JP4776204B2 - Coil parts manufacturing method - Google Patents

Coil parts manufacturing method Download PDF

Info

Publication number
JP4776204B2
JP4776204B2 JP2004298147A JP2004298147A JP4776204B2 JP 4776204 B2 JP4776204 B2 JP 4776204B2 JP 2004298147 A JP2004298147 A JP 2004298147A JP 2004298147 A JP2004298147 A JP 2004298147A JP 4776204 B2 JP4776204 B2 JP 4776204B2
Authority
JP
Japan
Prior art keywords
core
conducting wire
coating
heat treatment
coil component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004298147A
Other languages
Japanese (ja)
Other versions
JP2006114570A (en
Inventor
一三 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004298147A priority Critical patent/JP4776204B2/en
Publication of JP2006114570A publication Critical patent/JP2006114570A/en
Application granted granted Critical
Publication of JP4776204B2 publication Critical patent/JP4776204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulating Of Coils (AREA)

Description

本発明はコイル部品の製造方法に関する。 The present invention relates to a method for manufacturing a coil component .

従来、コイル部品として、例えば特許文献1に示すように、巻芯部とその両端に設けられた鍔部とにより構成されるコアの鍔部に略コの字形状の端子金具を電極として設けて、巻芯部に巻かれた導線の端部を電極にレーザ溶接やアーク溶接により継線し、コイル部品を構成する技術が開示されている。また、特許文献2に示すように、特許文献1のコアと略同形状のコアの鍔部にメッキ等により電極を形成し、半田やスポット溶接により電極に継線する技術が開示されている。
特開2001−93756号公報 特開2003−332139号公報
Conventionally, as a coil component, for example, as shown in Patent Document 1, a substantially U-shaped terminal fitting is provided as an electrode on a collar part of a core constituted by a core part and collar parts provided at both ends thereof. A technique is disclosed in which a coil component is configured by connecting an end portion of a conducting wire wound around a winding core portion to an electrode by laser welding or arc welding. Further, as shown in Patent Document 2, a technique is disclosed in which an electrode is formed by plating or the like on a flange portion of a core having substantially the same shape as the core of Patent Document 1, and is connected to the electrode by soldering or spot welding.
JP 2001-93756 A JP 2003-332139 A

これら特許文献1及び特許文献2に示すコイル部品に使われる導線には、導線間のショート防止等のため、表面にポリウレタン被覆が形成されている。このポリウレタン被覆の導線では、継線時に半田付けや溶接の熱により導線の被覆部分が溶解して導線表面が露出する。よって機械等により予め被覆部分を剥離処理しなくても、好適に継線を行うことが可能であった。   Polyurethane coatings are formed on the surfaces of the conductors used in the coil components shown in Patent Document 1 and Patent Document 2 in order to prevent a short circuit between the conductors. In this polyurethane-coated conductor, the coated portion of the conductor is melted by the heat of soldering or welding at the time of connection and the surface of the conductor is exposed. Therefore, it was possible to carry out the connection suitably without carrying out the peeling treatment of the coated portion in advance by a machine or the like.

近年、産業廃棄物による環境汚染が問題視されている。鉛を含む半田を使用した基板も環境汚染の原因になることから、鉛フリーの半田が開発されている。   In recent years, environmental pollution by industrial waste has been regarded as a problem. Lead-free solder has been developed because substrates using solder containing lead also cause environmental pollution.

しかし、従来の鉛−錫の合金である半田の融点が約180℃であるのに対し、鉛フリー半田の一例である錫−銀−銅の合金である鉛フリー半田では、その融点が約220℃となる。このような鉛フリー半田を使用してコイル部品を基板に実装する場合のリフロー温度は、従来の鉛を含んだ半田を使用して基板に実装する場合よりも高くなるため、導線の被覆にも従来より高い耐熱性が要求されていた。   However, the melting point of the solder that is a conventional lead-tin alloy is about 180 ° C., whereas the melting point of the lead-free solder that is an example of a tin-silver-copper alloy that is an example of a lead-free solder is about 220 ° C. It becomes ℃. The reflow temperature when mounting coil components on a board using such lead-free solder is higher than when mounting on a board using conventional lead-containing solder. Higher heat resistance was required than before.

この要求に対して、例えば耐熱性の高いポリアミドイミドを被覆材として使用した導線を用いるという方法がある。しかし、ポリウレタン被覆に対してポリアミドイミド被覆は柔軟性の点で劣るため、ポリアミドイミド被覆の導線の巻回時に被覆にストレスがかかり、継線箇所への配線等に難があった。   In response to this requirement, for example, there is a method of using a conductive wire using a polyamideimide having a high heat resistance as a coating material. However, since the polyamide-imide coating is inferior to the polyurethane coating in terms of flexibility, stress is applied to the coating when winding the conductive wire of the polyamide-imide coating, and wiring to the connection location is difficult.

また、ポリアミドイミド被覆の高耐熱性のため、継線時に被覆を剥離処理せずに半田付けまたは溶接等すると、被覆が炭化し、継線不良が生じると共に、炭化した被覆が回路上に飛散するおそれがあった。よって被覆を機械剥離またはレーザ照射等により剥離処理する工程が必要となるが、従来不要であった工程が入ることにより作業性が悪くなり、コイル部品の生産性が低下するおそれがあった。また、レーザ照射により剥離を行う際には、レーザ照射を行った片面側しか剥離できないため、少なくとも導線の両面からレーザ照射を行う必要があった。   In addition, due to the high heat resistance of the polyamideimide coating, when soldering or welding, etc., without stripping the coating at the time of connection, the coating is carbonized, resulting in poor connection, and the carbonized coating is scattered on the circuit. There was a fear. Accordingly, a process of peeling the coating by mechanical peeling or laser irradiation is required, but the workability is deteriorated due to the introduction of a process that is not required in the past, and the productivity of the coil component may be lowered. Further, when peeling is performed by laser irradiation, it is necessary to perform laser irradiation from at least both surfaces of the conducting wire because peeling is possible only on one side where laser irradiation is performed.

更に細い導線、例えば外径40μm以下の導線をレーザ照射で剥離する場合には、そのレーザ照射の衝撃により、導線が暴れて好適に剥離することが容易ではない。特殊な短波長レーザを用いれば導線が暴れずに片面毎に剥離することは可能となるが、剥離に時間がかかって作業性が悪くなり、コイル部品の生産性の低下に繋がるおそれがあった。   In the case where a thin conductive wire, for example, a conductive wire having an outer diameter of 40 μm or less is peeled off by laser irradiation, it is not easy to suitably peel off the lead wire due to the impact of the laser irradiation. If a special short-wavelength laser is used, it is possible to peel off each side without causing the conductor to break, but it takes a long time to peel off, resulting in poor workability and possibly lowering the productivity of coil components. .

そこで、本発明は、高耐熱性を備えたコイル部品と作業効率の高いコイル部品の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the coil components provided with high heat resistance, and the coil components with high work efficiency.

また、上記目的を達成するために、本発明は、巻芯部と巻芯部の両端に一対の鍔部とを備えたコアと、一対の鍔部に跨って配置される板状コアと、巻芯部に巻回され、導体に絶縁性の樹脂が樹脂被覆されて構成される導線と、導線の両端に電気的に接続された電極とにより構成されるコイル部品の製造方法を提供する。このコイル部品の製造方法は、導線に第一の熱処理を施して樹脂被覆を半硬化状態にする第一の熱処理工程と、第一の熱処理工程後に導線を巻芯部に巻回する巻回工程と、巻回工程に関連して導線の端部を加熱し樹脂被覆を溶融させ導体を露出させて電極に継線する継線工程と、継線工程後に導線に第二の熱処理工程を施して樹脂被覆を耐熱性及び硬度が該半硬化状態に比べて上昇した本硬化状態にすると共に該板状コアが該一対の鍔部に接着剤により接合される第二の熱処理工程と、を含んでいる。 In order to achieve the above object, the present invention provides a core having a core part and a pair of flanges at both ends of the core part, a plate-like core disposed across the pair of flanges, Provided is a method of manufacturing a coil component that is constituted by a conductive wire that is wound around a core and is formed by covering a conductor with an insulating resin and an electrode that is electrically connected to both ends of the conductive wire. The coil component manufacturing method includes a first heat treatment step in which a first heat treatment is performed on the lead wire to make the resin coating semi-cured, and a winding step in which the lead wire is wound around the core after the first heat treatment step. In connection with the winding process, the end of the conductor is heated to melt the resin coating, expose the conductor and connect to the electrode, and after the connection process, the conductor is subjected to a second heat treatment process. And a second heat treatment step in which the resin coating is brought into a main-cured state in which heat resistance and hardness are increased compared to the semi-cured state, and the plate-like core is bonded to the pair of flanges by an adhesive. Yes.

このような構成によると、第一の加熱処理工程により、樹脂被覆を半硬化状態にして導線全体として柔軟性を保つと共に樹脂被覆により導線が保護される。よって、導線を巻芯部に巻回する際に導線の破損を抑制しつつ、かつ巻芯部に馴染み良く巻回することができる。また導線を巻芯部に巻回して電極に継線した後に第二の加熱処理工程により、樹脂被覆を本硬化状態にすることにより、樹脂被覆を硬化させ、樹脂被覆による導線の保護性能を増すことができる。また板状コアを鍔部に跨って接合することにより、コイル部品全体としてのインダクタンス値を増加させることができ、かつ接合工程を第二の加熱処理工程で行うことが可能となるため、工程を減らすことが可能となりコイル部品としての性能を上げつつ生産性を増すことができる。 According to such a configuration, the first heat treatment step makes the resin coating in a semi-cured state, maintains flexibility as a whole conductor, and protects the conductor by the resin coating. Therefore, when winding a conducting wire around a core part, it can wind well in a core part, suppressing damage to a conducting wire. In addition, after the conducting wire is wound around the core and connected to the electrode, the resin coating is brought into a fully cured state by the second heat treatment step, thereby curing the resin coating and increasing the protection performance of the conducting wire by the resin coating. be able to. In addition, by joining the plate-shaped core across the flange portion, the inductance value as the entire coil component can be increased, and the joining process can be performed in the second heat treatment process. Thus, productivity can be increased while improving performance as a coil component.

また、樹脂被覆は、第二の熱処理工程より第二の熱処理工程後の樹脂被覆の方が、第一の熱処理工程後の樹脂被覆に対して高融点になることが望ましい。また、樹脂被覆は変性エポキシ樹脂であることが望ましい。   Moreover, as for resin coating, it is desirable that the resin coating after the second heat treatment step has a higher melting point than the resin coating after the first heat treatment step than the second heat treatment step. The resin coating is preferably a modified epoxy resin.

このような構成によると、第一の加熱処理工程後の半硬化状態にある樹脂被覆を剥がさなくても導線と電極とを熱融着することにより、その樹脂被覆を熱融着の熱で除去することができ、樹脂被覆の剥離工程を省いて継線を容易にすることができる。また第二の加熱処理工程後の本硬化状態にある樹脂被膜では、実装時における半田等の融着基材の飛散が有ったとしても、融点が高くて耐熱性が増しているため樹脂被覆が融着基材の飛散による熱害を受けることなく導線を保護することができる。また、変性エポキシ樹脂を樹脂被覆として用いることにより、単体の樹脂では得られない耐熱性や柔軟性等の目的に応じた性質の樹脂を作ることができ、樹脂被覆を容易に形成することができる。   According to such a configuration, the resin coating is removed by the heat of heat fusion by thermally fusing the lead wire and the electrode without peeling off the semi-cured resin coating after the first heat treatment step. It is possible to make the connection easy by omitting the resin coating peeling step. In addition, the resin coating in the fully cured state after the second heat treatment step has a high melting point and increased heat resistance even if there is scattering of a fusion base material such as solder during mounting. However, it is possible to protect the conductive wire without receiving heat damage due to the scattering of the fusion base material. In addition, by using a modified epoxy resin as a resin coating, a resin having properties according to purposes such as heat resistance and flexibility that cannot be obtained by a single resin can be produced, and a resin coating can be easily formed. .

本発明のコイル部品及びコイル部品の製造方法によれば、コイル部品に高耐熱性を備えさせることが可能になると共に製造時の作業効率を高めることが可能となる。   According to the coil component and the coil component manufacturing method of the present invention, the coil component can be provided with high heat resistance and the work efficiency at the time of manufacturing can be increased.

本発明第一の実施の形態によるコイル部品について図1〜図5を参照しながら説明する。本実施の形態に係る、コイル部品1は、高速作動信号インターフェースに用いられるコモンモードフィルタであって、図1に示すようにドラムタイプの磁気コア2を備えており、その大きさは長辺方向で約2mm、幅方向で約1.2mmの大きさである。この磁気コア2はフェライト等の磁性粉体を圧縮、焼結等して成形されている。   The coil component according to the first embodiment of the present invention will be described with reference to FIGS. The coil component 1 according to the present embodiment is a common mode filter used for a high-speed operation signal interface, and includes a drum-type magnetic core 2 as shown in FIG. And about 1.2 mm in the width direction. The magnetic core 2 is formed by compressing or sintering magnetic powder such as ferrite.

磁気コア2は長手方向に直交する断面が略長方形の巻芯部3と、巻芯部3の長手方向両端に設けられ、略同一形状の一対の鍔部4、鍔部5より構成され、巻芯部3には2本の導線6、導線7が巻回されている。これら導線6、導線7は被覆導線である。図2に示すように、導線6及び導線7は、銅線等の導体6A及び導体7Aに変性エポキシ樹脂の被覆6B及び被覆7Bがされて構成されている。導体6A及び導体7Aは直径が約40μm程度であり、被覆6B及び被覆7Bは約5μm程度の厚さである。   The magnetic core 2 includes a core portion 3 having a substantially rectangular cross section perpendicular to the longitudinal direction, and a pair of flange portions 4 and 5 having substantially the same shape. Two conductors 6 and 7 are wound around the core 3. These conducting wire 6 and conducting wire 7 are covered conducting wires. As shown in FIG. 2, the conducting wire 6 and the conducting wire 7 are configured by covering a conductor 6A such as a copper wire and a conductor 7A with a coating 6B and a coating 7B of a modified epoxy resin. The conductor 6A and the conductor 7A have a diameter of about 40 μm, and the coating 6B and the coating 7B have a thickness of about 5 μm.

この被覆6B及び被覆7Bを構成する変性エポキシ樹脂は、ビスフェノールA型エポキシ樹脂等の標準型エポキシ樹脂に、違った型の樹脂(例えば、エポキシ、アクリル、ブタジエン、ポリエステルなど)を混合又は反応させた樹脂である。   In the modified epoxy resin constituting the coating 6B and the coating 7B, a different type of resin (for example, epoxy, acrylic, butadiene, polyester, etc.) is mixed or reacted with a standard epoxy resin such as a bisphenol A type epoxy resin. Resin.

変性エポキシ樹脂は、エポキシ樹脂単体では得られない耐熱性や柔軟性など、目的に応じた性質の樹脂を作ることができる性質を備えており、この変性エポキシ樹脂を第一の実施の形態における導線6及び導線7の被膜として使用する。変成エポキシ樹脂は第一の熱処理工程により、導線6及び導線7が少なくとも導線として扱える程度に硬化すると共に、柔軟性を備えかつ低融点である仮硬化状態となる。特に低融点であることから、継線時に被覆を剥離処理することなく、継線時の熱圧着、溶接等の熱により被覆が融解して導体部分が露出する絶縁線の被覆とすることが可能となる。そして、第二の熱処理工程により、変成エポキシ樹脂が完全に硬化して保護被覆としての性能、例えば表面強度や耐湿性、絶縁性等を増すと共に、高融点で耐熱性に優れた本硬化状態となる。   The modified epoxy resin has the property of making a resin having properties according to the purpose, such as heat resistance and flexibility that cannot be obtained with an epoxy resin alone, and this modified epoxy resin is used as the conductor in the first embodiment. 6 and conductor 7 are used as coatings. In the first heat treatment step, the modified epoxy resin is cured to such an extent that the conducting wire 6 and the conducting wire 7 can be handled at least as conducting wires, and is in a temporarily cured state having flexibility and a low melting point. In particular, since it has a low melting point, it is possible to provide insulation wire coating that exposes the conductor part by melting the coating by heat such as thermocompression bonding or welding at the time of connection without stripping the coating during connection. It becomes. Then, the second heat treatment step completely cures the modified epoxy resin to increase the performance as a protective coating, for example, surface strength, moisture resistance, insulation, etc., and a fully cured state with a high melting point and excellent heat resistance. Become.

巻芯部3は、図3に示すように、略直方体であり、頂面3Aと、頂面3Aの下面である下面3Cと、頂面3Aと下面3Cとの間の面である側面3B及び側面3Dを有している。   As shown in FIG. 3, the core part 3 is a substantially rectangular parallelepiped, and includes a top surface 3A, a bottom surface 3C that is a bottom surface of the top surface 3A, a side surface 3B that is a surface between the top surface 3A and the bottom surface 3C, and It has a side surface 3D.

鍔部4は、略直方体であり、頂面4Aと、頂面4Aに連なると共に、巻芯部3との連結面である内側面4Fと、内側面4Fに対向する表側面4Eと、頂面4Aと対向する下面4Cと、頂面4Aと内側面4Fと下面4Cと表側面4Eとに囲まれる側面4D及び側面4Bとにより構成される。   The flange portion 4 is a substantially rectangular parallelepiped, and is connected to the top surface 4A, the top surface 4A, the inner side surface 4F that is a connection surface with the core portion 3, the front side surface 4E facing the inner side surface 4F, and the top surface The lower surface 4C is opposed to 4A, and the side surface 4D and the side surface 4B are surrounded by the top surface 4A, the inner side surface 4F, the lower surface 4C, and the front side surface 4E.

鍔部4には、頂面4A、表側面4E及び下面4Cに跨って、頂面4A、表側面4E及び下面4Cと、側面4Bとの接続位置の近傍側端部に電極8Aが形成され、同じく頂面4A、表側面4E及び下面4Cに跨って、頂面4A、表側面4E及び下面4Cと、側面4Dとの接続位置の近傍に電極9Aが形成されている。これら電極8A及び電極9Aは、鍔部4の表面にメッキにより形成されている。   An electrode 8A is formed on the flange portion 4 at the end portion in the vicinity of the connection position between the top surface 4A, the front side surface 4E and the lower surface 4C, and the side surface 4B across the top surface 4A, the front side surface 4E, and the lower surface 4C. Similarly, the electrode 9A is formed in the vicinity of the connection position of the top surface 4A, the front side surface 4E, the lower surface 4C, and the side surface 4D across the top surface 4A, the front side surface 4E, and the lower surface 4C. These electrodes 8A and 9A are formed on the surface of the flange 4 by plating.

鍔部5も、鍔部4と同様に頂面5A、内側面5F、側面5D、表側面5E、側面5B及び下面5Cとにより構成され、それぞれ電極8B及び電極9Bを備えている。   Similarly to the flange portion 4, the flange portion 5 includes a top surface 5A, an inner side surface 5F, a side surface 5D, a front side surface 5E, a side surface 5B, and a lower surface 5C, and includes an electrode 8B and an electrode 9B, respectively.

導線6及び導線7は、図4に示すように、巻芯部3と鍔部4との結合部付近より引き出されて、内側面4Fに沿って頂面4A方向に配線されており、頂面4Aと内側面4Fとの交差個所で頂面4Aに沿うように折り曲げられている。図1に示すように、頂面4A上では、導線6、導線7がそれぞれ電極8A、電極9Aに熱圧着により継線されている。また鍔部5においても同様に頂面5A上で導線6及び導線7が電極8B、電極9Bにそれぞれ熱圧着により継線されている。   As shown in FIG. 4, the conducting wire 6 and the conducting wire 7 are drawn out from the vicinity of the coupling portion between the core portion 3 and the flange portion 4 and wired in the direction of the top surface 4A along the inner side surface 4F. It is bent along the top surface 4A at the intersection of 4A and the inner side surface 4F. As shown in FIG. 1, on the top surface 4A, the conducting wire 6 and the conducting wire 7 are connected to the electrode 8A and the electrode 9A by thermocompression bonding, respectively. Similarly, the lead wire 6 and the lead wire 7 are connected to the electrode 8B and the electrode 9B on the top surface 5A by thermocompression bonding in the flange portion 5 as well.

以下、上記構成のコイル部品1についての製造方法について説明する。先ず図3に示すように、磁気コア2の鍔部4及び鍔部5にそれぞれ電極8A、電極9A及び電極8B、電極9Bをメッキにより形成する。   Hereinafter, the manufacturing method about the coil component 1 of the said structure is demonstrated. First, as shown in FIG. 3, an electrode 8A, an electrode 9A, an electrode 8B, and an electrode 9B are formed on the flange portion 4 and the flange portion 5 of the magnetic core 2 by plating, respectively.

また、導線6及び導線7は、導体6Aに変性エポキシ樹脂の被覆6Bがなされた後に、第一の加熱処理工程として、熱処理炉等により約80℃で30分程度加熱され、被覆6Bが仮硬化状態となっている。この仮硬化状態の導線6及び導線7を巻芯部3外周に巻回する。   Further, the conductor 6 and the conductor 7 are coated with the modified epoxy resin 6B on the conductor 6A, and then heated at about 80 ° C. for about 30 minutes in a heat treatment furnace or the like as the first heat treatment step, so that the coating 6B is temporarily cured. It is in a state. The conductor 6 and the conductor 7 in the temporarily cured state are wound around the outer periphery of the core portion 3.

巻回時には、導線6及び導線7を略平行にして、巻芯部3の頂面3A、側面3B、下面3C及び側面3Dの面及びそれぞれの面より構成される角部にそって巻回する(図3、図4)。この場合、特に角部においても、被覆6Bについてはその柔軟性により樹脂被覆に応力集中箇所が形成されず、樹脂被覆にヒビ割れに起因する剥離等の不良個所が形成され難く、導線が巻芯部の形状に馴染み易くなる。よって導線6及び導線7の巻回に際し導線6及び導線7にストレスは発生せず好適に巻回することが可能となる。   At the time of winding, the conducting wire 6 and the conducting wire 7 are made substantially parallel and wound along the top surface 3A, the side surface 3B, the bottom surface 3C, the side surface 3D of the winding core portion 3, and the corners constituted by the respective surfaces. (FIGS. 3 and 4). In this case, especially in the corner portion, the stress concentration portion is not formed in the resin coating due to the flexibility of the coating 6B, and it is difficult to form a defective portion such as peeling due to cracks in the resin coating. It becomes easy to become familiar with the shape of the part. Therefore, when the conducting wire 6 and the conducting wire 7 are wound, no stress is generated on the conducting wire 6 and the conducting wire 7 and the winding can be suitably performed.

また導線6及び導線7が隣接している場合でも、被覆6B及び被覆7Bが仮硬化状態にあるため、導線と導線及びコア本体との間の緩衝材となり、導線6及び導線7とコア2との直接接触による導線6及び導線7の破損等を抑制することができる。また、これら被覆6B及び被覆7Bが互いに擦れ有ったりしたりしても、導体6A及び導体7Aが露出することはなく、ショート等を抑制することができる。   Even when the conductive wire 6 and the conductive wire 7 are adjacent to each other, since the coating 6B and the coating 7B are in a temporarily cured state, they serve as a buffer material between the conductive wire, the conductive wire, and the core body. Damage to the conducting wire 6 and the conducting wire 7 due to direct contact can be suppressed. Even if the coating 6B and the coating 7B rub against each other, the conductor 6A and the conductor 7A are not exposed, and a short circuit or the like can be suppressed.

導線6及び導線7を巻芯部3に巻回した後、導線6及び導線7の一端側を鍔部4の内側面4Fに沿わせて配線した後、導線6の一端を頂面4A上に形成された電極8A上に配置し、導線7の一端を頂面4A上に形成された電極9A上に配置する(図4)。同様に導線6及び導線7の他端をそれぞれ頂面5A上の電極8B上及び電極9B上に配置する(図4)。この場合においても、内側面4Fから頂面4Aに沿って導線6及び導線7が配線されるが、被覆6B及び被覆7Bの柔軟性により、ストレス無く好適に配線することが可能となる。   After winding the conducting wire 6 and the conducting wire 7 around the core part 3, after wiring the one end side of the conducting wire 6 and the conducting wire 7 along the inner side surface 4F of the flange part 4, the one end of the conducting wire 6 is placed on the top surface 4A. It arrange | positions on the formed electrode 8A, and arrange | positions the end of the conducting wire 7 on the electrode 9A formed on the top surface 4A (FIG. 4). Similarly, the other ends of the conducting wire 6 and the conducting wire 7 are disposed on the electrode 8B and the electrode 9B on the top surface 5A, respectively (FIG. 4). Also in this case, although the conducting wire 6 and the conducting wire 7 are wired along the top surface 4A from the inner side surface 4F, the flexibility of the coating 6B and the coating 7B enables appropriate wiring without stress.

導線6及び導線7をそれぞれ電極8A、電極9A上に配置した後に、図示せぬ圧着素子を電極8A、電極9Aに押し付けて300℃〜400℃の熱を掛けて導線6及び導線7を熱圧着処理し、継線を行う。仮硬化状態では被覆6B及び被覆7Bの融点が低いため、継線箇所を特に剥離処理等しなくても、継線時の圧着素子の熱により被覆6B及び被覆7Bが溶融して導体6A及び導体7Aが露出し、電極8A及び電極9Aと継線される。この場合に被覆6B及び被覆7Bは溶融しているため、圧着時の加熱により炭化物等を形成することはない。   After the conducting wire 6 and the conducting wire 7 are disposed on the electrode 8A and the electrode 9A, respectively, a crimping element (not shown) is pressed against the electrode 8A and the electrode 9A, and heat is applied at 300 ° C. to 400 ° C. to thermocompress the conducting wire 6 and the conducting wire 7. Process and connect. Since the melting points of the coating 6B and the coating 7B are low in the temporarily cured state, the coating 6B and the coating 7B are melted by the heat of the pressure-bonding element at the time of the connection even if the connecting portion is not particularly peeled off. 7A is exposed and connected to the electrodes 8A and 9A. In this case, since the coating 6B and the coating 7B are melted, carbide or the like is not formed by heating at the time of pressure bonding.

以上の継線工程が終了すると、コイル部品1は完成体として一応形状化される(図1)。しかし、未だ巻芯部分の被覆6B及び被覆7Bは仮硬化状態であるため。高温耐久性などで劣る部分がある。そこで第二の加熱処理工程として導線6及び導線7を含むコイル部品1全体を約180℃で40分程度加熱硬化させる。これにより被覆6B及び被覆7Bは本硬化状態となり、樹脂が完全に硬化して保護被覆としての性能を発揮する他に高融点で耐熱性に優れた状態になる。   When the above connecting process is completed, the coil component 1 is temporarily shaped as a complete body (FIG. 1). However, the coating 6B and the coating 7B at the core portion are still in a temporarily cured state. There are parts that are inferior in high temperature durability. Therefore, as a second heat treatment step, the entire coil component 1 including the conductor 6 and the conductor 7 is heated and cured at about 180 ° C. for about 40 minutes. As a result, the coating 6B and the coating 7B are in a fully cured state, the resin is completely cured and exhibits performance as a protective coating, and has a high melting point and excellent heat resistance.

この耐熱性に関する試験の一つとしてリフロー耐熱試験がある。この試験では、導線部分に半田ペーストを付着した状態でリフローを行うが、従来のポリウレタン被覆の導線では精々2回リフローを行うことにより、半田ペースト付着部分よりショート等の不良が発生していた。これに対して第一の実施の形態に係るコイル部品1では、このリフロー耐熱試験を行ったところ、リフローを10回行っても半田ペースト付着部分でのショート等の不良は得られなかった。被覆6B及び被覆7Bを本硬化状態とすることにより、従来のポリウレタン被覆と比較して明らかに耐熱性が優れるという結果となった。   One of the heat resistance tests is a reflow heat test. In this test, reflow is performed with the solder paste attached to the conductive wire portion. However, the conventional polyurethane-coated conductive wire has been subjected to reflow at most twice, thereby causing defects such as a short circuit from the solder paste attached portion. On the other hand, in the coil component 1 according to the first embodiment, when this reflow heat resistance test was performed, defects such as a short circuit at the solder paste adhesion portion were not obtained even after 10 reflows. By setting the coating 6B and the coating 7B to the fully cured state, the result was that the heat resistance was clearly superior compared to the conventional polyurethane coating.

第一の実施の形態の変更例として図5に示すように、コイル部品1の両端の鍔部4及び鍔部5に跨って板状コア10を取り付けた形態としても良い。この形態にすることにより、コイル部品全体としてのインダクタンス値を増加させることが可能となる。板状コア10は、接着剤により鍔部4及び鍔部5に接合される。この接着剤として熱硬化型の接着剤を使用する。具体的には導線6及び導線7を継線した後に、板状コア10を接着剤で鍔部4及び鍔部5に仮接着する。コイル部品1は継線後に第二の加熱処理工程に入るが、この時に板状コア10も同時に加熱され、板状コア10と鍔部4及び鍔部5との間の接着剤が硬化して板状コア10がコイル部品1と一体化される。即ち、第一の実施の形態の変更例では、板状コア10を接合する工程を特に設けることなく、第二の加熱処理工程により同時に板状コア10の接合することが可能であり、特に工数を増加させることなくコイル部品全体としての性能を増すことが可能となる。   As a modified example of the first embodiment, as shown in FIG. 5, a plate-like core 10 may be attached across the flange 4 and the flange 5 at both ends of the coil component 1. By adopting this form, it is possible to increase the inductance value of the entire coil component. The plate-shaped core 10 is joined to the collar part 4 and the collar part 5 with an adhesive. A thermosetting adhesive is used as this adhesive. Specifically, after connecting the conducting wire 6 and the conducting wire 7, the plate-like core 10 is temporarily bonded to the flange portion 4 and the flange portion 5 with an adhesive. The coil component 1 enters the second heat treatment step after the connection. At this time, the plate core 10 is also heated at the same time, and the adhesive between the plate core 10 and the flange portion 4 and the flange portion 5 is cured. The plate core 10 is integrated with the coil component 1. That is, in the modified example of the first embodiment, it is possible to join the plate cores 10 at the same time by the second heat treatment step without particularly providing a step of joining the plate cores 10, and in particular, man-hours. It is possible to increase the performance of the entire coil component without increasing the value.

尚、第一の実施の形態では、磁気コア2としてフェライトコアを使用したが、これに限らず、特に高周波特性を必要とするコイル部品であるならば例えばセラミックコアを用いても良い。   In the first embodiment, a ferrite core is used as the magnetic core 2. However, the present invention is not limited to this. For example, a ceramic core may be used as long as it is a coil component that requires high-frequency characteristics.

次に第二の実施の形態として、継線時にレーザ溶接を用いたコイル部品について図6〜図9を参照しながら説明する。図8に示すコイル部品11は、第一の実施の形態に係るコイル部品1と略同一の形態をとり、図6に示すように、巻芯部13とその両端に設けられた鍔部14、鍔部15から構成されるコア12に端子電極である金属端子18が設けられている。そして、図9に示すように巻芯部13に巻回された導線16及び導線17がそれぞれ金属端子18に溶接されて継線されている。導線16、導線17は、第一の実施の形態と同様に変成エポキシ樹脂による被覆がされた被覆導線である。   Next, as a second embodiment, a coil component using laser welding at the time of connection will be described with reference to FIGS. The coil component 11 shown in FIG. 8 takes substantially the same form as the coil component 1 according to the first embodiment. As shown in FIG. 6, the winding core portion 13 and the flange portions 14 provided at both ends thereof, A metal terminal 18, which is a terminal electrode, is provided on the core 12 composed of the flange portion 15. And as shown in FIG. 9, the conducting wire 16 and the conducting wire 17 which were wound around the core part 13 are welded and connected to the metal terminal 18, respectively. The conducting wire 16 and the conducting wire 17 are coated conducting wires coated with a modified epoxy resin as in the first embodiment.

鍔部14は、図6に示すように第一の実施の形態と同様に頂面14A、下面14C、巻芯部13との連結面である内側面14F、内側面14Fに対向する表側面14E、及び側面14B、側面14Dから構成されており、鍔部15も同様に構成されている。内側面14Fの側面14B側と側面14D側との端部には、図7に示すように、その巻芯部13の軸方向の厚さが薄くなっている段部14fが形成されている。また、鍔部14の頂面14Aから下面14Cまで連なる溝で形成される凹部19が金属端子の抜けを防止する抜け止め部として鍔部14の表側面14Eの両端にそれぞれ形成されている(図7)。この凹部19は、鍔部15の側面15Eにも同様に形成されている。尚、コイル部品11はその大きさが、長さ4.5mm、幅3.2mm、高さ2mmである。   As shown in FIG. 6, the flange portion 14 has a top surface 14 </ b> A, a bottom surface 14 </ b> C, an inner side surface 14 </ b> F that is a connection surface with the core portion 13, and a front side surface 14 </ b> E that faces the inner side surface 14 </ b> F. , And the side surface 14B and the side surface 14D, and the flange portion 15 is configured in the same manner. As shown in FIG. 7, a step portion 14f in which the axial thickness of the core portion 13 is thin is formed at the end portions of the inner side surface 14F on the side surface 14B side and the side surface 14D side. Moreover, the recessed part 19 formed with the groove | channel which continues from the top surface 14A of the collar part 14 to the lower surface 14C is formed in the both ends of the front side surface 14E of the collar part 14 as a retaining part which prevents a metal terminal from detaching, respectively (FIG. 7). The recess 19 is also formed on the side surface 15E of the flange portion 15 in the same manner. The coil component 11 has a length of 4.5 mm, a width of 3.2 mm, and a height of 2 mm.

端子電極となる金属端子18は、燐青銅、真鍮等の銅合金であって、略コ字形状に折り曲げ成形されており、図7のように、側面部18A、上面部18B、底面部18C及び上下の折り返し部18Dを有している。また、側面部18Aの内面には前記コア側抜け止め部19に係合する金具側抜け止め部として内面側に突出した凸部18Eが形成されている。さらに、前記上面部18Bには逆L字状折り曲げ部分からなる継線部20が一体に折り曲げ形成されている。継線部20は導線16及び導線17の挿入の便宜のために、鍔部14の先端方向に向いて開いている。この継線部20は、先端方向の反対向きに開いていてもよい。このような金属端子18は、鍔部14に、その側方である側面14B及び側面14D側より挿入され、嵌合装着される(図7)。この場合に、金具側抜け止め部としての凸部18Eがコア側抜け止め部としての凹部19に嵌り込み、折り返し部18Dが段部21を押圧した状態となって、図6のように金属端子18は鍔部14に取り付けられる。段部21を鍔部14に形成したことで、折り返し部18Dが巻芯部13へ突出しないようにして巻芯部13への巻回作業の妨げにならないようにしている。   The metal terminal 18 serving as a terminal electrode is a copper alloy such as phosphor bronze or brass, and is bent into a substantially U shape. As shown in FIG. 7, the side surface portion 18A, the top surface portion 18B, the bottom surface portion 18C, It has upper and lower folded portions 18D. Further, a convex portion 18E that protrudes toward the inner surface side is formed on the inner surface of the side surface portion 18A as a metal fitting-side retaining portion that engages with the core-side retaining portion 19. Further, the upper surface portion 18B is integrally formed with a connecting portion 20 formed of an inverted L-shaped bent portion. The connecting portion 20 is open toward the distal end of the flange portion 14 for the convenience of inserting the conducting wire 16 and the conducting wire 17. The connecting portion 20 may be opened in the direction opposite to the distal end direction. Such a metal terminal 18 is inserted into the flange 14 from the side surface 14B and the side surface 14D, which are the sides thereof, and is fitted and mounted (FIG. 7). In this case, the convex part 18E as the metal part side retaining part fits into the concave part 19 as the core side retaining part, and the folded part 18D presses the stepped part 21, and the metal terminal as shown in FIG. 18 is attached to the collar 14. By forming the step portion 21 on the flange portion 14, the folded portion 18 </ b> D is prevented from projecting to the core portion 13 so that the winding work around the core portion 13 is not hindered.

以下、上記構成のコイル部品11についての製造方法について説明する。先ず、図6及び図7に示すように、コア12の鍔部14、鍔部15に電極となる金属端子18を取り付ける。この金属端子18の取付時には、コア側及び金具側に抜け止め部を形成したことにより接着剤は使用せず、凸部18Eと凹部19との嵌合により金属端子18を鍔部14、鍔部15に固定する。   Hereinafter, the manufacturing method about the coil component 11 of the said structure is demonstrated. First, as shown in FIGS. 6 and 7, metal terminals 18 that serve as electrodes are attached to the flanges 14 and 15 of the core 12. When the metal terminal 18 is attached, no adhesive is used because the retaining portion is formed on the core side and the metal fitting side, and the metal terminal 18 is fitted to the flange portion 14 and the flange portion by fitting the protrusion 18E and the recess 19 together. 15 is fixed.

次にコア12の巻芯部13に導線16、導線17を巻回する(図8)。この際に導線16、導線17は、第一の実施の形態と同様に第一の加熱処理工程として、予め熱処理炉等により約80℃で30分程度加熱され、被覆か仮硬化状態となっている。この巻回時の工程については第一の実施の形態と同様であるため詳細は省略する。   Next, the conducting wire 16 and the conducting wire 17 are wound around the core part 13 of the core 12 (FIG. 8). At this time, the conducting wire 16 and the conducting wire 17 are preliminarily heated at about 80 ° C. for about 30 minutes by a heat treatment furnace or the like as the first heat treatment step as in the first embodiment, and are in a coated or temporarily cured state. Yes. Since the winding process is the same as that of the first embodiment, the details are omitted.

巻芯部13に導線16、導線17が巻回された後に導線16、導線17の一端側が鍔部14の内側面14F及び頂面14Aに沿って配線され、その一端が金属端子18の継線部20に配置される。そしてこの継線部20をかしめることにより導線16、導線17がそれぞれ金属端子18に固定される。その後、継線部20と導線16、導線17とをレーザ溶接またはアーク溶接で溶融し、導線16、導線17と金属端子18とを電気的、機械的に一体とする。この際に、レーザ光で溶接すると共に、導線16、導線17の被覆を溶解する。導線16、導線17の被覆は仮硬化状態であるため融点が低い状態であり、レーザ光の熱で被覆を炭化させることなく導線16、導線17の被覆を溶解することが可能である。更に、継線部20で導線16、導線17が固定されており、溶接時に導線16、導線17がそのレーザ光の衝撃により暴れることが無く、位置ずれ等を起こさず好適に溶接することができる。鍔部15でも同様に導線16、導線17を金属端子18に継線し、図9に示すようにコイル部品11を形状化する。その後に第一の実施の形態と同様に、第二の加熱処理工程として導線16及び導線17を含むコイル部品11全体を約180℃で40分程度加熱硬化させ、被覆を本硬化状態としてコイル部品11が完成する。   After the conducting wire 16 and the conducting wire 17 are wound around the winding core portion 13, one end side of the conducting wire 16 and the conducting wire 17 is wired along the inner side surface 14 </ b> F and the top surface 14 </ b> A of the flange portion 14, and one end thereof is connected to the metal terminal 18. The unit 20 is disposed. Then, by caulking the connecting portion 20, the conducting wire 16 and the conducting wire 17 are respectively fixed to the metal terminals 18. Thereafter, the connecting portion 20, the conducting wire 16 and the conducting wire 17 are melted by laser welding or arc welding, and the conducting wire 16, the conducting wire 17 and the metal terminal 18 are integrated electrically and mechanically. At this time, welding with a laser beam is performed, and the conductors 16 and 17 are melted. Since the coating of the conducting wires 16 and 17 is in a temporarily cured state, the melting point is low, and the coating of the conducting wires 16 and 17 can be dissolved without carbonizing the coating by the heat of the laser beam. Furthermore, the conducting wire 16 and the conducting wire 17 are fixed at the connecting portion 20, so that the conducting wire 16 and the conducting wire 17 are not disturbed by the impact of the laser beam at the time of welding and can be suitably welded without causing a positional shift or the like. . Similarly, the lead wire 16 and the lead wire 17 are connected to the metal terminal 18 in the flange portion 15, and the coil component 11 is shaped as shown in FIG. Thereafter, as in the first embodiment, as a second heat treatment step, the entire coil component 11 including the conductor 16 and the conductor 17 is heated and cured at about 180 ° C. for about 40 minutes, and the coating is made into a fully cured state. 11 is completed.

第一の実施の形態では熱圧着により継線を行ったが、第二の実施の形態に示すように、レーザを用いて継線を行う際にも、被覆を仮硬化状態にすることにより、被覆を剥離処理することなく好適に継線することが可能となる。   In the first embodiment, the connection is performed by thermocompression bonding, but as shown in the second embodiment, when performing the connection using a laser, the coating is temporarily cured, It becomes possible to connect suitably without carrying out peeling processing of a coating.

次に第3の実施の形態として、ドラム型コアを用いたコイル部品であってモールド樹脂成形されたコイル部品について図10〜図14を参照して説明する。第3の実施の形態に係るコイル部品31は、図14に示すように、外観はモールド樹脂43により略直方体に形成されており、その直方体の両端に回路実装時の電極となるリード端子42が配置されている。   Next, as a third embodiment, a coil component using a drum core and molded with a mold resin will be described with reference to FIGS. As shown in FIG. 14, the external appearance of the coil component 31 according to the third embodiment is formed in a substantially rectangular parallelepiped shape by a mold resin 43, and lead terminals 42 serving as electrodes at the time of circuit mounting are formed at both ends of the rectangular parallelepiped. Has been placed.

コイル部品31を構成するコア32は、図10に示すように、略円柱状の巻芯部33の両端に略円板状の鍔部34、鍔部35が設けられて構成されている。この鍔部34の巻芯部33と接合する面の反対面には、メッキ若しくはスパッタにより電極部34Aが形成されており、鍔部35にも同様の電極部が形成されている。電極部34Aと電気的に接続されるリード端子42は、図11及び図12に示すように、コイル部品31製造時のコア32等を支えるリードフレーム41の一部が延出されて形成されており、その先端は略直角に折り曲げられてコア保持部42Aが形成されている。図11及び図12に示すように、巻芯部33に巻回される導線36は、第一の実施の形態と同様に変成エポキシ樹脂による被覆がされた被覆導線であり、巻芯部33から、鍔部34外周に沿ってリード端子42が当接する電極部34A位置まで配線されている。また、鍔部35の電極部も同様に導線36が配線されている。   As shown in FIG. 10, the core 32 constituting the coil component 31 is configured by providing substantially disc-shaped flange portions 34 and flange portions 35 at both ends of a substantially cylindrical core portion 33. An electrode portion 34A is formed by plating or sputtering on the opposite surface of the flange portion 34 to the surface to be joined with the core portion 33, and a similar electrode portion is also formed on the flange portion 35. As shown in FIGS. 11 and 12, the lead terminal 42 electrically connected to the electrode portion 34 </ b> A is formed by extending a part of the lead frame 41 that supports the core 32 and the like when the coil component 31 is manufactured. The tip is bent at a substantially right angle to form the core holding portion 42A. As shown in FIGS. 11 and 12, the conductive wire 36 wound around the core portion 33 is a coated conductive wire coated with a modified epoxy resin, as in the first embodiment. The lead wire 42 is wired along the outer periphery of the flange portion 34 to the position of the electrode portion 34A. Similarly, the lead wire 36 is also wired to the electrode portion of the flange portion 35.

以下、上記構成のコイル部品31についての製造方法について説明する。先ず、図10に示すように、コア32の鍔部34に電極部34Aを形成し、鍔部35にも同様の電極を形成する。その後に第一の熱処理工程により熱処理された導線36を巻芯部に巻回する。第3の実施の形態に係る巻芯部33は円柱形状であり、かつ導線36の被覆も第一の熱処理工程により予め熱処理炉等により約80℃で30分程度加熱されて、仮硬化状態となり柔軟性を備えた状態になっているため、導線36の巻回時にはストレス無く巻回することができる。   Hereinafter, the manufacturing method about the coil component 31 of the said structure is demonstrated. First, as shown in FIG. 10, an electrode portion 34 </ b> A is formed on the flange portion 34 of the core 32, and a similar electrode is formed on the flange portion 35. Thereafter, the conductive wire 36 heat-treated in the first heat treatment step is wound around the core. The core portion 33 according to the third embodiment has a cylindrical shape, and the coating of the conductive wire 36 is also preheated by heating at about 80 ° C. for about 30 minutes in advance through a first heat treatment step. Since it is in a state with flexibility, it can be wound without stress when the conducting wire 36 is wound.

巻芯部33に導線36が巻回された後に、導線36はその一端側が鍔部34に沿って電極部34Aまで配線され、同様に他端側が鍔部35に沿って鍔部35の電極部まで配線される。リードフレーム41は、プレス加工等により予め略H型に切り抜かれており、略H型に切り抜かれたうちの両端の突出片部分がリード端子42、42となり、その先端が折り曲げられてコア32を保持するコア保持部42A、42Aとされる。このコア保持部42A、42Aの間に導線36が巻回されたコア32が配置されて保持される。この時に鍔部34側に配線された導線36の一端は、コア保持部42Aと電極部34Aとの間に配置され、同様に鍔部35側に配線された導線36の他端はコア保持部42Aと鍔部35側の電極部との間に配置される(図12)。   After the conducting wire 36 is wound around the winding core portion 33, one end side of the conducting wire 36 is wired to the electrode portion 34 </ b> A along the flange portion 34, and the other end side is similarly connected to the electrode portion of the flange portion 35 along the flange portion 35. Wired up to. The lead frame 41 is preliminarily cut into a substantially H shape by pressing or the like, and the projecting piece portions at both ends of the lead frame 41 cut into a substantially H shape become lead terminals 42 and 42, and the tips thereof are bent to form the core 32. The core holding portions 42A and 42A to be held are used. The core 32 around which the conducting wire 36 is wound is disposed and held between the core holding portions 42A and 42A. At this time, one end of the conducting wire 36 wired on the flange portion 34 side is disposed between the core holding portion 42A and the electrode portion 34A, and the other end of the conducting wire 36 similarly wired on the flange portion 35 side is the core holding portion. It arrange | positions between 42A and the electrode part by the side of the collar part 35 (FIG. 12).

その後に、コア保持部42A、42Aと導線36とが半田付けされる(図13)。この時に導線36の被覆は半田付けの熱により融解し、導体部分が露出するため、被覆の剥離処理を行うことなく半田付けすることが可能となっている。また、この半田付けの際には、コア保持部42A、42Aと導線36とが半田付けされると共に、コア保持部42A、42Aと電極部34A及び鍔部35に形成された電極部とも半田付けされる。   Thereafter, the core holding portions 42A and 42A and the conductive wire 36 are soldered (FIG. 13). At this time, the coating of the conductive wire 36 is melted by the heat of soldering, and the conductor portion is exposed, so that it is possible to perform soldering without performing a coating peeling process. Further, at the time of this soldering, the core holding portions 42A, 42A and the conductor 36 are soldered, and the core holding portions 42A, 42A, the electrode portions 34A, and the electrode portions formed on the flange portion 35 are also soldered. Is done.

リードフレーム41にコア32及び導線36が半田付けされた後に、第二の熱処理工程として、リードフレーム41及びコア32と一体に導線36が約180℃で40分程度加熱され導線36の被覆を本硬化状態とする。しかる後にコア32、導線36及びリード端子42、42を含んだ一体がモールド樹脂43に覆われる(図14)。この場合においても、導線36は、本硬化状態の被覆で覆われている。被覆を構成している変成エポキシ樹脂は、本硬化状態では高い耐熱性及び耐薬品性を示すため、モールド樹脂43で導線36が覆われたとしても、このモールド樹脂43により導線36の被覆が害されることはなく、好適に導線36内の導体を保護する。またモールド樹脂43によりコア32等が一体として覆われることにより、コイル部品31全体としての外因に対する保護性能が増し、より安定動作を備えたコイル部品とすることが可能となる。このモールド樹脂43でコア32が覆われて略長方形に成型された後、リード端子42、42がリードフレーム41より切り離され、その切り離された先端部分が処理され、図14に示すようにコイル部品31が完成する。   After the core 32 and the lead wire 36 are soldered to the lead frame 41, as a second heat treatment step, the lead wire 41 and the core 32 are integrally heated with the lead frame 41 and the core 32 at about 180 ° C. for about 40 minutes to fully coat the lead wire 36. Set to a cured state. Thereafter, the unit including the core 32, the conductive wire 36, and the lead terminals 42, 42 is covered with the mold resin 43 (FIG. 14). Also in this case, the conducting wire 36 is covered with the fully cured coating. The modified epoxy resin constituting the coating exhibits high heat resistance and chemical resistance in the fully cured state, so even if the conductive wire 36 is covered with the mold resin 43, the coating of the conductive wire 36 is damaged by the mold resin 43. The conductor in the conductor 36 is preferably protected. Further, since the core 32 and the like are integrally covered with the mold resin 43, the protection performance against the external causes of the coil component 31 as a whole is increased, and the coil component having a more stable operation can be obtained. After the core 32 is covered with the mold resin 43 and formed into a substantially rectangular shape, the lead terminals 42 and 42 are cut off from the lead frame 41, and the cut off tip portions are processed. As shown in FIG. 31 is completed.

次に第4の実施の形態として略円形のトロイダルコアを樹脂ケースに内蔵した形状のコイル部品について図15〜図18を参照しながら説明する。図18に示すコイル部品51は、図15に示すように、樹脂ケース53の中に略輪状のトロイダルコア52が挿入されている。このトロイダルコア52には、導線56及び導線57が平行して二本同時に巻かれたバイファイラ巻きにより巻回されており、図16に示すように、導線56及び導線57の一端側と他端側とは、それぞれトロイダルコア52の四方に略放射状に延出されている。これら導線56及び導線57は、第一の実施の形態と同様に変成エポキシ樹脂による被覆がされた被覆導線である。   Next, a coil component having a shape in which a substantially circular toroidal core is built in a resin case will be described as a fourth embodiment with reference to FIGS. As shown in FIG. 15, the coil component 51 shown in FIG. 18 has a substantially annular toroidal core 52 inserted in a resin case 53. The toroidal core 52 is wound by bifilar winding in which two conductors 56 and 57 are wound in parallel at the same time. As shown in FIG. 16, one end and the other end of the conductors 56 and 57 are wound. Are extended substantially radially in the four directions of the toroidal core 52. The conductive wire 56 and the conductive wire 57 are coated conductive wires coated with a modified epoxy resin, as in the first embodiment.

樹脂ケース53は、図15に示すように、略正方形で中央に略円形の開口が形成された板状のベース54と、ベース54の開口部分縁からベース54の法線方向一面側へ延出された略筒状の壁と壁の一方を覆う蓋とより構成される円筒部55とより構成される。この円筒部55内に形成される空間内にトロイダルコア52がベース54の他面側から挿入されて保持される。   As shown in FIG. 15, the resin case 53 has a plate-like base 54 having a substantially square shape and a substantially circular opening formed in the center, and extends from the opening edge of the base 54 to one surface in the normal direction of the base 54. It is comprised from the cylindrical part 55 comprised from the substantially cylindrical wall and the cover which covers one of the walls. The toroidal core 52 is inserted and held from the other surface side of the base 54 in a space formed in the cylindrical portion 55.

ベース54の四隅には、ベース54の他面側から一面側に貫通する孔54aが形成されており、この孔54aに電極となる略L字形状の金属端子58がベース54の他面から一面に向けて挿入され、その挿入された先端部分がベース54の一面から突出して継線部58Aを形成する(図17)。また金属端子58の他面側に位置する部分は、コイル部品51を回路上に実装する際の、回路と接合される部分となる。   At the four corners of the base 54, holes 54a penetrating from the other surface side of the base 54 to the one surface side are formed, and a substantially L-shaped metal terminal 58 serving as an electrode extends from the other surface of the base 54 to the one surface. The inserted tip portion protrudes from one surface of the base 54 to form a connecting portion 58A (FIG. 17). Moreover, the part located in the other surface side of the metal terminal 58 becomes a part joined to the circuit when the coil component 51 is mounted on the circuit.

このベース54の側面で四隅に形成された孔54aの近傍には、図15に示すように、ベース54の一面から他面まで連なる溝54bが形成されている。この溝54bには、トロイダルコア52が樹脂ケース53に挿入された状態で、導線56及び導線57の一端側及び他端側をベース54の一面側に設けられた継線部58Aに継線するために配線する箇所となる(図17)。   In the vicinity of the holes 54a formed at the four corners of the side surface of the base 54, as shown in FIG. In the groove 54 b, one end side and the other end side of the conducting wire 56 and the conducting wire 57 are connected to a connecting portion 58 A provided on one surface side of the base 54 with the toroidal core 52 inserted into the resin case 53. Therefore, it becomes a place for wiring (FIG. 17).

以下、上記構成のコイル部品51についての製造方法について説明する。先ず、トロイダルコア52に導線56及び導線57をバイファイラ巻きにより巻回する。この時に導線56及び導線57は、予め第一の加熱処理工程として熱処理炉等により約80℃で30分程度加熱処理され、被覆が仮硬化状態になっている。このため、導線全体として柔軟性を保ちつつ導線内の導体部分を保護するため、導線56及び導線57をトロイダルコア52に巻回する際にも巻回し易く、かつ導線56及び導線57が傷つき難い。トロイダルコア52に導線56及び導線57を巻回した後にその一端側及び他端側をトロイダルコア52の略四方に向けて延出した状態にする。この状態で、図15に示すように、樹脂ケース53のベース54に形成された開口部よりトロイダルコア52を樹脂ケース53の円筒部55内に挿入する。この時に、ベース54の四隅に形成された孔54aに金属端子58を挿入する。   Hereinafter, the manufacturing method about the coil component 51 of the said structure is demonstrated. First, the conducting wire 56 and the conducting wire 57 are wound around the toroidal core 52 by bifilar winding. At this time, the conductive wire 56 and the conductive wire 57 are preliminarily heat-treated at about 80 ° C. for about 30 minutes by a heat treatment furnace or the like as a first heat treatment step, and the coating is in a temporarily cured state. For this reason, in order to protect the conductor part in a conducting wire, maintaining the flexibility as the whole conducting wire, it is easy to wind the conducting wire 56 and the conducting wire 57 even when it is wound around the toroidal core 52, and the conducting wire 56 and the conducting wire 57 are not easily damaged. . After the conducting wire 56 and the conducting wire 57 are wound around the toroidal core 52, one end side and the other end side thereof are extended toward substantially four directions of the toroidal core 52. In this state, as shown in FIG. 15, the toroidal core 52 is inserted into the cylindrical portion 55 of the resin case 53 through the opening formed in the base 54 of the resin case 53. At this time, the metal terminals 58 are inserted into the holes 54 a formed at the four corners of the base 54.

トロイダルコア52を円筒部55内に挿入した後に、導線56及び導線57の一端側及び他端側を溝54b内を通しベース54の他面側まで配線する(図16、図17)。そして図17に示すようにベース54より突出している継線部58Aに巻き付ける。この時に巻き付けた箇所は被覆を剥離処理等する必要はない。   After the toroidal core 52 is inserted into the cylindrical portion 55, one end side and the other end side of the conducting wire 56 and the conducting wire 57 are routed through the groove 54b to the other surface side of the base 54 (FIGS. 16 and 17). Then, as shown in FIG. 17, the wire is wound around the connecting portion 58 </ b> A protruding from the base 54. It is not necessary to remove the coating from the portion wound at this time.

継線部58Aに導線56及び導線57を巻き付けた後に、図18に示すように、半田付け若しくは溶接により継線を行う。この時に導線56及び導線57の被覆は半硬化状態であるため融点が低く、継線時の熱により融解する。よって被覆を剥離処理せずとも導線56及び導線57の導体部分と継線部58Aとを継線することができる。導線56及び導線57の継線が終わった後に、第二の熱処理工程として、樹脂ケース53及びトロイダルコア52と一体に導線56及び導線57が約180℃で40分程度加熱され、導線56及び導線57の被覆を本硬化状態として被覆の耐熱性や強度特性等を向上させ、コイル部品51が完成される。   After the conducting wire 56 and the conducting wire 57 are wound around the connecting portion 58A, the connecting is performed by soldering or welding as shown in FIG. At this time, since the coating of the conducting wire 56 and the conducting wire 57 is in a semi-cured state, the melting point is low, and it is melted by the heat at the time of connection. Therefore, the conductor part of the conducting wire 56 and the conducting wire 57 and the connecting part 58A can be connected without stripping the coating. After the connection of the conducting wire 56 and the conducting wire 57 is finished, as a second heat treatment step, the conducting wire 56 and the conducting wire 57 are heated together with the resin case 53 and the toroidal core 52 at about 180 ° C. for about 40 minutes. The coil component 51 is completed by setting the coating of 57 to the fully cured state and improving the heat resistance and strength characteristics of the coating.

第一実施の形態から第四実施の形態における第一の熱処理工程では、約80℃で30分程度加熱処理されているが、これに限らず、例えば加熱処理を約500℃で5秒程度としても良い。また、第二の熱処理工程では、約180℃で40分程度加熱処理されているが、これに限らず、例えば加熱処理を150℃〜200℃で10分〜120分程度としても良い。   In the first heat treatment process in the first embodiment to the fourth embodiment, the heat treatment is performed at about 80 ° C. for about 30 minutes. However, the heat treatment is not limited to this. Also good. In the second heat treatment step, the heat treatment is performed at about 180 ° C. for about 40 minutes. However, the heat treatment is not limited to this. For example, the heat treatment may be performed at 150 ° C. to 200 ° C. for about 10 minutes to 120 minutes.

本発明の第一の実施の形態に係るコイル部品の完成状態を示す斜視図。The perspective view which shows the completion state of the coil components which concern on 1st embodiment of this invention. 本発明の第一の実施の形態に係るコイル部品の導線の構成図。The block diagram of the conducting wire of the coil components which concern on 1st embodiment of this invention. 本発明の第一の実施の形態に係るコイル部品のコアと電極を示す斜視図。The perspective view which shows the core and electrode of a coil component which concern on 1st embodiment of this invention. 本発明の第一の実施の形態に係るコイル部品の継線前状体を示す斜視図。The perspective view which shows the connecting wire front body of the coil components which concern on 1st embodiment of this invention. 本発明の第一の実施の形態に係るコイル部品の板状コアを設けた状態の斜視図。The perspective view of the state which provided the plate-shaped core of the coil components which concern on 1st embodiment of this invention. 本発明の第二の実施の形態に係るコイル部品のコアと金属端子とを斜視図。The perspective view of the core and metal terminal of the coil component which concern on 2nd embodiment of this invention. 本発明の第二の実施の形態に係るコイル部品の金属端子を取り付ける方向を示した詳細斜視図。The detailed perspective view which showed the direction which attaches the metal terminal of the coil components which concern on 2nd embodiment of this invention. 本発明の第二の実施の形態に係るコイル部品の継線前状体を示す斜視図。The perspective view which shows the connecting wire front body of the coil components which concern on 2nd embodiment of this invention. 本発明の第二の実施の形態に係るコイル部品の完成状態を示す斜視図。The perspective view which shows the completion state of the coil component which concerns on 2nd embodiment of this invention. 本発明の第三の実施の形態に係るコイル部品のコアと電極を示す斜視図。The perspective view which shows the core and electrode of a coil component which concern on 3rd embodiment of this invention. 本発明の第三の実施の形態に係るコイル部品のコアに巻回が行われた状態を示す斜視図。The perspective view which shows the state by which winding was performed to the core of the coil components which concern on 3rd embodiment of this invention. 本発明の第三の実施の形態に係るコイル部品のリードフレームにコアが保持された状態を示す斜視図。The perspective view which shows the state by which the core was hold | maintained at the lead frame of the coil components which concern on 3rd embodiment of this invention. 本発明の第三の実施の形態に係るコイル部品の継線が行われた状態を示す斜視図。The perspective view which shows the state by which the connection of the coil components which concern on 3rd embodiment of this invention was performed. 本発明の第三の実施の形態に係るコイル部品の完成状態を示す斜視図。The perspective view which shows the completion state of the coil component which concerns on 3rd embodiment of this invention. 本発明の第四の実施の形態に係るコイル部品の角構成部品の位置関係を示す斜視図。The perspective view which shows the positional relationship of the corner | angular component of the coil components which concern on 4th embodiment of this invention. 本発明の第四の実施の形態に係るコイル部品の下面側平面図。The lower surface side top view of the coil component which concerns on 4th embodiment of this invention. 本発明の第四の実施の形態に係るコイル部品の継線前状態を示す斜視図。The perspective view which shows the state before the connection of the coil components which concern on 4th embodiment of this invention. 本発明の第四の実施の形態に係るコイル部品の完成状態を示す斜視図。The perspective view which shows the completion state of the coil component which concerns on 4th embodiment of this invention.

符号の説明Explanation of symbols

1 コイル部品 2 磁気コア 3 巻芯部 4 鍔部 5 鍔部 6 導線
6B 被覆 7 導線 7A 導体 7B 被覆 8A 電極 8B 電極
9A 電極 9B 電極 10 板状コア 11 コイル部品 12 コア
13 巻芯部 14 鍔部 15 鍔部 16 導線 17 導線
18 金属端子 18A 側面部 18B 上面部 18C 底面部
18D 折り返し部 18E 凸部 19 凹部 20 継線部
21 段部 31 コイル部品 32 コア 33 巻芯部 34 鍔部
34A 電極部 35 鍔部 36 導線 36 被覆 41 リードフレーム
42 リード端子 42A コア保持部 43 モールド樹脂 51 コイル部品
52 トロイダルコア 53 樹脂ケース 54 ベース 54a 孔
54b 溝 55 円筒部 56 導線 57 導線 58 金属端子
58A 継線部
DESCRIPTION OF SYMBOLS 1 Coil component 2 Magnetic core 3 Core part 4 Collar part 5 Collar part 6 Conductor 6B Coating 7 Conductor 7A Conductor 7B Coating 8A Electrode 8B Electrode 9A Electrode 9B Electrode 10 Plate-shaped core 11 Coil part 12 Core 13 Coil part 14 Collar 15 flange 16 conductor 17 conductor 18 metal terminal 18A side 18B top 18C bottom 18D turn 18E convex 19 concave 20 joint 21 step 31 coil part 32 core 33 core 34 flange 34A electrode 35鍔 36 Conductor 36 Cover 41 Lead frame 42 Lead terminal 42A Core holding part 43 Mold resin 51 Coil component 52 Toroidal core 53 Resin case 54 Base 54a Hole 54b Groove 55 Cylindrical part 56 Conductor 57 Conductor 58 Metal terminal 58A Connection part

Claims (3)

巻芯部と該巻芯部の両端に一対の鍔部とを備えたコアと、
該一対の鍔部に跨って配置される板状コアと、
該巻芯部に巻回され、導体に絶縁性の樹脂が樹脂被覆されて構成される導線と、
該導線の両端に電気的に接続された電極とにより構成されるコイル部品の製造方法であって、
該導線に第一の熱処理を施して該樹脂被覆を半硬化状態にする第一の熱処理工程と、
該第一の熱処理工程後に該導線を該巻芯部に巻回する巻回工程と、
該巻回工程に関連して該導線の端部を加熱し該樹脂被覆を溶融させ該導体を露出させて該電極に継線する継線工程と、
該継線工程後に該導線に第二の熱処理工程を施して該樹脂被覆を耐熱性及び硬度が該半硬化状態に比べて上昇した本硬化状態にすると共に該板状コアが該一対の鍔部に接着剤により接合される第二の熱処理工程と、を含むことを特徴とするコイル部品の製造方法。
A core having a core part and a pair of flanges at both ends of the core part;
A plate-like core disposed across the pair of buttocks,
A conducting wire wound around the winding core and configured by covering the conductor with an insulating resin; and
A method of manufacturing a coil component comprising electrodes electrically connected to both ends of the conducting wire,
A first heat treatment step for applying a first heat treatment to the conducting wire to bring the resin coating into a semi-cured state;
A winding step of winding the conducting wire around the core after the first heat treatment step;
In connection with the winding step, a connecting step of heating an end portion of the conducting wire to melt the resin coating to expose the conductor and to connect to the electrode;
After the connecting step, the conductive wire is subjected to a second heat treatment step so that the resin coating is in a fully cured state in which heat resistance and hardness are increased as compared to the semi-cured state, and the plate-like core is the pair of flanges. And a second heat treatment step to be joined to each other by an adhesive .
該樹脂被覆は、該第二の熱処理工程より該第二の熱処理工程後の該樹脂被覆の方が、該第一の熱処理工程後の該樹脂被覆に対して高融点になることを特徴とする請求項1に記載のコイル部品の製造方法。 The resin coating is characterized in that the resin coating after the second heat treatment step has a higher melting point than the resin coating after the first heat treatment step than the second heat treatment step. The manufacturing method of the coil components of Claim 1 . 該樹脂被覆は変性エポキシ樹脂であることを特徴とする請求項1または請求項2のいずれかに記載のコイル部品の製造方法。 The method for manufacturing a coil component according to claim 1, wherein the resin coating is a modified epoxy resin.
JP2004298147A 2004-10-12 2004-10-12 Coil parts manufacturing method Active JP4776204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004298147A JP4776204B2 (en) 2004-10-12 2004-10-12 Coil parts manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298147A JP4776204B2 (en) 2004-10-12 2004-10-12 Coil parts manufacturing method

Publications (2)

Publication Number Publication Date
JP2006114570A JP2006114570A (en) 2006-04-27
JP4776204B2 true JP4776204B2 (en) 2011-09-21

Family

ID=36382862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298147A Active JP4776204B2 (en) 2004-10-12 2004-10-12 Coil parts manufacturing method

Country Status (1)

Country Link
JP (1) JP4776204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435649B2 (en) * 2014-06-05 2018-12-12 Tdk株式会社 Coil component and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226000A (en) * 1985-03-30 1986-10-07 Totoku Electric Co Ltd Manufacture of extremely heat resistant voice coil
JPS62283619A (en) * 1986-06-02 1987-12-09 Mitsubishi Electric Corp Manufacture of coil
JPH0611785B2 (en) * 1990-02-23 1994-02-16 ソマール株式会社 Epoxy resin powder composition
JPH07203613A (en) * 1993-12-30 1995-08-04 Sony Corp Peeling equipment for insulative coat
JP3941033B2 (en) * 2000-05-29 2007-07-04 太陽誘電株式会社 Polysulfide curable resin material for electronic material, electronic article, and method for using polysulfide curable resin material for electronic material
JP3710042B2 (en) * 1999-09-20 2005-10-26 Tdk株式会社 Common mode filter
JP2003168611A (en) * 2001-09-18 2003-06-13 Murata Mfg Co Ltd High-frequency common mode choke coil
JP3760171B1 (en) * 2004-09-22 2006-03-29 株式会社エヌティ・サクセス Insulated coated electrical component, insulated coated electric wire, electrical component conduction method and coil manufacturing method

Also Published As

Publication number Publication date
JP2006114570A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US10262787B2 (en) Coil component
KR20060048797A (en) Surface mount coil component
JP6733580B2 (en) Coil parts
JP7059953B2 (en) Manufacturing method of coil parts
WO2017169737A1 (en) Coil component and method for manufacturing same
CN109119234B (en) Coil component
JP2003022916A (en) Coil component and method for manufacturing coil component
US4553123A (en) Miniature inductor
JP2003061314A (en) Rotor for small-sized motor and manufacturing method therefor
CA2274165C (en) Method of manufacturing bead inductor and the bead inductor produced thereby
JP4776204B2 (en) Coil parts manufacturing method
US11545294B2 (en) Coil device, pulse transformer, and electronic component
JP2001267138A (en) Inductance element
JP3309831B2 (en) Inductance element
JP2021057444A (en) Coil component and drum-shaped core
JPS61240617A (en) Connection of enamelled wire
JP2020141077A (en) Coil component and electronic apparatus
JP6844724B2 (en) Coil parts
JPH06163300A (en) Structure of connecting terminals of electrical component
JP7336855B2 (en) Coil parts and electronic equipment
JP2020057706A (en) Coil device and pulse transformer
JP7245062B2 (en) COIL COMPONENT, ELECTRONIC DEVICE, AND COIL COMPONENT MANUFACTURING METHOD
JP2002015926A (en) Inductor and its manufacturing method
JP2023037376A (en) Coil component
JP2001319816A (en) Coil component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080820

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3