JP2009138620A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2009138620A
JP2009138620A JP2007315645A JP2007315645A JP2009138620A JP 2009138620 A JP2009138620 A JP 2009138620A JP 2007315645 A JP2007315645 A JP 2007315645A JP 2007315645 A JP2007315645 A JP 2007315645A JP 2009138620 A JP2009138620 A JP 2009138620A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
amount
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315645A
Other languages
Japanese (ja)
Inventor
Takanobu Ichihara
隆信 市原
Kazuhiko Kanetoshi
和彦 兼利
Kozo Katogi
工三 加藤木
Hiroyuki Takamura
広行 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007315645A priority Critical patent/JP2009138620A/en
Publication of JP2009138620A publication Critical patent/JP2009138620A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine capable of preventing fluctuation of an air-fuel ratio due to change in evaporation amount of fuel adhering to intake-side equipments and suppressing an exhaust amount of unburned gas. <P>SOLUTION: The control device 30 of the internal combustion engine 10 includes a fuel injection amount calculation means 101 for calculating a fuel injection amount TP of the internal combustion engine, a rotation fluctuation amount calculating means 102 for calculating a rotation fluctuation amount DN of the internal combustion engine, a fuel injection amount increase/decrease setting means 103 for setting an increase rate of the fuel injection amount TP when the rotation fluctuation amount DN exceeds a predetermined threshold value and for setting a decrease rate of the fuel injection amount TP when the rotation fluctuation amount DN is equal to or less than the predetermined threshold value, and a fuel injection amount correction means 104 for correcting the fuel injection amount based on the increase rate or the decrease rate. The fuel injection amount increase/decrease setting means 103 changes the increase rate or the decrease rate based on the time elapsed after the start, the number of times of ignition or an integrated value of load of the internal combustion engine 30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の制御装置に係り、特に、内燃機関の始動時における燃料噴射量を制御する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine that controls a fuel injection amount when starting the internal combustion engine.

内燃機関に噴射される燃料は、冷機始動時に蒸発しにくく、蒸発特性にはばらつきが生じやすい。特に、前記燃料として重質ガソリンを用いて内燃機関を始動した場合、吸気ポート壁面や吸気バルブに噴射した燃料が多く付着する。該付着により、本来シリンダ内に導入されるべき燃料量が減少し、シリンダ内の混合気がリーン化してしまう。この結果、リーン状態で混合気を点火した場合には、燃焼状態が悪化して未燃ガスの排出量が増加し、内燃機関の回転変動が発生しやすい。また、燃料噴射弁、吸入空気量を計測するエアフローメータ、または吸気管圧力センサ等の部品の特性ばらつきによっても、シリンダ内の混合気がリーン化して前述と同様の不具合を生ずる場合がある。   The fuel injected into the internal combustion engine does not easily evaporate at the time of cold start, and the evaporation characteristics tend to vary. In particular, when the internal combustion engine is started using heavy gasoline as the fuel, a large amount of fuel injected to the intake port wall surface and intake valve adheres. Due to the adhesion, the amount of fuel that should be introduced into the cylinder is reduced, and the air-fuel mixture in the cylinder becomes lean. As a result, when the air-fuel mixture is ignited in the lean state, the combustion state deteriorates, the amount of unburned gas discharged increases, and the internal combustion engine tends to fluctuate. In addition, due to variations in the characteristics of components such as the fuel injection valve, the air flow meter for measuring the intake air amount, or the intake pipe pressure sensor, the air-fuel mixture in the cylinder may become lean and cause the same problems as described above.

このような点を鑑みて、重質ガソリンの使用の際に、前記混合気のリーン化することによる不具合を防止するために、目標とすべき燃料噴射量よりも実際に噴射する燃料噴射量を増量することが考えられる。しかし、軽質ガソリンや標準ガソリンを用いて内燃機関を始動したときには、これらのガソリンは、重質ガソリンに比べて蒸発しやすい。このため、単に燃料噴射量を増量しただけでは、シリンダに導入される混合気は、理論空燃比(ストイキオ)に対しオーバーリッチとなってしまい、該混合気を燃焼した未燃ガス(HC)の排出量が増加することになる。   In view of these points, when using heavy gasoline, in order to prevent problems caused by leaning of the air-fuel mixture, the fuel injection amount that is actually injected is set to be greater than the target fuel injection amount. It is possible to increase the amount. However, when an internal combustion engine is started using light gasoline or standard gasoline, these gasolines are more likely to evaporate than heavy gasoline. For this reason, if the fuel injection amount is simply increased, the air-fuel mixture introduced into the cylinder becomes over-rich with respect to the stoichiometric air-fuel ratio (stoichio), and the unburned gas (HC) that combusted the air-fuel mixture. Emissions will increase.

前記課題を解決すべく、例えば、特許文献1には、燃料性状ばらつきや部品の特性ばらつきに起因した空燃比の変動を防止すべく、以下の示す内燃機関の制御装置が開示されている。該制御装置は、空燃比の変動は内燃機関の回転数の変動量(回転変動量)に依存することに着眼し、内燃機関始動後の前記回転変動量により空燃比を推定し、該回転変動量に基づいて燃料噴射量を制御することにより、始動直後の空燃比のオーバーリーン化やオーバーリッチ化を防止するようにしている。   In order to solve the above-mentioned problem, for example, Patent Document 1 discloses the following control device for an internal combustion engine in order to prevent fluctuations in the air-fuel ratio due to variations in fuel properties and component characteristics. The control device pays attention to the fact that the fluctuation of the air-fuel ratio depends on the fluctuation amount (rotational fluctuation amount) of the rotational speed of the internal combustion engine, estimates the air-fuel ratio based on the rotational fluctuation amount after starting the internal combustion engine, and By controlling the fuel injection amount based on the amount, the air-fuel ratio is prevented from being overlean or overrich immediately after starting.

より具体的には、前記内燃機関の制御装置は、回転変動量が所定の閾値より大きい場合に燃料噴射量を所定の割合で増量する補正を行うことで空燃比のオーバーリーン化を抑制し、回転変動量が所定の閾値より小さい場合には所定の割合で燃料噴射量を減量する補正を行うことでオーバーリッチ化を抑制するようにしている。   More specifically, the control device of the internal combustion engine suppresses over leaning of the air-fuel ratio by performing correction to increase the fuel injection amount at a predetermined ratio when the rotational fluctuation amount is larger than a predetermined threshold value, When the rotational fluctuation amount is smaller than a predetermined threshold value, over-riching is suppressed by performing correction for reducing the fuel injection amount at a predetermined rate.

特開平10−18422号公報Japanese Patent Laid-Open No. 10-18422

前記特許文献1に記載の内燃機関の制御装置は、空燃比を制御するための指標として内燃機関の回転変動量を用いている。しかし、一般的に空燃比が一定の状態においても回転変動量にはばらつきを生ずる場合もあるので、前記内燃機関の制御装置は、回転変動量を平均化した指標に基づいて燃料噴射量の補正を実施するようにするか、または回転変動量に対する燃料噴射量の補正量を小さくして回転変動量のばらつきの影響を軽減するようにしている。   The control device for an internal combustion engine described in Patent Document 1 uses the rotation fluctuation amount of the internal combustion engine as an index for controlling the air-fuel ratio. However, generally, even when the air-fuel ratio is constant, there may be variations in the rotational fluctuation amount. Therefore, the control device for the internal combustion engine corrects the fuel injection amount based on an index that averages the rotational fluctuation amount. Or the correction amount of the fuel injection amount with respect to the rotational fluctuation amount is reduced to reduce the influence of the variation of the rotational fluctuation amount.

このため空燃比が時間的に変動する場合には、空燃比が変化してから回転変動量に基づいた燃料噴射量の補正が実施されるまでには時間遅れを生ずることがある。これにより回転変動による燃料補正制御実施時には、回転変動による燃料補正を実施しない場合に比べて空燃比変動は軽減されるものの、燃料補正の遅れにより一定の影響を受けてしまう。   For this reason, when the air-fuel ratio fluctuates with time, there may be a time delay between the change of the air-fuel ratio and the correction of the fuel injection amount based on the rotation fluctuation amount. As a result, when the fuel correction control based on the rotational fluctuation is performed, the air-fuel ratio fluctuation is reduced as compared with the case where the fuel correction based on the rotational fluctuation is not performed, but the fuel correction control is affected by a delay of the fuel correction.

ここで図7に示すようにエンジンの冷機始動直後(区間1)では、前記したように、内燃機関の吸気側に相当する吸気バルブや吸気ポートの温度は低く、吸気バルブや吸気ポートに付着する燃料の割合が多い。このことからシリンダに供給される混合気に含まれる燃料は不足し易くなり、シリンダの空燃比は点線のようにリーン化する傾向がある。ここで破線は回転変動量に基づいた燃料噴射量の補正を行わず、所定の燃料噴射量で燃料噴射を実施した場合のシリンダ内混合気の空燃比(シリンダ空燃比)を示している。   Here, as shown in FIG. 7, immediately after the engine is cold-started (section 1), as described above, the temperature of the intake valve and intake port corresponding to the intake side of the internal combustion engine is low and adheres to the intake valve and intake port. A large proportion of fuel. For this reason, the fuel contained in the air-fuel mixture supplied to the cylinder tends to be insufficient, and the air-fuel ratio of the cylinder tends to lean as shown by the dotted line. Here, the broken line indicates the air-fuel ratio (cylinder air-fuel ratio) of the air-fuel mixture in the cylinder when the fuel injection is performed with a predetermined fuel injection amount without correcting the fuel injection amount based on the rotational fluctuation amount.

そして、冷機始動後に時間が経過すると、吸気バルブや吸気ポートの温度が徐々に上昇する(区間2)。このとき始動直後に内燃機関の吸気側に相当する吸気バルブや吸気ポートに多く付着した燃料が蒸発する。この温度上昇に伴う燃料の蒸発量の増加によって、燃料付着量が平衡状態となるまではシリンダに流入する蒸発燃料が増加して、区間2でシリンダ内の空燃比は点線のようにリッチ方向に変化する。   And if time passes after cold start, the temperature of an intake valve or an intake port will rise gradually (section 2). At this time, the fuel adhering to the intake valve or intake port corresponding to the intake side of the internal combustion engine evaporates immediately after starting. Due to the increase in the evaporation amount of fuel accompanying the temperature rise, the evaporated fuel flowing into the cylinder increases until the fuel adhesion amount reaches an equilibrium state, and the air-fuel ratio in the cylinder in the section 2 becomes rich as indicated by the dotted line. Change.

このようにして、回転変動量による燃料噴射量の補正を実施する場合は、図8に示すように、回転変動量が閾値SLDNを超えたときに燃料を増量するよう補正を行い、回転変動量が閾値以下であるときに燃料を減量するよう補正される。区間1では、回転変動量が所定の閾値を超える場合が多いので、燃料噴射量を増量する補正が行われて、シリンダ空燃比のリーン化は抑制される。   In this way, when correcting the fuel injection amount based on the rotation fluctuation amount, as shown in FIG. 8, the correction is performed so that the fuel is increased when the rotation fluctuation amount exceeds the threshold value SLDN. Is corrected to reduce the fuel when is below the threshold. In section 1, since the rotation fluctuation amount often exceeds a predetermined threshold value, correction for increasing the fuel injection amount is performed, and leaning of the cylinder air-fuel ratio is suppressed.

これに対して、区間2では、区間1において付着した吸気側の燃料の蒸発量が増加することにより、シリンダ流入燃料量(破線)が、燃料の蒸発量が少ない場合(実線)に対し増加し、シリンダ空燃比がリッチ側に変化する。この結果、燃料の蒸発量が増加して空燃比がリッチ化したときには回転変動量も減少する。   On the other hand, in the section 2, the amount of fuel on the intake side attached in the section 1 increases, so that the cylinder inflow fuel amount (broken line) increases compared to the case where the fuel evaporation amount is small (solid line). The cylinder air-fuel ratio changes to the rich side. As a result, when the fuel evaporation amount increases and the air-fuel ratio becomes rich, the rotational fluctuation amount also decreases.

しかし、このような補正を行った場合であっても、経験的には回転変動量の減少による燃料増量補正頻度の減少に対して、壁面温度上昇時の燃料蒸発量の増加によるシリンダ流入燃料量の増加割合の方が大きく、平均的にはシリンダ流入燃料量は増加して空燃比はストイキオ状態を超えてリッチ方向に変化する。なお、図8では、燃料の蒸発量が多い場合と少ない場合で比較し易いよう便宜的に回転変動量が同一の条件として図示している。   However, even when such correction is performed, empirically, the amount of fuel flowing into the cylinder due to the increase in fuel evaporation when the wall temperature rises, while the fuel increase correction frequency due to the decrease in rotational fluctuation is reduced. The rate of increase of the engine is larger. On average, the amount of fuel flowing into the cylinder increases, and the air-fuel ratio changes in a rich direction beyond the stoichiometric state. In FIG. 8, for the sake of convenience, the rotational fluctuation amount is illustrated as the same condition so that the fuel evaporation amount is large and the fuel evaporation amount is easy to compare.

このように前記補正を行った場合であっても、吸気バルブ及び吸気ポート等の吸気側の温度が上昇するに従って、これらに付着した燃料の蒸発量が増加することでシリンダ内に流入する燃料が増加してしまい、図7に示す区間2では、空燃比が理論空燃比(ストイキオ)に対しリッチとなり、未燃ガス(HC)の排出量が増加するという問題があった。   Even when the correction is performed as described above, the amount of fuel adhering to the intake valve increases as the intake side temperature of the intake valve, intake port, etc. In section 2 shown in FIG. 7, the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio (stoichio), and there is a problem that the amount of unburned gas (HC) discharged increases.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、吸気バルブ及び吸気ポート等の吸気側の温度上昇に伴う燃料の蒸発量の増加による空燃比の変動を防止し、未燃ガスの排出量を抑制することができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to prevent fluctuations in the air-fuel ratio due to an increase in the amount of fuel evaporation accompanying a rise in temperature on the intake side such as an intake valve and an intake port. And it aims at providing the control apparatus of the internal combustion engine which can suppress the discharge | emission amount of unburned gas.

前記課題を解決すべく、本発明に係る内燃機関の制御装置は、内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を備えた内燃機関の制御装置であって、前記燃料噴射量増減量設定手段は、前記増量割合又は減量割合を、前記内燃機関の始動からの経過時間、点火回数、又は機関負荷積算値に基づいて、変更することを特徴とする。   In order to solve the above problems, an internal combustion engine control apparatus according to the present invention includes a fuel injection amount calculation means for calculating a fuel injection amount of the internal combustion engine, a rotation fluctuation amount calculation means for calculating a rotation fluctuation amount of the internal combustion engine, A fuel injection amount increase / decrease amount that sets an increase rate of the fuel injection amount when the rotational fluctuation amount exceeds a predetermined threshold value, and sets a decrease rate of the fuel injection amount when the rotation fluctuation amount is equal to or less than the predetermined threshold value. A control device for an internal combustion engine, comprising: setting means; and a fuel injection amount correction means for correcting the fuel injection amount based on the increase ratio or the decrease ratio, wherein the fuel injection amount increase / decrease setting means includes: The increase ratio or the decrease ratio is changed based on the elapsed time from the start of the internal combustion engine, the number of ignitions, or the engine load integrated value.

本発明に係る内燃機関の制御装置は、内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を備えた内燃機関の制御装置であって、前記燃料噴射量増減量設定手段は、前記閾値の値を、前記内燃機関の始動からの経過時間、点火回数、又は機関負荷積算値に基づいて、変更することを特徴とする。   The control apparatus for an internal combustion engine according to the present invention includes a fuel injection amount calculation unit that calculates a fuel injection amount of the internal combustion engine, a rotation variation amount calculation unit that calculates a rotation variation amount of the internal combustion engine, and the rotation variation amount is a predetermined amount. A fuel injection amount increase / decrease setting means for setting an increase rate of the fuel injection amount when a threshold value is exceeded, and a decrease rate of the fuel injection amount when it is equal to or less than the predetermined threshold; and the increase rate Or a fuel injection amount correction unit that corrects the fuel injection amount based on a reduction rate, wherein the fuel injection amount increase / decrease setting unit sets the threshold value to the internal combustion engine. The change is made based on the elapsed time from the start of the engine, the number of ignitions, or the engine load integrated value.

本発明に係る内燃機関の制御装置は、前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記燃料噴射量の前記増量割合を少なくすることを特徴とする。   The control apparatus for an internal combustion engine according to the present invention provides the fuel injection amount increase / decrease setting means when the elapsed time, the number of ignition times, or the engine load integrated value exceeds a predetermined value, The increase ratio of the quantity is reduced.

本発明に係る内燃機関の制御装置は、前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記燃料噴射量の前記減量割合を多くすることを特徴とする。   The control apparatus for an internal combustion engine according to the present invention provides the fuel injection amount increase / decrease setting means when the elapsed time, the number of ignition times, or the engine load integrated value exceeds a predetermined value, It is characterized in that the amount of weight reduction is increased.

本発明に係る内燃機関の制御装置は、前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記閾値の値を大きくすることを特徴とする。   When the elapsed time, the number of ignitions, or the integrated value of the engine load exceeds a predetermined value, the control device for an internal combustion engine according to the present invention is configured so that the fuel injection amount increase / decrease setting means It is characterized by increasing the value.

本発明に係る内燃機関の制御装置は、内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を少なくとも備えた内燃機関の制御装置であって、前記燃料噴射量増減量設定手段は、前記燃料噴射量の増量割合又は減量割合は、前記内燃機関始動後の前記内燃機関の吸気側に付着した燃料の蒸発量に基づいて、変更することを特徴とすることを特徴とする。   The control apparatus for an internal combustion engine according to the present invention includes a fuel injection amount calculation unit that calculates a fuel injection amount of the internal combustion engine, a rotation variation amount calculation unit that calculates a rotation variation amount of the internal combustion engine, and the rotation variation amount is a predetermined amount. A fuel injection amount increase / decrease setting means for setting an increase rate of the fuel injection amount when a threshold value is exceeded, and a decrease rate of the fuel injection amount when it is equal to or less than the predetermined threshold; and the increase rate Or a fuel injection amount correction means for correcting the fuel injection amount based on a reduction ratio, at least a control device for an internal combustion engine, wherein the fuel injection amount increase / decrease setting means is an increase ratio of the fuel injection amount. Alternatively, the reduction ratio is changed based on the evaporation amount of the fuel adhering to the intake side of the internal combustion engine after the internal combustion engine is started.

本発明によれば、内燃機関の冷機始動後において、吸気バルブ及び吸気ポート等の吸気側の温度上昇に伴い、吸気側の機器の付着した燃料の蒸発量の変化による空燃比の変動を防止し、未燃ガス(HC)の排出量を抑制することができる。   According to the present invention, after the internal combustion engine is cold-started, the air-fuel ratio is prevented from fluctuating due to a change in the evaporation amount of the fuel adhering to the intake-side equipment as the intake-side temperature rises such as the intake valve and the intake port. Further, the amount of unburned gas (HC) emitted can be suppressed.

以下に、図面を参照して本発明の内燃機関の制御装置のいくつかの実施形態について説明する。   Hereinafter, several embodiments of a control device for an internal combustion engine of the present invention will be described with reference to the drawings.

図1は、第一実施形態の内燃機関の制御装置を示した全体構成図である。
内燃機関10は、多気筒エンジン、例えば、#1〜#4の4つの気筒を有する直列4気筒エンジンであって、シリンダ11と、このシリンダ11内に摺動自在に嵌挿されたピストン12とを有し、該ピストン12の上方には燃焼室13が画成される。燃焼室13には、点火コイル45から高電圧が印加される点火プラグ44が配設されている。また、ピストン12に連結されたクランク軸41には、クランク角度検出用プレート42が取り付けられ、クランク角度センサ43が設けられている。さらに、シリンダ11には、冷却水温センサ46が設けられている。
FIG. 1 is an overall configuration diagram illustrating a control device for an internal combustion engine according to a first embodiment.
The internal combustion engine 10 is a multi-cylinder engine, for example, an in-line four-cylinder engine having four cylinders # 1 to # 4, and includes a cylinder 11 and a piston 12 slidably inserted into the cylinder 11. A combustion chamber 13 is defined above the piston 12. A spark plug 44 to which a high voltage is applied from the ignition coil 45 is disposed in the combustion chamber 13. A crank angle detection plate 42 is attached to the crankshaft 41 connected to the piston 12, and a crank angle sensor 43 is provided. Further, the cylinder 11 is provided with a cooling water temperature sensor 46.

一方、内燃機関10の吸気側に相当する吸気管21には、内燃機関10の吸入空気量を制御するためのスロットル弁22、及び、吸入空気量を検出するための吸気管圧力センサ28が設けられている。また、シリンダ11の吸気ポート25の上流には燃料噴射弁24が設けられており、吸気バルブ26に向けて燃料を噴射するように配設されている。さらに、内燃機関10の排気側に相当する排気管51には、酸素量濃度センサ52が設けられている。   On the other hand, an intake pipe 21 corresponding to the intake side of the internal combustion engine 10 is provided with a throttle valve 22 for controlling the intake air amount of the internal combustion engine 10 and an intake pipe pressure sensor 28 for detecting the intake air amount. It has been. Further, a fuel injection valve 24 is provided upstream of the intake port 25 of the cylinder 11 and is arranged so as to inject fuel toward the intake valve 26. Further, an oxygen amount concentration sensor 52 is provided in the exhaust pipe 51 corresponding to the exhaust side of the internal combustion engine 10.

前記内燃機関10において、各シリンダに導入されて燃料の燃焼に供せられる空気は、電制スロットル弁22を通ることにより、吸入空気量が制御され、燃焼室13に導入される吸入空気量は、インテークマニホールド23の吸気管圧力センサ28により検出される。さらに、吸入空気量が制御された空気と燃料噴射弁24から噴射された燃料との混合気は、吸気カムシャフト27により開閉駆動される吸気バルブ26を介して、燃焼室13内に導入される。導入された混合気は、点火プラグ44により点火されて、爆発燃焼せしめられる。燃焼したガス(排ガス)は、排気カムシャフト57により開閉駆動される排気バルブ56から排出され、さらに排気管51を通過して外部に排出される。   In the internal combustion engine 10, the air introduced into each cylinder and used for fuel combustion passes through the electric throttle valve 22 to control the intake air amount, and the intake air amount introduced into the combustion chamber 13 is The intake manifold pressure sensor 28 detects the intake manifold 23. Further, an air-fuel mixture of air with controlled intake air amount and fuel injected from the fuel injection valve 24 is introduced into the combustion chamber 13 via an intake valve 26 that is driven to open and close by an intake camshaft 27. . The introduced air-fuel mixture is ignited by the spark plug 44 and explosively burned. The burned gas (exhaust gas) is discharged from an exhaust valve 56 that is opened and closed by an exhaust camshaft 57, and further passes through an exhaust pipe 51 and is discharged to the outside.

コントロールユニット(内燃機関の制御装置)30は、後述する燃料噴射量の制御を行うべく演算処理を行うCPU31、制御プログラムと制御用データが記憶される読み出し専用メモリ(ROM)32、制御用変数等が記憶される書き込み可能なメモリ(RAM)33、及び入出力回路34を備えている。   A control unit (control device for an internal combustion engine) 30 includes a CPU 31 that performs arithmetic processing to control a fuel injection amount, which will be described later, a read only memory (ROM) 32 that stores a control program and control data, a control variable, and the like. Is provided, and a writable memory (RAM) 33 and an input / output circuit 34 are provided.

そして、前述した吸気管圧力センサ28、冷却水温センサ46、クランク角度センサ43、酸素量濃度センサ52等の信号はコントロールユニット30に入力され、コントロールユニット30はこれらの入力信号より燃料噴射量、点火時期、スロットル開度等を演算し、それぞれの演算結果となる制御信号は、スロットル弁22、燃料噴射弁24、点火コイル45等に出力される。   Signals from the intake pipe pressure sensor 28, the cooling water temperature sensor 46, the crank angle sensor 43, the oxygen amount concentration sensor 52, etc. are input to the control unit 30, and the control unit 30 receives the fuel injection amount and ignition from these input signals. The timing, throttle opening, and the like are calculated, and control signals that are the calculation results are output to the throttle valve 22, the fuel injection valve 24, the ignition coil 45, and the like.

図2は、第一実施形態に係る内燃機関の制御装置の制御ブロック図である。図2に示すように、本実施形態に係る内燃機関10の制御装置30は、燃料噴射量算出手段101と、回転変動量算出手段102と、燃料噴射量増減量設定手段103と、燃料噴射量補正手段104とを少なくとも備えている。   FIG. 2 is a control block diagram of the control device for the internal combustion engine according to the first embodiment. As shown in FIG. 2, the control device 30 of the internal combustion engine 10 according to the present embodiment includes a fuel injection amount calculation unit 101, a rotation fluctuation amount calculation unit 102, a fuel injection amount increase / decrease amount setting unit 103, and a fuel injection amount. And at least correction means 104.

燃料噴射量算出手段101は、内燃機関10の燃料噴射量TPを算出する手段であり、燃料噴射量TPは、クランク角センサ43により計測された内燃機関の回転数Neと、吸気管圧力センサ28により計測された吸入空気量(吸気管圧力)Qにより、算出される。   The fuel injection amount calculation means 101 is a means for calculating the fuel injection amount TP of the internal combustion engine 10, and the fuel injection amount TP is determined by the rotational speed Ne of the internal combustion engine measured by the crank angle sensor 43 and the intake pipe pressure sensor 28. Is calculated by the intake air amount (intake pipe pressure) Q measured by the above.

回転変動量算出手段102は、内燃機関10の回転数の変動量(回転変動量)DNを算出する手段であり、回転変動量DNは、クランク角度センサ43の信号より、爆発後の所定のクランク角度間を変位する時間Tn(クランク角速度の逆数に相当)を気筒ごとに計測して、今回の爆発での前記変位時間Tnと前回の爆発での変位時間Tn−1の差分を回転変動量とする等により算出される。回転変動量DNの算出は各気筒の爆発の周期と同期して実施される。   The rotational fluctuation amount calculation means 102 is a means for calculating the rotational speed fluctuation amount (rotational fluctuation amount) DN of the internal combustion engine 10, and the rotational fluctuation amount DN is determined by a predetermined crank after the explosion from the signal of the crank angle sensor 43. A time Tn (corresponding to the reciprocal of the crank angular velocity) for displacement between the angles is measured for each cylinder, and the difference between the displacement time Tn in the current explosion and the displacement time Tn-1 in the previous explosion is defined as the rotational fluctuation amount. And so on. The calculation of the rotational fluctuation amount DN is performed in synchronization with the explosion cycle of each cylinder.

燃料噴射量増減量設定手段103は、前記回転変動量DNが、後述する所定の閾値SLDNを超えた場合には燃料噴射量TPの増量割合を設定し、所定の閾値SLDN以下である場合には燃料噴射量TPの減量割合を設定する手段である。なお、燃料噴射量増減量設定手段103の詳細な説明は、図3〜5の図面を用いて、後述する。   The fuel injection amount increase / decrease amount setting means 103 sets an increase ratio of the fuel injection amount TP when the rotational fluctuation amount DN exceeds a predetermined threshold SLDN, which will be described later, and when it is equal to or less than the predetermined threshold SLDN. This is a means for setting a reduction ratio of the fuel injection amount TP. The detailed description of the fuel injection amount increase / decrease setting means 103 will be described later with reference to FIGS.

燃料噴射量補正手段104は、燃料噴射量増減量設定手段103により設定された燃料噴射量TPの増量割合又は減量割合に基づいて燃料噴射量TPを補正する手段であり、燃料噴射量補正手段104によって補正された燃料噴射量TIに基づいて、内燃機関の制御装置30は、燃料噴射弁24に制御信号を出力し、燃料噴射弁24は、該制御信号に基づいて燃料を噴射する。   The fuel injection amount correction unit 104 is a unit that corrects the fuel injection amount TP based on the increase rate or decrease rate of the fuel injection amount TP set by the fuel injection amount increase / decrease amount setting unit 103. The fuel injection amount correction unit 104 Based on the fuel injection amount TI corrected by the above, the control device 30 of the internal combustion engine outputs a control signal to the fuel injection valve 24, and the fuel injection valve 24 injects fuel based on the control signal.

図3は、図2に示す、燃料噴射量増減量設定手段103及び燃料噴射量補正手段104に基づいて噴射される燃料量を説明するための図である。   FIG. 3 is a diagram for explaining the amount of fuel injected based on the fuel injection amount increase / decrease setting unit 103 and the fuel injection amount correction unit 104 shown in FIG.

燃料噴射量増減量設定手段103は、燃料噴射量の増量割合又は減量割合を設定するものであり、該設定された増量割合は、内燃機関の始動からの経過時間に応じて(経過時間を過ぎたときに)変更される。図3に示すように、内燃機関の始動から所定の経過時間Trまでを区間1とし、所定の経過時間Trから酸素量濃度センサ20が活性化する時間Teまでの期間の区間2とする。   The fuel injection amount increase / decrease amount setting means 103 sets an increase ratio or a decrease ratio of the fuel injection amount, and the set increase ratio depends on the elapsed time from the start of the internal combustion engine (the elapsed time has passed). Changed). As shown in FIG. 3, a section 1 is a period from the start of the internal combustion engine to a predetermined elapsed time Tr, and a section 2 is a period from the predetermined elapsed time Tr to a time Te when the oxygen amount concentration sensor 20 is activated.

また、区間1と区間2の境界となる経過時間Trは、始動後に吸気ポート25及び吸気バルブ26の壁面などの吸気側の温度上昇により、始動直後に吸気側に付着した燃料の蒸発量が増加して空燃比がリッチに変化し始めるタイミングである。ここで、経過時間Trは予め実験により、壁面温度の上昇で空燃比がリッチ化するタイミング(内燃機関10の始動後からの経過時間)を測定しておくことで設定される。   In addition, the elapsed time Tr that becomes the boundary between the section 1 and the section 2 increases the evaporation amount of the fuel adhering to the intake side immediately after the start due to the temperature increase on the intake side such as the wall surface of the intake port 25 and the intake valve 26 after the start. This is the timing when the air-fuel ratio starts to change richly. Here, the elapsed time Tr is set by measuring in advance the timing at which the air-fuel ratio becomes rich due to the rise in the wall surface temperature (elapsed time since the start of the internal combustion engine 10).

図3に示すように、燃料噴射量増減量設定手段103は、冷機始動後の区間1(内燃機関の始動から所定の経過時間Trまで)において、回転変動量算出手段102により算出された回転変動量DNが所定の閾値SLDN1を超えたとき、燃料噴射量TPの増量割合(所定の増量割合)FSTPA1を設定し、燃料噴射量補正手段104は、燃料噴射量算出手段101で算出された燃料噴射量TPを、設定された増量割合FSTPA1を用いて増量補正する。一方、回転変動量DNがSLDN1以下のときは、燃料噴射量増減量設定手段103は、燃料噴射量TPの減量割合(所定の減量割合)FSTPD1を設定し、燃料噴射量補正手段104は、燃料噴射量TPを所定の時間間隔(点火間隔など)ごとに所定の割合FSTPD1で減量補正する。   As shown in FIG. 3, the fuel injection amount increase / decrease amount setting means 103 is operated by the rotational fluctuation amount calculated by the rotational fluctuation amount calculation means 102 in the section 1 (from the start of the internal combustion engine to a predetermined elapsed time Tr) after the cold start. When the amount DN exceeds a predetermined threshold value SLDN1, an increase ratio (predetermined increase ratio) FSTPA1 of the fuel injection amount TP is set, and the fuel injection amount correction means 104 is the fuel injection calculated by the fuel injection amount calculation means 101. The amount TP is increased and corrected using the set increase rate FSTPA1. On the other hand, when the rotational fluctuation amount DN is equal to or less than SLDN1, the fuel injection amount increase / decrease setting unit 103 sets a reduction rate (predetermined reduction rate) FSTPD1 of the fuel injection amount TP, and the fuel injection amount correction unit 104 The injection amount TP is corrected to decrease by a predetermined ratio FSTPD1 at predetermined time intervals (ignition intervals, etc.).

そして、燃料噴射量増減量設定手段103は、内燃機関10の始動後の内燃機関10の吸気側に付着した燃料の蒸発量に基づいて、増量割合又は減量割合を変更する。具体的には、区間1では、燃料噴射量増減量設定手段103は、吸気ポート25及び吸気バルブ26の温度が通常運転時に比べて低いため、吸気側に付着した燃料が蒸発しにくく、シリンダ11に供給される燃料が不足し、回転数Neの低下が発生し易いので、回転変動量DNの検出時の燃料の増量割合FSTPA1を燃料付着によりシリンダ流入燃料量が不足しない増量割合に設定する。   Then, the fuel injection amount increase / decrease amount setting means 103 changes the increase ratio or the decrease ratio based on the evaporation amount of the fuel adhering to the intake side of the internal combustion engine 10 after the internal combustion engine 10 is started. Specifically, in the section 1, the fuel injection amount increase / decrease amount setting means 103 is less likely to evaporate the fuel adhering to the intake side because the temperatures of the intake port 25 and the intake valve 26 are lower than those during normal operation. Therefore, the fuel increase rate FSTPA1 at the time of detecting the rotational fluctuation amount DN is set to an increase rate at which the cylinder inflow fuel amount is not insufficient due to fuel adhesion.

これに対し、区間2に入ったとき、すなわち、内燃機関の始動から経過時間Tr後は、吸気ポート25及び吸気バルブ26の壁面温度が、区間1の温度に比べて上昇し、付着した燃料の蒸発量が増加する。よって、燃料噴射量増減量設定手段103は、シリンダ11に流入する燃料量が過剰とならないように、内燃機関の始動から経過時間Trに基づいて、回転変動量DNが所定の閾値SLDN2を超えたときには、燃料の増量割合(増量割合)FSTPA2を区間1での燃料の増量割合FSTPA1に対して少なくなるように、FSTPA1からFSTPA2に増量割合を変更する。   On the other hand, when the section 2 is entered, that is, after the elapsed time Tr from the start of the internal combustion engine, the wall surface temperature of the intake port 25 and the intake valve 26 rises compared to the temperature of the section 1, and the attached fuel The amount of evaporation increases. Therefore, the fuel injection amount increase / decrease amount setting means 103 determines that the rotational fluctuation amount DN exceeds the predetermined threshold SLDN2 based on the elapsed time Tr from the start of the internal combustion engine so that the amount of fuel flowing into the cylinder 11 does not become excessive. In some cases, the increase ratio is changed from FSTPA1 to FSTPA2 so that the fuel increase ratio (increase ratio) FSTPA2 becomes smaller than the fuel increase ratio FSTPA1 in section 1.

これにより、図3の区間2に示すように、燃料補正量(実線)は、燃料の増量割合を変更しない従来の制御(点線)に対し減量方向に制御される。すなわち、従来制御では燃料蒸発量の増加によりシリンダ流入燃料量(点線)が徐々に増加し、シリンダ空燃比(点線)がリッチ方向に変動するが、一方、本実施形態に係る制御装置の制御によれば、吸気側の壁面温度上昇による燃料蒸発量の増加を考慮して燃料の増量割合を少なくしたのでシリンダ流入燃料量(実線)の増加を抑制し、シリンダ空燃比(実線)はリッチ化することなく、未燃ガスの排出量の増加を防止できる。   As a result, as shown in section 2 of FIG. 3, the fuel correction amount (solid line) is controlled in the decreasing direction with respect to the conventional control (dotted line) that does not change the fuel increase rate. That is, in the conventional control, the cylinder inflow fuel amount (dotted line) gradually increases and the cylinder air-fuel ratio (dotted line) fluctuates in the rich direction due to the increase in the fuel evaporation amount. On the other hand, the control of the control device according to the present embodiment is performed. According to this, the increase rate of the fuel is reduced in consideration of the increase in the fuel evaporation amount due to the rise in the wall temperature on the intake side, so the increase in the cylinder inflow fuel amount (solid line) is suppressed, and the cylinder air-fuel ratio (solid line) becomes rich. Without increasing the emission of unburned gas.

本実施形態では、区間1における閾値SLDN1と区間2における閾値SLDN2は同一の値であり、区間1における燃料の減量割合FSTPD1と区間2における燃料の減量割合FSTPD2とは同一の値である。   In the present embodiment, the threshold value SLDN1 in the section 1 and the threshold value SLDN2 in the section 2 are the same value, and the fuel reduction rate FSTPD1 in the section 1 and the fuel reduction rate FSTPD2 in the section 2 are the same value.

ここで、本実施形態では、内燃機関の始動からの経過時間に基づいて、区間2の燃料の増量割合FSTPA2を、区間1の燃料の増量割合FSTPA1に対して少なくなるように、増量割合の変更を行ったが、内燃機関の始動からの経過時間に基づいて、区間2の燃料減量分FSTPD2を、区間1の燃料の減量割合FSTPD1に対して多くするように、減量割合の変更を行ってもよい。この場合であっても、壁面温度上昇による蒸発燃料の増加に対し、時間あたりの燃料の減量割合を多くすることにより、シリンダ11への流入する燃料量の増加を抑制することができる。   Here, in the present embodiment, the increase ratio is changed so that the fuel increase ratio FSTPA2 in the section 2 is smaller than the fuel increase ratio FSTPA1 in the section 1 based on the elapsed time from the start of the internal combustion engine. However, based on the elapsed time from the start of the internal combustion engine, even if the reduction ratio is changed so that the fuel reduction amount FSTPD2 in the section 2 is larger than the fuel reduction ratio FSTPD1 in the section 1 Good. Even in this case, it is possible to suppress an increase in the amount of fuel flowing into the cylinder 11 by increasing the fuel reduction rate per hour with respect to the increase in the evaporated fuel due to the wall surface temperature increase.

また、本実施形態では、燃料噴射量増減量設定手段103は、内燃機関の始動からの経過時間に基づいて、区間1と区間2とを定めて、設定された増量割合又は減量割合を設定してきたが、前記した同様の実験により、内燃機関の始動からの点火プラグ44の点火回数、又は、内燃機関始動時からの負荷積算値(燃料量積算値(噴射した燃料量の総和)、吸入空気量積算値(吸入された空気量の総和)を含む)を設定し、これらの値により、増量割合又は減量割合の変更を行ってもよい。   Further, in the present embodiment, the fuel injection amount increase / decrease setting means 103 determines the section 1 and the section 2 based on the elapsed time from the start of the internal combustion engine, and sets the set increase ratio or decrease ratio. However, according to the same experiment as described above, the number of ignitions of the spark plug 44 from the start of the internal combustion engine, or the load integrated value (fuel amount integrated value (sum of injected fuel amount) from the start of the internal combustion engine, intake air An amount integrated value (including the total amount of inhaled air) may be set, and the increase rate or the decrease rate may be changed according to these values.

図4は、図2に示すコントロールユニット30の動作を説明するためのフローチャートである。図5は、各区間の燃料の増量割合FSTPA(FSTPA1,FSTPA2)の算出方法を説明するための図である。以下、コントロールユニット30の動作について詳細に説明する。   FIG. 4 is a flowchart for explaining the operation of the control unit 30 shown in FIG. FIG. 5 is a diagram for explaining a method of calculating the fuel increase rate FSTPA (FSTPA1, FSTPA2) in each section. Hereinafter, the operation of the control unit 30 will be described in detail.

まず、ステップ100で、冷却水温センサ46により検出されたエンジンの温度(冷却水温度)が所定の温度TWSL以下の冷機状態であるかを判定する。冷却状態と判定された場合には、ステップ110に進み、このとき酸素量濃度センサ52が活性化して空燃比が検出可能な状態でない、すなわち、内燃機関の始動後で酸素量濃度センサ52が活性化していない状態であるかを判定する。この結果、ステップ100,110のいずれかが不成立のとき、すなわち、ステップ100で冷機状態にない場合、ステップ110で酸素量濃度センサ52が不活性状態でない(活性状態である)場合には、回転変動量による空燃比制御は不要となるので、回転変動量による燃料補正を禁止し燃料補正量FTRMを0とする。   First, in step 100, it is determined whether or not the engine temperature (cooling water temperature) detected by the cooling water temperature sensor 46 is in a cold state equal to or lower than a predetermined temperature TWSL. If it is determined that the engine is in the cooling state, the routine proceeds to step 110, where the oxygen amount concentration sensor 52 is activated and the air-fuel ratio is not detectable, that is, the oxygen amount concentration sensor 52 is activated after the internal combustion engine is started. It is determined whether it is not in a state. As a result, when either of steps 100 and 110 is not established, that is, when the air conditioner is not in the cold state at step 100, or when the oxygen amount concentration sensor 52 is not inactive (is active) at step 110, the rotation is performed. Since the air-fuel ratio control based on the fluctuation amount becomes unnecessary, fuel correction based on the rotation fluctuation amount is prohibited and the fuel correction amount FTRM is set to zero.

一方、ステップ100,110共に成立していればステップ120で、上述した方法により、回転変動量算出手段102により内燃機関の回転数の変動量(回転変動量)DNを算出し、ステップ130に進む。   On the other hand, if both steps 100 and 110 are established, in step 120, the rotation fluctuation amount calculation means 102 calculates the fluctuation amount (rotation fluctuation amount) DN of the internal combustion engine by the method described above, and proceeds to step 130. .

ステップ130で、燃料噴射量増減量設定手段103により、内燃機関10の始動後の区間判定を行う。具体的には、前記したように、始動後に吸気ポート25及び吸気バルブ26の壁面などの吸気側の温度上昇により、吸気側に付着した燃料の蒸発量が増加して空燃比がリッチに変化し始める、内燃機関始動時からの経過時間Trを予め実験により測定しておき(ここで経過時間Trの測定は、例えば始動時所定回転に達してからの経過時間または点火回数等を計測することにより実施される。)、始動からTr経過前の期間を区間1、始動からTr経過後で酸素量濃度センサ52が活性化するまでの期間を区間2とし、現時点が、いずれの区間にあるかを判定する。   In step 130, the fuel injection amount increase / decrease amount setting means 103 performs section determination after the internal combustion engine 10 is started. Specifically, as described above, the temperature of the intake side such as the intake port 25 and the wall surface of the intake valve 26 rises after the start, and the amount of fuel evaporated on the intake side increases and the air-fuel ratio changes richly. First, the elapsed time Tr from the start of the internal combustion engine is measured in advance by experiment (here, the elapsed time Tr is measured by measuring, for example, the elapsed time or the number of ignitions after reaching a predetermined rotation at the start) The period from the start to the time before Tr has elapsed is referred to as section 1, and the period from the start to the time after the Tr has elapsed until the oxygen concentration sensor 52 is activated is referred to as section 2. judge.

ここで、吸気ポート25及び吸気バルブ26の温度上昇の指標として始動後の経過時間または点火回数を用いる代わりに、前述したような始動後の負荷積算値(燃料量積算値、又は空気量積算値を含む)を用いるようにしてもよい。   Here, instead of using the elapsed time or the number of ignition after the start as an index of the temperature rise of the intake port 25 and the intake valve 26, the load integrated value (fuel amount integrated value or air amount integrated value) after the start as described above is used. May be used).

この場合は、壁面温度上昇により蒸発燃料が増加し空燃比がリッチ化するときの負荷積算値の閾値を設定し、負荷積算値と設定された閾値とを比較し、負荷積算値が、閾値未満のときに区間1とし、負荷積算値が閾値以上のときに区間2と判定する。   In this case, set the threshold value of the load integrated value when the fuel vapor increases due to the wall temperature rise and the air-fuel ratio becomes rich, compare the load integrated value with the set threshold value, and the load integrated value is less than the threshold value. When the load integrated value is equal to or greater than the threshold value, it is determined that it is the section 2.

ステップ130で区間1と判定された場合は、ステップ140に進み、燃料増量を実施する回転変動量の閾値SLDNに閾値(所定値)SLDN1をセットする。また、ステップ150で、回転変動量DNが閾値を超えたときは、燃料の増量割合FSTPAに所定の増量割合FSTPA1をセットする。また、回転変動量DNが閾値以下のときは、燃料の減量割合FSTPDに所定の減量割合FSTPD1をセットする。   If it is determined in step 130 that the section is 1, the process proceeds to step 140, and a threshold value (predetermined value) SLDN1 is set to the threshold value SLDN of the rotational fluctuation amount at which fuel increase is performed. In step 150, when the rotational fluctuation amount DN exceeds the threshold value, a predetermined increase rate FSTPA1 is set to the fuel increase rate FSTPA. When the rotational fluctuation amount DN is equal to or less than the threshold value, a predetermined reduction rate FSTPD1 is set in the fuel reduction rate FSTPD.

一方、ステップ130で区間2と判定された場合は、ステップ160で燃料増量を実施する回転変動量DNの閾値SLDNに閾値(所定値)SLDN2をセットする。またステップ170で、回転変動量DNが閾値を超えたときの燃料の増量割合FSTPAに、所定値FSTPA1よりも小さい所定値FSTPA2をセットする。また、回転変動量DNが閾値を超えないときの燃料の減量割合FSTPDに所定値FSTPD2をセットする。   On the other hand, if it is determined in section 130 that it is the section 2, the threshold value (predetermined value) SLDN2 is set to the threshold value SLDN of the rotational fluctuation amount DN in which fuel increase is performed in step 160. In step 170, a predetermined value FSTPA2 smaller than the predetermined value FSTPA1 is set as the fuel increase rate FSTPA when the rotational fluctuation amount DN exceeds the threshold value. Further, a predetermined value FSTPD2 is set to the fuel decrease rate FSTPD when the rotation fluctuation amount DN does not exceed the threshold value.

ここで、図5に示すように、燃料の増量割合FSTPAは、回転変動量DNと閾値SLDNの差DN−SLDNに応じて設定される。これは回転変動量DNと空燃比は相関が有り、一般に空燃比がリーンになるに従って燃焼状態が不安定となり回転変動量が大きくなる傾向があるので、回転変動量DNが大きいときに燃料の増量割合を大きくして空燃比のリーン化を速やかに抑制するようにしている。   Here, as shown in FIG. 5, the fuel increase rate FSTPA is set according to the difference DN−SLDN between the rotational fluctuation amount DN and the threshold value SLDN. This is because there is a correlation between the rotational fluctuation amount DN and the air-fuel ratio. Generally, as the air-fuel ratio becomes leaner, the combustion state tends to become unstable and the rotational fluctuation amount tends to increase. Therefore, when the rotational fluctuation amount DN is large, the amount of fuel increase The ratio is increased so that the lean air-fuel ratio is quickly suppressed.

前述したように区間2では吸気ポート25及び吸気バルブ26の壁面温度上昇により燃料蒸発量が増加して空燃比がリッチ方向に変動するので、本実施形態では壁面温度上昇による空燃比リッチ化が抑制されるよう区間2での燃料の増量割合FSTPA2を区間1での燃料の増量割合FSTPA1に対して少なくなるように変更される。   As described above, in the section 2, the fuel evaporation amount increases due to the rise in the wall temperature of the intake port 25 and the intake valve 26 and the air-fuel ratio fluctuates in the rich direction. Therefore, in this embodiment, the enrichment of the air-fuel ratio due to the rise in the wall temperature is suppressed. Thus, the fuel increase rate FSTPA2 in the section 2 is changed to be smaller than the fuel increase ratio FSTPA1 in the section 1.

本実施形態では、図4のステップ140、ステップ160に示す各区間の回転変動量の閾値SLDN1とSLDN2は同一の値としており、ステップ150とステップ170に示す燃料の減量割合FSTPD1とFSTPD2は同一の値としているが、壁面温度上昇による空燃比リッチ化が抑制されるように燃料の減量割合FSTPD2をFSTPD1に対し大きくなるように変更してもよい。   In the present embodiment, the threshold values SLDN1 and SLDN2 of the rotational fluctuation amount in each section shown in Step 140 and Step 160 of FIG. 4 are the same value, and the fuel reduction ratios FSTPD1 and FSTPD2 shown in Step 150 and Step 170 are the same. However, the fuel reduction rate FSTPD2 may be changed to be larger than FSTPD1 so that the air-fuel ratio enrichment due to the wall surface temperature increase is suppressed.

また、本実施形態では始動後の2つの区間に対して燃料の増量割合を切り替えるようにしているが、始動後の経過時間、点火回数、負荷積算値に応じて連続的に燃料の増量割合を少しずつ変更するようにしてもよい。   In this embodiment, the fuel increase ratio is switched for the two sections after the start. However, the fuel increase ratio is continuously set according to the elapsed time, the number of ignitions, and the load integrated value after the start. You may make it change little by little.

次にステップ180で爆発の周期ごとに回転変動量DNと閾値SLDNの比較を行い、回転変動量DNが閾値SLDNを超えた場合はステップ190で燃料補正量FTRMにFSTPAを加算する。回転変動量DNが閾値SLDNを超えないときはステップ200でFTRMからFSTPDを減算する。   Next, at step 180, the rotation fluctuation amount DN is compared with the threshold value SLDN for each explosion cycle. If the rotation fluctuation amount DN exceeds the threshold value SLDN, FSTPA is added to the fuel correction amount FTRM at step 190. When the rotational fluctuation amount DN does not exceed the threshold value SLDN, in step 200, FSTPD is subtracted from FTRM.

次にステップ220で燃料噴射弁24の噴射パルス幅(補正された燃料噴射量)TIを算出する。TIの算出方法は、吸気管圧力センサ信号等から算出される吸入空気量より求まる基本噴射パルス幅(燃料噴射量)TPに対し、回転変動量による燃料補正量FTRMによる補正のほか、従来の始動後時間による補正量FASや冷却水温度による補正量FTW等による補正を実施したものを出力される噴射パルス幅TIとする。   Next, at step 220, the injection pulse width (corrected fuel injection amount) TI of the fuel injection valve 24 is calculated. The TI is calculated by correcting the basic injection pulse width (fuel injection amount) TP obtained from the intake air amount calculated from the intake pipe pressure sensor signal, etc., in addition to the correction by the fuel correction amount FTRM by the rotational fluctuation amount, and the conventional start-up. The jet pulse width TI to be output is the one that has been corrected by the correction amount FAS by the later time, the correction amount FTW by the cooling water temperature, or the like.

以上の燃料制御方法により始動直後では壁面への燃料付着によるリーン化を防止しつつ、始動後に壁面温度が上昇してからは蒸発燃料の増加を考慮して燃料の増量割合を適切に制御することにより、空燃比のリッチ側への変動を抑制し、未燃ガス(HC)の排出量が増加することを防止できる。   The above fuel control method prevents leaning due to fuel adhering to the wall surface immediately after starting, and appropriately controls the fuel increase rate in consideration of the increase in evaporated fuel after the wall surface temperature rises after starting. As a result, fluctuation of the air-fuel ratio to the rich side can be suppressed, and an increase in the amount of unburned gas (HC) discharged can be prevented.

図6は、本発明に係る第二実施形態を説明するための図である。本実施形態は、前記第一実施形態に比べて、内燃機関始動後の区間に応じて回転変動量に対する閾値を変更した点が、相違する。   FIG. 6 is a view for explaining a second embodiment according to the present invention. The present embodiment is different from the first embodiment in that the threshold for the rotational fluctuation amount is changed according to the section after the internal combustion engine is started.

第二実施形態は、第一実施形態と同様に冷機始動後に回転変動量DNが所定の閾値SLDNを超えたときに回転変動量DNと閾値SLDNの差DN−SLDNに応じて燃料を増量補正する。   In the second embodiment, as in the first embodiment, when the rotational fluctuation amount DN exceeds a predetermined threshold value SLDN after the start of cooling, the fuel is increased and corrected according to the difference DN−SLDN between the rotational fluctuation amount DN and the threshold value SLDN. .

図6に示すように、第一実施形態と同様の区間1のとき、回転変動量DNが所定の閾値SLDN1を超えたとき、燃料を所定の増量割合FSTPA1で増量補正する。これに対し、吸気ポート25及び吸気バルブ26の温度が上昇して燃料の蒸発量が増加する区間2では、燃料を増量する回転変動量の閾値SLDN2を、SLDN1に対し回転変動量が大きくなる側、すなわち閾値の値を大きくするように変更する。   As shown in FIG. 6, in the same section 1 as in the first embodiment, when the rotational fluctuation amount DN exceeds a predetermined threshold value SLDN1, the fuel is corrected to increase at a predetermined increase rate FSTPAl. On the other hand, in the section 2 in which the temperature of the intake port 25 and the intake valve 26 rises and the fuel evaporation amount increases, the rotational fluctuation amount threshold value SLDN2 for increasing the fuel is set to the side where the rotational fluctuation amount becomes larger than the SLDN1. That is, the threshold value is changed to be larger.

これにより区間2では回転変動量が同一な場合、回転変動量と閾値の差DN−SLDN2が、区間1での回転変動量と閾値の差DN−SLDN1に対し小さくなり、第一実施形態の図3で示した回転変動量と閾値の差よりも少ないので燃料の増量割合FSTPAが少なくなる。その結果、第1実施例と同様に区間2で壁面温度上昇による蒸発燃料が増加したときの燃料の増量割合が少なくなり、図6の区間2でシリンダ流入燃料量(実線)が、閾値を固定とした従来の制御(点線)に対して減少し、シリンダ空燃比のリッチ側への変動を抑制することができる。   As a result, when the rotational fluctuation amount is the same in the section 2, the difference DN-SLDN2 between the rotational fluctuation amount and the threshold value is smaller than the difference DN-SLDN1 between the rotational fluctuation amount and the threshold value in the section 1, and FIG. Since the difference between the rotational fluctuation amount and the threshold value shown in FIG. 3 is smaller, the fuel increase rate FSTPA is reduced. As a result, in the same way as in the first embodiment, the rate of increase in fuel when the fuel vapor increases due to the rise in wall surface temperature in section 2 decreases, and the cylinder inflow fuel amount (solid line) in FIG. Therefore, the fluctuation of the cylinder air-fuel ratio to the rich side can be suppressed.

本実施形態にかかる制御方法のフローチャートは、図4においてステップ130の区間判定結果に応じて、区間1のときはステップ140で閾値SLDNに閾値SLDN1をセットし、区間2のときステップ160で、SLDN1に対して回転変動量増加方向にずらした所定の閾値SLDN2(閾値SLDN1に対してその値を大きくした閾値)をSLDNに変更すればよい。   In the flowchart of the control method according to the present embodiment, the threshold value SLDN1 is set to the threshold value SLDN in step 140 in the case of section 1 according to the section determination result in step 130 in FIG. The predetermined threshold value SLDN2 shifted in the direction of increasing the rotational fluctuation amount (threshold value obtained by increasing the value with respect to the threshold value SLDN1) may be changed to SLDN.

そして、ステップ150およびステップ170において、増量割合としてFSTPA1とFSTPA2同一の値とし、減量割合としてFSTPD1とFSTPD2を同一の値をセットする。その他のステップは、第一実施形態のステップと同様である。   Then, in step 150 and step 170, the same value is set as FSTPA1 and FSTPA2 as the rate of increase, and the same value is set as FSTPD1 and FSTPD2 as the rate of decrease. Other steps are the same as those in the first embodiment.

尚、本実施形態では内燃機関の始動後の2つの区間に対し回転変動量の閾値を切り替えるようにしているが、始動後の経過時間、点火回数、負荷積算値に応じて連続的に回転変動量の閾値を変更するようにしてもよい。   In this embodiment, the threshold value of the rotation fluctuation amount is switched for two sections after the start of the internal combustion engine. However, the rotation fluctuation is continuously changed according to the elapsed time after the start, the number of ignitions, and the load integrated value. The amount threshold may be changed.

以上、本発明の内燃機関の制御装置の2つの実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   The two embodiments of the control device for an internal combustion engine of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and the spirit of the present invention described in the claims is included. Various design changes can be made without departing from the scope.

例えば、第一実施形態では、区間に従って燃料噴射量の増量割合又は減量割合を変更したが、吸気側に付着燃料の蒸発量にあわせて、燃料を噴射することができるのであれば、これら2つの割合を変更してもよい。さらに、これらの2の割合を変更するにあわせて、第二実施形態に示すように閾値も、あわせて変更してもよい。   For example, in the first embodiment, the increase rate or decrease rate of the fuel injection amount is changed according to the section. However, if the fuel can be injected in accordance with the evaporation amount of the attached fuel on the intake side, these two The ratio may be changed. Further, as the ratio of 2 is changed, the threshold value may be changed as shown in the second embodiment.

本発明の第一実施形態に係る内燃機関の制御装置を示した全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which showed the control apparatus of the internal combustion engine which concerns on 1st embodiment of this invention. 第一実施形態に係る内燃機関の制御装置の制御ブロック図。The control block diagram of the control apparatus of the internal combustion engine which concerns on 1st embodiment. 図2に示す燃料噴射量増減量設定手段及び燃料噴射量補正手段に基づいて噴射される燃料量を説明するための図。The figure for demonstrating the fuel amount injected based on the fuel injection amount increase / decrease amount setting means and fuel injection amount correction | amendment means shown in FIG. 図2に示すコントロールユニットの動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the control unit shown in FIG. 各区間の燃料の増量割合の算出方法を説明するための図。The figure for demonstrating the calculation method of the increase ratio of the fuel of each area. 本発明の第二実施形態に係る内燃機関の制御装置により、噴射される燃料量を説明するための図。The figure for demonstrating the fuel quantity injected by the control apparatus of the internal combustion engine which concerns on 2nd embodiment of this invention. 従来の内燃機関の制御装置における吸気バルブ温度と始動後空燃比の関係を示す図The figure which shows the relationship between the intake valve temperature and the air-fuel ratio after starting in the control apparatus of the conventional internal combustion engine 従来の内燃機関の制御装置における燃料蒸発量と空燃比の関係を示す図The figure which shows the relationship between the fuel evaporation amount and the air fuel ratio in the control apparatus of the conventional internal combustion engine

符号の説明Explanation of symbols

10:内燃機関,11:シリンダ,12:ピストン,13:燃焼室,20:酸素量濃度センサ,21:吸気管,22:スロットル弁,23:インテークマニホールド,24:燃料噴射弁,25:吸気ポート,26:吸気バルブ,27:カムシャフト,28:吸気管圧力センサ,30:コントロールユニット(内燃機関の制御装置),34:入出力回路,41:軸,42:プレート,43:クランク角度センサ,44:点火プラグ,45:点火コイル,46:冷却水温センサ,51:排気管,52:酸素量濃度センサ,56:排気バルブ,101:燃料噴射量算出手段,102:回転変動量算出手段,103:燃料噴射量増減量設定手段,104:燃料噴射量補正手段,DN:回転変動量,Ne:回転数,TI:補正された燃料噴射量(噴射パルス幅),TP:燃料噴射量,Tn:変位時間,Tr:経過時間,FSTPA、FSTPA1、FSTPA2:増量割合,FSTPD、FSTPD1、FSTPD2:減量割合 10: internal combustion engine, 11: cylinder, 12: piston, 13: combustion chamber, 20: oxygen concentration sensor, 21: intake pipe, 22: throttle valve, 23: intake manifold, 24: fuel injection valve, 25: intake port , 26: intake valve, 27: camshaft, 28: intake pipe pressure sensor, 30: control unit (control device for internal combustion engine), 34: input / output circuit, 41: shaft, 42: plate, 43: crank angle sensor, 44: ignition plug, 45: ignition coil, 46: cooling water temperature sensor, 51: exhaust pipe, 52: oxygen concentration sensor, 56: exhaust valve, 101: fuel injection amount calculating means, 102: rotation fluctuation amount calculating means, 103 : Fuel injection amount increase / decrease amount setting means, 104: fuel injection amount correction means, DN: rotational fluctuation amount, Ne: rotational speed, TI: corrected fuel injection amount (injection volume) Scan width), TP: fuel injection amount, Tn: displacement time, Tr: elapsed time, FSTPA, FSTPA1, FSTPA2: increase ratio, FSTPD, FSTPD1, FSTPD2: weight loss ratio

Claims (6)

内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を備えた内燃機関の制御装置であって、
前記燃料噴射量増減量設定手段は、前記増量割合又は減量割合を、前記内燃機関の始動からの経過時間、点火回数、又は機関負荷積算値に基づいて、変更することを特徴とする内燃機関の制御装置。
Fuel injection amount calculating means for calculating the fuel injection amount of the internal combustion engine, rotation fluctuation amount calculating means for calculating the rotational fluctuation amount of the internal combustion engine, and the fuel injection amount when the rotational fluctuation amount exceeds a predetermined threshold A fuel injection amount increase / decrease setting means for setting a fuel injection amount decrease ratio when the fuel injection amount is equal to or less than the predetermined threshold, and the fuel injection amount based on the increase ratio or the decrease ratio. A control device for an internal combustion engine, comprising: a fuel injection amount correcting means for correcting,
The fuel injection amount increase / decrease setting means changes the increase ratio or the decrease ratio based on an elapsed time from the start of the internal combustion engine, the number of ignitions, or an engine load integrated value. Control device.
内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を備えた内燃機関の制御装置であって、
前記燃料噴射量増減量設定手段は、前記閾値の値を、前記内燃機関の始動からの経過時間、点火回数、又は機関負荷積算値に基づいて、変更することを特徴とすることを特徴とする内燃機関の制御装置。
Fuel injection amount calculating means for calculating the fuel injection amount of the internal combustion engine, rotation fluctuation amount calculating means for calculating the rotational fluctuation amount of the internal combustion engine, and the fuel injection amount when the rotational fluctuation amount exceeds a predetermined threshold A fuel injection amount increase / decrease setting means for setting a fuel injection amount decrease ratio when the fuel injection amount is equal to or less than the predetermined threshold, and the fuel injection amount based on the increase ratio or the decrease ratio. A control device for an internal combustion engine, comprising: a fuel injection amount correcting means for correcting,
The fuel injection amount increase / decrease setting means changes the threshold value based on an elapsed time from the start of the internal combustion engine, the number of times of ignition, or an engine load integrated value. Control device for internal combustion engine.
前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記燃料噴射量の前記増量割合を少なくすることを特徴とする請求項1又は2に記載の内燃機関の制御装置。   When the elapsed time, the number of times of ignition, or the value of the engine load integrated value exceeds a predetermined value, the fuel injection amount increase / decrease setting means decreases the increase rate of the fuel injection amount. The control apparatus for an internal combustion engine according to claim 1 or 2. 前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記燃料噴射量の前記減量割合を多くすることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   When the elapsed time, the number of times of ignition, or the value of the engine load integrated value exceeds a predetermined value, the fuel injection amount increase / decrease setting means increases the reduction ratio of the fuel injection amount. The control apparatus for an internal combustion engine according to any one of claims 1 to 3. 前記経過時間、前記点火回数、又は前記機関負荷積算値の値が所定の値を超えたときに、前記燃料噴射量増減量設定手段は、前記閾値の値を大きくすることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   The fuel injection amount increase / decrease setting means increases the threshold value when the elapsed time, the number of times of ignition, or the value of the engine load integrated value exceeds a predetermined value. The control apparatus of the internal combustion engine in any one of 1-4. 内燃機関の燃料噴射量を算出する燃料噴射量算出手段と、内燃機関の回転変動量を算出する回転変動量算出手段と、該回転変動量が所定の閾値を超えた場合には前記燃料噴射量の増量割合を設定し、前記所定の閾値以下である場合には前記燃料噴射量の減量割合を設定する燃料噴射量増減量設定手段と、前記燃料噴射量の増量割合又は減量割合に基づいて前記燃料噴射量を補正する燃料噴射量補正手段と、を備えた内燃機関の制御装置であって、
前記燃料噴射量増減量設定手段は、前記増量割合又は減量割合を、前記内燃機関始動後の前記内燃機関の吸気側に付着した燃料の蒸発量に基づいて、変更することを特徴とすることを特徴とする内燃機関の制御装置。
Fuel injection amount calculating means for calculating the fuel injection amount of the internal combustion engine, rotation fluctuation amount calculating means for calculating the rotational fluctuation amount of the internal combustion engine, and the fuel injection amount when the rotational fluctuation amount exceeds a predetermined threshold A fuel injection amount increase / decrease setting means for setting a fuel injection amount decrease ratio when the fuel injection amount is equal to or less than the predetermined threshold, and the fuel injection amount increase ratio or the decrease ratio based on the fuel injection amount increase ratio A fuel injection amount correcting means for correcting the fuel injection amount;
The fuel injection amount increase / decrease setting means changes the increase ratio or the decrease ratio based on an evaporation amount of fuel adhering to the intake side of the internal combustion engine after the internal combustion engine is started. A control device for an internal combustion engine characterized by the above.
JP2007315645A 2007-12-06 2007-12-06 Control device of internal combustion engine Pending JP2009138620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315645A JP2009138620A (en) 2007-12-06 2007-12-06 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315645A JP2009138620A (en) 2007-12-06 2007-12-06 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009138620A true JP2009138620A (en) 2009-06-25

Family

ID=40869486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315645A Pending JP2009138620A (en) 2007-12-06 2007-12-06 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009138620A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012991A (en) * 2010-06-30 2012-01-19 Toyota Motor Corp Fuel injection control device of multi-cylinder internal combustion engine
JP2012092795A (en) * 2010-10-28 2012-05-17 Isuzu Motors Ltd Control device for internal combustion engine
JP2018105296A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012991A (en) * 2010-06-30 2012-01-19 Toyota Motor Corp Fuel injection control device of multi-cylinder internal combustion engine
JP2012092795A (en) * 2010-10-28 2012-05-17 Isuzu Motors Ltd Control device for internal combustion engine
JP2018105296A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5026337B2 (en) Control device for multi-cylinder internal combustion engine
KR100606527B1 (en) Start control device and start control method of internal combustion engine
JP5011086B2 (en) Engine control device
JP5031784B2 (en) Control device for internal combustion engine
JP2002130013A (en) Controller for cylinder injection type internal combustion engine
JP4309079B2 (en) Fuel injection control device for internal combustion engine
JP3541523B2 (en) Engine control device
JP2005201186A (en) Direct injection spark ignition internal combustion engine
JP2009138620A (en) Control device of internal combustion engine
JP2005120886A (en) Control device for internal combustion engine
JP4281829B2 (en) Fuel injection control device for internal combustion engine
US6729305B2 (en) Fuel injection amount control apparatus and method for internal combustion engine
JP2010156248A (en) Control device for internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP2008014169A (en) Fuel injection control device for internal combustion engine
JPS6165042A (en) Air-fuel ratio control system for internal-combustion engine
JP2006097514A (en) Air-fuel ratio control device of engine
JP4722676B2 (en) Fuel injection control device for multi-cylinder engine
JP2000073927A (en) Burning condition detecting device for internal combustion engine
JP2007285239A (en) Control device of internal combustion engine
JP4777919B2 (en) Fuel control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP2010077848A (en) Air-fuel ratio control device for internal combustion engine
JP3633283B2 (en) Evaporative fuel processing device for internal combustion engine
JP3692641B2 (en) Fuel injection control device for internal combustion engine