JP2001091353A - Insolation sensor - Google Patents

Insolation sensor

Info

Publication number
JP2001091353A
JP2001091353A JP26958499A JP26958499A JP2001091353A JP 2001091353 A JP2001091353 A JP 2001091353A JP 26958499 A JP26958499 A JP 26958499A JP 26958499 A JP26958499 A JP 26958499A JP 2001091353 A JP2001091353 A JP 2001091353A
Authority
JP
Japan
Prior art keywords
light receiving
solar radiation
light
insolation
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26958499A
Other languages
Japanese (ja)
Other versions
JP3424071B2 (en
Inventor
Hiroshi Takada
洋 高田
Satoru Kano
哲 叶
Kiyomitsu Ishikawa
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP26958499A priority Critical patent/JP3424071B2/en
Publication of JP2001091353A publication Critical patent/JP2001091353A/en
Application granted granted Critical
Publication of JP3424071B2 publication Critical patent/JP3424071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To finely control an air conditioning operation by controlling the wind amount and the temperature of the air conditioning operation according to the insolation amount so as to be different on the side of a driver's seat, on the side of an assistant driver's seat an on the side of a rear seat according to the insolation direction. SOLUTION: This insolation sensor 1 is provided with a light receiving element 2 whose light receiving face is divided into a plurality of at least three light receiving regions 2a, 2b, 2c, 2d and which outputs detection signals according to insolation amounts which are respectively incident from the respective light receiving regions. The insolation sensor is provided with a light receiving lens 3 which is arranged and installed by keeping a prescribed interval from the respective light receiving regions on the photodetector 2, and an insolation- state computing means which computes an insolation state such as an insolation amount, insolation altitude, insolation direction or the like on the basis of the detection signals of the respective light receiving regions. The light receiving lens 3 is composed of a first face 3a whose optical axis Z passes nearly the center of the lens 3, which passes the center of the light receiving face of the photo detector 2 and which passes the point of intersection of dividing lines dividing the light receiving face into the respective light receiving regions. The light receiving lens 3 is composed of a second face 3b whose radius of curvature is smaller than that of the first face on the side of the photo detector 2 and which has a nearly concave spherical shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽光の到達量を検
知する日射センサに関するものであり、詳細には自動車
の空調装置における温度制御のように、外気温に加えて
乗員に対する太陽光の直射の状態に応じて温度制御を行
うことが望まれる時に用いられる日射センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar radiation sensor for detecting the amount of sunlight that has arrived, and more particularly, to direct radiation of sunlight to an occupant in addition to outside air temperature, such as temperature control in an air conditioner of an automobile. The present invention relates to a solar radiation sensor used when it is desired to perform temperature control according to the state of the solar radiation.

【0002】[0002]

【従来の技術】まず、自動車の空調装置用として用いら
れる日射センサに要求される特性について説明を行う
と、太陽が真上にある状態では乗員はルーフで直射日光
を遮られるので輻射熱の影響をそれほど受けず、温度制
御は車室内の気温を設定温度に制御するのみで行えば良
いものとなる。
2. Description of the Related Art First, the characteristics required for a solar radiation sensor used for an air conditioner of an automobile will be described. In a state where the sun is directly above, an occupant is shielded from direct sunlight by a roof. Rather, the temperature control may be performed only by controlling the temperature in the vehicle compartment to the set temperature.

【0003】ところが、太陽が傾いている状態では乗員
は窓から入り込む直射日光にさらされて輻射熱を受ける
ものとなり、車室内の気温以上に暑さを感じるものとな
るので、その日射量に応じて車室内の気温を設定温度か
ら適宜に下げることが望まれ、従って日射センサとして
は、乗員の受ける輻射熱の量に比例する検出特性が望ま
れるものとなる。
However, when the sun is tilted, the occupant receives radiant heat when exposed to direct sunlight entering through a window, and feels hotter than the temperature in the vehicle compartment. It is desirable to appropriately lower the temperature in the vehicle compartment from the set temperature. Therefore, as a solar radiation sensor, a detection characteristic proportional to the amount of radiant heat received by the occupant is desired.

【0004】上記の特性を有する従来のこの種の日射セ
ンサ90の例としては、例えば図10に示すように構成
されており、受光素子91の上方に受光素子91の受光
面の中心と光軸Zとが略一致するように受光レンズ92
が配設されていて、自動車のダッシュボード上などに設
置される。この受光レンズ92には内面に円錐レンズ部
92a、凹レンズ部92b、凸レンズ部92cが形成さ
れていて、円錐レンズ部92aは真上からの光を遮蔽し
て斜めからの光を透過し、凹レンズ部92bは斜めから
水平面の光を受光面に導き、凸レンズ部92cは所定の
範囲の斜め光を受光面に導くようにそれぞれ構成されて
いる。これによって図11に示すように、車体のルーフ
によって太陽の直射光が遮られる90度前後の出力を抑
え、太陽の直射光の入射が多い30度前後の出力を上げ
ることにより、日射センサの出力特性を乗員の窓から入
る太陽光による暑さ感に近似させるように補っている。
FIG. 10 shows an example of a conventional solar radiation sensor 90 of this kind having the above-mentioned characteristics. For example, the center of the light receiving surface of the light receiving element 91 and the optical axis are arranged above the light receiving element 91. The light receiving lens 92 so that
Is installed on the dashboard of the car. The light receiving lens 92 has a conical lens portion 92a, a concave lens portion 92b, and a convex lens portion 92c formed on an inner surface thereof. The conical lens portion 92a blocks light from directly above, transmits light obliquely, and forms a concave lens portion. 92b is configured to guide the light in the horizontal plane from the oblique direction to the light receiving surface, and the convex lens portion 92c is configured to guide the oblique light in a predetermined range to the light receiving surface. As a result, as shown in FIG. 11, the output of the solar radiation sensor is suppressed by suppressing the output at around 90 degrees at which the direct sunlight of the sun is blocked by the roof of the vehicle body and increasing the output at around 30 degrees where the direct sunlight of the sun is large. The characteristics are supplemented so as to approximate the feeling of heat due to the sunlight entering through the window of the occupant.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、こうし
た従来の日射センサ90の場合、日射量の検出のみしか
行っておらず、太陽光の高度や方位までを検出すること
はできない。そのため太陽光が射し込んでくる高さや方
向によって運転席側、助手席側、後部座席側等で日射量
に差がある場合でも同様の空調制御しかできないといっ
た問題点を生じ、この点の解決が課題とされるものとな
っている。
However, in the case of such a conventional solar radiation sensor 90, only the amount of solar radiation is detected, and the altitude and azimuth of sunlight cannot be detected. Therefore, even if there is a difference in the amount of solar radiation on the driver's seat side, the passenger's seat side, the rear seat side, etc., depending on the height and direction of the sunlight, the same air conditioning control can only be performed. Has become an issue.

【0006】[0006]

【課題を解決するための手段】本発明は上記した従来の
課題を解決するための具体的手段として、受光面が少な
くとも3つの受光領域に分割され且つ各受光領域からそ
れぞれに入射する日射量に応じた検出信号を出力する受
光素子と、該受光素子の受光面と所定の間隔を空けて対
向配設された受光レンズと、前記各受光領域それぞれの
検出信号から日射量、日射高度、日射方位等の日射状態
を演算する日射状態演算手段とを備え、前記受光レンズ
は、光軸がレンズの略中心を通ると共に前記受光素子の
受光面の中心でなお且つ受光面を各受光領域に分割する
分割線の交点を通っていて、日射側の略凸球面状の第一
面と、受光素子側の前記第一面より曲率半径の小さい略
凹球面状の第二面とから成ることを特徴とする日射セン
サを提供することで課題を解決するものである。
According to the present invention, as a specific means for solving the above-mentioned conventional problems, a light receiving surface is divided into at least three light receiving regions, and the amount of solar radiation incident on each of the light receiving regions is determined. A light-receiving element that outputs a corresponding detection signal; a light-receiving lens that is disposed to face the light-receiving surface of the light-receiving element at a predetermined distance; And the like, wherein the light receiving lens divides the light receiving surface into the respective light receiving regions while the optical axis passes through substantially the center of the lens and is the center of the light receiving surface of the light receiving element. Passing through the intersection of the dividing line, a first surface of a substantially convex spherical shape on the solar radiation side, and a second surface of a substantially concave spherical shape having a smaller radius of curvature than the first surface on the light receiving element side, To provide a solar radiation sensor It is intended to solve the problem.

【0007】[0007]

【発明の実施の形態】次に本発明を図に示す実施形態に
基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail based on an embodiment shown in the drawings.

【0008】図1に符号1で示すものは、本発明に係る
日射センサであり、この日射センサ1は、受光素子2と
該受光素子2全体を覆うように装着される受光レンズ3
とから構成されている。
FIG. 1 shows a solar radiation sensor 1 according to the present invention. The solar radiation sensor 1 includes a light receiving element 2 and a light receiving lens 3 mounted so as to cover the entire light receiving element 2.
It is composed of

【0009】受光素子2は図2に示すように構成されて
おり、例えばフォトダイオード、フォトトランジスタな
どの光電変換素子によって受光面が構成され、該受光面
は4つの同一正方形状の受光領域2a、2b、2c、2
dに分割されている。そして、リードフレーム5上に実
装され、モールド樹脂4によってモールドされた構成と
なっている。
The light receiving element 2 is configured as shown in FIG. 2. A light receiving surface is formed by photoelectric conversion elements such as a photodiode and a phototransistor. The light receiving surface is composed of four light receiving areas 2a having the same square shape. 2b, 2c, 2
d. Then, it is mounted on the lead frame 5 and molded with the molding resin 4.

【0010】リードフレーム5は、各受光領域2a、2
b、2c、2dのそれぞれに入射する日射量に応じた検
出信号が取り出せるように各受光領域2a、2b、2
c、2dのそれぞれが検出信号取り出し電極用の各リー
ドフレーム5a、5b、5c、5dに各々接続されてい
ると共に共通電極用のリードフレーム5eに接続されて
いる。
The lead frame 5 includes light receiving areas 2a, 2a,
b, 2c, 2d, the light receiving regions 2a, 2b, 2
Each of c and 2d is connected to each of the lead frames 5a, 5b, 5c and 5d for detecting signal extraction electrodes, and is connected to the lead frame 5e for common electrodes.

【0011】図3は受光素子2の正面図であり、受光面
が分割線Pと分割線Qとによって4つの同一正方形状の
受光領域2a、2b、2c、2dに分割されていて、分
割線PとQとの交点Oが4つの受光領域によって形成さ
れた受光面全体の中心となっている。
FIG. 3 is a front view of the light receiving element 2. The light receiving surface is divided into four identical square light receiving areas 2a, 2b, 2c, and 2d by a dividing line P and a dividing line Q. The intersection O between P and Q is the center of the entire light receiving surface formed by the four light receiving regions.

【0012】図4は、日射センサ1の縦断面図であり、
受光素子2全体を覆うように受光レンズ3が配設されて
いる。受光レンズ3は、光軸Zがレンズ3の略中心を通
ると共に、受光素子2の受光領域2a、2b、2c、2
dによって構成される受光面全体の中心Oを通ってい
る。そして、日射側の第一面3aは略凸球面状に形成さ
れ、受光素子2側の第二面3bは第一面3aよりも曲率
半径の小さい略凹球面状に形成されている。
FIG. 4 is a longitudinal sectional view of the solar radiation sensor 1.
A light receiving lens 3 is provided so as to cover the entire light receiving element 2. The light receiving lens 3 has an optical axis Z substantially passing through the center of the lens 3 and a light receiving area 2a, 2b, 2c, 2
d passes through the center O of the entire light receiving surface. The first surface 3a on the solar radiation side is formed in a substantially convex spherical shape, and the second surface 3b on the light receiving element 2 side is formed in a substantially concave spherical shape having a smaller radius of curvature than the first surface 3a.

【0013】受光素子2の各受光領域2a、2b、2
c、2dのそれぞれに入射する日射量に応じた検出信号
は、図5に示すように日射状態演算手段6に入力され、
日射状態演算手段6によって日射量、日射高度及び日射
方位の演算が行われる。そして、日射状態演算手段6の
出力は図示しない空調制御装置へ送られ、日射状態に応
じた空調制御が行われる。
Each light receiving area 2a, 2b, 2
A detection signal corresponding to the amount of solar radiation incident on each of c and 2d is input to the solar radiation state calculating means 6 as shown in FIG.
The amount of solar radiation, the altitude of solar radiation, and the direction of solar radiation are calculated by the solar radiation state computing means 6. Then, the output of the solar radiation state computing means 6 is sent to an air conditioning control device (not shown), and air conditioning control is performed according to the solar radiation state.

【0014】この日射状態に応じた空調制御とは、例え
ば従来同様に日射量に応じて空調の風量や温度を制御す
るだけでなく、日射高度や日射方位も演算することで、
太陽光が自動車の窓から射し込む角度や方向を導き出す
ことによって運転席側と助手席側(左右)で空調の風量
や温度を異ならせたり、運転席・助手席側と後部座席側
(前後)で空調の風量や温度を異ならせたりといったき
め細やかな制御をも可能としているものである。
The air-conditioning control according to the state of solar radiation means, for example, not only controlling the airflow and temperature of air-conditioning according to the amount of solar radiation, but also calculating the altitude of solar radiation and the azimuth of solar radiation.
By deriving the angle and direction in which the sunlight shines through the window of the car, the airflow and temperature of the air conditioning differ between the driver's seat and the passenger's seat (left and right). Fine control, such as varying the air volume and temperature of air conditioning, is also possible.

【0015】以上のように構成された日射センサ1の日
射量、日射高度、日射方位等の日射状態の検出方法につ
いて説明する。
A method of detecting the state of solar radiation such as the amount of solar radiation, the solar radiation altitude, the solar radiation direction, etc., of the solar radiation sensor 1 configured as described above will be described.

【0016】日射センサ1は、例えば自動車の前席側の
ダッシュボードの上面に受光素子2の各検出領域2a、
2b、2c、2dが水平になるように取り付けられてい
る。この状態を図6(a)に示すように座標軸上に設定
して考える。即ち各受光領域2a、2b、2c、2dの
分割線P、Qの交差している点Oを中心として水平方向
にx軸とy軸を設定し、垂直方向にz軸を設定する。さ
らに、図6(b)に示すようにx軸を高度0度、z軸を
高度90度、また、x軸を方位0度、y軸を方位90度
として、日射高度がα(=0度)、β、γ、δ(=90
度)、日射方位がA(=0度)、B、C(=45度)、
D、E(=90度)の場合について考える。
The solar radiation sensor 1 includes, for example, detection areas 2a of the light receiving element 2 on an upper surface of a dashboard on a front seat side of an automobile.
2b, 2c and 2d are mounted so as to be horizontal. It is assumed that this state is set on a coordinate axis as shown in FIG. That is, the x-axis and the y-axis are set in the horizontal direction and the z-axis is set in the vertical direction around the point O where the division lines P and Q of the light receiving regions 2a, 2b, 2c and 2d intersect. Further, as shown in FIG. 6 (b), the x-axis is 0 degree altitude, the z-axis is 90 degree altitude, the x-axis is 0 degree azimuth, and the y-axis is 90 degree azimuth. ), Β, γ, δ (= 90
Degrees), the solar radiation direction is A (= 0 degrees), B, C (= 45 degrees),
Consider the case of D, E (= 90 degrees).

【0017】受光素子2の各受光領域2a、2b、2
c、2dの上方には所定の間隔を空けて受光レンズ3が
配設され、この受光レンズ3は、光軸Zがレンズ3の略
中心を通ると共に受光素子2の受光面の中心で尚且つ受
光面を各受光領域2a、2b、2c、2dに分割する分
割線P、Qの交点Oを通っていて、日射側の第一面3a
は略凸球面状に形成され、受光素子2側の第二面3bは
第一面3aより曲率半径の小さい略凹球面状に形成され
ているので、図9に示すように各受光領域は太陽光の射
し込む角度や方位によって、受光レンズ3のレンズ効果
による影響を受け、受光素子2に入射する光量が異なっ
てくる。
Each light receiving area 2a, 2b, 2
Above c and 2d, a light receiving lens 3 is disposed at a predetermined interval, and the light receiving lens 3 has an optical axis Z substantially passing the center of the lens 3 and the center of the light receiving surface of the light receiving element 2. It passes through the intersection O of the dividing lines P and Q dividing the light receiving surface into the respective light receiving regions 2a, 2b, 2c and 2d, and the first surface 3a on the solar radiation side
Are formed in a substantially convex spherical shape, and the second surface 3b on the light receiving element 2 side is formed in a substantially concave spherical shape having a smaller radius of curvature than the first surface 3a. Therefore, as shown in FIG. The amount of light incident on the light receiving element 2 is affected by the lens effect of the light receiving lens 3 depending on the incident angle and direction of the light.

【0018】即ち、図9の例では受光レンズ3は拡散レ
ンズであり、日射高度がα=0度のときは、日射方向に
近い側の受光領域2a、2b側に射し込む光より日射方
向から遠い側の受光領域2c、2d側に射し込む光の方
が、受光レンズ3のレンズ効果による拡散度合いが大き
くなるため、受光領域2a、2bの検出信号の方が受光
領域2c、2dの検出信号よりも大きく、日射高度がβ
=30度のときは、同じように受光領域2a、2b側の
射し込む光より受光領域2c、2d側に射し込む光の方
が拡散度合いは大きく、受光領域2a、2bの検出信号
の方が受光領域2c、2dの検出信号よりも大きいもの
の日射高度が0度のときと比べると出力の差は縮まり、
日射高度がγ=60度のときは、この差が更に縮まって
徐々に近づいていく。そして、日射高度がδ=90度の
とき、受光領域2a、2bの検出信号と受光領域2c、
2dに入射する日射量は遂に同じになり、それぞれの検
出信号は等しいものとなる。このように、受光レンズ3
の日射側の面3aと受光素子2側の面3bの曲率半径の
中心が共に光軸Z上とされていて日射側の面3aよりも
受光素子側の面3bの方が曲率半径を小さくされている
ため、日射光が受光レンズ3のレンズ効果によって屈折
されて受光面へと導かれ、日射高度の角度の増加に従っ
て各受光領域の出力比はリニアにもしくは略放物線状に
単調増加もしくは単調減少する特性を示すことになる。
That is, in the example shown in FIG. 9, the light receiving lens 3 is a diffusion lens, and when the solar radiation altitude is α = 0 degrees, it is farther from the solar radiation direction than the light that is incident on the light receiving regions 2a and 2b closer to the solar radiation direction. The light incident on the light receiving areas 2c and 2d on the side has a greater degree of diffusion due to the lens effect of the light receiving lens 3, so that the detection signals of the light receiving areas 2a and 2b are higher than the detection signals of the light receiving areas 2c and 2d. Large, solar radiation altitude β
= 30 degrees, the degree of diffusion of the light incident on the light receiving areas 2c and 2d is larger than that of the light incident on the light receiving areas 2a and 2b, and the detection signals of the light receiving areas 2a and 2b have the same light receiving area. Although the output signal is larger than the detection signals 2c and 2d, the difference in output is smaller than when the solar radiation altitude is 0 degree,
When the solar radiation altitude is γ = 60 degrees, the difference is further reduced and gradually approaches. Then, when the solar radiation altitude is δ = 90 degrees, the detection signals of the light receiving areas 2a and 2b and the light receiving area 2c,
The amount of solar radiation incident on 2d finally becomes the same, and the respective detection signals become equal. Thus, the light receiving lens 3
The center of the radius of curvature of the surface 3a on the solar radiation side and the surface 3b on the light receiving element 2 side are both on the optical axis Z, and the radius of curvature of the surface 3b on the light receiving element side is smaller than that of the solar radiation side 3a. Therefore, the sunlight is refracted by the lens effect of the light receiving lens 3 and guided to the light receiving surface, and the output ratio of each light receiving area monotonically increases or decreases linearly or substantially parabolically as the angle of solar radiation increases. Will be shown.

【0019】また、日射高度に加えて日射方位が変化し
た場合でも、同じように各受光領域2a、2b、2c、
2dは日射方位に応じて受光レンズ3によるレンズ効果
の影響を受けるので、各受光領域2a、2b、2c、2
dの検出信号の出力比は単調増加もしくは単調減少する
特性を示し、この結果を用いて以下に示すように日射状
態演算手段6によって、日射量、日射高度、日射方位を
導き出すことが可能になる。
Even when the solar radiation direction changes in addition to the solar radiation altitude, the light receiving areas 2a, 2b, 2c,
2d is affected by the lens effect of the light receiving lens 3 according to the solar radiation direction, so that each light receiving area 2a, 2b, 2c, 2d
The output ratio of the detection signal of d shows a characteristic of monotonically increasing or monotonically decreasing, and using the result, the amount of solar radiation, the solar radiation altitude, and the solar radiation azimuth can be derived by the solar radiation state computing means 6 as described below. .

【0020】まず、日射量の演算は、各受光領域2a、
2b、2c、2dの検出信号(出力電流)によって各受
光領域ごとに求められる。
First, the calculation of the amount of solar radiation is performed in each light receiving area 2a,
It is obtained for each light receiving area by the detection signals (output current) of 2b, 2c, and 2d.

【0021】次に、日射高度の演算は、受光素子2の各
受光領域2a、2b、2c、2dの出力する検出信号の
うち最大検出信号Sを選択し、この最大検出信号Sと、
最大検出信号Sを出力している受光領域と対角に位置す
る受光領域の検出信号Tとの出力比T/Sを演算する。
例えば図6(a)において最大検出信号を出力している
受光領域を2aとすれば、この受光領域2aと対角に位
置する受光領域は2dとなる。このときの演算結果は図
7に示すようになり、高度の増加に比例して上記出力比
T/Sも増加し、高度が90度即ち太陽光が真上から照
射している状態では2aと2dの日射量が等しくなるた
めT=Sとなり、出力比T/Sは1となる。従って上記
図7のテーブルを予めメモリしておけば、上記出力比T
/Sの演算結果から上記テーブルを参照して日射高度が
導き出せる。
Next, the calculation of the solar radiation altitude is performed by selecting the maximum detection signal S among the detection signals output from the respective light receiving areas 2a, 2b, 2c and 2d of the light receiving element 2, and
The output ratio T / S between the light receiving area outputting the maximum detection signal S and the detection signal T of the light receiving area located diagonally is calculated.
For example, assuming that the light receiving region outputting the maximum detection signal in FIG. 6A is 2a, the light receiving region located diagonally to this light receiving region 2a is 2d. The calculation result at this time is as shown in FIG. 7, and the output ratio T / S also increases in proportion to the increase in altitude. When the altitude is 90 degrees, that is, when sunlight is irradiated from directly above, 2a is obtained. Since the amount of solar radiation of 2d is equal, T = S, and the output ratio T / S is 1. Therefore, if the table of FIG. 7 is stored in advance, the output ratio T
The solar radiation altitude can be derived from the calculation result of / S with reference to the table.

【0022】そして、日射方位の演算は、最大検出信号
Sと、この最大検出信号Sを出力する受光領域と左右両
側に隣接する受光領域の検出信号U、Vとを用いてU/
S−V/Sを演算する。例えば図6(a)において最大
検出信号を出力している受光領域を2aとすれば、この
受光領域2aの左右両側に隣接する受光領域は2b、2
cとなる。このときの演算結果は図8に示すようにな
り、方位(A、B、C、D、E)によって上記出力比
(U/S−V/S)は異なる特性(A、B、C、D、
E)を示すものとなる。したがって、図8のテーブルを
予めメモリしておけば、先の演算結果より導き出された
日射高度と上記出力比(U/S−V/S)との関係から
上記テーブルを参照することで日射方位が導き出せる。
The calculation of the solar radiation azimuth is performed by using the maximum detection signal S and the detection signals U and V of the light receiving region outputting the maximum detection signal S and the light receiving regions adjacent to the left and right sides.
Calculate SV / S. For example, assuming that the light receiving region outputting the maximum detection signal in FIG. 6A is 2a, the light receiving regions adjacent to the left and right sides of the light receiving region 2a are 2b, 2a
c. The calculation result at this time is as shown in FIG. 8, and the output ratio (U / S−V / S) differs depending on the azimuth (A, B, C, D, E) (A, B, C, D). ,
E). Therefore, if the table of FIG. 8 is stored in advance, the solar radiation azimuth can be obtained by referring to the table from the relationship between the solar radiation altitude derived from the previous calculation result and the output ratio (U / S−V / S). Can be derived.

【0023】こうして日射量、日射高度、日射方位等の
日射状態が導き出されるので、この結果は制御信号とし
て図示しない空調制御装置へと出力され、日射量に応じ
た空調の風量や温度の制御を、日射高度や日射方位に応
じて運転席側、助手席側、後部座席側で異ならせて制御
することが可能となる。
In this manner, the insolation state such as the amount of insolation, the insolation altitude, the insolation direction, etc. is derived, and the result is output as a control signal to an air conditioning controller (not shown) to control the air volume and temperature of the air conditioning according to the insolation amount. In addition, it is possible to control differently on the driver's seat side, the passenger seat side, and the rear seat side according to the solar radiation altitude and the solar radiation direction.

【0024】なお、上記実施形態では受光素子2の受光
面が4つの受光領域に分割されている例として説明した
が、本発明はこれに限定されず、各受光領域は少なくと
も3つの受光領域に分割されていれば良い。
Although the above embodiment has been described as an example in which the light receiving surface of the light receiving element 2 is divided into four light receiving regions, the present invention is not limited to this, and each light receiving region is divided into at least three light receiving regions. It only has to be divided.

【0025】また、上記実施形態では受光領域の形状を
それぞれ正方形状としたが、本発明はこれについても限
定されず、例えばそれぞれ円形としたり、円形を放射状
に分割したものでも良く、要は受光領域が同一形状、同
一面積で分割されていれば良い。
In the above-described embodiment, the shape of the light receiving area is square. However, the present invention is not limited to this. For example, the light receiving area may be a circle or a circle divided radially. It is only necessary that the region is divided into the same shape and the same area.

【0026】また、それぞれ同一面積の受光領域を有す
る少なくとも3つの受光素子をそれぞれの受光領域が同
一平面上となるように隣接して設けたものであっても良
く、上記実施形態と同様に、これら受光素子2全体を覆
うように所定の間隔を空けて1つの受光レンズ3が対向
配設され、各受光素子の受光領域それぞれに入射する日
射量に応じた検出信号を出力し、それぞれの検出信号か
ら日射量、日射高度、日射方位等の日射状態を演算する
日射状態演算手段を備えていれば良い。この場合も先の
実施形態と同様に、受光素子2の数は少なくとも3つあ
れば良く、また、各受光素子の受光領域についても同一
形状、同一面積であれば良い。
Further, at least three light receiving elements each having a light receiving region of the same area may be provided adjacent to each other such that the light receiving regions are on the same plane. One light receiving lens 3 is disposed opposite to the light receiving element 2 at a predetermined interval so as to cover the entire light receiving element 2, and outputs a detection signal according to the amount of solar radiation incident on each light receiving area of each light receiving element. It suffices to provide a solar radiation state calculating means for calculating the solar radiation state such as the amount of solar radiation, the solar radiation altitude, the solar radiation direction, etc. from the signal. In this case, as in the previous embodiment, the number of the light receiving elements 2 may be at least three, and the light receiving regions of the respective light receiving elements may have the same shape and the same area.

【0027】また、日射状態演算手段6の日射高度、日
射方位の演算は、各受光領域の検出信号のうち最大の検
出信号を選択して行うものとして説明してきたが、最小
の検出信号を選択しても良く、この場合は、図7および
図8の特性における増加と減少が逆になるだけであるの
で、上記方法で同様にして、日射高度、日射方位を導き
出すことが可能である。
The calculation of the solar radiation altitude and the solar radiation azimuth of the solar radiation state computing means 6 has been described as being performed by selecting the maximum detection signal from the detection signals of the respective light receiving regions. In this case, since the increase and decrease in the characteristics of FIGS. 7 and 8 are only reversed, it is possible to derive the solar altitude and the solar azimuth in the same manner by the above method.

【0028】[0028]

【発明の効果】以上説明したように本発明の日射センサ
によれば、受光面が少なくとも3つの受光領域に分割さ
れ且つ各受光領域からそれぞれに入射する日射量に応じ
た検出信号を出力する受光素子と、該受光素子の受光面
と所定の間隔を空けて対向配設された受光レンズと、前
記各受光領域それぞれの検出信号から日射量、日射高
度、日射方位等の日射状態を演算する日射状態演算手段
とを備え、前記受光レンズは、光軸がレンズの略中心を
通ると共に前記受光素子の受光面の中心でなお且つ受光
面を各受光領域に分割する分割線の交点を通っていて、
日射側の略凸球面状の第一面と、受光素子側の前記第一
面より曲率半径の小さい略凹球面状の第二面とから成る
ことを特徴とする日射センサを備えた構成としたこと
で、日射量に応じた空調の風量や温度の制御を、日射高
度や日射方位によって運転席側、助手席側、後部座席側
で異ならせてきめ細やかに制御することが可能となり、
この種自動車用空調装置に用いられる日射センサとして
の性能向上に極めて優れた効果を奏するものである。
As described above, according to the solar radiation sensor of the present invention, the light receiving surface is divided into at least three light receiving regions, and the light receiving surface outputs a detection signal corresponding to the amount of solar radiation incident on each of the light receiving regions. An element, a light-receiving lens disposed opposite to a light-receiving surface of the light-receiving element at a predetermined interval, and solar radiation for calculating a solar radiation state such as a solar radiation amount, a solar radiation altitude, a solar radiation azimuth from a detection signal of each of the light-receiving regions. The light receiving lens has an optical axis passing through the approximate center of the lens and the center of the light receiving surface of the light receiving element and passing through an intersection of a dividing line that divides the light receiving surface into light receiving regions. ,
A configuration provided with a solar radiation sensor comprising a substantially convex spherical first surface on the solar radiation side and a substantially concave spherical second surface having a smaller radius of curvature than the first surface on the light receiving element side. By doing so, it is possible to control the air volume and temperature of the air conditioning according to the amount of solar radiation differently on the driver's seat side, the passenger seat side, the rear seat side depending on the solar radiation altitude and the solar radiation direction, and it is possible to finely control it.
This is extremely effective in improving the performance as a solar radiation sensor used in this type of automotive air conditioner.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る日射センサの実施形態を示す分解
斜視図である。
FIG. 1 is an exploded perspective view showing an embodiment of a solar radiation sensor according to the present invention.

【図2】同じ実施形態の受光素子を示す斜視図である。FIG. 2 is a perspective view showing a light receiving element of the same embodiment.

【図3】同じ実施形態の受光素子を示す正面図である。FIG. 3 is a front view showing a light receiving element of the same embodiment.

【図4】本発明に係る日射センサの断面図である。FIG. 4 is a sectional view of a solar radiation sensor according to the present invention.

【図5】同じ実施形態の回路構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing a circuit configuration of the same embodiment.

【図6】同じ実施形態の座標軸上に設定した状態を示す
斜視図である。
FIG. 6 is a perspective view showing a state set on coordinate axes according to the same embodiment.

【図7】同じ実施形態の日射高度による特性図である。FIG. 7 is a characteristic diagram according to the solar radiation altitude of the same embodiment.

【図8】同じ実施形態の日射方位による特性図である。FIG. 8 is a characteristic diagram according to the solar radiation azimuth of the same embodiment.

【図9】同じ実施形態の受光の状態を示す説明図であ
る。
FIG. 9 is an explanatory diagram illustrating a light receiving state according to the same embodiment.

【図10】従来例を示す垂直断面図である。FIG. 10 is a vertical sectional view showing a conventional example.

【図11】従来の日射センサ素子の特性図である。FIG. 11 is a characteristic diagram of a conventional solar radiation sensor element.

【符号の説明】[Explanation of symbols]

1……日射センサ 2……受光素子 2a、2b、2c、2d……受光領域 3……受光レンズ 3a……第一面 3b……第二面 4……モールド樹脂 5……リードフレーム 6……日射状態演算手段 DESCRIPTION OF SYMBOLS 1 ... Insolation sensor 2 ... Light receiving element 2a, 2b, 2c, 2d ... Light receiving area 3 ... Light receiving lens 3a ... 1st surface 3b ... 2nd surface 4 ... Mold resin 5 ... Lead frame 6 ... ... Insolation state calculation means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】受光面が少なくとも3つの受光領域に分割
され且つ各受光領域からそれぞれに入射する日射量に応
じた検出信号を出力する受光素子と、該受光素子の受光
面と所定の間隔を空けて対向配設された受光レンズと、
前記各受光領域それぞれの検出信号から日射量、日射高
度、日射方位等の日射状態を演算する日射状態演算手段
とを備え、前記受光レンズは、光軸がレンズの略中心を
通ると共に前記受光素子の受光面の中心でなお且つ受光
面を各受光領域に分割する分割線の交点を通っていて、
日射側の略凸球面状の第一面と、受光素子側の前記第一
面より曲率半径の小さい略凹球面状の第二面とから成る
ことを特徴とする日射センサ。
A light-receiving element which divides a light-receiving surface into at least three light-receiving areas and outputs a detection signal corresponding to the amount of solar radiation incident on each of the light-receiving areas; A light-receiving lens disposed opposite to the light-emitting lens,
An insolation state calculating means for calculating an insolation amount, an insolation altitude, an insolation state or the like from the detection signal of each of the light receiving regions, wherein the light receiving lens has an optical axis passing substantially the center of the lens and the light receiving element. Passing through the intersection of the dividing lines that divide the light receiving surface into each light receiving area at the center of the light receiving surface of
A solar radiation sensor comprising a substantially convex spherical first surface on the solar radiation side and a substantially concave spherical second surface having a smaller radius of curvature than the first surface on the light receiving element side.
【請求項2】受光領域が隣接して設けられてそれぞれに
入射する日射量に応じた検出信号を出力する少なくとも
3つの受光素子と、これら受光素子全体を覆うように所
定の間隔を空けて対向配設された1つの受光レンズと、
前記各受光素子それぞれの検出信号から日射量、日射高
度、日射方位等の日射状態を演算する日射状態演算手段
とを備え、前記受光レンズは、光軸がレンズの略中心を
通ると共に前記複数の受光素子の受光領域が隣接して形
成された受光面全体の中心でなお且つ各受光素子の境界
線の交点を通っていて、日射側の略凸球面状の第一面
と、受光素子側の前記第一面より曲率半径の小さい略凹
球面状の第二面とから成ることを特徴とする日射セン
サ。
2. A light receiving area provided adjacent to at least three light receiving elements for outputting a detection signal corresponding to the amount of sunlight incident on each of the light receiving areas, and facing each other at a predetermined interval so as to cover the whole of the light receiving elements. One light-receiving lens disposed,
A solar radiation amount calculating unit that calculates a solar radiation state such as a solar radiation amount, a solar radiation altitude, a solar radiation azimuth from the detection signal of each of the light receiving elements, wherein the light receiving lens has an optical axis passing substantially the center of the lens and the plurality of light receiving lenses. The light-receiving region of the light-receiving element is the center of the entire light-receiving surface formed adjacent to the light-receiving element, passes through the intersection of the boundary lines of the light-receiving elements, and has a substantially convex spherical first surface on the solar radiation side and a light-receiving element side. An insolation sensor comprising a substantially concave spherical second surface having a smaller radius of curvature than the first surface.
【請求項3】前記日射状態演算手段の日射高度の演算
は、前記受光領域を少なくとも4つの偶数を有してお
り、前記受光領域の検出信号のうち最大もしくは最小の
検出信号Sを選択し、該検出信号Sと、該検出信号Sを
出力する受光領域の略対角に位置する受光領域の検出信
号Tとの出力比T/Sを用いて行うことを特徴とする請
求項1または請求項2記載の日射センサ。
3. The method of calculating the solar radiation altitude by the solar radiation state computing means, wherein the light receiving area has at least four even numbers, and a maximum or minimum detection signal S among the detection signals of the light receiving area is selected. 2. The method according to claim 1, wherein the detection is performed using an output ratio T / S between the detection signal S and a detection signal T of a light receiving region located substantially diagonally of the light receiving region that outputs the detection signal S. 2. The solar radiation sensor according to 2.
【請求項4】前記日射状態演算手段の日射方位の演算
は、前記検出信号のうち最大もしくは最小の検出信号S
を選択し、該検出信号Sと、該検出信号Sを出力する受
光領域の左右両側に隣接する受光領域の検出信号U、V
とによってU/S−V/Sを算出し、この算出結果を用
いて行うことを特徴とする請求項1または請求項2記載
の日射センサ。
4. The method according to claim 1, wherein the calculation of the azimuth of the solar radiation is performed by calculating the maximum or minimum of the detection signals.
Is selected, and the detection signal S and the detection signals U and V of the light receiving areas adjacent to the left and right sides of the light receiving area that outputs the detection signal S are selected.
3. The solar radiation sensor according to claim 1, wherein U / S-V / S is calculated by using the following formula, and the calculation is performed using the calculation result.
JP26958499A 1999-09-24 1999-09-24 Solar radiation sensor Expired - Fee Related JP3424071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26958499A JP3424071B2 (en) 1999-09-24 1999-09-24 Solar radiation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26958499A JP3424071B2 (en) 1999-09-24 1999-09-24 Solar radiation sensor

Publications (2)

Publication Number Publication Date
JP2001091353A true JP2001091353A (en) 2001-04-06
JP3424071B2 JP3424071B2 (en) 2003-07-07

Family

ID=17474406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26958499A Expired - Fee Related JP3424071B2 (en) 1999-09-24 1999-09-24 Solar radiation sensor

Country Status (1)

Country Link
JP (1) JP3424071B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286545A (en) * 2001-03-23 2002-10-03 Stanley Electric Co Ltd Sunshine sensor
JP2003023165A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP2003021688A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP2010276421A (en) * 2009-05-27 2010-12-09 Denso Corp Photosensor device for mobile body
CN103759822A (en) * 2014-01-29 2014-04-30 江苏日盈电子股份有限公司 Light sensor, vehicle-mounted sunshine sensor provided with light sensor and automobile
JP2019090661A (en) * 2017-11-14 2019-06-13 パナソニックIpマネジメント株式会社 Solar sensor
JP2019203773A (en) * 2018-05-23 2019-11-28 スタンレー電気株式会社 Automatic headlight illuminance sensor
KR102076307B1 (en) 2019-07-15 2020-02-11 주식회사 오디텍 Quadrant solar sensor
WO2023286323A1 (en) * 2021-07-16 2023-01-19 英弘精機株式会社 Sunshine recorder and sunshine measurement method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286545A (en) * 2001-03-23 2002-10-03 Stanley Electric Co Ltd Sunshine sensor
JP4641358B2 (en) * 2001-03-23 2011-03-02 スタンレー電気株式会社 Sunshine sensor
JP2003023165A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP2003021688A (en) * 2001-07-06 2003-01-24 Honda Motor Co Ltd Solar radiation sensor
JP4641363B2 (en) * 2001-07-06 2011-03-02 本田技研工業株式会社 Solar radiation sensor
JP2010276421A (en) * 2009-05-27 2010-12-09 Denso Corp Photosensor device for mobile body
CN103759822A (en) * 2014-01-29 2014-04-30 江苏日盈电子股份有限公司 Light sensor, vehicle-mounted sunshine sensor provided with light sensor and automobile
JP2019090661A (en) * 2017-11-14 2019-06-13 パナソニックIpマネジメント株式会社 Solar sensor
JP2019203773A (en) * 2018-05-23 2019-11-28 スタンレー電気株式会社 Automatic headlight illuminance sensor
JP7099872B2 (en) 2018-05-23 2022-07-12 スタンレー電気株式会社 Illuminance sensor for auto light
KR102076307B1 (en) 2019-07-15 2020-02-11 주식회사 오디텍 Quadrant solar sensor
WO2023286323A1 (en) * 2021-07-16 2023-01-19 英弘精機株式会社 Sunshine recorder and sunshine measurement method

Also Published As

Publication number Publication date
JP3424071B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
US6888120B2 (en) Sunload sensor for automotive vehicles
JP2001091353A (en) Insolation sensor
EP1473552A2 (en) Solar sensor including reflective element to transform the angular response
JP3003479B2 (en) Solar radiation sensor
US5065015A (en) Solar radiation sensor for use in an automatic air conditioner
US11420498B2 (en) Photo sensor structure
JP2000229511A (en) Solar radiation sensor
EP1262747B1 (en) Sunload sensor for automotive vehicles
JP2582494Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP2572754Y2 (en) Bidirectional solar radiation detection sensor for automotive air conditioners
JP2827763B2 (en) Solar radiation sensor for automotive air conditioner
JP2590822Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP3218558B2 (en) Sunlight sensor
JPH0356090Y2 (en)
JP2585050Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP4598981B2 (en) Sunshine sensor
JP2582493Y2 (en) Solar radiation detection sensor for automotive air conditioners
JP2603431Y2 (en) Solar radiation sensor for automotive air conditioners
JP4945030B2 (en) Sunshine sensor
JP3284674B2 (en) Solar radiation sensor
JP2785619B2 (en) Solar radiation sensor for automotive air conditioner
KR102076307B1 (en) Quadrant solar sensor
JPH09311070A (en) Pyrheliometer for vehicle
JP2598940Y2 (en) Solar radiation detection sensor for automotive air conditioners
JPH0520568Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees