JP4598981B2 - Sunshine sensor - Google Patents

Sunshine sensor Download PDF

Info

Publication number
JP4598981B2
JP4598981B2 JP2001101973A JP2001101973A JP4598981B2 JP 4598981 B2 JP4598981 B2 JP 4598981B2 JP 2001101973 A JP2001101973 A JP 2001101973A JP 2001101973 A JP2001101973 A JP 2001101973A JP 4598981 B2 JP4598981 B2 JP 4598981B2
Authority
JP
Japan
Prior art keywords
light receiving
elements
lens
light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001101973A
Other languages
Japanese (ja)
Other versions
JP2002296107A (en
Inventor
安 谷田
竜太郎 大和田
俊広 及川
琢也 久志本
雅典 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2001101973A priority Critical patent/JP4598981B2/en
Publication of JP2002296107A publication Critical patent/JP2002296107A/en
Application granted granted Critical
Publication of JP4598981B2 publication Critical patent/JP4598981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用に設けられた空調装置を制御するときなどに用いられる日照センサに関するものであり、詳細には、太陽の仰角を測定し、例えば、車窓からの直射光が車内に射し込み、乗員が暑さを感じると判断されるときには、空調装置の出力を上げるなど、より一層に緻密な制御を行わせるために用いられるものである。
【0002】
【従来の技術】
従来のこの種の日照センサの構成の例としては、特開平9−311070号公報に示されるものがあり、この日照センサは、2つの受光素子と、外側が凸球面であり、内面が3段階のプリズムを組み合わせたような形状とした受光レンズとが組み合わされて構成されている。
【0003】
このようにしたことで、太陽が垂直方向にあるときから、ほぼ水平方向にあるときまで受光素子に光が達するものとなり、このときには、2つの受光素子間に仰角に応じる出力差を生じるものとなるので、この出力差に基づき空調装置の制御を行うことで一層に車室内の快適性を向上させるものとしている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記した従来の日照センサにおいては、前記受光レンズが三段階のプリズムを組み合わせたような形状とされていることで、例えば太陽が真上、水平、或いは、仰角45゜付近の仰角にあるときには、ほぼ正確な太陽の仰角が測定できるものとなるが、それらの中間では、内面の折れ曲がり状となる不連続な形状により、測定される仰角の値もまた不連続なものとなる。
【0005】
このことは、上記のような中間の仰角の状態では、例えば車窓から太陽光が射し込んでいるにも係わらず空調装置の出力が増加されず、乗員は射し込む直射光により暑さを感じて快適感を損なうなどの問題を生じる可能性が高く、この点の解決が課題とされるものとなっていた。また、上記した従来の日照センサにおいては、受光素子と受光レンズとが別体として形成されているので、日照センサとして組立てるときの組立精度が影響し特性に個体差を生じる問題点もある。
【0006】
【課題を解決するための手段】
本発明は、前記した従来の課題を解決するための具体的手段として、所定のパターンとして配置が行われた複数の受光素子と、これら受光素子を上方から覆う受光レンズとから成り、前記受光レンズによりそれぞれの前記受光素子に配布される光量の対比により太陽の仰角を測定する日照センサにおいて、前記受光レンズは前記受光素子の数と一致するエレメントを有する魚眼レンズ状とされ、それぞれの前記エレメントは対応する受光素子の中心を通る垂直軸と同軸とされ、この受光素子を収納するのに必要充分な半径を有する凸球面とされ、且つ、前記各エレメントの頂点は対応する各受光素子の中心を通る垂直軸上に位置し、前記エレメントの頂点と前記受光素子の受光面との間隔Hを、各受光素子の内接円の半径をW、受光レンズの各エレメント表面の臨界角αとしたとき、H=W/tanαとして、前記複数の受光素子と前記受光レンズとが一体化されていることを特徴とする日照センサを提供することで課題を解決するものである。
【0007】
【発明の実施の形態】
つぎに、本発明を図に示す実施形態に基づいて詳細に説明する。図1及び図2に符号1で示すものは本発明に係る日照センサであり、この日照センサ1は、例えば4個が正方形など所定の形状として配置された受光素子2(a〜d)と、前記受光素子2(a〜d)を覆う受光レンズ3とから成るものである点は従来例のものと同様である。
【0008】
また、前記受光レンズ3は、例えば太陽の照射方向に対して前後方向にある受光素子2(例えば、受光素子2aと受光素子2bなど)に対して、仰角に応じる光量の配布を行い、これにより生じる受光素子2間の出力差から仰角を演算し得るものである点も、従来例のものと同様である。
【0009】
ここで、本発明の日照センサ1においては、従来例の複数の受光素子2(a〜d)を1つの受光レンズ3で覆うものとは異なり、それぞれの受光素子2(a〜d)に1対1で対応してエレメント3a〜エレメント3dが形成される形状とされ、これらエレメント3(a〜d)が一体化された受光レンズ3としては、全体形状が魚眼レンズ状を呈するものとされている。
【0010】
以下に前記受光素子2(a〜d)とエレメント3(a〜d)との構成を更に詳細に説明する。尚、この説明においては受光素子2aと受光素子2b、及び、エレメント3aとエレメント3bに関して行うが、上記以外の受光素子2(c、d)とエレメント3(c、d)においても同様な構成とされている。
【0011】
そして、図2に示すように前記エレメント3aは受光素子2aの中心を通る垂直軸Xと同軸の凸球面とされ、このときの半径rは、以下に説明する受光素子2aとの位置関係において、この受光素子2aを少なくとも受光方向からは全面を覆うものとされ、エレメント3bと受光素子2bとも同様な構成とされている。
【0012】
従って、前記エレメント3aの頂点Pは前記受光素子2aの中心を通る垂直軸X上に位置し、同様にエレメント3bの頂点Pは受光素子2bの中心を通る垂直軸X上に位置するものとなる。ここで、本発明では前記頂点Pと受光素子2(a、b)との間隔Hを(間隔H=(受光素子の有効半径W/tan(臨界角α))の式に基づいて規定するものである。
【0013】
ここで、受光素子2の有効半径Wは通常には正方形である受光素子2の内接円の半径であり、臨界角αはエレメント3a、3b(即ち、受光レンズ3)が形成される部材の屈折率により定まる値であり、このように間隔Hを定めたことで、前記図2中に矢印Fで示す前記垂直軸Xと直交する方向、即ち、水平方向からエレメント3aに入射する光は受光素子2aの入射方向とは反対側の端部に達するものとなる。
【0014】
従って、前記エレメント3aの中心Cは前記垂直軸X上には存在するが、必ずしも受光素子2aの表面上に一致するものとは成らず、例えば、エレメント3aが形成される部材の屈折率が小さい場合には間隔Hも小さい値となり、受光素子2aは中心Cよりも頂点P寄りに設置されるものとなる。よって、このような場合には、エレメント3aは、上記のように頂点Pからの間隔Hが短く設定された場合にも受光素子2aが完全に覆えるように半径rを適宜に調整する必要を生じるものとなる。
【0015】
次いで、上記の構成とした本発明の日照センサ1の作用、及び、効果について説明を行う。先ず、太陽が水平位置にあるときには、水平方向Fから光が入射するときには、図2にも示したようにエレメント3aに到達した光は、このエレメント3aで屈折が行われ、受光素子2aのほぼ全面に光が達するものとなる。
【0016】
このときに、前記エレメント3bは、太陽光の照射方向である前方にエレメント3aが存在しているので、そのエレメント3aの影となり太陽光は達することがなく、従ってエレメント3bに付属する受光素子2bにも出力を生じることはない。よって、太陽の仰角が水平状態における受光素子2aと受光素子2bとの出力比は1:0である。
【0017】
そして、太陽の仰角が増して行くに従いエレメント3bにも光が達するものとなり、受光素子2bからの出力も仰角の増加に応じて次第に増えるものとなって行き、太陽の仰角が垂直(90゜)に達すると、受光素子2aと受光素子2bとは同じ出力を生じるもの、即ち、出力比が1:1のものとなる。
【0018】
図3は、上記説明の受光素子2aと受光素子2bとの出力比Nを太陽の仰角毎にプロットしたグラフであり、この出力比Nの曲線を子細に検討してみると、それぞれが隣り合う仰角間で値が同一となることもなく、また、極端に急激な傾斜の変化も認められない右上がりの曲線となっているので、それぞれの仰角の測定がほぼ正確に行えるものであることが理解できる。
【0019】
また、上記の構成とした本発明の日照センサ1においては、従来例のものと異なり、受光レンズ3(エレメント3a〜3d)と受光素子2a〜2dとの間に空気層が存在してなく、両者が一体化されている。このことは、例えばLEDランプを形成するときにLEDチップに、エポキシ樹脂のポティング・モールドでケースを形成するのと同様な金型などを用いる手段で日照センサ1が形成できるものとなる。
【0020】
このことは、日照センサ1の製造工程から組立工程が省略でき生産の効率化が可能となると共に、金型などの利用により両者に正確な位置合わせが可能となり、個々の日照センサ1における個体差、即ち、特性のバラツキも少なくすることが可能となる。尚、この種の日照センサ1は自動車のダッシュボードなどに設置されることが通常であるので、受光レンズ3がより小型のエレメント3a〜3dの組合せとして形成されたことで、太陽光の反射などにより運転者の幻惑を感じさせる度合いも低減される。従って、受光レンズ3にシボ加工などの反射防止処理を行う際にも軽度のもので良く、測定精度を損なわない。
【0021】
【発明の効果】
以上に説明したように本発明により、受光レンズは受光素子の数と一致するエレメントを有する魚眼レンズ状とされ、それぞれのエレメントは対応する受光素子の中心に軸を一致させ、この受光素子を収納するのに必要充分な半径を有する凸球面とされ、且つ、エレメントの頂点と受光素子の受光面との間隔Hを(間隔H=(受光素子の有効半径W/tan(臨界角α))として、受光素子と受光レンズとが一体化されている日照センサとしたことで、太陽の仰角の増減に略比例する出力が得られるものとして、測定結果に不連続性をなくし全ての仰角に対して適正な制御が行えるものとして、乗員の快適性の向上に極めて優れた効果を奏するものである。
【0022】
また、本発明の構成により受光レンズと受光素子とを一体成形することを可能とし、生産工程の簡素化によりコストダウンに優れた効果を奏すると共に、従来は日照センサの組立工程時に生じていた組立誤差などを生じないものとし、日照センサ間の特性のバラツキも格段に少ないものとして、品質、性能の向上にも極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】 本発明に係る日照センサの実施形態を示す正面図である。
【図2】 図1のA−A線に沿う断面図である。
【図3】 本発明に係る日照センサの出力特性を示すグラフである。
【符号の説明】
1……日照センサ
2(a〜d)……受光素子
3……受光レンズ
3a〜3d……エレメント
X……垂直軸
P……頂点
H……頂点と受光素子との間隔
r……エレメントの半径
W……受光素子の有効半径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sunshine sensor used when controlling an air conditioner provided for a vehicle, and more specifically, measures the elevation angle of the sun, for example, direct light from a vehicle window enters the vehicle, When it is determined that the occupant feels hot, it is used to perform more precise control such as increasing the output of the air conditioner.
[0002]
[Prior art]
An example of the configuration of this type of conventional sunshine sensor is disclosed in Japanese Patent Application Laid-Open No. 9-311070. This sunshine sensor has two light receiving elements, a convex spherical surface on the outside, and three stages on the inner surface. The light receiving lens is shaped in combination with the prisms.
[0003]
By doing so, light reaches the light receiving element from when the sun is in the vertical direction to when it is almost in the horizontal direction, and at this time, an output difference corresponding to the elevation angle is generated between the two light receiving elements. Therefore, the comfort of the passenger compartment is further improved by controlling the air conditioner based on this output difference.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional sunshine sensor, the light receiving lens is shaped like a combination of three-stage prisms, so that, for example, the sun is directly above, horizontally, or at an elevation angle around 45 °. In some cases, it is possible to measure an almost accurate sun elevation angle, but in the middle of these, the discontinuous shape of the inner surface is bent, and the measured elevation angle value is also discontinuous.
[0005]
This is because, in the state of the intermediate elevation angle as described above, for example, the output of the air conditioner is not increased in spite of the sunlight entering from the car window, and the occupant feels the heat due to the direct sunlight that enters. There is a high possibility that problems such as loss of comfort will occur, and the solution of this point has been a problem. Further, in the above-described conventional sunshine sensor, since the light receiving element and the light receiving lens are formed as separate bodies, there is a problem that the assembling accuracy at the time of assembling as a sunshine sensor has an effect and individual differences are caused in the characteristics.
[0006]
[Means for Solving the Problems]
As a specific means for solving the above-described conventional problems, the present invention includes a plurality of light receiving elements arranged as a predetermined pattern, and a light receiving lens that covers these light receiving elements from above. In the sunshine sensor that measures the elevation angle of the sun by comparing the amount of light distributed to each of the light receiving elements, the light receiving lens has a fisheye lens shape having elements that match the number of the light receiving elements, and each of the elements corresponds to A convex spherical surface that is coaxial with a vertical axis passing through the center of the light receiving element and has a radius sufficient to accommodate the light receiving element, and the vertex of each element passes through the center of the corresponding light receiving element. located on the vertical axis, the spacing H between the apex of each element receiving surface of each light receiving element, the radius of the inscribed circle of the light receiving elements W, the light receiving lens When a critical angle α of each element surface, H = a W / tan [alpha, solve the problem by providing a sunshine sensor, wherein the plurality of light receiving elements and the light receiving lens are integrated To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, this invention is demonstrated in detail based on embodiment shown in a figure. 1 and 2 indicate a sunshine sensor according to the present invention. The sunshine sensor 1 includes, for example, four light receiving elements 2 (a to d) arranged in a predetermined shape such as a square, The light receiving lens 3 that covers the light receiving elements 2 (a to d) is the same as the conventional example.
[0008]
The light receiving lens 3 distributes the amount of light corresponding to the elevation angle to the light receiving element 2 (for example, the light receiving element 2a and the light receiving element 2b) in the front-rear direction with respect to the irradiation direction of the sun, for example. The elevation angle can be calculated from the output difference between the light receiving elements 2 that occurs, as in the conventional example.
[0009]
Here, in the sunshine sensor 1 of the present invention, unlike the conventional example in which the plurality of light receiving elements 2 (a to d) are covered with one light receiving lens 3, one light receiving element 2 (a to d) has one. The element 3a to the element 3d are formed to correspond to each other, and the entire shape of the light receiving lens 3 in which the elements 3 (a to d) are integrated is a fisheye lens. .
[0010]
Below, the structure of the said light receiving element 2 (ad) and the element 3 (ad) is demonstrated still in detail. In this description, the light receiving element 2a and the light receiving element 2b, and the element 3a and the element 3b are described, but the light receiving elements 2 (c, d) and the elements 3 (c, d) other than the above have the same configuration. Has been.
[0011]
As shown in FIG. 2, the element 3a is a convex spherical surface that is coaxial with the vertical axis X passing through the center of the light receiving element 2a. The radius r at this time is in a positional relationship with the light receiving element 2a described below. The light receiving element 2a covers the entire surface at least from the light receiving direction, and both the element 3b and the light receiving element 2b have the same configuration.
[0012]
Accordingly, the vertex P of the element 3a is located on the vertical axis X passing through the center of the light receiving element 2a, and similarly, the vertex P of the element 3b is located on the vertical axis X passing through the center of the light receiving element 2b. . Here, in the present invention, the distance H between the apex P and the light receiving element 2 (a, b) is defined based on the formula (interval H = (effective radius W / tan (critical angle α) of the light receiving element)). It is.
[0013]
Here, the effective radius W of the light receiving element 2 is a radius of an inscribed circle of the light receiving element 2 which is usually a square, and the critical angle α is a member of which the elements 3a and 3b (that is, the light receiving lens 3) are formed. The value determined by the refractive index, and by setting the interval H in this way, light incident on the element 3a from the direction perpendicular to the vertical axis X indicated by the arrow F in FIG. The end of the element 2a opposite to the incident direction is reached.
[0014]
Therefore, although the center C of the element 3a exists on the vertical axis X, it does not necessarily coincide with the surface of the light receiving element 2a. For example, the refractive index of the member on which the element 3a is formed is small. In this case, the interval H is also a small value, and the light receiving element 2a is installed closer to the apex P than the center C. Therefore, in such a case, the element 3a needs to appropriately adjust the radius r so that the light receiving element 2a can be completely covered even when the interval H from the apex P is set short as described above. Will occur.
[0015]
Next, the operation and effect of the sunshine sensor 1 of the present invention configured as described above will be described. First, when the sun is in a horizontal position, when light enters from the horizontal direction F, the light reaching the element 3a is refracted by the element 3a as shown in FIG. The light reaches the entire surface.
[0016]
At this time, since the element 3b exists in front of the irradiation direction of sunlight, the element 3b does not reach the shadow of the element 3a, so that sunlight does not reach. Therefore, the light receiving element 2b attached to the element 3b. Does not produce any output. Therefore, the output ratio between the light receiving element 2a and the light receiving element 2b when the elevation angle of the sun is horizontal is 1: 0.
[0017]
As the sun's elevation angle increases, the light reaches the element 3b, and the output from the light receiving element 2b gradually increases as the elevation angle increases, so that the sun's elevation angle is vertical (90 °). The light receiving element 2a and the light receiving element 2b produce the same output, that is, the output ratio is 1: 1.
[0018]
FIG. 3 is a graph in which the output ratio N between the light receiving element 2a and the light receiving element 2b described above is plotted for each elevation angle of the sun. When the curve of the output ratio N is examined in detail, they are adjacent to each other. The values do not become the same between the elevation angles, and the curves are ascending to the right with no extremely steep changes in inclination, so that each elevation angle can be measured almost accurately. Understandable.
[0019]
Further, in the sunshine sensor 1 of the present invention configured as described above, unlike the conventional example, there is no air layer between the light receiving lens 3 (elements 3a to 3d) and the light receiving elements 2a to 2d, Both are integrated. This means that, for example, when the LED lamp is formed, the sunshine sensor 1 can be formed by means using a mold similar to the case where the case is formed on the LED chip by epoxy resin potting mold.
[0020]
This is because the assembly process from the manufacturing process of the sunshine sensor 1 can be omitted, the production efficiency can be improved, and the use of a mold or the like enables accurate alignment with both, and individual differences in the individual sunshine sensors 1 In other words, it is possible to reduce variation in characteristics. In addition, since this kind of sunshine sensor 1 is normally installed in the dashboard of a motor vehicle, etc., since the light receiving lens 3 is formed as a combination of smaller elements 3a to 3d, reflection of sunlight, etc. This reduces the degree of driver's illusion. Accordingly, even when antireflection processing such as embossing is performed on the light receiving lens 3, it may be light and does not impair measurement accuracy.
[0021]
【The invention's effect】
As described above, according to the present invention, the light-receiving lens has a fish-eye lens shape having elements that match the number of light-receiving elements, and each element has its axis aligned with the center of the corresponding light-receiving element and houses this light-receiving element. And a distance H between the apex of the element and the light receiving surface of the light receiving element is (space H = (effective radius W / tan (critical angle α) of the light receiving element)). By adopting a sunshine sensor in which the light receiving element and the light receiving lens are integrated, it is possible to obtain an output that is approximately proportional to the increase or decrease of the sun's elevation angle. As a device that can perform such control, it has an extremely excellent effect on improving passenger comfort.
[0022]
In addition, the structure of the present invention makes it possible to integrally form the light receiving lens and the light receiving element, and has an effect of reducing cost by simplifying the production process. Assuming that no error or the like occurs and the variation in characteristics between the sunshine sensors is remarkably small, an excellent effect can be obtained in improving quality and performance.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a sunshine sensor according to the present invention.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a graph showing output characteristics of a sunshine sensor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sunlight sensor 2 (a-d) ... Light-receiving element 3 ... Light-receiving lens 3a-3d ... Element X ... Vertical axis P ... Vertex H ... Distance between vertex and light-receiving element r ... Element Radius W: Effective radius of light receiving element

Claims (2)

所定のパターンとして配置が行われた複数の受光素子と、これら受光素子を上方から覆う受光レンズとから成り、前記受光レンズによりそれぞれの前記受光素子に配布される光量の対比により太陽の仰角を測定する日照センサにおいて、前記受光レンズは前記受光素子の数と一致するエレメントを有する魚眼レンズ状とされ、それぞれの前記エレメントは対応する受光素子の中心を通る垂直軸と同軸とされ、この受光素子を収納するのに必要充分な半径を有する凸球面とされ、且つ、前記各エレメントの頂点は対応する各受光素子の中心を通る垂直軸上に位置し、前記エレメントの頂点と前記受光素子の受光面との間隔Hを、各受光素子の内接円の半径をW、受光レンズの各エレメント表面の臨界角αとしたとき、H=W/tanαとして、前記複数の受光素子と前記受光レンズとが一体化されていることを特徴とする日照センサ。It consists of a plurality of light receiving elements arranged as a predetermined pattern and a light receiving lens that covers these light receiving elements from above, and measures the elevation angle of the sun by comparing the amount of light distributed to each light receiving element by the light receiving lens In the sunshine sensor, the light receiving lens has a fish-eye lens shape having elements that match the number of the light receiving elements, and each of the elements is coaxial with a vertical axis passing through the center of the corresponding light receiving element. It is a convex spherical surface having a required sufficient radius to, and the apex of each element is located on the vertical axis passing through the center of the corresponding light-receiving elements, the light receiving of the vertex of each element the respective light receiving elements H = W / tan α where the distance H from the surface is W, the radius of the inscribed circle of each light receiving element is W, and the critical angle α of each element surface of the light receiving lens The sunshine sensor, wherein the plurality of light receiving elements and the light receiving lens are integrated. 前記受光レンズの凸球面には、シボ加工による反射防止処理が成されていることを特徴とする請求項1記載の日照センサ。2. The sunshine sensor according to claim 1, wherein the convex spherical surface of the light receiving lens is subjected to an antireflection treatment by embossing .
JP2001101973A 2001-03-30 2001-03-30 Sunshine sensor Expired - Fee Related JP4598981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101973A JP4598981B2 (en) 2001-03-30 2001-03-30 Sunshine sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101973A JP4598981B2 (en) 2001-03-30 2001-03-30 Sunshine sensor

Publications (2)

Publication Number Publication Date
JP2002296107A JP2002296107A (en) 2002-10-09
JP4598981B2 true JP4598981B2 (en) 2010-12-15

Family

ID=18955225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101973A Expired - Fee Related JP4598981B2 (en) 2001-03-30 2001-03-30 Sunshine sensor

Country Status (1)

Country Link
JP (1) JP4598981B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785858B2 (en) 2007-08-29 2014-07-22 Behr-Hella Thermocontrol Gmbh Solar sensor for the detection of the direction of incidence and the intensity of solar radiation
DE102018001181B3 (en) 2018-02-15 2019-07-11 Azur Space Solar Power Gmbh Sun sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438532U (en) * 1990-07-31 1992-03-31
JP2002005738A (en) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd Illuminance sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438532U (en) * 1990-07-31 1992-03-31
JP2002005738A (en) * 2000-06-23 2002-01-09 Matsushita Electric Works Ltd Illuminance sensor

Also Published As

Publication number Publication date
JP2002296107A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
KR100469605B1 (en) Compact moisture detector with collimator lens and spectrocouple
US7560676B2 (en) Sunlight-detecting sensor for vehicles
US6297740B1 (en) Solar radiation sensor
US6888120B2 (en) Sunload sensor for automotive vehicles
JP4473509B2 (en) A rain sensor especially used in automobiles
US20190064535A1 (en) Dichroic Mirror Array
JP3003479B2 (en) Solar radiation sensor
JP4598981B2 (en) Sunshine sensor
US10444066B2 (en) Optical sensor
US5065015A (en) Solar radiation sensor for use in an automatic air conditioner
JP2001091353A (en) Insolation sensor
KR101071739B1 (en) A infrared sensor apparutus adopted multi-divided detecting area for detecting vehicle temperature
KR102126259B1 (en) Motor vehicle headlight
KR20100049677A (en) Solar sensor for the detection of the direction of incidence and the intensity of solar radiation
US8705014B2 (en) Radiation sensor for detecting the position and intensity of a radiation source
JP4641358B2 (en) Sunshine sensor
KR102076307B1 (en) Quadrant solar sensor
EP1262747B1 (en) Sunload sensor for automotive vehicles
CN219037976U (en) Sunlight sensor with direction recognition capability
JP2572754Y2 (en) Bidirectional solar radiation detection sensor for automotive air conditioners
JP4945030B2 (en) Sunshine sensor
JP2606818Y2 (en) Automotive solar radiation detection sensor
JPH04104019A (en) Solar radiation sensor
JP2606914Y2 (en) Solar radiation detection sensor
JP2000229511A (en) Solar radiation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees