JP4777919B2 - Fuel control device for internal combustion engine - Google Patents

Fuel control device for internal combustion engine Download PDF

Info

Publication number
JP4777919B2
JP4777919B2 JP2007036133A JP2007036133A JP4777919B2 JP 4777919 B2 JP4777919 B2 JP 4777919B2 JP 2007036133 A JP2007036133 A JP 2007036133A JP 2007036133 A JP2007036133 A JP 2007036133A JP 4777919 B2 JP4777919 B2 JP 4777919B2
Authority
JP
Japan
Prior art keywords
fuel
fluctuation amount
rotational fluctuation
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007036133A
Other languages
Japanese (ja)
Other versions
JP2008202413A (en
Inventor
隆信 市原
和彦 兼利
工三 加藤木
広行 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2007036133A priority Critical patent/JP4777919B2/en
Publication of JP2008202413A publication Critical patent/JP2008202413A/en
Application granted granted Critical
Publication of JP4777919B2 publication Critical patent/JP4777919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の燃料制御装置に関する。   The present invention relates to a fuel control device for an internal combustion engine.

内燃機関の燃料の蒸発特性にはばらつきがあり、冷機始動時に蒸発しにくい重質ガソリンで始動すると、吸気ポート壁面や吸気バルブに燃料が多く付着するためにシリンダ内の混合気がリーン化し燃焼状態が悪化して未燃ガスの排出量が増加したり、回転変動が発生しやすい。また、燃料噴射弁や、空気量を計測するエアフローメータ、または吸気管圧力センサ等の部品の特性ばらつきによってもシリンダ内の混合気がリーン化して前述と同様に回転変動を生ずる場合がある。   The fuel evaporation characteristics of internal combustion engines vary, and when starting with heavy gasoline that does not easily evaporate during cold start, a large amount of fuel adheres to the intake port wall surface and intake valve, so the air-fuel mixture in the cylinder becomes lean and burns As a result, the amount of unburned gas increases and rotation fluctuations are likely to occur. In addition, the air-fuel mixture in the cylinder may become lean due to variations in characteristics of components such as a fuel injection valve, an air flow meter that measures the amount of air, or an intake pipe pressure sensor, resulting in rotational fluctuations as described above.

ところで、冷機始動後の十数秒間は酸素濃度センサが活性化せず、空燃比を検出して燃料噴射量を制御することができない。   By the way, the oxygen concentration sensor is not activated for ten seconds after the cold start, and the fuel injection amount cannot be controlled by detecting the air-fuel ratio.

このため、燃料性状ばらつきや部品の特性ばらつきに起因した空燃比のリーン状態を、始動後の回転変動により検出して、回転変動量に応じて燃料噴射量を制御することでオーバーリーン化を防止するようにした技術が特許文献1で開示されている。前記特許文献1のものは気筒間の回転角速度の変化量を所定サイクルだけ積算したものを燃焼の安定度指標として、この安定度指標に応じて燃料噴射量を増減するように制御している。   For this reason, the lean state of the air-fuel ratio caused by variations in fuel properties and component characteristics is detected from the rotation fluctuation after startup, and the fuel injection amount is controlled according to the rotation fluctuation amount to prevent over leaning. The technique made to do this is disclosed in Patent Document 1. In Patent Document 1, the amount of change in the rotational angular velocity between cylinders is integrated for a predetermined cycle, and the combustion stability index is used to control the fuel injection amount to increase or decrease in accordance with this stability index.

特許第3591001号Japanese Patent No. 3591001

しかし、上記特許文献1に示される技術では、回転変動量(気筒間の回転角速度の変化量)を所定の爆発回数について積算した安定度指標に応じて燃料噴射量を調整するが、重質ガソリンでの冷機始動等で始動後に空燃比が急速にリーン化した場合には回転変動量が増加しても、それ以前の爆発行程で計算された回転変動量を含んで積算された安定度指標は直ちには増加しないために、リーン状態の検出が遅れ、燃料の増量補正が遅れることでオーバーリーンとなり、燃焼状態が悪化して未燃ガスを多量に排出したり回転変動が発生する場合があった。   However, in the technique disclosed in Patent Document 1, the fuel injection amount is adjusted according to the stability index obtained by integrating the rotation fluctuation amount (change amount of the rotational angular velocity between cylinders) for a predetermined number of explosions. If the air-fuel ratio rapidly leans after starting at cold start, etc., even if the rotational fluctuation amount increases, the integrated stability index including the rotational fluctuation amount calculated in the previous explosion stroke is Since it does not increase immediately, the detection of the lean state is delayed, and the correction of fuel increase is delayed, resulting in overlean, the combustion state deteriorates, and unburned gas may be discharged in large quantities or rotation fluctuations may occur. .

そこで、本発明者らは、空燃比に対する爆発毎の回転変動量(気筒間のクランク角速度の変化量)について実験を行い考察した。図11に空燃比に対する爆発毎の回転変動量(気筒間のクランク角速度の変化量)を示す。空燃比が同一でも回転変動量は爆発毎にばらつきを生じる。このため前記特許文献1等の従来技術では、回転変動量を所定の爆発数で積算した値もしくは平均化した値により空燃比のリーン状態を検出し、燃料噴射量を増量するようにしていた。   Therefore, the present inventors conducted an experiment and examined the amount of rotational fluctuation for each explosion relative to the air-fuel ratio (the amount of change in crank angular speed between cylinders). FIG. 11 shows the rotational fluctuation amount (change amount of crank angular speed between cylinders) for each explosion with respect to the air-fuel ratio. Even if the air-fuel ratio is the same, the rotational fluctuation amount varies for each explosion. For this reason, in the prior art such as Patent Document 1, the lean state of the air-fuel ratio is detected by the value obtained by integrating or averaging the rotational fluctuation amount by a predetermined number of explosions, and the fuel injection amount is increased.

ここで一般に始動性向上のため、始動中(クランキング時)には燃料を多く噴射するようにしており、このとき吸気ポート壁面に付着した燃料の内の軽質分が始動直後(回転上昇後)に吸気管圧力の減少とともに蒸発してシリンダに流入し一時的に空燃比リッチとなるが、その後付着燃料が減少するにしたがって空燃比はリーンに変化する。とくに重質度の高いガソリンでは蒸発し易い軽質成分の割合が少ないため、始動直後に蒸発してシリンダに流入する燃料が減少し、シリンダの空燃比は急速にリーン方向に変化する。したがって、空燃比のリーン状態を速やかに検出して燃料噴射量を増量することが要求される。   Here, in order to improve startability generally, a large amount of fuel is injected during start-up (during cranking). At this time, the light component of the fuel adhering to the wall surface of the intake port is immediately after start-up (after rotation rise) As the intake pipe pressure decreases, it evaporates and flows into the cylinder and becomes rich in the air-fuel ratio temporarily. Thereafter, the air-fuel ratio changes to lean as the adhered fuel decreases. In particular, since gasoline with a high degree of heaviness has a small proportion of light components that easily evaporate, the fuel that evaporates immediately after start-up and flows into the cylinder decreases, and the air-fuel ratio of the cylinder rapidly changes in the lean direction. Therefore, it is required to quickly detect the lean state of the air-fuel ratio and increase the fuel injection amount.

しかし、特許文献1等の従来技術では、前述したように爆発毎の回転変動量のばらつきに対し空燃比の検出精度を確保するために回転変動量を所定の爆発回数で積算した値または回転変動量を爆発回数で平均化した値に応じて燃料噴射量を増量するようにしている。このため前述した重質度の高いガソリンで始動したときのように空燃比がリーンに急変する場合は、回転変動量が増加しても回転変動量の積算値(または平均値)は直ちには増加せず、リーン状態の検出が遅れるために、燃料の増量補正が遅れてオーバーリーンとなり、未燃ガス(HC)を多く排出したり回転落ちを引き起こす場合があった。   However, in the prior art such as Patent Document 1, as described above, a value obtained by integrating the rotation fluctuation amount by a predetermined number of explosions or rotation fluctuation in order to ensure the detection accuracy of the air-fuel ratio with respect to the fluctuation in rotation fluctuation amount for each explosion. The fuel injection amount is increased according to the value obtained by averaging the amount by the number of explosions. For this reason, when the air-fuel ratio suddenly changes to lean, such as when starting with high-grade gasoline as described above, the integrated value (or average value) of the rotational fluctuation immediately increases even if the rotational fluctuation increases. However, since the detection of the lean state is delayed, the correction for increasing the amount of fuel is delayed and the engine becomes overlean, and a large amount of unburned gas (HC) may be discharged or rotation may be lost.

図12に空燃比がストイキ時(空燃比14.5)およびリーン時(空燃比16)における回転変動量の発生頻度分布を示す。空燃比ストイキ時に対してリーン時では回転変動量の大きいものの割合が増加する。このことから回転変動量が大きい場合は、空燃比がリーンである確率が高いと考えられる。例として本頻度分布において回転変動量が所定のしきい値SLDN以上である場合、空燃比がストイキ以下である頻度(確率)は低く、空燃比が16以上にリーンである確率が高く、また、回転変動量が前記所定のしきい値SLDN未満である場合には、リーン状態である場合と、ストイキ〜リッチ状態である場合の確率に大きな差はないことが分かる。   FIG. 12 shows the frequency distribution of the rotational fluctuation when the air-fuel ratio is stoichiometric (air-fuel ratio 14.5) and lean (air-fuel ratio 16). When the air-fuel ratio stoichiometric is lean, the ratio of a large amount of rotational fluctuation increases. From this, it is considered that the probability that the air-fuel ratio is lean is high when the rotational fluctuation amount is large. As an example, when the rotational fluctuation amount is equal to or greater than a predetermined threshold value SLDN in this frequency distribution, the frequency (probability) that the air-fuel ratio is less than or equal to stoichiometric is low, the probability that the air-fuel ratio is lean to 16 or more is high, When the rotational fluctuation amount is less than the predetermined threshold value SLDN, it can be seen that there is no great difference in the probability between the lean state and the stoichiometric to rich state.

本発明は、これらの知見に基づいてなされたものであり、内燃機関の燃料制御装置において、冷機時に重質度の高いガソリンで始動した場合等に、空燃比が急速にリーン化したときにおいてもリーン状態を速やかに検出して燃料噴射量を高応答に制御することで空燃比が安定燃焼限界を超えてリーン化することを防止し、未燃ガス排出量の増加や回転変動の増加を防止することを目的とする。   The present invention has been made on the basis of these findings, and in the fuel control device of an internal combustion engine, even when the air-fuel ratio is rapidly leaned, such as when starting with high-grade gasoline when cold, By quickly detecting the lean state and controlling the fuel injection amount to a high response, the air-fuel ratio is prevented from leaning beyond the stable combustion limit, preventing an increase in unburned gas emissions and rotation fluctuations. The purpose is to do.

本発明に係る内燃機関の燃料制御装置は、前記目的を達成するために、各気筒の吸気ポートまたは各気筒内に設けられる燃料噴射弁と、各気筒内に設けられる点火プラグと、を備えた内燃機関の燃料制御装置であって、点火サイクルの各気筒ごとの前記点火プラグの点火による各気筒間の回転変動量を算出する回転変動量算出手段と、該回転変動量の積算回数を設定する積算回数設定手段と、前記燃料噴射弁の燃料噴射量を補正する燃料補正手段と、を備え、前記内燃機関の制御装置は、始動後に、前記算出された回転変動量と前記設定された積算回数とから求まる前記回転変動量の積算値及び/又は平均値を算出し、該回転変動量の積算値及び/又は平均値の大きさに応じて、前記燃料噴射弁の燃料噴射量を補正するものであり、前記積算回数設定手段は、前記回転変動量に応じて前記設定する積算回数を1回以上の範囲で変更することを特徴としている。 In order to achieve the above object, a fuel control device for an internal combustion engine according to the present invention includes an intake port of each cylinder or a fuel injection valve provided in each cylinder, and an ignition plug provided in each cylinder. A fuel control device for an internal combustion engine, wherein a rotational fluctuation amount calculating means for calculating a rotational fluctuation amount between each cylinder due to ignition of the ignition plug for each cylinder in an ignition cycle, and an integration number of the rotational fluctuation amount are set. An integration number setting means; and a fuel correction means for correcting the fuel injection amount of the fuel injection valve, the control device of the internal combustion engine after the start, the calculated rotational fluctuation amount and the set integration number that said calculating an integrated value and / or the average value of the rotation fluctuation amount obtained from, depending on the magnitude of the integrated value and / or the average value of the rotation fluctuation amount, it corrects the fuel injection amount of the fuel injection valve And the integration Number setting means is characterized by changing the integration count to the set in accordance with the rotational fluctuation amount in the range of more than one.

本発明に係る内燃機関の燃料制御装置の前記積算回数設定手段は、前記回転変動量が所定のしきい値より大きくなると前記設定する積算回数を少なくすることを特徴としている。 The integration number setting means of the fuel control apparatus for an internal combustion engine according to the present invention, prior Symbol rotation fluctuation amount is characterized in that to reduce the cumulative number of times of the set to be larger than a predetermined threshold.

本発明は、燃料性状ばらつきや部品の特性ばらつきに起因した始動後の空燃比のリーン状態を、点火サイクルごとの回転変動量を設定回数だけ積算した積算値によって検知し、回転変動量の積算値に応じて燃料噴射量を制御することで冷機始動時の空燃比制御を行うことができる。また、本発明は、点火サイクルごとの回転変動量が大きくなったときには積算手段で積算する回転変動量の設定回数を少なくして直ちに回転変動量の積算値を算出し、速やかに空燃比のリーン状態を検出し、その積算値に応じて燃料噴射量を増量補正してオーバーリーン化を防止することができる。   The present invention detects the lean state of the air-fuel ratio after starting due to variations in fuel properties and component characteristics based on an integrated value obtained by integrating the rotational fluctuation amount for each ignition cycle by a set number of times, and the integrated value of the rotational fluctuation amount The air-fuel ratio control at the time of cold start can be performed by controlling the fuel injection amount according to the above. Further, according to the present invention, when the rotational fluctuation amount for each ignition cycle becomes large, the integrated value of the rotational fluctuation amount is immediately calculated by reducing the number of times of setting of the rotational fluctuation amount integrated by the integrating means, and the lean ratio of the air-fuel ratio is promptly calculated. A state is detected, and the fuel injection amount is increased and corrected according to the integrated value, thereby preventing overleaning.

また、本発明に係る内燃機関の燃料制御装置は、前記設定した積算回数の前記回転変動量を積算する積算手段と、前記回転変動量の積算値から前記回転変動量の平均値を算出するノーマルライズ手段と、を備えていることを特徴とし、前記設定回数の前記回転変動量の平均値を加重平均で算出する加重平均計算手段を備えていることを特徴としている。 Further, the fuel control apparatus for an internal combustion engine according to the present invention includes an integrating unit that integrates the rotation fluctuation amount for the set number of times of integration, and a normal that calculates an average value of the rotation fluctuation amount from the integrated value of the rotation fluctuation amount. Rise means, and weighted average calculation means for calculating an average value of the rotational fluctuation amounts of the set number of times by a weighted average .

更に、本発明に係る内燃機関の燃料制御装置は、前記回転変動量の積算値を積算する積算手段を備えていることを特徴としている。 Furthermore, the fuel control device for an internal combustion engine according to the present invention is characterized by comprising an integrating means for integrating the integrated value of the rotational fluctuation amount .

本発明は、燃料性状ばらつきや部品の特性ばらつきに起因した始動後の空燃比のリーン状態を、設定回数における回転変動量の平均値によって検知し、回転変動量の平均値に応じて燃料噴射量を制御することで冷機始動時の空燃比制御を行うことができる。また、本発明は、点火サイクルごとの回転変動量が大きくなったときには平均値算出手段で平均値を算出する回転変動量の設定回数を少なくして平均値を大きくし、速やかにリーン状態を検知し、その平均値に応じて燃料噴射量を増量補正してオーバーリーン化を防止することができる。   The present invention detects the lean state of the air-fuel ratio after starting due to variations in fuel properties and component characteristics based on the average value of the rotational fluctuation amount in the set number of times, and the fuel injection amount in accordance with the average value of the rotational fluctuation amount By controlling this, it is possible to perform air-fuel ratio control when starting the cold machine. Further, according to the present invention, when the rotational fluctuation amount for each ignition cycle becomes large, the average value is calculated by the average value calculating means, the number of times of setting the rotational fluctuation amount is decreased, the average value is increased, and the lean state is detected quickly. Then, the fuel injection amount can be corrected to be increased according to the average value to prevent over leaning.

本発明は、燃料性状ばらつきや部品の特性ばらつきに起因した始動後の空燃比のリーン状態を、点火サイクルごとの回転変動量に所定の重み係数をかけて積算した積算値によって検知し、前記積算値に応じて燃料噴射量を制御することで冷機始動時の空燃比制御を行うことができる。また、本発明は、点火サイクルごとの回転変動量が大きくなったときには回転変動量にかける所定の重み係数を大きくして積算値を大きくし、速やかに空燃比のリーン状態を検知し、その積算値に応じて燃料噴射量を増量補正してオーバーリーン化を防止することができる。   The present invention detects the lean state of the air-fuel ratio after starting due to variations in fuel properties and component characteristics based on an integrated value obtained by multiplying the rotation fluctuation amount for each ignition cycle by a predetermined weighting factor and integrating the accumulated value. By controlling the fuel injection amount according to the value, the air-fuel ratio control at the time of cold start can be performed. Further, according to the present invention, when the rotational fluctuation amount for each ignition cycle becomes large, a predetermined weight coefficient applied to the rotational fluctuation amount is increased to increase the integrated value, and the lean state of the air-fuel ratio is promptly detected. It is possible to prevent overleaning by increasing the fuel injection amount in accordance with the value.

本発明によれば、冷機始動後に、重質ガソリンの使用等で空燃比が急速にリーン化した場合でも、リーン状態を速やかに検出し、燃料噴射量を高応答に制御することにより、未燃ガス(HC)排出量の増加や回転変動の増加を防止できる。   According to the present invention, even when the air-fuel ratio rapidly leans due to the use of heavy gasoline after cold start, the lean state is detected quickly, and the fuel injection amount is controlled to be highly responsive, thereby preventing unburned fuel. Increase in gas (HC) emission and rotation fluctuation can be prevented.

以下、図1〜図7により本発明に係る内燃機関の燃焼制御装置の一実施形態について詳細に説明する。図1は本発明に係る内燃機関の燃焼制御装置を備えたエンジン制御システムの全体構成を示している。   Hereinafter, an embodiment of a combustion control apparatus for an internal combustion engine according to the present invention will be described in detail with reference to FIGS. FIG. 1 shows the overall configuration of an engine control system including a combustion control device for an internal combustion engine according to the present invention.

エンジンには、エンジンの冷却水の温度を検出する冷却水温センサ21が設けられており、クランク軸11にはクランク角度検出用プレート29が取り付けられ、クランク角度センサ12が設けられる。エンジンの吸気系を構成する吸気管7には、吸入空気の圧力を検出する吸気管圧力センサ13、エンジンの吸入空気量を制御するためのスロットル弁6が設けられており、吸気ポート10には燃料噴射弁8が設けられている。   The engine is provided with a cooling water temperature sensor 21 that detects the temperature of the cooling water of the engine. A crank angle detection plate 29 is attached to the crankshaft 11 and a crank angle sensor 12 is provided. The intake pipe 7 constituting the intake system of the engine is provided with an intake pipe pressure sensor 13 for detecting the pressure of intake air, and a throttle valve 6 for controlling the intake air amount of the engine. A fuel injection valve 8 is provided.

吸入空気はインテークマニホールド22、吸気ポート10を経て燃料との混合気として吸気弁9を通過してシリンダ19内の燃焼室18に吸入され、点火コイル14からの電流により点火プラグ15から火花スパークが発生して燃焼される。燃焼された混合気は、排気ガスとなってエンジンの排気弁が開いた時に燃焼室18から排出される。エンジンの排気系には、排気管16の触媒前に酸素濃度センサ20が設けられている。   The intake air passes through the intake manifold 22 and the intake port 10, passes through the intake valve 9 as an air-fuel mixture, and is sucked into the combustion chamber 18 in the cylinder 19. A spark spark is generated from the spark plug 15 by the current from the ignition coil 14. Generated and burned. The combusted air-fuel mixture becomes exhaust gas and is discharged from the combustion chamber 18 when the engine exhaust valve is opened. In the exhaust system of the engine, an oxygen concentration sensor 20 is provided before the catalyst of the exhaust pipe 16.

コントローラ24は、CPU25、制御プログラムと制御用データが記憶される読み出し専用メモリ(ROM)26、制御用変数等が記憶される書き込み可能なメモリ(RAM)27、および入出力回路28が備えられている。クランク角度センサ12、吸気管圧力センサ13、酸素濃度センサ20、冷却水温センサ21等からの信号はコントローラ(制御装置)24に入力され、コントローラ24はこれらの入力信号より燃料噴射量、点火時期、スロットル開度等を演算し、それぞれ燃料噴射弁8、点火コイル14、スロットル弁6等に制御信号を出力する。   The controller 24 includes a CPU 25, a read only memory (ROM) 26 in which a control program and control data are stored, a writable memory (RAM) 27 in which control variables and the like are stored, and an input / output circuit 28. Yes. Signals from the crank angle sensor 12, the intake pipe pressure sensor 13, the oxygen concentration sensor 20, the cooling water temperature sensor 21, etc. are input to a controller (control device) 24, and the controller 24 receives the fuel injection amount, ignition timing, The throttle opening and the like are calculated, and control signals are output to the fuel injection valve 8, the ignition coil 14, the throttle valve 6 and the like, respectively.

図2は本発明に係る内燃機関の燃料制御装置の制御構成ブロックを示す。回転変動算出手段1は、気筒間の回転変動量(前回爆発気筒のクランク角速度に対する今回爆発気筒のクランク角速度の変化量)を算出するものであり、クランク角度センサ12の信号より爆発後の所定のクランク角度間を変位する時間T(クランク角速度の逆数に相当)を気筒ごとに計測して、今回の爆発での前記変位時間Tと前回の爆発での変位時間Tn−1の差分を回転変動量DNとしており、この回転変動量DNの算出は各気筒の爆発の周期と同期して実施される。 FIG. 2 shows a control configuration block of a fuel control apparatus for an internal combustion engine according to the present invention. The rotational fluctuation calculating means 1 calculates the rotational fluctuation amount between cylinders (the amount of change in the crank angular speed of the current explosion cylinder relative to the crank angular speed of the previous explosion cylinder). the time T n which is displaced between the crank angle (corresponding to the inverse of the crank angular speed) is measured for each cylinder, the difference between the displacement time T n-1 in the displacement time T n and the previous explosion in this blast The rotational fluctuation amount DN is used, and the rotational fluctuation amount DN is calculated in synchronization with the explosion cycle of each cylinder.

積算回数設定手段2は回転変動算出手段1で算出された回転変動量DNに応じて積算手段3で積算する回転変動量の積算回数NADDを設定するものであり、本実施形態では、図3に示すように回転変動量DNが所定のしきい値SLDN以下の場合は20回の積算回数とし、回転変動量DNが所定のしきい値SLDNを超えた場合は1回の積算回数としている。本実施形態では、積算回数設定手段2で設定する積算回数NADDを20回と1回に設定しているが、この回数はこれに限定されず適宜回数に設定してよい。   The number-of-integration setting means 2 sets the number NADD of rotation fluctuation amounts integrated by the integration means 3 in accordance with the rotation fluctuation amount DN calculated by the rotation fluctuation calculation means 1. In this embodiment, FIG. As shown, when the rotational fluctuation amount DN is less than or equal to a predetermined threshold value SLDN, the number of integrations is 20 times, and when the rotational fluctuation amount DN exceeds the predetermined threshold value SLDN, the number of integration times is one. In the present embodiment, the integration number NADD set by the integration number setting means 2 is set to 20 and 1, but this number is not limited to this and may be set as appropriate.

積算手段3は、過去20回の回転変動量を記憶するメモリを備えており、回転変動算出手段1で算出された回転変動量DNを、前記積算回数設定手段2で設定された積算回数NADDだけ積算して積算値IDNを算出しノーマライズ手段4に出力する。   The integrating means 3 has a memory for storing the past 20 rotational fluctuation amounts, and the rotational fluctuation amount DN calculated by the rotational fluctuation calculating means 1 is calculated by the cumulative number NADD set by the cumulative number setting means 2. The integrated value IDN is calculated by integration and output to the normalizing means 4.

ノーマライズ手段4は、積算手段3により算出された回転変動量の積算値IDNを爆発回数で除算し爆発回数あたりの回転変動量の平均値IXDNを求める。   The normalizing means 4 divides the rotational fluctuation amount integrated value IDN calculated by the integrating means 3 by the number of explosions to obtain an average value IXDN of rotational fluctuations per number of explosions.

燃料補正手段5は、図4に示すような回転変動量の平均値IXDNに対する増量補正ステップFSTPAが予め設定されたテーブルをメモリに記憶しており、ノーマライズ手段4で算出された回転変動量の平均値IXDNを判定レベルSLIXDNと比較し、回転変動量の平均値IXDNが判定レベルSLIXDN以上のときには、その平均値IXDNの大きさに応じた増量補正ステップFSTPAをテーブルから求め、その増量補正ステップFSTPAで燃料噴射量を増量補正し、回転変動量の平均値IXDNが判定レベルSLIXDN未満であれば、空燃比がストイキ〜リッチの状態であるとみなし、燃料補正係数FTRMから所定値の減量補正ステップFSTPDで燃料噴射量を減量補正する。   The fuel correction means 5 stores in a memory a table in which an increase correction step FSTPA with respect to the average value IXDN of the rotational fluctuation amount as shown in FIG. 4 is preset, and the average of the rotational fluctuation amounts calculated by the normalizing means 4 The value IXDN is compared with the judgment level SLIXDN, and when the average value IXDN of the rotational fluctuation is equal to or higher than the judgment level SLIXDN, an increase correction step FSTPA corresponding to the magnitude of the average value IXDN is obtained from the table, and at the increase correction step FSTPA If the fuel injection amount is increased and corrected, and if the average value IXDN of the rotational fluctuation is less than the judgment level SLIXDN, it is considered that the air-fuel ratio is in the stoichiometric to rich state, and the fuel correction coefficient FTRM is reduced to the predetermined value by the decrease correction step FSTPD. Reduce the fuel injection amount.

次に本実施形態の内燃機関の燃料制御装置における燃料制御の動作について図5のフローチャートにより詳細に説明する。   Next, the fuel control operation in the internal combustion engine fuel control apparatus of the present embodiment will be described in detail with reference to the flowchart of FIG.

ステップ100で、エンジンの温度(冷却水温度など)が所定値TWSL以下の冷機状態であるかを判定し、ステップ110で、始動後の酸素濃度センサ20が活性化していない状態であるかを判定する。エンジンの温度(冷却水温度など)が所定値TWSLより高い状態、または酸素濃度センサ20が活性化して検出可能な状態となっていれば、回転変動による空燃比制御は不要となる。ステップ100及びステップ110が共に成立していればステップ120に進んで、回転変動量DN(前回爆発気筒のクランク角速度に対する今回爆発気筒のクランク角速度の変化量)を計算する。   In step 100, it is determined whether or not the engine temperature (cooling water temperature or the like) is in a cold state of a predetermined value TWSL or less, and in step 110, it is determined whether or not the oxygen concentration sensor 20 after startup is not activated. To do. If the engine temperature (cooling water temperature or the like) is higher than a predetermined value TWSL, or if the oxygen concentration sensor 20 is activated and can be detected, air-fuel ratio control based on rotational fluctuation is not necessary. If both step 100 and step 110 are established, the routine proceeds to step 120, where the rotational fluctuation amount DN (the amount of change in the crank angular velocity of the current explosion cylinder with respect to the crank angular velocity of the previous explosion cylinder) is calculated.

ステップ130、140、150は回転変動量の積算回数NADDを設定する処理である。ステップ130では、前述の回転変動量DNが所定のしきい値SLDN以上となったかを判定し、回転変動量DNが所定のしきい値SLDN未満であればステップ140に進み、積算回数NADDを20回に設定し、回転変動量DNが所定のしきい値SLDN以上であればステップ150に進み、積算回数NADDを1回に設定する。   Steps 130, 140, and 150 are processes for setting the number NADD of rotational fluctuation amounts. In step 130, it is determined whether or not the rotational fluctuation amount DN is equal to or greater than a predetermined threshold value SLDN. If the rotational fluctuation amount DN is less than the predetermined threshold value SLDN, the process proceeds to step 140, and the cumulative number NADD is set to 20. If the rotational fluctuation amount DN is equal to or greater than a predetermined threshold value SLDN, the process proceeds to step 150, and the integration number NADD is set to one.

次にステップ160で、燃料噴射量の制御を行うための回転変動量の平均値IXDNを算出する。積算は前ステップで設定された積算回数NADDに応じて今回の爆発を含む過去NADD回の回転変動量を積算し、積算回数NADDで除算して回転変動量の平均値IXDNを算出する。   Next, at step 160, an average value IXDN of the rotational fluctuation amount for controlling the fuel injection amount is calculated. Integration is performed by integrating the past NADD rotation fluctuation amounts including the current explosion according to the integration number NADD set in the previous step, and dividing by the integration number NADD to calculate an average value IXDN of the rotation fluctuation amount.

ステップ170で回転変動量の平均値IXDNを所定の判定レベルSLIXDNと比較し、平均値IXDNが判定レベルSLIXDN以上であれば、空燃比がリーンであるとみなし、ステップ180で、回転変動量の平均値IXDNの大きさに応じた増量補正ステップFSTPAを図4のテーブルから求め、回転変動量による燃料補正係数FTRMに増量補正ステップFSTPAを加算する。ステップ170で、積算値IXDNが判定レベルSLIXDN未満であれば、空燃比がストイキ〜リッチの状態であるとみなしステップ190で燃料補正係数FTRMから所定値の減量補正ステップFSTPDを減算し、これにより蒸発しやすい軽質ガソリン使用時等で空燃比がリッチ化して未燃ガスが多く排出されることを防止できる。   In step 170, the average value IXDN of the rotational fluctuation amount is compared with a predetermined judgment level SLIXDN. If the average value IXDN is equal to or higher than the judgment level SLIXDN, the air-fuel ratio is considered to be lean. The increase correction step FSTPA corresponding to the value IXDN is obtained from the table of FIG. 4, and the increase correction step FSTPA is added to the fuel correction coefficient FTRM based on the rotational fluctuation amount. If the integrated value IXDN is less than the judgment level SLIXDN in step 170, it is considered that the air-fuel ratio is in a stoichiometric to rich state, and in step 190, the predetermined amount of decrease correction step FSTPD is subtracted from the fuel correction coefficient FTRM, thereby evaporating. It is possible to prevent a large amount of unburned gas from being discharged due to the rich air-fuel ratio when using light gasoline, which is easy to do.

次にステップ200で、燃料噴射弁への出力パルス幅を算出する。吸気管圧力センサ信号等から算出される吸入空気量より求めた基本噴射パルス幅TPに対し、回転変動量DNによる燃料補正係数FTRMによる補正のほか、従来の冷却水温度による補正係数FTW等による補正を実施したものを出力パルス幅TIとする。   Next, at step 200, the output pulse width to the fuel injection valve is calculated. For the basic injection pulse width TP calculated from the intake air amount calculated from the intake pipe pressure sensor signal, etc., in addition to the correction by the fuel correction coefficient FTRM by the rotational fluctuation DN, the correction by the conventional correction coefficient FTW by the coolant temperature, etc. Is the output pulse width TI.

図6には、本実施形態の内燃機関の燃料制御装置によるエンジン始動時におけるエンジン回転数、空燃比、回転変動量の平均値、燃料噴射量を示している。ここで、実線が本実施形態の燃料制御装置における空燃比、燃料噴射量を示し、点線が従来の積算回数を数十回などに固定した燃料制御装置における空燃比、燃料噴射量を示している。   FIG. 6 shows the engine speed, the air-fuel ratio, the average value of the rotational fluctuation amount, and the fuel injection amount when the engine is started by the fuel control device for the internal combustion engine of the present embodiment. Here, the solid line indicates the air-fuel ratio and the fuel injection amount in the fuel control device of the present embodiment, and the dotted line indicates the air-fuel ratio and the fuel injection amount in the fuel control device in which the conventional number of integrations is fixed to several tens of times. .

始動後に空燃比が急激にリーン方向に変化し、回転変動量DNが所定のしきい値SLDN以上となると爆発回数1回の平均値IXDNが算出され、回転変動量DNが所定のしきい値SLDN以上となるものが1回発生すれば、直ちにリーン状態が検出され、燃料補正手段5により増量補正ステップFSTPAで示される燃料の増量が速やかに実施される。   When the air-fuel ratio suddenly changes in the lean direction after startup and the rotational fluctuation DN is equal to or greater than the predetermined threshold SLDN, the average value IXDN of one explosion is calculated, and the rotational fluctuation DN is the predetermined threshold SLDN. If the above situation occurs once, the lean state is immediately detected, and the fuel correction means 5 promptly increases the amount of fuel indicated by the increase correction step FSTPA.

また、積算回数20回の回転変動量の平均値IXDNが所定レベルSLIXDN以上の場合もその回転変動量の平均値IXDNの大きさに応じた増量補正ステップFSTPAで燃料噴射量が増量補正される。回転変動量の平均値IXDNが所定レベルSLIXDN未満のときには空燃比がストイキ〜リッチの状態であるとして所定値の減量補正ステップFSTPDだけ燃料噴射量を減量補正する。   Further, when the average value IXDN of the rotational fluctuation amount of 20 times of accumulation is equal to or higher than the predetermined level SLIXDN, the fuel injection amount is increased and corrected in the increase correction step FSTPA corresponding to the magnitude of the average value IXDN of the rotational fluctuation amount. When the average value IXDN of the rotational fluctuation amount is less than the predetermined level SLIXDN, the fuel injection amount is reduced and corrected by a predetermined amount of reduction correction step FSTPD assuming that the air-fuel ratio is in a stoichiometric to rich state.

本実施形態では、回転変動量DNが所定のしきい値SLDN以上となるものが1回発生すれば、直ちにリーン状態が検出されて噴射燃料が増量されるので、オーバーリーン化を防止でき、燃焼悪化や回転落ちなどの不具合を生じることがない。   In the present embodiment, if there is one occurrence of the rotational fluctuation amount DN equal to or greater than the predetermined threshold value SLDN, the lean state is immediately detected and the injected fuel is increased, so that overleaning can be prevented and combustion is performed. There will be no problems such as deterioration or drop in rotation.

図7は、内燃機関の燃料制御装置における制御構成ブロックの他の実施形態を示し、図2で説明した実施形態における積算手段3及びノーマライズ手段4を、加重平均計算手段6に変更しているが、回転変動算出手段1、積算回数設定手段2及び燃料補正手段5は前記実施形態のものと同じである。   FIG. 7 shows another embodiment of the control configuration block in the fuel control device of the internal combustion engine, in which the integrating means 3 and the normalizing means 4 in the embodiment described in FIG. The rotation fluctuation calculating means 1, the cumulative number setting means 2 and the fuel correcting means 5 are the same as those in the above embodiment.

加重平均計算手段6は、次の式(1)により回転変動量平均値IXDNを算出する。
IXDN=KW *(DN−IXDNn−1)+IXDNn−1 ………………………(1)
KW=1/NADD
IXDN :回転変動量平均値
IXDNn−1:前回の回転変動量平均値
KW :平均化重み係数
NADD :積算回数
The weighted average calculation means 6 calculates the rotation fluctuation amount average value IXDN n by the following equation (1).
IXDN n = KW * (DN−IXDN n−1 ) + IXDN n−1 (1)
KW = 1 / NADD
IXDN n : Average value of rotational fluctuation
IXDN n-1 : Average value of previous rotation fluctuation
KW: Average weighting factor
NADD: Integration count

ここで、積算回数設定手段2は、図8に示すように回転変動量DNが所定のしきい値SLDN以下の場合は20回の積算回数(KW=1/20)とし、回転変動量DNが所定のしきい値SLDNを超えた場合は1回の積算回数(KW=1)としている。積算回数NADDを1回に設定したときは回転変動量平均値IXDNは回転変動量DNに一致する。   Here, as shown in FIG. 8, when the rotational fluctuation amount DN is equal to or less than a predetermined threshold SLDN, the cumulative number setting means 2 sets the cumulative number of times 20 times (KW = 1/20), and the rotational fluctuation amount DN is When the predetermined threshold value SLDN is exceeded, the number of times of integration (KW = 1) is set. When the integration number NADD is set to one, the rotation fluctuation average value IXDN coincides with the rotation fluctuation DN.

回転変動量平均値IXDNを上記加重平均計算により求める場合には、各積算回数について上記加重平均計算をそれぞれ実施しておき、算出された積算回数に応じて、該積算回数に対応する加重平均計算結果を選択するようにする。   When calculating the rotational fluctuation average value IXDN by the weighted average calculation, the weighted average calculation is performed for each integration number, and the weighted average calculation corresponding to the integration number is performed according to the calculated integration number. Try to select a result.

本実施形態では、回転変動量DNが所定のしきい値SLDN以上となるものが1回発生すれば、平均化重み係数KWが1とされて回転変動量平均値IXDNが所定のしきい値SLIXDN以上となって直ちにリーン状態が検出され、燃料補正手段8により回転変動量平均値IXDNに応じた増量補正ステップFSTPAで燃料の増量が速やかに実施されるので、オーバーリーン化を防止でき、燃焼悪化や回転落ちなどの不具合を生じることがない。   In this embodiment, if one occurrence of the rotational fluctuation amount DN is equal to or greater than the predetermined threshold value SLDN occurs once, the averaging weight coefficient KW is set to 1, and the rotational fluctuation amount average value IXDN becomes the predetermined threshold value SLIXDN. As described above, the lean state is immediately detected, and the fuel correction means 8 promptly increases the amount of fuel in the increase correction step FSTPA corresponding to the rotational fluctuation average value IXDN. And troubles such as falling off the rotation.

本実施形態では、回転変動量の積算と平均化とを同時に実施できるので、メモリを節約することができる。   In this embodiment, since the rotation fluctuation amount can be integrated and averaged simultaneously, memory can be saved.

図9は、内燃機関の燃料制御装置における制御構成ブロックの他の実施形態を示し、図2で説明した実施形態における積算手段3とはその積算方法が異なり、ノーマライズ手段4を備えていないが、回転変動算出手段1及び積算回数設定手段2は図2で説明した実施形態のものと同じである。   FIG. 9 shows another embodiment of the control configuration block in the fuel control apparatus for an internal combustion engine. The integration method is different from the integration means 3 in the embodiment described in FIG. 2, and the normalizing means 4 is not provided. The rotation fluctuation calculating means 1 and the cumulative number setting means 2 are the same as those in the embodiment described with reference to FIG.

積算手段7は、過去20回の回転変動量を記憶するメモリを備えており、回転変動算出手段1で算出された回転変動量を前記積算回数設定手段2で設定された積算回数だけ積算してその積算値を燃料補正手段8に出力する。積算手段7は、積算回数設定手段2によって積算回数が20回と設定されたときには、メモリに回転変動量DNn―20〜DNn―1の回転変動量を記憶して積算し、燃料補正手段8に出力し、その後は再度、メモリに回転変動量DN〜DNn+19の回転変動量を記憶して積算し、燃料補正手段8に出力する。積算回数設定手段2によって回転変動量を20回積算している途中で回転変動量DNが所定のしきい値SLDNを超え、積算回数が1回に設定されたときは20回積算するのを中止し、回転変動量を1回積算して燃料補正手段8に出力する。 The integrating means 7 has a memory for storing the past 20 rotational fluctuation amounts, and integrates the rotational fluctuation amount calculated by the rotational fluctuation calculating means 1 by the cumulative number set by the cumulative number setting means 2. The integrated value is output to the fuel correction means 8. When the integration number setting unit 2 sets the number of integrations to 20, the integration unit 7 stores the rotation variation amounts DN n-20 to DN n-1 in the memory and integrates them, and the fuel correction unit Then, the rotational fluctuation amount DN n to DN n + 19 is stored again in the memory, integrated, and output to the fuel correction means 8. When the rotational fluctuation amount DN exceeds the predetermined threshold value SLDN while the rotational fluctuation amount is integrated 20 times by the integration number setting means 2, the integration is stopped 20 times when the integration number is set to 1 Then, the rotational fluctuation amount is integrated once and output to the fuel correction means 8.

燃料補正手段8は、図10に示すような、回転変動量DNを1回積算したときの積算値IDNに対する増量補正ステップFSTPAを予め設定された1回積算用テーブルと、回転変動量DNを20回積算したときの積算値IDNに対する増量補正ステップFSTPAが予め設定された20回積算用テーブルをメモリに記憶している。燃料補正手段8は、回転変動量DNが判定レベルSLDN以上の場合は、回転変動量を1回積算した積算値IDN(回転変動量DNと同じ)と判定レベルSLIDNと比較し、回転変動量の積算値IDNが判定レベルSLIDN以上のときには、1回積算用テーブルを用いて積算値IDNの大きさに応じた増量補正ステップFSTPAを求め、その増量補正ステップFSTPAで燃料噴射量を増量補正する。また、燃料補正手段8は、回転変動量DNが判定レベルSLDN未満の場合は、回転変動量を20回積算した積算値IDNと判定レベルSLIDNと比較し、回転変動量を20回積算した積算値IDNが判定レベルSLIDN以上のときには、20回積算用テーブルを用いて回転変動量を20回積算した積算値IDNの大きさに応じた増量補正ステップFSTPAを求め、その増量補正ステップFSTPAで燃料噴射量を増量補正する。
回転変動量を20回積算した積算値IDNが判定レベルSLIDN未満であれば、空燃比がストイキ〜リッチの状態であるとし、所定値の減量補正ステップFSTPDにより燃料噴射量を減量補正する。
As shown in FIG. 10, the fuel correction means 8 has a one-time integration table in which an increase correction step FSTPA for the integrated value IDN when the rotational variation DN is integrated once and a rotational variation amount DN of 20 are set. A 20 times integration table in which an increase correction step FSTPA for the integration value IDN at the time of integration is preset is stored in the memory. When the rotational fluctuation amount DN is greater than or equal to the determination level SLDN, the fuel correction means 8 compares the rotational fluctuation amount once with the integrated value IDN (same as the rotational fluctuation amount DN) with the determination level SLIDN, and calculates the rotational fluctuation amount. When the integrated value IDN is equal to or higher than the determination level SLIDN, an increase correction step FSTPA corresponding to the magnitude of the integrated value IDN is obtained using a one-time integration table, and the fuel injection amount is increased and corrected at the increase correction step FSTPA. Further, when the rotational fluctuation amount DN is less than the determination level SLDN, the fuel correction unit 8 compares the integrated value IDN obtained by integrating the rotational fluctuation amount 20 times with the determination level SLIDN, and the integrated value obtained by integrating the rotational fluctuation amount 20 times. When the IDN is equal to or higher than the determination level SLIDN, an increase correction step FSTPA corresponding to the magnitude of the integrated value IDN obtained by integrating the rotational fluctuation amount 20 times using the 20-time integration table is obtained, and the fuel injection amount at the increase correction step FSTPA Correct the increase.
If the integrated value IDN obtained by integrating the rotational fluctuation amount 20 times is less than the determination level SLIDN, the air-fuel ratio is assumed to be in a stoichiometric to rich state, and the fuel injection amount is corrected to decrease by a predetermined value decreasing correction step FSTPD.

本実施形態では、回転変動量が所定のしきい値SLDN以上となるものが1回発生すれば、直ちにリーン状態が検出され、燃料補正手段5により回転変動量に応じた増量補正ステップFSTPAで燃料の増量が速やかに実施されるので、オーバーリーン化を防止でき、燃焼悪化や回転落ちなどの不具合を生じることがない。   In the present embodiment, when one occurrence of the rotational fluctuation amount exceeding the predetermined threshold value SLDN occurs once, the lean state is immediately detected, and the fuel correction means 5 increases the fuel in the increase correction step FSTPA corresponding to the rotational fluctuation amount. Since the increase in the amount is promptly implemented, overleaning can be prevented, and problems such as deterioration in combustion and drop in rotation do not occur.

上記のように、本発明に係る内燃機関の燃焼制御装置では冷機始動後に回転変動量の積算値に基づいて燃料噴射量の補正を実施するものにおいて、リッチ状態とリーン状態の回転変動量の発生頻度分布の違いを考慮し、回転変動量に応じて回転変動量を積算する積算回数を変更することにより、リーン状態を速やかに検出して燃料噴射量を増量するのでオーバーリーン化による燃焼悪化、およびこれによるHC排出量の増加、回転変動を防止できる。また、本発明に係る内燃機関の燃焼制御装置では回転変動量DNが所定のしきい値SLDN未満である場合には、リーン状態である場合と、ストイキ〜リッチ状態である場合の確率に大きな差がないため、今回の爆発を含む過去数十回の爆発で回転変動量を平均化した値よりリーン状態を高い確率で検出して燃料噴射量を増量するようにしている。   As described above, in the combustion control device for an internal combustion engine according to the present invention, the correction of the fuel injection amount is performed based on the integrated value of the rotational fluctuation amount after the cold start, and the generation of the rotational fluctuation amount in the rich state and the lean state is generated. By taking into account the difference in frequency distribution and changing the number of times to integrate the rotational fluctuation amount according to the rotational fluctuation amount, the lean state is detected quickly and the fuel injection amount is increased. And this can prevent the increase in HC emissions and rotation fluctuation. Further, in the combustion control device for an internal combustion engine according to the present invention, when the rotational fluctuation amount DN is less than the predetermined threshold value SLDN, there is a large difference in the probability between the lean state and the stoichiometric to rich state. Therefore, the fuel injection amount is increased by detecting the lean state with a higher probability than the value obtained by averaging the rotational fluctuation amount in the past several tens of explosions including this explosion.

以上、本発明の実施形態について詳述したが、本発明は、前記実施形態に限定されるものではない。また、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。上述の実施形態では、ポート噴射エンジンであるが、筒内噴射式のエンジンにおいても重質ガソリン使用時では、シリンダ壁面に付着する燃料の割合が増加して、点火プラグ周辺の混合気がリーン化することでポート噴射エンジンと同様に燃焼が悪化する場合があるので、本発明の制御方式は、吸気ポートにインジェクタを備えたポート噴射エンジンのみでなく、各シリンダ内に燃料噴射弁を備えた筒内噴射式のエンジンに適用しても良い。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment. Moreover, each component is not limited to the said structure, unless the characteristic function of this invention is impaired. In the above-described embodiment, a port injection engine is used. However, even in a cylinder injection engine, when heavy gasoline is used, the ratio of fuel adhering to the cylinder wall surface increases, and the air-fuel mixture around the spark plug becomes lean. Since the combustion may deteriorate as in the case of the port injection engine, the control method of the present invention is not limited to the port injection engine having the injector in the intake port, but the cylinder having the fuel injection valve in each cylinder. You may apply to an internal injection type engine.

本発明に係る内燃機関の燃焼制御装置を備えたエンジン制御システムの全体構成図。1 is an overall configuration diagram of an engine control system including a combustion control device for an internal combustion engine according to the present invention. 本発明に係る内燃機関の燃料制御装置における制御構成ブロックの一実施形態を示す図。The figure which shows one Embodiment of the control structure block in the fuel control apparatus of the internal combustion engine which concerns on this invention. 本実施形態の積算回数設定手段2における回転変動量と積算回数の関係を示す図。The figure which shows the relationship between the rotation fluctuation amount in the integration frequency setting means 2 of this embodiment, and the integration frequency. 本実施形態の燃料補正手段5における回転変動量の平均値と燃料増量ステップの関係を示す図。The figure which shows the relationship between the average value of the rotation fluctuation amount in the fuel correction | amendment means 5 of this embodiment, and a fuel increase step. 本発明に係る内燃機関の燃焼制御装置の実施形態における燃料制御の動作のフローチャート。The flowchart of the operation | movement of the fuel control in embodiment of the combustion control apparatus of the internal combustion engine which concerns on this invention. 本実施形態の内燃機関の燃料制御装置によるエンジン始動時におけるエンジン回転数、空燃比、回転変動量の平均値、燃料噴射量を示す図。The figure which shows the engine speed at the time of engine starting by the fuel control apparatus of the internal combustion engine of this embodiment, an air fuel ratio, the average value of a rotation fluctuation amount, and fuel injection amount. 本発明に係る内燃機関の燃料制御装置における制御構成ブロックの他の実施形態を示す図。The figure which shows other embodiment of the control structure block in the fuel control apparatus of the internal combustion engine which concerns on this invention. 本発明に係る内燃機関の燃料制御装置における制御構成ブロックの他の実施形態を示す図。The figure which shows other embodiment of the control structure block in the fuel control apparatus of the internal combustion engine which concerns on this invention. 本発明に係る内燃機関の燃料制御装置における制御構成ブロックの他の実施形態を示す図。The figure which shows other embodiment of the control structure block in the fuel control apparatus of the internal combustion engine which concerns on this invention. 本実施形態の燃料補正手段8における回転変動量の平均値と燃料増量ステップの関係を示す図。The figure which shows the relationship between the average value of the rotation fluctuation amount in the fuel correction means 8 of this embodiment, and a fuel increase step. 内燃機関における空燃比と回転変動量の関係を示す図。The figure which shows the relationship between the air fuel ratio in an internal combustion engine, and a rotation fluctuation amount. 内燃機関における空燃比と回転変動量の発生頻度分布の関係を示す図。The figure which shows the relationship between the air-fuel ratio in an internal combustion engine, and the generation frequency distribution of rotation fluctuation amount.

符号の説明Explanation of symbols

7 吸気管
8 燃料噴射弁
12 クランク角度センサ
20 酸素濃度センサ
21 冷却水温センサ
24 コントローラ(制御装置)
29 クランク角度検出プレート
7 Intake pipe 8 Fuel injection valve 12 Crank angle sensor 20 Oxygen concentration sensor 21 Cooling water temperature sensor 24 Controller (control device)
29 Crank angle detection plate

Claims (5)

各気筒の吸気ポートまたは各気筒内に設けられる燃料噴射弁と、各気筒内に設けられる点火プラグと、を備えた内燃機関の燃料制御装置であって、
点火サイクルの各気筒ごとの前記点火プラグの点火による各気筒間の回転変動量を算出する回転変動量算出手段と、該回転変動量の積算回数を設定する積算回数設定手段と、前記燃料噴射弁の燃料噴射量を補正する燃料補正手段と、を備え、
前記内燃機関の制御装置は、始動後に、前記算出された回転変動量と前記設定された積算回数とから求まる前記回転変動量の積算値及び/又は平均値を算出し、該回転変動量の積算値及び/又は平均値の大きさに応じて、前記燃料噴射弁の燃料噴射量を補正するものであり、
前記積算回数設定手段は、前記回転変動量に応じて前記設定する積算回数を1回以上の範囲で変更することを特徴とする内燃機関の燃料制御装置。
A fuel control device for an internal combustion engine, comprising: an intake port of each cylinder or a fuel injection valve provided in each cylinder; and an ignition plug provided in each cylinder,
Rotational fluctuation amount calculating means for calculating the rotational fluctuation amount between the cylinders due to ignition of the ignition plug for each cylinder in the ignition cycle, cumulative number setting means for setting the cumulative number of the rotational fluctuation amounts, and the fuel injection valve Fuel correction means for correcting the fuel injection amount of
The control device for the internal combustion engine calculates an integrated value and / or an average value of the rotational fluctuation amount obtained from the calculated rotational fluctuation amount and the set number of integrations after starting, and integrates the rotational fluctuation amount The fuel injection amount of the fuel injection valve is corrected according to the value and / or the average value .
The fuel control device for an internal combustion engine, wherein the cumulative number setting means changes the set cumulative number within a range of one or more according to the rotation fluctuation amount .
前記積算回数設定手段は、前記回転変動量が所定のしきい値より大きくなると前記設定する積算回数を少なくすることを特徴とする請求項に記載の内燃機関の燃料制御装置。 2. The fuel control device for an internal combustion engine according to claim 1 , wherein the cumulative number setting means decreases the cumulative number to be set when the rotation fluctuation amount exceeds a predetermined threshold value. 前記燃料制御装置は、前記設定した積算回数の前記回転変動量を積算する積算手段と、前記回転変動量の積算値から前記回転変動量の平均値を算出するノーマルライズ手段と、を備えていることを特徴とする請求項1又は2に記載の内燃機関の燃料制御装置。 The fuel control device includes integration means for integrating the rotation fluctuation amount for the set number of integrations, and normalizing means for calculating an average value of the rotation fluctuation amount from the integrated value of the rotation fluctuation amount. The fuel control apparatus for an internal combustion engine according to claim 1 or 2 , 前記燃料制御装置は、前記設定した積算回数の前記回転変動量の平均値を加重平均で算出する加重平均計算手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の燃料制御装置。 3. The fuel for an internal combustion engine according to claim 1, wherein the fuel control device includes weighted average calculation means for calculating an average value of the rotational fluctuation amounts of the set number of integrations by a weighted average. 4. Control device. 前記燃料制御装置は、前記回転変動量の積算値を積算する積算手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の燃料制御装置。 The fuel control apparatus for an internal combustion engine according to claim 1 or 2 , wherein the fuel control apparatus includes an integration unit that integrates an integrated value of the rotation fluctuation amount.
JP2007036133A 2007-02-16 2007-02-16 Fuel control device for internal combustion engine Expired - Fee Related JP4777919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036133A JP4777919B2 (en) 2007-02-16 2007-02-16 Fuel control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036133A JP4777919B2 (en) 2007-02-16 2007-02-16 Fuel control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008202413A JP2008202413A (en) 2008-09-04
JP4777919B2 true JP4777919B2 (en) 2011-09-21

Family

ID=39780191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036133A Expired - Fee Related JP4777919B2 (en) 2007-02-16 2007-02-16 Fuel control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4777919B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156248A (en) * 2008-12-26 2010-07-15 Hitachi Automotive Systems Ltd Control device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308945A (en) * 1989-05-23 1990-12-21 Mazda Motor Corp Fuel constituent detecting device for engine
JPH0814080A (en) * 1994-06-24 1996-01-16 Nissan Motor Co Ltd Fuel injection volume control device for internal combustion engine
JP3591001B2 (en) * 1994-09-19 2004-11-17 日産自動車株式会社 Control device for internal combustion engine
JPH08284708A (en) * 1995-04-14 1996-10-29 Nissan Motor Co Ltd Fuel injector for engine
JPH1089139A (en) * 1996-09-20 1998-04-07 Hitachi Ltd Device for detecting rotational fluctuation of engine and control device

Also Published As

Publication number Publication date
JP2008202413A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
EP0810362B1 (en) Method for controlling an internal combustion engine
JP5026337B2 (en) Control device for multi-cylinder internal combustion engine
JP2884472B2 (en) Fuel property detection device for internal combustion engine
US20080319632A1 (en) Combustion Control Apparatus and Method for Internal Combustion Engine
JP5031784B2 (en) Control device for internal combustion engine
JPWO2004018869A1 (en) Start control device and start control method for internal combustion engine
JP4784467B2 (en) Premixed compression ignition internal combustion engine
JP4168273B2 (en) Control device for internal combustion engine
JP2007127007A (en) Control device for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JP2006312919A (en) Engine controller
JP4777919B2 (en) Fuel control device for internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP2021017862A (en) Lubrication oil deterioration determination device
JP2010156248A (en) Control device for internal combustion engine
JP2011157852A (en) Control device of internal combustion engine
JP2007138802A (en) Combustion condition detection device for internal combustion engine
JP2009138620A (en) Control device of internal combustion engine
JP3533888B2 (en) Control device for direct injection spark ignition type internal combustion engine
JP7307760B2 (en) estimation device
JP6077371B2 (en) Control device for internal combustion engine
JP2000073927A (en) Burning condition detecting device for internal combustion engine
JP2011001848A (en) Control device of internal combustion engine
JP3968902B2 (en) Ignition timing control device
JP3046465B2 (en) MBT control method using ion current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Ref document number: 4777919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees