement object (which may also be referred to as "return light") follows a path that is approximately the same as the path taken by a portion of the measurement light L emitted from the light source 41 from the interferometer head 42 to the measurement object. It passes through the path and enters the interferometer head 42. The other part of the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target enter the detection unit 43 .
 検出部43は、光源41から射出された計測光Lの他の一部と、計測対象により反射された計測光Lとに起因して生じる信号を、制御部51に出力する。制御部51は、検出部43から出力された信号に基づいて、例えば、光源41から射出された計測光Lと計測対象により反射された計測光Lとの位相差を求める。制御部51は、該求められた位相差に基づいて、当該計測システム1から計測対象までの距離を求めてよい。 The detection unit 43 outputs a signal generated due to the other part of the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target to the control unit 51. Based on the signal output from the detection unit 43, the control unit 51 determines, for example, the phase difference between the measurement light L emitted from the light source 41 and the measurement light L reflected by the measurement target. The control unit 51 may determine the distance from the measurement system 1 to the measurement target based on the determined phase difference.
 制御部51は、当該計測システム1から測定対象までの距離と、エンコーダ24のセンサ部24aから出力された信号に基づいて求められた第1支持機構20の回転角度と、エンコーダ34のセンサ部34aから出力された信号に基づいて求められた可動部31の回転角度と、に基づいて、計測対象の空間座標を求めてよい。制御部51が求める計測対象の空間座標は、当該計測システム1に係る座標系における空間座標であってよい。 The control unit 51 controls the distance from the measurement system 1 to the measurement target, the rotation angle of the first support mechanism 20 determined based on the signal output from the sensor unit 24a of the encoder 24, and the sensor unit 34a of the encoder 34. The spatial coordinates of the measurement target may be determined based on the rotation angle of the movable portion 31 determined based on the signal output from the . The spatial coordinates of the measurement target determined by the control unit 51 may be spatial coordinates in the coordinate system related to the measurement system 1.
 尚、制御ユニット50は、当該計測システム1の傾きを検出するための傾斜センサを有していてよい。この場合、制御部51は、傾斜センサの出力に基づいて、上記求められた計測対象の空間座標を補正してよい。上述したように、計測システム1は、計測光Lを計測対象に照射可能である。このため、計測システム1は、ビーム照射システムと称されてもよい。 Note that the control unit 50 may include a tilt sensor for detecting the tilt of the measurement system 1. In this case, the control unit 51 may correct the above-determined spatial coordinates of the measurement target based on the output of the tilt sensor. As described above, the measurement system 1 can irradiate the measurement target with the measurement light L. For this reason, the measurement system 1 may be referred to as a beam irradiation system.
 尚、制御部51は、計測対象の移動中に、第1支持機構20と第2支持機構30とを用いて(具体的には、第1支持機構20をθ軸回りに回転させるモータ22と、第2支持機構30の可動部31をφ軸回りに回転させるモータ33とを制御して)ミラーMの姿勢を変化させることにより、計測対象への計測光Lの照射を続けてもよい。 Note that while the measurement target is moving, the control unit 51 uses the first support mechanism 20 and the second support mechanism 30 (specifically, the motor 22 that rotates the first support mechanism 20 around the θ axis). , by controlling the motor 33 that rotates the movable part 31 of the second support mechanism 30 around the φ axis) to change the attitude of the mirror M, irradiation of the measurement light L to the measurement target may be continued.
 尚、光学エンジンユニット40は、計測光Lを出力可能であるとともに、計測対象からの光を受光可能であることから、送受光光学系と称されてもよいし、受光光学系と称されてもよい。 In addition, since the optical engine unit 40 can output the measurement light L and can receive light from the measurement target, it may be referred to as a light transmitting/receiving optical system or as a light receiving optical system. Good too.
 5.配線の工夫
 図3を参照して説明したように、ミラー収容部3は、φ軸回りに回転可能に構成されている。例えばモータ23及びエンコーダ24等の、ミラー収容部3内に配置される電装部品に接続される配線について何らの対策も採らなければ、例えばミラー収容部3の回転に伴い該配線が無造作に移動してしまうおそれがある。この結果、例えば、該配線と、計測システム1の構成部材とが擦れることに起因して、例えばミラー収容部3の回転(言い換えれば、ミラーMの姿勢)が影響を受けたり、該配線が破損したり、計測システム1の構成部材に汚れが付着したりするおそれがある。
5. Wiring Ideas As described with reference to FIG. 3, the mirror accommodating portion 3 is configured to be rotatable around the φ axis. For example, if no measures are taken for the wiring connected to electrical components arranged inside the mirror housing 3, such as the motor 23 and the encoder 24, the wiring will move casually as the mirror housing 3 rotates. There is a risk that this may occur. As a result, for example, due to the wiring rubbing against the constituent members of the measurement system 1, the rotation of the mirror accommodating section 3 (in other words, the attitude of the mirror M) may be affected, or the wiring may be damaged. There is a possibility that dirt may adhere to the components of the measurement system 1.
 図4に示すように、第2支持機構30の可動部31の部分31dには、円筒形の中空部38が形成されている。この中空部38には、図9に示す配線61が配置されていてよい。配線61は、例えばフレキシブルプリント配線板を含んでいてよい。 As shown in FIG. 4, a cylindrical hollow portion 38 is formed in the portion 31d of the movable portion 31 of the second support mechanism 30. A wiring 61 shown in FIG. 9 may be arranged in this hollow part 38. The wiring 61 may include, for example, a flexible printed wiring board.
 図9の吹き出しF2に示すように、配線61は、φ軸回りに渦巻き状に配置された渦巻部61aと、該渦巻部61aからφ軸に沿って延びるストレート部61bを有してよい。「φ軸に沿って延びる」とは、「φ軸上を延びる」という意味に限らず、「φ軸と並行して(言い換えれば、φ軸と平行な他の軸上を)延びる」という意味を包含してよい。尚、φ軸は、計測光Lの光軸と言い換えられてよい。配線61のストレート部61bは、配線支持部材64によって支持されてよい。配線支持部材64の一部は、φ軸に沿って延びていてよい。配線支持部材64は、例えば可動部31に取り付けられていてよい。この場合、配線支持部材64は可動部31から延びてもよく、可動部31から延びるステーに取り付けられていてもよい。尚、配線支持部材64は、例えば固定部32に取り付けられてよい。この場合、配線支持部材64は固定部32から延びている、と言える。尚、配線61は、渦巻部61aに代えて又は加えて、ストレート部61bとコネクタ部63との間に他の渦巻部を有していてもよい。つまり、ストレート部61bとコネクタ部63との間に他の渦巻部が形成されてもよい。 As shown in balloon F2 in FIG. 9, the wiring 61 may have a spiral portion 61a arranged in a spiral around the φ axis, and a straight portion 61b extending from the spiral portion 61a along the φ axis. "Extending along the φ axis" does not necessarily mean "extending on the φ axis", but also means "extending in parallel with the φ axis (in other words, on another axis parallel to the φ axis)" may be included. Note that the φ axis may be translated as the optical axis of the measurement light L. The straight portion 61b of the wiring 61 may be supported by the wiring support member 64. A portion of the wiring support member 64 may extend along the φ axis. The wiring support member 64 may be attached to the movable part 31, for example. In this case, the wiring support member 64 may extend from the movable part 31 or may be attached to a stay extending from the movable part 31. Note that the wiring support member 64 may be attached to the fixing part 32, for example. In this case, it can be said that the wiring support member 64 extends from the fixed part 32. Note that the wiring 61 may have another spiral portion between the straight portion 61b and the connector portion 63 instead of or in addition to the spiral portion 61a. That is, another spiral portion may be formed between the straight portion 61b and the connector portion 63.
 配線61の渦巻部61aは、可動部31のφ軸回りの回転に伴って、巻き絞められたり、巻き解かれたりする。仮に渦巻部61aがなければ、可動部31をφ軸回りに回転させるために必要な配線61の一部を、たわませて中空部38に配置(収容)しなければならない。これに対して、配線61が渦巻部61aを有するので、上記配線61の一部をたわませる必要がない。つまり、渦巻部61aがたわみを吸収する、と言える。 The spiral portion 61a of the wiring 61 is wound or unwound as the movable portion 31 rotates around the φ axis. If the spiral portion 61a were not present, a portion of the wiring 61 necessary for rotating the movable portion 31 around the φ axis would have to be bent and placed (accommodated) in the hollow portion 38. On the other hand, since the wiring 61 has the spiral portion 61a, there is no need to bend a part of the wiring 61. In other words, it can be said that the spiral portion 61a absorbs the deflection.
 配線61の渦巻部61aのこのような特性により、可動部31のφ軸回りの回転(言い換えれば、ミラー収容部3の回転)に起因して、配線61が可動部31と擦れることを防止することができる。このため、ミラー収容部3の回転に起因して配線61が破損することを防止することができる。また、ミラー収容部3の回転に起因して可動部31に汚れが付着することを防止することができる。さらに、ミラー収容部3の回転が、配線61の影響を受けることを防止することができる。 Such characteristics of the spiral portion 61a of the wiring 61 prevent the wiring 61 from rubbing against the movable part 31 due to rotation of the movable part 31 around the φ axis (in other words, rotation of the mirror housing part 3). be able to. Therefore, it is possible to prevent the wiring 61 from being damaged due to the rotation of the mirror accommodating portion 3. Further, it is possible to prevent dirt from adhering to the movable part 31 due to the rotation of the mirror accommodating part 3. Furthermore, the rotation of the mirror accommodating portion 3 can be prevented from being influenced by the wiring 61.
 配線61の一方の端部にはコネクタ部62が設けられている。配線61の他方の端部にはコネクタ部63が設けられている。コネクタ部62は、図2に示した計測システム1の本体部2の内部に配置されたコネクタ部(図示せず)に接続される。コネクタ部63は、第2支持機構30の可動部31及び第1支持機構20の少なくとも一方に配置されたコネクタ部(図示せず)に接続される。コネクタ部63につながる配線E1は、モータ23に接続される。コネクタ部63につながる配線E2は、エンコーダ24のセンサ部24aに接続される。図9に示すように、配線61のコネクタ部62近傍の部分は、可動部31よりも外側(即ち、本体部2内)で、θ軸に沿った方向に延びてよい。なお、コネクタ部62および配線61のコネクタ部62近傍の部分は、例えば固定部から延びたステーに取り付けられてもよい。このときステーは、コネクタ部62および配線61のコネクタ部62近傍の部分に沿った形状(例えばL字状)をしていてもよい。コネクタ部62や配線61のコネクタ部62近傍の部分が固定部に取り付けられていることで、渦巻部が可動部31のφ軸回りの回転等の影響で解けることを防止できる。 A connector portion 62 is provided at one end of the wiring 61. A connector portion 63 is provided at the other end of the wiring 61. The connector section 62 is connected to a connector section (not shown) arranged inside the main body section 2 of the measurement system 1 shown in FIG. 2. The connector portion 63 is connected to a connector portion (not shown) disposed on at least one of the movable portion 31 of the second support mechanism 30 and the first support mechanism 20. A wiring E1 connected to the connector portion 63 is connected to the motor 23. A wiring E2 connected to the connector section 63 is connected to the sensor section 24a of the encoder 24. As shown in FIG. 9, a portion of the wiring 61 near the connector portion 62 may extend in the direction along the θ axis outside the movable portion 31 (that is, within the main body portion 2). Note that the connector portion 62 and the portion of the wiring 61 near the connector portion 62 may be attached to a stay extending from the fixed portion, for example. At this time, the stay may have a shape (for example, an L-shape) that follows the connector portion 62 and the portion of the wiring 61 near the connector portion 62 . By attaching the connector portion 62 and the portion of the wiring 61 near the connector portion 62 to the fixed portion, it is possible to prevent the spiral portion from unraveling due to the influence of rotation of the movable portion 31 around the φ axis.
 この結果、モータ23及びエンコーダ24のセンサ部24aに、配線61を介して、図2に示した電源部53から電力が供給される。モータ23に、配線61を介して、図2に示したモータドライバ52からの信号が入力される。センサ部24aは、配線61を介して、図2に示した制御部51に信号を送信する。尚、配線61は、モータ23及びセンサ部24aとは異なる電装部品(図示せず)に接続されてもよい。 As a result, electric power is supplied to the motor 23 and the sensor section 24a of the encoder 24 from the power supply section 53 shown in FIG. 2 via the wiring 61. A signal from the motor driver 52 shown in FIG. 2 is input to the motor 23 via the wiring 61. The sensor section 24a transmits a signal to the control section 51 shown in FIG. 2 via the wiring 61. Note that the wiring 61 may be connected to an electrical component (not shown) different from the motor 23 and the sensor section 24a.
 配線61は、図11に示すように、例えば、絶縁層611、613及び615並びに導電層612及び614を含む多層フレキシブルプリント配線板であってよい。導電層612は、例えば、モータ23と電源部53とを結ぶ電路と、モータ23とモータドライバ52とを結ぶ信号路との一部を構成してよい。導電層614は、例えば、センサ部24aと電源部53とを結ぶ電路と、センサ部24a及び制御部51とを結ぶ信号路との一部を構成してよい。 The wiring 61 may be, for example, a multilayer flexible printed wiring board including insulating layers 611, 613, and 615 and conductive layers 612 and 614, as shown in FIG. The conductive layer 612 may constitute, for example, a part of an electric path connecting the motor 23 and the power supply section 53 and a signal path connecting the motor 23 and the motor driver 52. The conductive layer 614 may constitute, for example, a part of an electric path connecting the sensor section 24a and the power supply section 53 and a signal path connecting the sensor section 24a and the control section 51.
 尚、中空部38には、配線61に加えて、他の配線が配置されてもよい。つまり、中空部38には、2以上の配線が配置されてもよい。例えば、中空部38に、配線61と他の配線とが配置されている場合、他の配線は、第1支持機構20の、モータ23またはセンサ部24aいずれかに接続されてもよいし、モータ23及びセンサ部24aとは異なる電装部品(図示せず)に接続されてもよいし、第2支持機構30の電装部品に接続されてもよい。 Note that in addition to the wiring 61, other wiring may be arranged in the hollow portion 38. That is, two or more wirings may be arranged in the hollow portion 38. For example, when the wiring 61 and other wiring are arranged in the hollow part 38, the other wiring may be connected to either the motor 23 or the sensor part 24a of the first support mechanism 20, or the 23 and the sensor section 24a (not shown), or may be connected to an electrical component of the second support mechanism 30.
 上述したように、配線61は、計測光Lの光路の一部を構成する中空部37とは反対側の中空部38に配置されている。仮に配線61が中空部37に配置される場合、計測光Lの光路を避けるように配線61を配置しなければならない。これに対して、配線61が中空部38に配置されれば、計測光Lの光路が、φ軸(即ち、可動部31の回転軸)と一致している場合であっても、配線61の設計自由度を向上することができる。 As described above, the wiring 61 is arranged in the hollow part 38 on the opposite side to the hollow part 37 that forms part of the optical path of the measurement light L. If the wiring 61 is placed in the hollow portion 37, the wiring 61 must be placed so as to avoid the optical path of the measurement light L. On the other hand, if the wiring 61 is placed in the hollow part 38, even if the optical path of the measurement light L coincides with the φ axis (i.e., the rotation axis of the movable part 31), the wiring 61 The degree of freedom in design can be improved.
 仮に配線61が中空部37に配置される場合、中空部37に、計測光Lの光路用のスペースと、配線61が配置されるスペースとを確保しなればならないので、中空部37の径が比較的大きくなるおそれがある。すると、例えば第2支持部材30の可動部31が比較的大きくなってしまうおそれがある。これに対して、配線61が中空部38に配置されれば、中空部37の径を比較的小さくすることができる。加えて、中空部38の径も比較的小さくすることができる。 If the wiring 61 is placed in the hollow part 37, a space for the optical path of the measurement light L and a space for the wiring 61 must be secured in the hollow part 37, so the diameter of the hollow part 37 must be There is a risk that it will become relatively large. Then, for example, the movable portion 31 of the second support member 30 may become relatively large. On the other hand, if the wiring 61 is arranged in the hollow part 38, the diameter of the hollow part 37 can be made relatively small. In addition, the diameter of the hollow portion 38 can also be made relatively small.
 また、配線61が中空部38に配置されることにより、配線61及び配線支持部材64をφ軸近傍に配置することできる。このため、可動部31の回転に起因して配線61に加わる力を比較的小さく抑えることができる。この結果、例えば配線61の強度を上げるために配線61を太くしたり、配線61を配線支持部材64に固定するための固定構造の強度を上げすぎたりすることを回避することができる。 Furthermore, by placing the wiring 61 in the hollow portion 38, the wiring 61 and the wiring support member 64 can be placed near the φ axis. Therefore, the force applied to the wiring 61 due to the rotation of the movable part 31 can be kept relatively small. As a result, it is possible to avoid, for example, increasing the thickness of the wiring 61 in order to increase the strength of the wiring 61 or increasing the strength of the fixing structure for fixing the wiring 61 to the wiring support member 64 too much.
 配線支持部材64が設けられていない場合、例えば可動部31の回転に起因して配線61が動くおそれがある。すると、配線61の張力に起因して可動部31の回転が妨げられるおそれがある。これに対して、配線61のφ軸に沿って延びるストレート部が配線支持部材64に固定されているので、可動部31のスムーズな回転を実現することができる。 If the wiring support member 64 is not provided, the wiring 61 may move due to rotation of the movable part 31, for example. Then, rotation of the movable part 31 may be hindered due to the tension of the wiring 61. On the other hand, since the straight portion of the wiring 61 extending along the φ axis is fixed to the wiring support member 64, smooth rotation of the movable portion 31 can be realized.
 図12に示すように、第2支持部材30の可動部31には、θ軸に沿って延びる貫通孔39が形成されている。貫通孔39は中空部38と連通している。貫通孔39には、配線61の一部が配置されてよい。貫通孔39に起因して、可動部31には開口部313が形成されてよい。開口部313が形成されることにより、例えば、配線61を比較的容易に配置することができる。 As shown in FIG. 12, a through hole 39 extending along the θ axis is formed in the movable portion 31 of the second support member 30. The through hole 39 communicates with the hollow portion 38 . A portion of the wiring 61 may be placed in the through hole 39 . An opening 313 may be formed in the movable portion 31 due to the through hole 39 . By forming the opening 313, for example, the wiring 61 can be arranged relatively easily.
 計測システム1の製造時であって、中空部38及び貫通孔39に配線61が配置された後に、樹脂部材36が貫通孔39に挿入される。配線61は、樹脂部材36の存在に起因して、計測システム1の外部から視認されない。加えて、樹脂部材36により開口部313が塞がれるため、例えば中空部38に埃や液体が入り込むことを防止することができる。また、樹脂部材36の開口部313を塞ぐ部分は、可動部31の表面形状と滑らかにつながる表面形状をしている。このため、貫通孔39に樹脂部材36が挿入されることにより、可動部31の形状等が、視覚を通じた美感を起こすことを期待できる。 During manufacturing of the measurement system 1, after the wiring 61 is arranged in the hollow portion 38 and the through hole 39, the resin member 36 is inserted into the through hole 39. The wiring 61 is not visible from the outside of the measurement system 1 due to the presence of the resin member 36. In addition, since the opening 313 is closed by the resin member 36, it is possible to prevent, for example, dust or liquid from entering the hollow portion 38. Further, the portion of the resin member 36 that closes the opening 313 has a surface shape that smoothly connects to the surface shape of the movable portion 31. Therefore, by inserting the resin member 36 into the through hole 39, it can be expected that the shape and the like of the movable part 31 will be visually aesthetically pleasing.
 図4に示すように、φ軸に沿った方向において、ミラーMに対して上側(“一の側”と称されてもよい)に、エンコーダ34が配置されるとともに、計測光Lの光路の一部を構成する中空部37が形成されている。他方で、φ軸に沿った方向において、ミラーMに対して下側(“他の側”と称されてもよい)に、モータ33が配置されるとともに、中空部38が形成されている。 As shown in FIG. 4, the encoder 34 is disposed above (also referred to as "one side") with respect to the mirror M in the direction along the φ axis, and the encoder 34 is arranged on the optical path of the measurement light L. A hollow portion 37 that constitutes a part is formed. On the other hand, in the direction along the φ axis, a motor 33 is disposed below the mirror M (which may also be referred to as the "other side"), and a hollow portion 38 is formed.
 また、図9に示すように、φ軸に沿った方向において、ミラーMに対して上側に、計測光Lの光路が配置されている。他方で、φ軸に沿った方向において、ミラーMに対して下側に、例えばモータ23及びエンコーダ24等の第1支持機構20の電装部品に接続された配線(例えば、配線61等)が配置されている。 Furthermore, as shown in FIG. 9, the optical path of the measurement light L is arranged above the mirror M in the direction along the φ axis. On the other hand, wiring (for example, wiring 61, etc.) connected to electrical components of the first support mechanism 20, such as the motor 23 and the encoder 24, is arranged below the mirror M in the direction along the φ axis. has been done.
 このように構成することにより、ジンバル機構10の重心位置(更には、計測システム1の重心位置)を比較的低くすることができる。このため、例えば計測システム1の動作の安定性を向上することができる。 With this configuration, the center of gravity of the gimbal mechanism 10 (and further, the center of gravity of the measurement system 1) can be made relatively low. Therefore, for example, the stability of the operation of the measurement system 1 can be improved.
 6.回転規制
 第2支持機構30は、可動部31のφ軸回りの回転を規制する2つの回転規制部(図示せず)を備えてよい。2つの回転規制部各々は、可動部31と一緒に回転する回転子と、その位置が固定された固定子とを有してよい。2つの回転規制部の一方の回転規制部は、例えばエンコーダ34の近傍に配置されてよい。2つの回転規制部の他方の回転規制部は、例えばモータ33の近傍に配置されてよい。つまり、上記一方の回転規制部は、例えば図4においてミラーMの上側に配置されてよい。上記他方の回転規制部は、例えば図4においてミラーMの下側に配置されてよい。
6. Rotation Regulation The second support mechanism 30 may include two rotation regulation parts (not shown) that regulate rotation of the movable part 31 around the φ axis. Each of the two rotation regulating parts may include a rotor that rotates together with the movable part 31 and a stator whose position is fixed. One of the two rotation regulating sections may be arranged near the encoder 34, for example. The other rotation regulating section of the two rotation regulating sections may be arranged near the motor 33, for example. That is, one of the rotation regulating parts may be arranged above the mirror M in FIG. 4, for example. The other rotation regulating section may be arranged below the mirror M in FIG. 4, for example.
 上記一方の回転規制部は、例えば図3において可動部31を上から見て、可動部31がφ軸回りに右回転する場合に、可動部31の回転を規制してよい。上記一方の回転規制部は、ミラーMのφ軸回りの第1回転方向の回転量を規制する、と言える。上記他方の回転規制部は、例えば図3において可動部31を上から見て、可動部31がφ軸回りに左回転する場合に、可動部31の回転を規制してよい。上記他方の回転規制部は、ミラーMのφ軸回りの第1回転方向とは逆の第2回転方向の回転量を規制する、と言える。 One of the rotation regulating parts may regulate the rotation of the movable part 31, for example, when the movable part 31 rotates clockwise around the φ axis when the movable part 31 is viewed from above in FIG. It can be said that the one rotation regulating section regulates the amount of rotation of the mirror M in the first rotation direction about the φ axis. The other rotation regulating section may regulate the rotation of the movable section 31 when the movable section 31 rotates to the left around the φ axis when the movable section 31 is viewed from above in FIG. 3, for example. It can be said that the other rotation regulating section regulates the amount of rotation of the mirror M around the φ axis in the second rotation direction opposite to the first rotation direction.
 回転規制部が可動部31の回転を規制する方法について説明する。例えば図13(a)に示すように、回転規制部は、突起711が形成された回転子71と、突起711と接触可能な突起721が形成された固定子72とを有していてよい。この場合、可動部31の回転に伴い回転する回転子71の突起711が、固定子72の突起721に接触することにより可動部31の回転が規制されてよい。回転規制部は、例えば突起711及び721により、可動部31がφ軸回りに基準位置から所定の回転量以上回転することを規制してよい。 The method by which the rotation regulating section regulates the rotation of the movable section 31 will be explained. For example, as shown in FIG. 13A, the rotation regulating portion may include a rotor 71 on which a protrusion 711 is formed, and a stator 72 on which a protrusion 721 that can come into contact with the protrusion 711 is formed. In this case, the rotation of the movable part 31 may be restricted by the protrusion 711 of the rotor 71, which rotates as the movable part 31 rotates, coming into contact with the protrusion 721 of the stator 72. The rotation regulating section may regulate, for example, the protrusions 711 and 721 from rotating the movable section 31 about the φ axis by more than a predetermined rotation amount from the reference position.
 この場合、例えば制御部51は、モータドライバ52に対してモータ33の回転を指示しているにもかかわらず、エンコーダ34のセンサ部34aの信号に基づく可動部31の回転角度に変化がない場合に、モータ33の駆動を停止するようにモータドライバ52を制御してよい。 In this case, for example, even though the control section 51 instructs the motor driver 52 to rotate the motor 33, there is no change in the rotation angle of the movable section 31 based on the signal from the sensor section 34a of the encoder 34. In addition, the motor driver 52 may be controlled to stop driving the motor 33.
 尚、図13(b)に示すように、固定子72の突起721には、例えばショックアブソーバ、緩衝材等の部材722が配置されてもよい。 Incidentally, as shown in FIG. 13(b), a member 722 such as a shock absorber or a cushioning material may be disposed on the protrusion 721 of the stator 72.
 図13(c)に示すように、固定子72の突起721には、回転子71の突起711が固定子72の突起721に接触したことを検出するスイッチ723が設けられていてよい。この場合、スイッチ723は、例えば、突起711が突起721に接触したことを示す信号を制御部51に送信してよい。制御部51は、該信号を受信した場合に、モータ33の駆動を停止するようにモータドライバ52を制御してよい。 As shown in FIG. 13(c), the protrusion 721 of the stator 72 may be provided with a switch 723 that detects when the protrusion 711 of the rotor 71 contacts the protrusion 721 of the stator 72. In this case, the switch 723 may transmit, for example, a signal indicating that the protrusion 711 has contacted the protrusion 721 to the control unit 51. When the control unit 51 receives the signal, it may control the motor driver 52 to stop driving the motor 33.
 図13(d)に示すように、2つの回転規制部のうち一方の回転規制部の回転子71aの突起の位置と、2つの回転規制部のうち他方の回転規制部の回転子71bの突起の位置とは、互いに異なっている。つまり、上記一方の回転規制部の回転子71aの突起と、上記他方の回転規制部の回転子71bの突起とは、φ軸回りの周方向において互いに異なる位置に配置されている、と言える。上記一方の回転規制部は、φ軸回りの角度Θ1の範囲で可動部31の回転を規制する。上記他方の回転規制部は、φ軸回りの角度Θ2の範囲で可動部31の回転を規制する。 As shown in FIG. 13(d), the position of the projection on the rotor 71a of one of the two rotation restriction parts and the projection of the rotor 71b of the other rotation restriction part of the two rotation restriction parts. The positions of are different from each other. In other words, it can be said that the protrusion of the rotor 71a of the one rotation regulating part and the protrusion of the rotor 71b of the other rotation regulating part are arranged at different positions in the circumferential direction around the φ axis. One of the rotation regulating portions regulates the rotation of the movable portion 31 within the range of angle Θ1 around the φ axis. The other rotation regulating portion regulates the rotation of the movable portion 31 within the range of angle Θ2 around the φ axis.
 尚、図13(d)では、角度Θ1の範囲と角度Θ2の範囲との重複領域が存在する。この重複領域は、例えば、図13(b)に示す部材722(ショックアブソーバ、緩衝材等)のストロークに用いられる領域であってよい。また、回転規制部が突起等の機械的な規制部材を有しない場合に、可動部31が惰性で回転する範囲に相当する領域であってよい。ここで、回転規制部が突起等の機械的な規制部材を有しない場合、例えば光学的又は磁気的に可動部31の回転をモニタして、所定以上の可動部31の回転が検知された場合に、制御部51が、モータ33の駆動を停止するようにモータドライバ52を制御してよい。この場合、例えばエンコーダ34が回転規制部として機能してもよい。 Note that in FIG. 13(d), there is an overlapping region between the range of angle Θ1 and the range of angle Θ2. This overlapping area may be, for example, an area used for the stroke of a member 722 (shock absorber, buffer material, etc.) shown in FIG. 13(b). Alternatively, the area may correspond to a range in which the movable part 31 rotates due to inertia when the rotation restriction part does not have a mechanical restriction member such as a protrusion. Here, if the rotation regulating section does not have a mechanical regulating member such as a protrusion, for example, when the rotation of the movable section 31 is optically or magnetically monitored and rotation of the movable section 31 exceeding a predetermined amount is detected. Then, the control unit 51 may control the motor driver 52 to stop driving the motor 33. In this case, for example, the encoder 34 may function as a rotation regulating section.
 このような回転規制部により、例えばミラー収容部3(言い換えれば、第2支持機構30の可動部31)が、φ軸回りの一方の側に無制限に回転することを防止することができる。上述したように、可動部31及びその周囲には配線(例えば配線61、E1、E2等)が配置されている。このため、可動部31がφ軸回りに無制限に回転可能であると、上記配線に何らかの不具合が生じるおそれがある。第2支持機構30が回転規制部を備えることにより、可動部31の回転に起因して上記配線に何らかの不具合が生じることを防止することができる。 Such a rotation restricting portion can prevent, for example, the mirror housing portion 3 (in other words, the movable portion 31 of the second support mechanism 30) from rotating indefinitely to one side around the φ axis. As described above, wiring (for example, wiring 61, E1, E2, etc.) is arranged in and around the movable part 31. Therefore, if the movable part 31 is allowed to rotate without limit around the φ axis, there is a possibility that some kind of problem will occur in the above-mentioned wiring. By providing the second support mechanism 30 with the rotation regulating section, it is possible to prevent any problem from occurring in the wiring due to the rotation of the movable section 31.
 尚、ミラー保持部材21及びその周囲には配線が配置されていないので、ミラー保持部材21は、θ軸回りに無制限に回転可能であってよい。 Incidentally, since no wiring is arranged in or around the mirror holding member 21, the mirror holding member 21 may be freely rotatable around the θ axis.
 「2.ジンバル機構」において説明したように、第2支持機構30の固定部32はテーパ面を有していてよい(図4の符号“323”及び“326”並びに図5の符号“329”参照)。この場合、計測システム1は、図14(a)に示すようにθ軸回りの角度Θ3の範囲に存在する計測対象に計測光Lを照射可能である。また、計測システム1は、図14(b)に示すようにφ軸回りの角度Θ4の範囲に存在する計測対象に計測光Lを照射可能である。 As explained in "2. Gimbal mechanism", the fixing part 32 of the second support mechanism 30 may have a tapered surface (numerals "323" and "326" in FIG. 4 and symbol "329" in FIG. 5). reference). In this case, the measurement system 1 can irradiate the measurement light L onto the measurement target existing within the range of angle Θ3 around the θ axis, as shown in FIG. 14(a). Further, the measurement system 1 is capable of irradiating the measurement light L onto the measurement target existing within the range of angle Θ4 around the φ axis, as shown in FIG. 14(b).
 ここで、図14(b)に示すように、ミラーMの法線方向と、固定部32の部分32cの面327の法線方向とが揃っている状態におけるミラーMの位置を、ミラーMの基準位置とする。このときのミラーMのθ軸回りの角度を0度、且つ、φ軸回りの角度を0度とする。上記角度Θ3の範囲は、例えば+45度から-45度の範囲であってよく、例えば部分32a、32bを細めたり、テーパ面の角度を急峻にしたり、部分32cの面327の所定の位置に開口を設けたりすることで、+45度以上、-45度以上の範囲に計測光を照射可能であってもよい。上記角度Θ4の範囲は、例えば+120度から-120度の範囲であってよく、例えば部分32cを細めたり、テーパ面の角度を急峻にしたり、部分32cの面327の所定の位置に開口を設けたりすることで、+120度以上、-120度以上の範囲に計測光を照射可能であってもよい。 Here, as shown in FIG. 14(b), the position of the mirror M in a state where the normal direction of the mirror M and the normal direction of the surface 327 of the portion 32c of the fixed part 32 is Use as reference position. At this time, the angle of the mirror M around the θ axis is 0 degrees, and the angle around the φ axis is 0 degrees. The range of the angle Θ3 may be, for example, from +45 degrees to -45 degrees. It may be possible to irradiate measurement light in a range of +45 degrees or more and -45 degrees or more by providing a. The range of the angle Θ4 may be, for example, from +120 degrees to -120 degrees. For example, the portion 32c may be narrowed, the angle of the tapered surface may be made steeper, or an opening may be provided at a predetermined position on the surface 327 of the portion 32c. By doing so, it may be possible to irradiate measurement light in a range of +120 degrees or more and -120 degrees or more.
 固定部32にミラーM側に窄まったテーパ面が形成されているため、第2支持機構30の可動部31が、φ軸が延びる方向の両側で固定部32に支持される場合であっても、計測システム1の計測範囲を比較的広くすることができる。つまり、計測システム1によれば、比較的広い範囲の計測を可能としつつ、固定部32による可動部31の支持強度を担保することができる。 Since the fixed part 32 is formed with a tapered surface that narrows toward the mirror M side, the movable part 31 of the second support mechanism 30 is supported by the fixed part 32 on both sides in the direction in which the φ axis extends. Also, the measurement range of the measurement system 1 can be made relatively wide. That is, according to the measurement system 1, it is possible to ensure the support strength of the movable part 31 by the fixed part 32 while making it possible to measure a relatively wide range.
 7.技術的効果
 例えば図4に示すように、ミラー収容部3を構成する、第2支持機構30の可動部31は、φ軸が延びる方向において、その一方とその他方との両方で、第2支持機構30の固定部32に支持されている。このため、φ軸が延びる方向において、可動部31の一方だけが固定部32に支持される場合に比べて、第2支持機構30の剛性を低くすることができる。
7. Technical Effects For example, as shown in FIG. 4, the movable part 31 of the second support mechanism 30 constituting the mirror accommodating part 3 has a second support mechanism 31 on both one side and the other side in the direction in which the φ axis extends. It is supported by a fixed part 32 of a mechanism 30. Therefore, in the direction in which the φ axis extends, the rigidity of the second support mechanism 30 can be lowered compared to a case where only one of the movable parts 31 is supported by the fixed part 32.
 ここで、剛性が高くなるほど熱変形に弱くなることが判明している。φ軸が延びる方向において、可動部31の一方と他方との両方が固定部32に支持されることにより、第2支持機構30の剛性を比較的低くすることができるとともに、第2支持機構30が熱変形しにくくすることができる。 Here, it has been found that the higher the rigidity, the more susceptible to thermal deformation. By supporting both one and the other of the movable parts 31 by the fixed part 32 in the direction in which the φ axis extends, the rigidity of the second support mechanism 30 can be made relatively low, and the rigidity of the second support mechanism 30 can be made relatively low. can be made less susceptible to thermal deformation.
 加えて、第2支持機構30の剛性を低くすることができるので、第2支持機構30(さらには第1支持機構20)の構成部品の小型化を図ることができる。この結果、計測システム1の小型化及び軽量化を図ることができる。さらに、軸受け部材B1、B2、B3及びB4の口径を比較的小さくすることができる。すると、軸受け部材B1、B2、B3及びB4の製造精度を比較的高くすることができる。この結果、計測システム1に係る計測結果の精度を向上することができる。 In addition, since the rigidity of the second support mechanism 30 can be lowered, the components of the second support mechanism 30 (and the first support mechanism 20) can be made smaller. As a result, the measurement system 1 can be made smaller and lighter. Furthermore, the diameters of the bearing members B1, B2, B3, and B4 can be made relatively small. Then, the manufacturing accuracy of the bearing members B1, B2, B3, and B4 can be made relatively high. As a result, the accuracy of measurement results related to the measurement system 1 can be improved.
 計測システム1では、可動部31を含むミラー収容部3が回転可能である一方、例えば光学エンジンユニット40等はミラー収容部3とは異なる本体部2に収容されている。このため、例えば、ミラーの姿勢が変更されるときに、光学エンジンユニット40に相当する構成もミラーの姿勢変更に起因して移動する態様に比べて、可動する部材を最小限にすることができる。加えて、回転可能なミラー収容部3から比較的離れた位置に、光学エンジンユニット40等の、熱源及び振動源を配置することができる。 In the measurement system 1, the mirror accommodating part 3 including the movable part 31 is rotatable, while the optical engine unit 40 and the like are housed in the main body part 2 different from the mirror accommodating part 3, for example. For this reason, for example, when the attitude of the mirror is changed, the number of movable members can be minimized compared to a configuration in which the configuration corresponding to the optical engine unit 40 also moves due to the change in the attitude of the mirror. . In addition, a heat source and a vibration source, such as the optical engine unit 40, can be placed at a relatively distant position from the rotatable mirror housing 3.
 <使用例>
 上述の如く構成された計測システム1の使用例について図15乃至図17を参照して説明する。
<Usage example>
An example of use of the measurement system 1 configured as described above will be described with reference to FIGS. 15 to 17.
 計測システム1は、例えば図15に示すワークW及びロボット81各々の位置の計測に用いられてよい。ここで、ロボット81は、治具90に保持されたワークWを加工対象としてよい。ワークWは、例えば航空機の胴体等の比較的大きな構造体であってよい。 The measurement system 1 may be used, for example, to measure the positions of the workpiece W and the robot 81 shown in FIG. 15. Here, the robot 81 may process the workpiece W held by the jig 90. The workpiece W may be a relatively large structure such as the fuselage of an aircraft, for example.
 計測システム1は、計測対象に接触させたリフレクタ(“プローブ”とも称される)に、計測光Lを照射することで、計測対象の位置(上述した“4.制御ユニット”における“空間座標”に相当)を計測してよい。 The measurement system 1 determines the position of the measurement object (the "spatial coordinates" in "4. ) can be measured.
 図15において、計測対象としての治具90にはリフレクタr11が取り付けられている。計測対象としてのワークWにはリフレクタr12及びr13が取り付けられている。尚、ワークWにリフレクタが取り付けられない一方で、治具90に少なくとも3つのリフレクタが取り付けられてもよい。ロボット81のロボットアーム810には、図16に示すような、リフレクタr21、r22及びr23を含むリフレクタモジュールr2が取り付けられている。尚、リフレクタr11、r12、r13、r21、r22及びr23が、計測対象と称されてもよい。 In FIG. 15, a reflector r11 is attached to a jig 90 as a measurement target. Reflectors r12 and r13 are attached to the work W as a measurement target. Note that while no reflector is attached to the workpiece W, at least three reflectors may be attached to the jig 90. A reflector module r2 including reflectors r21, r22, and r23, as shown in FIG. 16, is attached to the robot arm 810 of the robot 81. Note that the reflectors r11, r12, r13, r21, r22, and r23 may be referred to as measurement targets.
 計測システム1は、リフレクタr11、r12及びr13各々に照射された計測光Lに基づいて、計測座標系におけるリフレクタr11、r12及びr13各々の位置を計測してよい。計測システム1は、リフレクタr21、r22及びr23各々に照射された計測光Lに基づいて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を計測してよい。 The measurement system 1 may measure the position of each of the reflectors r11, r12, and r13 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r11, r12, and r13. The measurement system 1 may measure the position of each of the reflectors r21, r22, and r23 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r21, r22, and r23.
 「計測座標系」とは、計測システム1に係る(言い換えれば、計測システム1に固有の)座標系を意味する。計測座標系は、例えば、互いに直交するX軸、Y軸及びZ軸から構成される直交座標系であってよい。 "Measurement coordinate system" means a coordinate system related to the measurement system 1 (in other words, unique to the measurement system 1). The measurement coordinate system may be, for example, an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis that are orthogonal to each other.
 尚、「ワークWの位置の計測」は、ワークW上の特定箇所の位置を直接的に計測することに限らず、例えば、ワークWに取り付けられたリフレクタr12及びr13の位置を計測することや、ワークWを保持する治具90に取り付けられたリフレクタr11の位置を計測することを含む概念であってよい。同様に、「ロボット41の位置の計測」は、ロボット41における特定箇所の位置を直接的に計測することに限らず、例えば、ロボット41に取り付けられたリフレクタモジュールr2(言い換えれば、リフレクタr21、r22及びr23)の位置を計測することを含む概念であってよい。尚、リフレクタモジュールr2は、リフレクタr21、r22及びr23と、該リフレクタr21、r22及びr23が配置される部材r2aとを有していてもよい。 Note that "measuring the position of the workpiece W" is not limited to directly measuring the position of a specific point on the workpiece W, but also includes, for example, measuring the positions of reflectors r12 and r13 attached to the workpiece W. , the concept may include measuring the position of the reflector r11 attached to the jig 90 that holds the workpiece W. Similarly, "measuring the position of the robot 41" is not limited to directly measuring the position of a specific location on the robot 41, but includes, for example, the reflector module r2 (in other words, the reflector r21, r22 and r23). Note that the reflector module r2 may include reflectors r21, r22, and r23, and a member r2a on which the reflectors r21, r22, and r23 are arranged.
 図2に示した計測システム1の制御部51は、例えば、計測座標系におけるリフレクタr11、r12及びr13各々の位置、並びに、計測座標系におけるリフレクタr21、r22及びr23各々の位置を示す位置信号を、計測制御装置200に送信してよい。計測制御装置200は、不図示のネットワークを介して、ロボット81を制御する加工制御装置300と通信可能に構成されている。 For example, the control unit 51 of the measurement system 1 shown in FIG. , may be transmitted to the measurement control device 200. The measurement control device 200 is configured to be able to communicate with a processing control device 300 that controls the robot 81 via a network (not shown).
 加工制御装置300は、例えばロボット81に係る座標系であるロボット座標系の下でロボット81を制御する。具体的には、加工制御装置300は、ロボット座標系の下で、ロボット81のロボットアーム810上の一点が移動する経路を設定する。加工制御装置300は、設定された経路に沿ってロボットアーム810上の一点が移動するように、ロボット81を制御する。 The processing control device 300 controls the robot 81 under a robot coordinate system that is a coordinate system related to the robot 81, for example. Specifically, the processing control device 300 sets a path along which a point on the robot arm 810 of the robot 81 moves under the robot coordinate system. Processing control device 300 controls robot 81 so that one point on robot arm 810 moves along a set path.
 ここで、ロボットアーム810上の一点は、いわゆる「ツールセンターポイント」と呼ばれる(以降、適宜“TCP”と表記する)。図16に示すように、TCPは、ロボットアーム810の先端に取り付けられたエンドエフェクタEEの加工対象に作用する部分の位置をおおよそ特定するものである。尚、ロボット座標系は、例えば、互いに直交するX軸、Y軸及びZ軸から構成される直交座標系であってよい。 Here, one point on the robot arm 810 is called a "tool center point" (hereinafter appropriately referred to as "TCP"). As shown in FIG. 16, the TCP roughly specifies the position of the portion of the end effector EE attached to the tip of the robot arm 810 that acts on the workpiece. Note that the robot coordinate system may be, for example, an orthogonal coordinate system composed of an X axis, a Y axis, and a Z axis that are orthogonal to each other.
 このように、計測システム1と加工制御装置300とは夫々独自の座標系(即ち、計測座標系、ロボット座標系)を用いている。このため、計測システム1による計測結果(例えば、リフレクタr11の位置等)を、加工制御装置300で用いるためには、計測座標系とロボット座標系との変換が必要である。 In this way, the measurement system 1 and the processing control device 300 each use their own coordinate systems (i.e., measurement coordinate system, robot coordinate system). Therefore, in order to use the measurement results by the measurement system 1 (for example, the position of the reflector r11, etc.) in the processing control device 300, it is necessary to convert the measurement coordinate system and the robot coordinate system.
 加えて、図16に示すように、計測システム1により計測されるリフレクタr21、r22及びr23各々の位置と、TCPの位置とは異なる。このため、リフレクタr21、r22及びr23各々の位置に基づいて、TCPの位置を求めることが必要である。 In addition, as shown in FIG. 16, the positions of each of the reflectors r21, r22, and r23 measured by the measurement system 1 are different from the position of the TCP. Therefore, it is necessary to determine the position of the TCP based on the position of each of the reflectors r21, r22, and r23.
 例えば、計測制御装置200は、計測システム1により計測された、計測座標系におけるリフレクタr11、r12及びr13各々の位置と、ロボット座標系におけるリフレクタr11、r12及びr13各々の位置と、に基づいて、計測座標系における位置とロボット座標系における位置とを変換するための座標変換情報を求めてよい。尚、ロボット座標系におけるリフレクタr11、r12及びr13各々の位置が既知であるものとする。 For example, the measurement control device 200, based on the positions of each of the reflectors r11, r12, and r13 in the measurement coordinate system measured by the measurement system 1, and the positions of each of the reflectors r11, r12, and r13 in the robot coordinate system, Coordinate transformation information for transforming the position in the measurement coordinate system and the position in the robot coordinate system may be obtained. It is assumed that the positions of the reflectors r11, r12, and r13 in the robot coordinate system are known.
 TCPの位置は、例えば次のように計測されてよい。図16において、治具91には、棒状のエンドエフェクタEEが挿入される穴Hが形成されている。穴Hの底面には、エンドエフェクタEEを計測するセンサSが配置されている。治具91は、その位置が変化しないように固定されているものとする。例えば、ロボット座標系におけるセンサSの位置、言い換えれば、治具91の穴Hの底面の位置は既知であるものとする。 The position of the TCP may be measured, for example, as follows. In FIG. 16, a jig 91 has a hole H into which a rod-shaped end effector EE is inserted. A sensor S for measuring the end effector EE is arranged at the bottom of the hole H. It is assumed that the jig 91 is fixed so that its position does not change. For example, it is assumed that the position of the sensor S in the robot coordinate system, in other words, the position of the bottom surface of the hole H of the jig 91 is known.
 この場合、エンドエフェクタEEの先端がセンサSに接触したときに(言い換えれば、センサSがエンドエフェクタEEの先端を検知したときに)、エンドエフェクタEEのTCPの位置が、センサSの位置として特定される。このようにして、ロボット座標系におけるTCPの位置が計測されてよい。 In this case, when the tip of the end effector EE contacts the sensor S (in other words, when the sensor S detects the tip of the end effector EE), the position of the TCP of the end effector EE is identified as the position of the sensor S. be done. In this way, the position of the TCP in the robot coordinate system may be measured.
 センサSがエンドエフェクタEEの先端がセンサSに接触している第1の状態において、リフレクタr21、r22及びr23各々の位置と、TCPの位置との位置関係は一意に決定される。 In the first state where the sensor S is in contact with the tip of the end effector EE, the positional relationship between the position of each of the reflectors r21, r22, and r23 and the position of the TCP is uniquely determined.
 計測制御装置200は、第1の状態で、計測システム1により計測された、計測座標系におけるリフレクタr21、r22及びr23各々の位置を取得してよい。例えば、計測制御装置200は、上述した座標変換情報を用いて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置に変換してよい。 The measurement control device 200 may acquire the positions of each of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 in the first state. For example, the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. .
 計測制御装置200は、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置と、ロボット座標系におけるTCPの位置とに基づいて、リフレクタr21、r22及びr23各々の位置に基づいてTCPの位置を求めるための位置変換情報を求めてよい。 The measurement control device 200 determines the position of the TCP based on the position of each of the reflectors r21, r22, and r23 in the robot coordinate system and the position of the TCP in the robot coordinate system. You may obtain location conversion information for
 計測制御装置200は、第1の状態とは異なる第2の状態で、計測システム1により計測された、計測座標系におけるリフレクタr21、r22及びr23各々の位置を取得してよい。例えば、計測制御装置200は、上述した座標変換情報を用いて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置に変換してよい。例えば、計測制御装置200は、上述した位置変換情報と、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置とに基づいて、ロボット座標系におけるTCPの位置を求めてよい。 The measurement control device 200 may acquire the positions of each of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 in a second state different from the first state. For example, the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. . For example, the measurement control device 200 may determine the position of the TCP in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system.
 計測制御装置200は、ロボット座標系におけるTCPの位置を示す位置信号を加工制御装置300に送信してよい。加工制御装置300は、ロボット座標系におけるTCPの位置に基づいて、ロボット81を制御してよい。 The measurement control device 200 may transmit a position signal indicating the position of the TCP in the robot coordinate system to the processing control device 300. The processing control device 300 may control the robot 81 based on the position of the TCP in the robot coordinate system.
 尚、上述した座標変換情報及び位置変換情報の少なくとも一方は、計測制御装置200ではなく、加工制御装置300により求められてよい。例えば、計測制御装置200は、第2の状態で、計測システム1により計測された、計測座標系におけるリフレクタr21、r22及びr23各々の位置を示す位置信号を加工制御装置300に送信してよい。この場合、加工制御装置300は、上述した座標変換情報に基づいて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置に変換してよい。加工制御装置300は、上述した位置変換情報と、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置とに基づいて、ロボット座標系におけるTCPの位置を求めてよい。 Note that at least one of the coordinate transformation information and position transformation information described above may be obtained by the processing control device 300 instead of the measurement control device 200. For example, the measurement control device 200 may transmit position signals indicating the positions of the reflectors r21, r22, and r23 in the measurement coordinate system measured by the measurement system 1 to the processing control device 300 in the second state. In this case, the processing control device 300 converts the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system based on the coordinate conversion information described above. good. The processing control device 300 may determine the position of the TCP in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system.
 計測システム1は、例えばロボット81のロボットアーム810の移動中に、第1支持機構20及び第2支持機構30を用いてミラーMの姿勢を変化させることにより、計測対象としてのリフレクタr21、r22及びr23の少なくとも一つへの計測光Lの照射を続けてよい。言い換えれば、計測システム1は、計測光Lが、計測対象としてのリフレクタr21、r22及びr23の少なくとも一つを追従するように、第1支持機構20及び第2支持機構30を用いてミラーMの姿勢を変化させてよい。また、別の言い方をすれば、移動する計測対象としてのリフレクタr21、r22及びr23の少なくとも一つが第2の光路OP2に位置するように、第1支持機構20及び第2支持機構30を用いてミラーMの姿勢を変化させてよい。 The measurement system 1 changes the attitude of the mirror M using the first support mechanism 20 and the second support mechanism 30, for example, while the robot arm 810 of the robot 81 is moving, thereby measuring the reflectors r21, r22 and The irradiation of the measurement light L to at least one of r23 may be continued. In other words, the measurement system 1 uses the first support mechanism 20 and the second support mechanism 30 to support the mirror M so that the measurement light L follows at least one of the reflectors r21, r22, and r23 as the measurement target. You may change your posture. In other words, the first support mechanism 20 and the second support mechanism 30 are used so that at least one of the reflectors r21, r22, and r23 as a moving measurement target is located in the second optical path OP2. The attitude of mirror M may be changed.
 図17に示すように、ワークWは、複数のロボット81、82及び83により加工されてもよい。加工制御装置300は、複数のロボット81、82及び83を夫々制御してよい。この場合、上述したロボット座標系は、複数のロボット81、82及び83に共通の座標系であってもよいし、ロボット毎にロボット座標系が設定されていてもよい(即ち、一のロボットに一のロボット座標系が設定され、他のロボットに他のロボット座標系が設定されてよい)。尚、加工制御装置300に代えて、複数のロボット81、82及び83に夫々対応する複数の加工制御装置が存在してよい。つまり、一のロボットが一の加工制御装置により制御され、他のロボットが他の加工制御装置により制御されてよい。 As shown in FIG. 17, the workpiece W may be processed by a plurality of robots 81, 82, and 83. The processing control device 300 may control a plurality of robots 81, 82, and 83, respectively. In this case, the robot coordinate system described above may be a common coordinate system for the plurality of robots 81, 82, and 83, or a robot coordinate system may be set for each robot (i.e., a robot coordinate system may be set for each robot. (One robot coordinate system may be set, and another robot coordinate system may be set for another robot.) Note that, instead of the processing control device 300, there may be a plurality of processing control devices corresponding to the plurality of robots 81, 82, and 83, respectively. That is, one robot may be controlled by one processing control device, and another robot may be controlled by another processing control device.
 ロボット81のロボットアーム810には、図16に示したリフレクタr21、r22及びr23を含むリフレクタモジュールr2が取り付けられている。ただし、図17ではリフレクタモジュールr2の図示を省略している。同様に、ロボット82のロボットアーム820には、3つのリフレクタを含むリフレクタモジュールが取り付けられている。ロボット83のロボットアーム830には、3つのリフレクタを含むリフレクタモジュールが取り付けられている。 A reflector module r2 including reflectors r21, r22, and r23 shown in FIG. 16 is attached to the robot arm 810 of the robot 81. However, in FIG. 17, illustration of the reflector module r2 is omitted. Similarly, a reflector module including three reflectors is attached to the robot arm 820 of the robot 82. A reflector module including three reflectors is attached to the robot arm 830 of the robot 83.
 計測システム1は、ロボットアーム810に取り付けられたリフレクタモジュールr2に含まれるリフレクタr21、r22及びr23各々に照射された計測光Lに基づいて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を計測する。 The measurement system 1 determines the positions of the reflectors r21, r22, and r23 in the measurement coordinate system based on the measurement light L irradiated to each of the reflectors r21, r22, and r23 included in the reflector module r2 attached to the robot arm 810. measure.
 例えば、計測制御装置200は、上述した座標変換情報を用いて、計測座標系におけるリフレクタr21、r22及びr23各々の位置を、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置に変換してよい。例えば、計測制御装置200は、上述した位置変換情報と、ロボット座標系におけるリフレクタr21、r22及びr23各々の位置とに基づいて、ロボット座標系におけるロボットアーム810に係るTCP(図16参照)の位置を求めてよい。 For example, the measurement control device 200 may use the coordinate conversion information described above to convert the positions of the reflectors r21, r22, and r23 in the measurement coordinate system to the positions of the reflectors r21, r22, and r23 in the robot coordinate system. . For example, the measurement control device 200 determines the position of the TCP (see FIG. 16) related to the robot arm 810 in the robot coordinate system based on the above-mentioned position conversion information and the positions of the reflectors r21, r22, and r23 in the robot coordinate system. You can ask for.
 この場合、計測制御装置200は、ロボット座標系におけるロボットアーム810に係るTCPの位置を示す位置信号を加工制御装置300に送信してよい。加工制御装置300は、ロボット座標系におけるロボットアーム810に係るTCPの位置に基づいて、ロボット81を制御してよい。 In this case, the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 810 in the robot coordinate system to the processing control device 300. The processing control device 300 may control the robot 81 based on the position of the TCP related to the robot arm 810 in the robot coordinate system.
 計測システム1は、ロボットアーム820に取り付けられたリフレクタモジュールに含まれる3つのリフレクタ各々に照射された計測光Lに基づいて、計測座標系における該3つのリフレクタ各々の位置を計測する。 The measurement system 1 measures the position of each of the three reflectors in the measurement coordinate system based on the measurement light L irradiated to each of the three reflectors included in the reflector module attached to the robot arm 820.
 例えば、計測制御装置200は、上述した座標変換情報を用いて、計測座標系におけるロボットアーム820に取り付けられた3つのリフレクタ各々の位置を、ロボット座標系における該3つのリフレクタ各々の位置に変換してよい。例えば、計測制御装置200は、上述した位置変換情報と同様にして求められた第2位置変換情報と、ロボット座標系におけるロボットアーム820に取り付けられた3つのリフレクタ各々の位置とに基づいて、ロボット座標系におけるロボットアーム820に係るTCP(図示せず)の位置を求めてよい。 For example, the measurement control device 200 uses the coordinate conversion information described above to convert the positions of the three reflectors attached to the robot arm 820 in the measurement coordinate system to the positions of each of the three reflectors in the robot coordinate system. It's fine. For example, the measurement control device 200 determines the position of the robot based on the second position conversion information obtained in the same manner as the position conversion information described above and the positions of the three reflectors attached to the robot arm 820 in the robot coordinate system. The position of a TCP (not shown) associated with robot arm 820 in the coordinate system may be determined.
 この場合、計測制御装置200は、ロボット座標系におけるロボットアーム820に係るTCPの位置を示す位置信号を加工制御装置300に送信してよい。加工制御装置300は、ロボット座標系におけるロボットアーム820に係るTCPの位置に基づいて、ロボット82を制御してよい。 In this case, the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 820 in the robot coordinate system to the processing control device 300. The processing control device 300 may control the robot 82 based on the position of the TCP related to the robot arm 820 in the robot coordinate system.
 計測システム1は、ロボットアーム830に取り付けられたリフレクタモジュールに含まれる3つのリフレクタ各々に照射された計測光Lに基づいて、計測座標系における該3つのリフレクタ各々の位置を計測する。 The measurement system 1 measures the position of each of the three reflectors in the measurement coordinate system based on the measurement light L irradiated to each of the three reflectors included in the reflector module attached to the robot arm 830.
 例えば、計測制御装置200は、上述した座標変換情報を用いて、計測座標系におけるロボットアーム830に取り付けられた3つのリフレクタ各々の位置を、ロボット座標系における該3つのリフレクタ各々の位置に変換してよい。例えば、計測制御装置200は、上述した位置変換情報と同様にして求められた第3位置変換情報と、ロボット座標系におけるロボットアーム830に取り付けられた3つのリフレクタ各々の位置とに基づいて、ロボット座標系におけるロボットアーム830に係るTCP(図示せず)の位置を求めてよい。 For example, the measurement control device 200 uses the coordinate conversion information described above to convert the positions of the three reflectors attached to the robot arm 830 in the measurement coordinate system to the positions of each of the three reflectors in the robot coordinate system. It's fine. For example, the measurement control device 200 determines the position of the robot based on the third position conversion information obtained in the same manner as the position conversion information described above and the positions of each of the three reflectors attached to the robot arm 830 in the robot coordinate system. The position of a TCP (not shown) associated with robot arm 830 in the coordinate system may be determined.
 この場合、計測制御装置200は、ロボット座標系におけるロボットアーム830に係るTCPの位置を示す位置信号を加工制御装置300に送信してよい。加工制御装置300は、ロボット座標系におけるロボットアーム830に係るTCPの位置に基づいて、ロボット83を制御してよい。 In this case, the measurement control device 200 may transmit a position signal indicating the position of the TCP related to the robot arm 830 in the robot coordinate system to the processing control device 300. The processing control device 300 may control the robot 83 based on the position of the TCP related to the robot arm 830 in the robot coordinate system.
 尚、第2位置変換情報は、ロボットアーム820に取り付けられた3つのリフレクタ各々の位置に基づいて、ロボットアーム820に係るTCPの位置を求めるための情報である。同様に、第3位置変換情報は、ロボットアーム830に取り付けられた3つのリフレクタ各々の位置に基づいて、ロボットアーム830に係るTCPの位置を求めるための情報である。 Note that the second position conversion information is information for determining the position of the TCP related to the robot arm 820 based on the positions of each of the three reflectors attached to the robot arm 820. Similarly, the third position conversion information is information for determining the position of the TCP related to the robot arm 830 based on the positions of each of the three reflectors attached to the robot arm 830.
 上述した説明では、光学エンジンユニット40は、光干渉方式で計測対象までの拒理を計測していたが、光パルスのTOF(Time of Flight)を測定する方式、強度や波長等が変調されたレーザ光の到達時間を測定する方式等種々の手法を用いることができる。 In the above explanation, the optical engine unit 40 measures the rejection to the measurement target using an optical interference method, but there is also a method for measuring the TOF (Time of Flight) of the optical pulse, and the intensity, wavelength, etc. are modulated. Various methods can be used, such as a method of measuring the arrival time of laser light.
 <付記>
 以上に説明した実施形態に関して、さらに以下の付記を開示する。
<Additional notes>
Regarding the embodiment described above, the following additional notes are further disclosed.
 (付記1)
 計測光を出力可能な照射光学系と、
 前記計測光を反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第2支持機構は、
 前記第1支持機構を、前記第1の回転軸に沿った方向の両側で支持し、前記第2の回転軸回りに回転させる可動部と、
 前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、
 を有し、
 前記第2の回転軸の方向において、前記ミラーに対して一の側に、前記計測光の光路が配置され、
 前記第2の回転軸の方向において、前記ミラーに対して他の側に、前記第1支持機構の電装部品に接続された配線が配置されており、
 前記第1支持機構と前記第2支持機構を用いて前記ミラーの姿勢を変えて、前記ミラーで前記計測光を計測対象に向けて反射する
 計測システム。
(Additional note 1)
An irradiation optical system capable of outputting measurement light,
a mirror that reflects the measurement light;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The second support mechanism includes:
a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis;
The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis. a fixed part that supports the
has
The optical path of the measurement light is arranged on one side with respect to the mirror in the direction of the second rotation axis,
Wiring connected to electrical components of the first support mechanism is arranged on the other side with respect to the mirror in the direction of the second rotation axis,
A measurement system, wherein the first support mechanism and the second support mechanism are used to change the attitude of the mirror, and the mirror reflects the measurement light toward a measurement target.
 (付記2)
 前記第2支持機構の前記一の側には、第1中空部が形成され、
 前記第2支持機構の前記他の側には、第2中空部が形成され、
 前記配線は前記第2中空部に配置される
 付記1に記載の計測システム。
(Additional note 2)
A first hollow part is formed on the one side of the second support mechanism,
A second hollow portion is formed on the other side of the second support mechanism,
The measurement system according to supplementary note 1, wherein the wiring is arranged in the second hollow part.
 (付記3)
 前記第2中空部と前記ミラーの間に配置され、前記第2中空部を覆うカバー部材をさらに備える
 付記2に記載の計測システム。
(Additional note 3)
The measurement system according to supplementary note 2, further including a cover member disposed between the second hollow part and the mirror and covering the second hollow part.
 (付記4)
 前記第1支持機構の少なくとも一部を収容する筐体をさらに備え、
 前記筐体には前記第1の回転軸方向に設けられた開口が形成され、
 前記カバー部材は、前記開口から挿入されることで前記第2中空部を塞ぐ
 付記3に記載の計測システム。
(Additional note 4)
further comprising a casing that houses at least a portion of the first support mechanism,
The housing has an opening provided in the direction of the first rotation axis,
The measurement system according to appendix 3, wherein the cover member closes the second hollow portion by being inserted through the opening.
 (付記5)
 前記ミラーが前記第2軸周りの基準位置にある状態での前記ミラーの前記第2の回転軸周りの角度を0度とし、前記第2の回転軸回りの回転方向における前記ミラーの前記第2の回転軸周りの角度をΘとして、-120度≦Θ≦+120度の範囲に、前記計測光を前記計測対象に照射可能な
 付記1乃至4のいずれかに記載の計測システム。
(Appendix 5)
The angle of the mirror around the second rotation axis in a state where the mirror is at a reference position around the second axis is 0 degrees, and the angle of the mirror in the rotation direction around the second rotation axis is 0 degrees. The measurement system according to any one of appendices 1 to 4, wherein the measurement light can be irradiated onto the measurement target in a range of -120 degrees≦Θ≦+120 degrees, where Θ is an angle around the rotation axis of .
 (付記6)
 計測光を出力可能な照射光学系と、
 前記計測光を反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第2支持機構は、
 前記第1支持機構を、前記第1の回転軸に沿った方向の両側で支持し、前記第2の回転軸回りに回転させる可動部と、
 前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、
 を有する
 計測システム。
(Appendix 6)
An irradiation optical system capable of outputting measurement light,
a mirror that reflects the measurement light;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The second support mechanism includes:
a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis;
The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis. a fixed part that supports the
measurement system.
 (付記7)
 計測光を出力可能な照射光学系と、
 前記計測光を計測対象に向けて反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第2支持機構は、
 前記第2の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーを前記第2の回転軸回りに回転させるモータを備え、
 前記第2の回転軸の方向において、前記一の側に、前記第1支持機構の電装部品に接続された配線が配置されている、
 計測システム。
(Appendix 7)
An irradiation optical system capable of outputting measurement light,
a mirror that reflects the measurement light toward a measurement target;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The second support mechanism includes:
a motor disposed on one side of the mirror in the direction of the second rotation axis, the motor rotating the mirror around the second rotation axis;
Wiring connected to electrical components of the first support mechanism is arranged on the one side in the direction of the second rotation axis;
measurement system.
 (付記8)
 ビームを出力可能な照射光学系と、
 前記ビームを反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第2支持機構は、
 前記第1支持機構を、前記第1の回転軸に沿った方向の両側で支持し、前記第2の回転軸回りに回転させる可動部と、
 前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、
 を有し、
 前記第2の回転軸の方向において、前記ミラーに対して一の側に、前記計測光の光路が配置され、
 前記第2の回転軸の方向において、前記ミラーに対して他の側に、前記第1支持機構の電装部品に接続された配線が配置されており、
 前記第1支持機構と前記第2支持機構を用いて前記ミラーの姿勢を変えて、前記ミラー で前記計測光を計測対象に向けて反射する
 ビーム照射システム。
(Appendix 8)
An irradiation optical system capable of outputting a beam,
a mirror that reflects the beam;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The second support mechanism includes:
a movable part that supports the first support mechanism on both sides in a direction along the first rotation axis and rotates it around the second rotation axis;
The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotatable around the second rotation axis. a fixed part that supports the
has
The optical path of the measurement light is arranged on one side with respect to the mirror in the direction of the second rotation axis,
Wiring connected to electrical components of the first support mechanism is arranged on the other side with respect to the mirror in the direction of the second rotation axis,
A beam irradiation system, wherein the first support mechanism and the second support mechanism are used to change the attitude of the mirror, and the mirror reflects the measurement light toward a measurement target.
 (付記9)
 ビームを出力可能な照射光学系と、
 前記ビームを計測対象に向けて反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第2支持機構は、
 前記第2の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーの回転変位を検出する回転変位センサと、
 前記第2の回転軸の方向において、前記ミラーの他の側に配置され、  前記ミラーを前記第2の回転軸回りに回転させるモータと、
 を備える
 ビーム照射システム。
(付記10)
 ビームを出力可能な照射光学系と、
 前記ビームを計測対象に向けて反射するミラーと、
 前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
 前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
 前記第1支持機構は、
 前記第1の回転軸の方向において、前記ミラーの一側に配置され、前記ミラーを前記第1の回転軸回りに回転させるモータと、
 前記第1の回転軸の方向において、前記ミラーの他側に配置され、前記ミラーの回転変位を検出する回転変位センサと、
 を備える
 ビーム照射システム。
(Appendix 9)
An irradiation optical system capable of outputting a beam,
a mirror that reflects the beam toward a measurement target;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The second support mechanism includes:
a rotational displacement sensor that is disposed on one side of the mirror in the direction of the second rotation axis and detects rotational displacement of the mirror;
a motor that is disposed on the other side of the mirror in the direction of the second rotation axis and rotates the mirror around the second rotation axis;
Beam irradiation system.
(Appendix 10)
An irradiation optical system capable of outputting a beam,
a mirror that reflects the beam toward a measurement target;
a first support mechanism that rotatably supports the mirror around a first rotation axis;
a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
The first support mechanism includes:
a motor that is disposed on one side of the mirror in the direction of the first rotation axis and rotates the mirror around the first rotation axis;
a rotational displacement sensor that is disposed on the other side of the mirror in the direction of the first rotation axis and detects rotational displacement of the mirror;
Beam irradiation system.
 (付記11)
 照射光学系から計測光を出力することと、
 ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを用いて前記ミラーの姿勢を変えて、前記ミラーで前記計測光を計測対象に向けて反射することと、
 を含み、
 前記第2支持機構は、
 前記第1支持機構を、前記第2の回転軸に沿った方向の両端で支持し、前記第2の回転軸回りに回転させる可動部と、
 前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ、前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、
 を有し、
 前記第2の回転軸に沿った方向において、前記ミラーに対して一の側に、前記計測光の光路が配置され、
 前記第2の回転軸に沿った方向において、前記ミラーに対して他の側に、前記第1支持機構の電装部品に接続された配線が配置されている
 計測方法。
(Appendix 11)
Outputting measurement light from the irradiation optical system;
a first support mechanism that rotatably supports the mirror around a first rotation axis; and a second support that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis. changing the attitude of the mirror using a mechanism, and reflecting the measurement light toward the measurement target on the mirror;
including;
The second support mechanism includes:
a movable part that supports the first support mechanism at both ends in a direction along the second rotation axis and rotates the first support mechanism around the second rotation axis;
The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotated around the second rotation axis. a fixed part capable of supporting;
has
The optical path of the measurement light is arranged on one side with respect to the mirror in the direction along the second rotation axis,
A measuring method, wherein wiring connected to electrical components of the first support mechanism is arranged on the other side of the mirror in the direction along the second rotation axis.
 (付記12)
 ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備える計測システムにおける計測方法であって、
 照射光学系から計測光を出力することと、
 前記第2の回転軸の方向において、前記ミラーの一の側に配置された回転変位センサが、前記ミラーの回転変位を検出することと、
 前記第2の回転軸の方向において、前記ミラーの他の側に配置されたモータが、前記ミラーを前記第2の回転軸回りに回転することと、
 を含む計測方法。
(Appendix 12)
a first support mechanism that rotatably supports the mirror around a first rotation axis; and a second support that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis. A measurement method in a measurement system comprising a mechanism,
Outputting measurement light from the irradiation optical system;
a rotational displacement sensor disposed on one side of the mirror in the direction of the second rotation axis, detecting rotational displacement of the mirror;
A motor disposed on the other side of the mirror in the direction of the second rotation axis rotates the mirror around the second rotation axis;
Measurement methods including.
 (付記13)
 ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備える計測システムにおける計測方法であって、
 照射光学系から計測光を出力することと、
 前記第1の回転軸の方向において、前記ミラーの一の側に配置されたモータが、前記ミラーを前記第1の回転軸回りに回転することと、
 前記第1の回転軸の方向において、前記ミラーの他の側に配置された回転変位センサが、前記ミラーの回転変位を検出することと、
 を含む計測方法。
(Appendix 13)
a first support mechanism that rotatably supports the mirror around a first rotation axis; and a second support that supports the first support mechanism rotatably around a second rotation axis that intersects the first rotation axis. A measurement method in a measurement system comprising a mechanism,
Outputting measurement light from the irradiation optical system;
A motor disposed on one side of the mirror in the direction of the first rotation axis rotates the mirror around the first rotation axis;
a rotational displacement sensor disposed on the other side of the mirror in the direction of the first rotation axis, detecting rotational displacement of the mirror;
Measurement methods including.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う計測システムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the embodiments described above, and can be modified as appropriate within the scope or idea of the invention that can be read from the claims and the entire specification. It is also included within the technical scope of the present invention.
 1…計測システム、2…本体部、3…ミラー収容部、10…ジンバル機構、20…第1支持機構、21…ミラー保持部材、23、33…モータ、24、34…エンコーダ、30…第2支持機構、31…可動部、32…固定部、35、36…樹脂部材、37、38…中空部、40…光学エンジンユニット、41…光源、42…干渉計ヘッド、43…検出部、50…制御ユニット、51…制御部、52…モータドライバ、53…電源部、M…ミラー DESCRIPTION OF SYMBOLS 1... Measurement system, 2... Main body part, 3... Mirror housing part, 10... Gimbal mechanism, 20... First support mechanism, 21... Mirror holding member, 23, 33... Motor, 24, 34... Encoder, 30... Second Support mechanism, 31... Movable part, 32... Fixed part, 35, 36... Resin member, 37, 38... Hollow part, 40... Optical engine unit, 41... Light source, 42... Interferometer head, 43... Detecting part, 50... Control unit, 51...Control unit, 52...Motor driver, 53...Power supply unit, M...Mirror

Claims (50)

  1.  計測光を出力可能な照射光学系と、
     前記計測光を反射するミラーと、
     前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
     前記第1支持機構を前記第1の回転軸と交差する第2の回転軸回りに回転可能に支持する第2支持機構とを備え、
     前記第2支持機構は、
     前記第1支持機構を、前記第1の回転軸に沿った方向の両端で支持し、前記第2の回転軸回りに回転させる可動部と、
     前記第2の回転軸に沿った方向において前記第1支持機構に対して一方の側と他方の側とで前記可動部を支持し、且つ、前記可動部を前記第2の回転軸回りに回転可能に支持する固定部と、
     を有し、
     前記第2の回転軸に沿った方向において、前記ミラーに対して一の側に、前記計測光の光路が配置され、
     前記第2の回転軸に沿った方向において、前記ミラーに対して他の側に、前記第1支持機構の電装部品に接続された配線が配置されており、
     前記第1支持機構と前記第2支持機構とを用いて前記ミラーの姿勢を変えて、前記ミラーで前記計測光を計測対象に向けて反射する
     計測システム。
    An irradiation optical system capable of outputting measurement light,
    a mirror that reflects the measurement light;
    a first support mechanism that rotatably supports the mirror around a first rotation axis;
    a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
    The second support mechanism includes:
    a movable part that supports the first support mechanism at both ends in a direction along the first rotation axis and rotates it around the second rotation axis;
    The movable part is supported on one side and the other side with respect to the first support mechanism in a direction along the second rotation axis, and the movable part is rotated around the second rotation axis. a fixed part capable of supporting;
    has
    The optical path of the measurement light is arranged on one side with respect to the mirror in the direction along the second rotation axis,
    Wiring connected to electrical components of the first support mechanism is arranged on the other side of the mirror in the direction along the second rotation axis,
    A measurement system, wherein the first support mechanism and the second support mechanism are used to change the attitude of the mirror, and the mirror reflects the measurement light toward a measurement target.
  2.  前記第2支持機構の前記一の側には、円筒状の中空部が形成され、
     前記光路の少なくとも一部は前記中空部に配置される
     請求項1に記載の計測システム。
    A cylindrical hollow part is formed on the one side of the second support mechanism,
    The measurement system according to claim 1, wherein at least a portion of the optical path is arranged in the hollow part.
  3.  前記中空部は、前記可動部内に形成される
     請求項2に記載の計測システム。
    The measurement system according to claim 2, wherein the hollow part is formed within the movable part.
  4.  前記第2支持機構の前記一の側には、第1中空部として、前記中空部が形成され、
     前記第2支持機構の前記他の側には、第2中空部が形成され、
     前記配線は前記第2中空部に配置される
     請求項2又は3に記載の計測システム。
    The hollow part is formed as a first hollow part on the one side of the second support mechanism,
    A second hollow portion is formed on the other side of the second support mechanism,
    The measurement system according to claim 2 or 3, wherein the wiring is arranged in the second hollow part.
  5.  前記第2中空部は、前記可動部内に形成される
     請求項4に記載の計測システム。
    The measurement system according to claim 4, wherein the second hollow part is formed within the movable part.
  6.  前記光路は、前記第2の回転軸上に配置される
     請求項1乃至5のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 5, wherein the optical path is arranged on the second rotation axis.
  7.  前記配線の少なくとも一部は、前記可動部から延びる配線支持部材に固定されている
     請求項1乃至6のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 6, wherein at least a portion of the wiring is fixed to a wiring support member extending from the movable part.
  8.  前記配線支持部材の少なくとも一部は、前記第2の回転軸に沿って延びる
     請求項7に記載の計測システム。
    The measurement system according to claim 7, wherein at least a portion of the wiring support member extends along the second rotation axis.
  9.  前記配線は、前記第2の回転軸回りに渦巻き状に配された渦巻部と、前記渦巻部から前記第2の回転軸に沿って延びるストレート部を有し、
     前記ストレート部は前記配線支持部材に支持される
     請求項7又は8に記載の計測システム。
    The wiring has a spiral portion arranged in a spiral around the second rotation axis, and a straight portion extending from the spiral portion along the second rotation axis,
    The measurement system according to claim 7 or 8, wherein the straight portion is supported by the wiring support member.
  10.  前記配線は、フレキシブルプリント配線板を含む
     請求項1乃至9のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 9, wherein the wiring includes a flexible printed wiring board.
  11.  前記フレキシブルプリント配線板は、多層フレキシブルプリント配線板である
     請求項10に記載の計測システム。
    The measurement system according to claim 10, wherein the flexible printed wiring board is a multilayer flexible printed wiring board.
  12.  前記可動部が前記第2の回転軸回りに基準位置から所定の回転量以上回転することを規制する、少なくとも一つの回転規制部をさらに備える
     請求項1乃至11のいずれか一項に記載の計測システム。
    The measurement according to any one of claims 1 to 11, further comprising at least one rotation restriction part that restricts the movable part from rotating by more than a predetermined rotation amount from a reference position about the second rotation axis. system.
  13.  前記回転規制部は、前記可動部が前記第2の回転軸回りに前記基準位置から前記所定の回転量以上回転することが検知された場合に前記ミラーの回転を規制する
     請求項12に記載の計測システム。
    The rotation regulating section regulates the rotation of the mirror when it is detected that the movable section rotates by more than the predetermined rotation amount from the reference position about the second rotation axis. measurement system.
  14.  前記少なくとも一つの回転規制部は、第1の回転規制部及び第2の回転規制部を含み、
     前記第1の回転規制部は、前記一の側に配置され、前記ミラーの前記第2回転軸回りの第1回転方向の回転量を規制し、
     前記第2の回転規制部は、前記他の側に配置され、前記ミラーの前記第2の回転軸回りの前記第1回転方向とは逆の第2回転方向の回転量を規制し、
     前記第1の回転規制部及び前記第2の回転規制部は、前記第2の回転軸回りの周方向において互いに異なる位置に配置されている
     請求項12又は13に記載の計測システム。
    The at least one rotation restriction portion includes a first rotation restriction portion and a second rotation restriction portion,
    The first rotation regulating section is disposed on the one side, and regulates the amount of rotation of the mirror in a first rotation direction about the second rotation axis,
    The second rotation regulating part is disposed on the other side and regulates the amount of rotation of the mirror about the second rotation axis in a second rotation direction opposite to the first rotation direction,
    The measurement system according to claim 12 or 13, wherein the first rotation restriction section and the second rotation restriction section are arranged at mutually different positions in a circumferential direction around the second rotation axis.
  15.  前記一の側に、前記計測光を透過させる少なくとも一つの光学素子が前記光路に沿って配置されている
     請求項1乃至14のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 14, wherein at least one optical element that transmits the measurement light is arranged on the one side along the optical path.
  16.  前記少なくとも一つの光学素子は、第1の光学素子及び第2の光学素子を含み、
     前記第1の光学素子は、前記光路に対して傾いて配置されており、
     前記第2の光学素子は、前記光路に対して、前記第1の光学素子が傾いている方向とは反対方向に傾いて配置されている
     請求項15に記載の計測システム。
    The at least one optical element includes a first optical element and a second optical element,
    The first optical element is arranged at an angle with respect to the optical path,
    The measurement system according to claim 15, wherein the second optical element is arranged to be inclined with respect to the optical path in a direction opposite to a direction in which the first optical element is inclined.
  17.  前記第1の光学素子及び前記第2の光学素子各々は、前記計測光が通過する第1面と第2面とを有し、
     前記第1の光学素子及び前記第2の光学素子各々は、前記第1面と前記第2面とが平行な板である
     請求項16に記載の計測システム。
    Each of the first optical element and the second optical element has a first surface and a second surface through which the measurement light passes,
    The measurement system according to claim 16, wherein each of the first optical element and the second optical element is a plate in which the first surface and the second surface are parallel.
  18.  前記照射光学系と前記ミラーとの間にある前記光路の一部は、密閉空間に配置され、
     前記少なくとも一つの光学素子は、前記密閉空間の一の端部に配置された光学素子を含み、
     前記一の端部に配置された前記光学素子を介して、前記密閉空間から前記ミラーに向けて前記計測光が射出される
     請求項16又は17に記載の計測システム。
    A part of the optical path between the irradiation optical system and the mirror is arranged in a closed space,
    The at least one optical element includes an optical element disposed at one end of the closed space,
    The measurement system according to claim 16 or 17, wherein the measurement light is emitted from the closed space toward the mirror via the optical element disposed at the one end.
  19.  前記固定部は、前記第2支持機構における前記一の側に配置された第1部分と、前記第2支持機構における前記他の側に配置された第2部分と、前記第1部分と前記第2部分とを連結する第3部分とを有し、
     前記照射光学系は、前記第1部分に固定される
     請求項1乃至18のいずれか一項に記載の計測システム。
    The fixing portion includes a first portion disposed on the one side of the second support mechanism, a second portion disposed on the other side of the second support mechanism, and the first portion and the first portion. and a third part connecting the two parts,
    The measurement system according to any one of claims 1 to 18, wherein the irradiation optical system is fixed to the first portion.
  20.  前記第1乃至第3部分は、前記第1支持機構と対向する第1の面と前記第1の面とは反対側の第2の面を有し、
     前記第1乃至第3部分の少なくとも一つは前記第1の面から前記第2の面に向かって広がるテーパ面を有する
     請求項19に記載の計測システム。
    The first to third portions have a first surface facing the first support mechanism and a second surface opposite to the first surface,
    The measurement system according to claim 19, wherein at least one of the first to third portions has a tapered surface that widens from the first surface toward the second surface.
  21.  前記ミラーが前記第2軸回りの基準位置にある状態での前記ミラーの前記第2の回転軸回りの角度を0度として、前記第2の回転軸回りの回転方向における前記ミラーの前記第2の回転軸回りの角度をΘとして、-120度≦Θ≦+120度の範囲に、前記計測光を前記計測対象に照射できるように、前記第3部分が設けられている
     請求項19又は20に記載の計測システム。
    The second angle of the mirror in the rotational direction around the second rotational axis, assuming that the angle of the mirror around the second rotational axis when the mirror is at the reference position around the second axis is 0 degrees. According to claim 19 or 20, the third portion is provided so that the measurement light can be irradiated onto the measurement object in a range of −120 degrees≦Θ≦+120 degrees, where Θ is an angle around the rotation axis of the third portion. Measurement system as described.
  22.  前記計測光は、前記第2の回転軸に沿って延びる第1の光路と、前記第1の回転軸が延びる方向と前記第2の回転軸が延びる方向との両方と交わる方向に沿って延びる第2の光路とを通過して計測対象に向かい、
     前記ミラーは、前記第1の光路と前記第2の光路との交点に配置されている
     請求項1乃至21のいずれか一項に記載の計測システム。
    The measurement light extends along a first optical path extending along the second rotation axis and a direction that intersects both the direction in which the first rotation axis extends and the direction in which the second rotation axis extends. passing through the second optical path and heading toward the measurement target,
    The measurement system according to any one of claims 1 to 21, wherein the mirror is arranged at an intersection of the first optical path and the second optical path.
  23.  前記第1支持機構は、その内部に、前記第1の光路の一部を形成するとともに、前記第2の光路の一部を形成する空間を有する
     請求項22に記載の計測システム。
    The measurement system according to claim 22, wherein the first support mechanism has a space therein that forms a part of the first optical path and a part of the second optical path.
  24.  前記第2支持機構には、前記他の側に前記可動部を前記第2の回転軸回りに回転させるモータが配置されている
     請求項1乃至23のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 23, wherein the second support mechanism includes a motor that rotates the movable part around the second rotation axis on the other side.
  25.  前記第2支持機構には、前記第2の回転軸の方向において、前記一の側に前記可動部の回転変位を検出する回転変位センサが配置される
     請求項1乃至24のいずれか一項に記載の計測システム。
    25. The second support mechanism is provided with a rotational displacement sensor that detects rotational displacement of the movable part on the one side in the direction of the second rotation axis. Measurement system as described.
  26.  前記第1支持機構は、
     前記第1の回転軸の方向において、前記ミラーに対して一の側に、前記ミラーを前記第1の回転軸回りに回転させる第2のモータと、
     前記第1の回転軸の方向において、前記ミラーに対して他の側に、前記ミラーの回転変位を検出する第2の回転変位センサと、
     を備える
     請求項1乃至25のいずれか一項に記載の計測システム。
    The first support mechanism includes:
    a second motor that rotates the mirror around the first rotation axis on one side with respect to the mirror in the direction of the first rotation axis;
    a second rotational displacement sensor for detecting rotational displacement of the mirror on the other side with respect to the mirror in the direction of the first rotation axis;
    The measurement system according to any one of claims 1 to 25.
  27.  計測光を出力可能な照射光学系と、
     前記計測光を計測対象に向けて反射するミラーと、
     前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
     前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備え、
     前記第2支持機構は、
     前記第2の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーの回転変位を検出する回転変位センサと、
    前記第2の回転軸の方向において、前記ミラーの他の側に配置され、前記ミラーを前記第2の回転軸回りに回転させるモータと、
     を備える
     計測システム。
    An irradiation optical system capable of outputting measurement light,
    a mirror that reflects the measurement light toward a measurement target;
    a first support mechanism that rotatably supports the mirror around a first rotation axis;
    a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
    The second support mechanism includes:
    a rotational displacement sensor that is disposed on one side of the mirror in the direction of the second rotation axis and detects rotational displacement of the mirror;
    a motor that is disposed on the other side of the mirror in the direction of the second rotation axis and rotates the mirror around the second rotation axis;
    A measurement system equipped with.
  28.  前記第2支持機構の前記一の側に、前記計測光の光路が配置される
     請求項27に記載の計測システム。
    The measurement system according to claim 27, wherein the optical path of the measurement light is arranged on the one side of the second support mechanism.
  29.  前記第2支持機構の前記他の側に、電装部品に接続された配線が配置されている
     請求項27又は28に記載の計測システム。
    The measurement system according to claim 27 or 28, wherein wiring connected to an electrical component is arranged on the other side of the second support mechanism.
  30.  前記第2支持機構の前記他の側には、円筒状の中空部が形成され、
     前記中空部の周囲の少なくとも一部には、前記モータが配置され、
     前記配線は前記中空部に配置される
     請求項29に記載の計測システム。
    A cylindrical hollow part is formed on the other side of the second support mechanism,
    The motor is arranged at least in part around the hollow part,
    The measurement system according to claim 29, wherein the wiring is arranged in the hollow part.
  31.  前記配線は、前記モータ及び前記回転変位センサとは異なる電装部品に接続される
     請求項29又は30に記載の計測システム。
    The measurement system according to claim 29 or 30, wherein the wiring is connected to an electrical component different from the motor and the rotational displacement sensor.
  32.  前記電装部品は、前記第1支持機構に備えられる
     請求項31に記載の計測システム。
    The measurement system according to claim 31, wherein the electrical component is provided in the first support mechanism.
  33.  前記電装部品は、
     前記第1の回転軸の方向において、前記ミラーの一の側に配置され、前記第1支持機構を前記第1の回転軸回りに回転させる第2のモータ及び、
     前記第1の回転軸の方向において、前記ミラーの他の側に配置され、前記第1支持機構の回転変位を検出する第2の回転変位センサの、少なくともいずれかひとつを含む
     請求項31又は32に記載の計測システム。
    The electrical components are
    a second motor that is disposed on one side of the mirror in the direction of the first rotation axis and rotates the first support mechanism around the first rotation axis;
    32. The second rotational displacement sensor includes at least one of a second rotational displacement sensor that is arranged on the other side of the mirror in the direction of the first rotational axis and detects rotational displacement of the first support mechanism. The measurement system described in .
  34.  前記配線の少なくとも一部は、前記第2支持機構から延びる配線支持部材に固定されている
     請求項29乃至33のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 29 to 33, wherein at least a portion of the wiring is fixed to a wiring support member extending from the second support mechanism.
  35.  計測光を出力可能な照射光学系と、
     前記計測光を計測対象に向けて反射するミラーと、
     前記ミラーを第1の回転軸回りに回転可能に支持する第1支持機構と、
     前記第1支持機構を前記第1の回転軸と交差する第2の回転軸周りに回転可能に支持する第2支持機構とを備え、
     前記第1支持機構は、
     前記第1の回転軸の方向において、前記ミラーの一の側に配置され、前記ミラーを前記第1の回転軸回りに回転させるモータと、
     前記第1の回転軸の方向において、前記ミラーの他の側に配置され、前記ミラーの回転変位を検出する回転変位センサと、
     を備える、
     計測システム。
    An irradiation optical system capable of outputting measurement light,
    a mirror that reflects the measurement light toward a measurement target;
    a first support mechanism that rotatably supports the mirror around a first rotation axis;
    a second support mechanism that rotatably supports the first support mechanism around a second rotation axis that intersects the first rotation axis;
    The first support mechanism includes:
    a motor that is disposed on one side of the mirror in the direction of the first rotation axis and rotates the mirror around the first rotation axis;
    a rotational displacement sensor that is disposed on the other side of the mirror in the direction of the first rotation axis and detects rotational displacement of the mirror;
    Equipped with
    measurement system.
  36.  前記第1支持機構には、前記第1の回転軸の方向において、前記ミラーの前記他の側に、重量バランスを調整するためのバランスマスが配置されている
     請求項35に記載の計測システム。
    36. The measurement system according to claim 35, wherein the first support mechanism includes a balance mass for adjusting weight balance arranged on the other side of the mirror in the direction of the first rotation axis.
  37.  前記回転変位センサは、前記バランスマスの内側に配置される
     請求項36に記載の計測システム。
    The measurement system according to claim 36, wherein the rotational displacement sensor is arranged inside the balance mass.
  38.  前記第1支持機構は、
     前記ミラーを前記第1の回転軸の方向の両側で支持し、前記第1の回転軸回りに回転させる可動部と、
     前記可動部を、前記第1の回転軸の方向の両側からで回転可能に支持する固定部と、
     を備える
     請求項35乃至37のいずれか一項に記載の計測システム。
    The first support mechanism includes:
    a movable part that supports the mirror on both sides in the direction of the first rotation axis and rotates it around the first rotation axis;
    a fixed part that rotatably supports the movable part from both sides in the direction of the first rotation axis;
    The measurement system according to any one of claims 35 to 37.
  39.  前記可動部は、前記ミラーを3つの支持点で支持する
     請求項38に記載の計測システム。
    The measurement system according to claim 38, wherein the movable part supports the mirror at three support points.
  40.  前記可動部は、弾性部材を備え、
     前記弾性部材が前記ミラーに弾性による力を加える位置は、前記3つの支持点を頂点とする三角形の重心位置である
     請求項39に記載の計測システム。
    The movable part includes an elastic member,
    The measurement system according to claim 39, wherein the position where the elastic member applies elastic force to the mirror is the center of gravity of a triangle having the three support points as vertices.
  41.  前記可動部の周囲には、円環状の溝部が形成されており、
     前記第2支持機構が前記第1支持機構を回転可能に支持する部分には、前記円環状の溝部に対応する円環状の凸部が形成されており、
     前記円環状の溝部は、前記円環状の凸部に対して回転可能に嵌合する
     請求項35乃至40のいずれか一項に記載の計測システム。
    An annular groove is formed around the movable part,
    An annular convex portion corresponding to the annular groove is formed in a portion where the second support mechanism rotatably supports the first support mechanism;
    The measurement system according to any one of claims 35 to 40, wherein the annular groove portion rotatably fits into the annular convex portion.
  42.  前記第2の回転軸の方向において、前記ミラーの一の側に配線が配置され、
     前記配線は前記モータ及び前記回転変位センサの少なくとも一方に接続される
     請求項35乃至41のいずれか一項に記載の計測システム。
    Wiring is arranged on one side of the mirror in the direction of the second rotation axis,
    The measurement system according to any one of claims 35 to 41, wherein the wiring is connected to at least one of the motor and the rotational displacement sensor.
  43.  前記配線の少なくとも一部は、前記可動部から延びる配線支持部材に固定されている
     請求項35乃至42のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 35 to 42, wherein at least a portion of the wiring is fixed to a wiring support member extending from the movable part.
  44.  前記配線支持部材の少なくとも一部は、前記第2の回転軸に沿って延びる
     請求項43に記載の計測システム。
    The measurement system according to claim 43, wherein at least a portion of the wiring support member extends along the second rotation axis.
  45.  前記配線は、前記第2の回転軸回りに渦巻き状に配された渦巻部と、前記渦巻部から前記第2の回転軸に沿って延びるストレート部を有し、
     前記ストレート部は前記配線支持部材に支持される
     請求項44に記載の計測システム。
    The wiring has a spiral portion arranged in a spiral around the second rotation axis, and a straight portion extending from the spiral portion along the second rotation axis,
    The measurement system according to claim 44, wherein the straight portion is supported by the wiring support member.
  46.  前記配線は、フレキシブルプリント配線板を含む
     請求項35乃至45のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 35 to 45, wherein the wiring includes a flexible printed wiring board.
  47.  前記フレキシブルプリント配線板は、多層フレキシブルプリント配線板である
     請求項46に記載の計測システム。
    The measurement system according to claim 46, wherein the flexible printed wiring board is a multilayer flexible printed wiring board.
  48.  前記第2の回転軸方向は重力方向となる
     請求項1乃至47いずれか一項に記載の計測システム。
    The measurement system according to any one of claims 1 to 47, wherein the second rotation axis direction is a direction of gravity.
  49.  前記計測光の照射により前記計測対象から発生する反射光を受光する受光部をさらに備え、
     前記受光部から出力に基づいて、前記計測対象の位置と姿勢の少なくとも一方を取得する
     請求項1乃至48のいずれか一項に記載の計測システム。
    further comprising a light receiving section that receives reflected light generated from the measurement target by irradiation with the measurement light,
    The measurement system according to any one of claims 1 to 48, wherein at least one of a position and an orientation of the measurement target is acquired based on an output from the light receiving unit.
  50.  前記計測対象の移動中に、前記第1支持機構と前記第2支持機構を用いて前記ミラーの姿勢を変化させることにより、前記計測対象への前記計測光の照射を続ける
     請求項1乃至49のいずれか一項に記載の計測システム。
    While the measurement target is moving, the first support mechanism and the second support mechanism are used to change the attitude of the mirror to continue irradiating the measurement light onto the measurement target. The measurement system according to any one of the items.
PCT/JP2022/032236 2022-08-26 2022-08-26 Measurement system WO2024042712A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032236 WO2024042712A1 (en) 2022-08-26 2022-08-26 Measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032236 WO2024042712A1 (en) 2022-08-26 2022-08-26 Measurement system

Publications (1)

Publication Number Publication Date
WO2024042712A1 true WO2024042712A1 (en) 2024-02-29

Family

ID=90012893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032236 WO2024042712A1 (en) 2022-08-26 2022-08-26 Measurement system

Country Status (1)

Country Link
WO (1) WO2024042712A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353214A (en) * 1989-07-21 1991-03-07 Mitsubishi Electric Corp Mirror driving device
JP2000221037A (en) * 1999-01-29 2000-08-11 Topcon Corp Automatic surveying machine and three-dimensional measuring method
JP2003043405A (en) * 2001-08-02 2003-02-13 Hitachi Via Mechanics Ltd Scanner
US20080123170A1 (en) * 2006-11-27 2008-05-29 Riegl Laser Measurement Systems Gmbh Scanning apparatus
JP2010169811A (en) * 2009-01-21 2010-08-05 Seiko Epson Corp Optical scanning apparatus and image forming apparatus
JP2012509464A (en) * 2008-11-17 2012-04-19 ファロ テクノロジーズ インコーポレーテッド Six-degree-of-freedom measuring device and method
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353214A (en) * 1989-07-21 1991-03-07 Mitsubishi Electric Corp Mirror driving device
JP2000221037A (en) * 1999-01-29 2000-08-11 Topcon Corp Automatic surveying machine and three-dimensional measuring method
JP2003043405A (en) * 2001-08-02 2003-02-13 Hitachi Via Mechanics Ltd Scanner
US20080123170A1 (en) * 2006-11-27 2008-05-29 Riegl Laser Measurement Systems Gmbh Scanning apparatus
JP2012509464A (en) * 2008-11-17 2012-04-19 ファロ テクノロジーズ インコーポレーテッド Six-degree-of-freedom measuring device and method
JP2010169811A (en) * 2009-01-21 2010-08-05 Seiko Epson Corp Optical scanning apparatus and image forming apparatus
WO2014010107A1 (en) * 2012-07-11 2014-01-16 北陽電機株式会社 Scanning-type distance measuring device

Similar Documents

Publication Publication Date Title
US11802762B2 (en) Laser-based measurement device and movable platform
US7220958B2 (en) Optical displacement sensor and external force detecting device
US7289228B2 (en) Optical displacement sensor, and external force detecting device
US6621565B2 (en) Rotating head optical transmitter for position measurement system
US8432552B2 (en) High intensity Fabry-Perot sensor
JP2001042109A (en) Beam splitter
JP2012154642A (en) Laser radar and photoreceiver
TW201736904A (en) Single-axis rotary actuator
WO2024042712A1 (en) Measurement system
KR20180029585A (en) light emitting module and LiDAR
WO2021223182A1 (en) Laser radar and automatic driving apparatus
US10648837B2 (en) Encoder, printer, and robot
US6987626B2 (en) Vibration monitoring in optical and opto-electronic beam guiding systems
US20120162740A1 (en) Mirror actuator and beam irradiation device
US6155690A (en) Optical axis correction device
KR20180029561A (en) light emitting module and LiDAR
JP2000035549A5 (en)
CN212275964U (en) Circuit board, distance measuring device and distance measuring system
US20230305643A1 (en) Joystick module
WO2021223179A1 (en) Laser radar and self-driving device
WO2021223183A1 (en) Laser transceiving assembly, laser radar, and automatic driving device
KR20180026143A (en) light emitting module and LiDAR
JP2019070625A (en) Distance measuring device
JP2548340Y2 (en) Laser radar with optical axis adjustment function
US20050051714A1 (en) Optical displacement sensor and external force detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956538

Country of ref document: EP

Kind code of ref document: A1