JP4775790B2 - A power generation system that effectively uses natural energy, - Google Patents

A power generation system that effectively uses natural energy, Download PDF

Info

Publication number
JP4775790B2
JP4775790B2 JP2005048546A JP2005048546A JP4775790B2 JP 4775790 B2 JP4775790 B2 JP 4775790B2 JP 2005048546 A JP2005048546 A JP 2005048546A JP 2005048546 A JP2005048546 A JP 2005048546A JP 4775790 B2 JP4775790 B2 JP 4775790B2
Authority
JP
Japan
Prior art keywords
power
hydrogen
storage battery
power generation
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005048546A
Other languages
Japanese (ja)
Other versions
JP2006236741A (en
Inventor
昌利 宮田
好弘 佐藤
英明 池田
博康 白土
喜秋 岡
幸康 山越
秀夫 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2005048546A priority Critical patent/JP4775790B2/en
Publication of JP2006236741A publication Critical patent/JP2006236741A/en
Application granted granted Critical
Publication of JP4775790B2 publication Critical patent/JP4775790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は,自然エネルギーに基づく電力を高効率かつ安定に利用できる独立発電システムに関する。本発明は,より詳しく説明すると,自然エネルギーを蓄電池の電力及び水素として貯蔵するので,高効率かつ安定して電力を供給でき,北海道などの冷寒地において特に好適に利用できる独立発電システムに関する。   The present invention relates to an independent power generation system that can efficiently and stably use electric power based on natural energy. More specifically, the present invention relates to an independent power generation system that can store natural energy as electric power and hydrogen of a storage battery, can supply electric power with high efficiency and stability, and can be used particularly suitably in cold and cold regions such as Hokkaido.

自然エネルギーを利用した発電システムは,既に知られている。このシステムは,太陽光や風力などの自然エネルギーを利用するので,クリーンで,かつ経済的である。しかし,太陽光発電は,太陽光が照射しない間は発電できない。一方,風力発電は,風が吹いていない間は発電できない。このように,自然エネルギーを用いた発電システムは,電力の供給量に変動が大きく,安定に利用することができないという問題がある。   A power generation system using natural energy is already known. This system uses natural energy such as sunlight and wind power, so it is clean and economical. However, solar power cannot be generated while it is not exposed to sunlight. On the other hand, wind power cannot be generated while the wind is not blowing. As described above, the power generation system using natural energy has a problem that the supply amount of electric power greatly varies and cannot be stably used.

このような問題を解決するための手段として,燃料電池と,太陽電池及び風力発電装置を設け,前記太陽電池及び風力発電装置によって発電される電力で水を酸素と水素に電気分解する電解装置と,前記水素を貯蔵する水素貯蔵器とを備えた電源装置(発電システム)が知られている(特開2001-266923号公報(下記特許文献1)参照)。このような自然エネルギー及び化学エネルギーを利用したハイブリッドシステムにより,電源の経済的で安定した自己供給が可能となるとされている。   As means for solving such problems, a fuel cell, a solar cell, and a wind power generator are provided, and an electrolyzer that electrolyzes water into oxygen and hydrogen with electric power generated by the solar cell and the wind power generator; A power supply device (power generation system) including a hydrogen storage device for storing hydrogen is known (see Japanese Patent Application Laid-Open No. 2001-266923 (Patent Document 1 below)). It is said that such a hybrid system using natural energy and chemical energy enables an economical and stable self-supply of power.

また,特開2004-71487号公報(下記特許文献2)には,複数の風力発電装置と,この風力発電装置から出力される交流の電力を直流に変換する整流回路と,複数の太陽光発電装置と,これら風力発電装置及び太陽光発電装置からの電力によって,水を水素と酸素に分解する電気分解装置と,電気分解装置からの水素を酸素と結合させることによって電力に変換し,電気負荷へ供給する燃料電池とを備える分散型発電システムが開示されている。これによれば,複雑な制御回路を必要とすることなく,出力の不安定を緩和して平滑化できるとされている。   Japanese Patent Laid-Open No. 2004-71487 (Patent Document 2 below) discloses a plurality of wind power generators, a rectifier circuit that converts AC power output from the wind power generator into DC, and a plurality of solar power generators. Equipment, an electrolyzer that decomposes water into hydrogen and oxygen by the electric power from these wind power generators and solar power generators, and the hydrogen from the electrolyzer is converted into electric power by combining it with oxygen to produce an electrical load. A distributed power generation system is disclosed that includes a fuel cell that supplies power to a battery. According to this, it is said that the output instability can be reduced and smoothed without requiring a complicated control circuit.

しかしながら,上記のような発電システムは,基本的は自然エネルギーを水素ガスに変換して貯蔵するものである。この場合,自然エネルギーを用いて水から水素を得る際のエネルギー変換効率や,水素を用いて燃料電池により電力を得る際のエネルギー変換効率が悪いので,効果的に電力を蓄積できないという問題がある。   However, the power generation system as described above basically stores natural energy converted into hydrogen gas. In this case, there is a problem that the energy cannot be stored effectively because the energy conversion efficiency when hydrogen is obtained from water using natural energy and the energy conversion efficiency when power is obtained from the fuel cell using hydrogen is poor. .

また,特開2003-257443号公報(下記特許文献3)には,自然エネルギーを直流電力に転換し,直流バスを介して直流電圧を電力負荷系統へ供給する自然エネルギー発電装置と,前記直流バスに接続され,自然エネルギー発電装置から直流電圧を供給して電気分解により水素ガスを生成する水素発生装置と,酸化剤ガスと,前記水素発生装置から供給される水素ガスとの電気化学的反応により発電し,直流電圧を前記電力負荷系統へ供給する燃料電池を備える自然エネルギー発電装置と燃料電池を有する自己完結型発電システムが開示されている。これによれば,商用系統外の地域や不測の障害により商用系統が使用不能の状況においても発電システムを稼動することができるとされている。   Japanese Patent Laid-Open No. 2003-257443 (Patent Document 3 below) discloses a natural energy generator that converts natural energy into DC power and supplies a DC voltage to a power load system via a DC bus, and the DC bus. A hydrogen generator for generating hydrogen gas by electrolysis by supplying a DC voltage from a natural energy generator, and an electrochemical reaction between an oxidant gas and the hydrogen gas supplied from the hydrogen generator. A self-contained power generation system including a natural energy power generation device including a fuel cell that generates power and supplies a DC voltage to the power load system and a fuel cell is disclosed. According to this, it is said that the power generation system can be operated even in a region outside the commercial system or in a situation where the commercial system cannot be used due to an unexpected failure.

しかしながら,上記の発電システムは,出力が不安定な自然エネルギー発生装置により得られた電力を直流バス,制御装置を用いて,電力負荷,二次電池,水素発生装置へ電力を振り分けており,自然エネルギー発生装置で急激な出力変動がある場合には,制御装置が瞬時に対応できず,電力負荷へ安定な電力を供給することができないという問題がある。また,燃料電池も自然エネルギー発生装置の出力変動に備えて,発電していなくても常に待機している必要があり,このことにより余分な電力を消費するため,小型の発電システムには向いていない。さらに,自然エネルギー発生装置で出力した電力のうち,電力負荷へ送る電力以外の余剰電力を水素発生装置の電力として使用するが,自然エネルギーの出力や電力負荷によっては,水素発生装置に寄与させる電力が少ない場合があり,水素発生装置を稼働させるために必要な電力を考慮すると,エネルギー変換効率が必ずしも高くなく,自然エネルギーを最大限利用できるとは言い難い。さらには,自然エネルギーにより得られた電力を用いて水電解槽や燃料電池などを加熱するものではないので,冷寒地においては好適に活用できないという問題がある。さらには,風もなく日照もない場合において,蓄積した自然エネルギーを使い果たすと,それ以上電力を得ることはできないという問題もある。   However, the above power generation system distributes the electric power obtained by the natural energy generator with unstable output to the electric power load, secondary battery, and hydrogen generator using a DC bus and controller. When there is a sudden output fluctuation in the energy generator, there is a problem that the controller cannot respond instantaneously and cannot supply stable power to the power load. In addition, the fuel cell must always be on standby even if it does not generate power in preparation for fluctuations in the output of the natural energy generator, which consumes excess power and is therefore suitable for small power generation systems. Absent. Furthermore, of the power output from the natural energy generator, surplus power other than the power sent to the power load is used as the power of the hydrogen generator, but depending on the natural energy output and power load, the power that contributes to the hydrogen generator. However, considering the power required to operate the hydrogen generator, the energy conversion efficiency is not always high, and it is difficult to say that natural energy can be used to the maximum. Furthermore, there is a problem in that it cannot be suitably used in cold and cold areas because it does not heat water electrolyzers or fuel cells using electric power obtained from natural energy. Furthermore, there is also a problem that when there is no wind and no sunshine, no more power can be obtained if the accumulated natural energy is exhausted.

また,いずれの発電システムにおいても,電解装置には,電気分解するための水や電解液が貯蔵されている。よって,冷寒地においては,特に,燃料電池が作動していない場合,電解液や燃料電池を作動させる際に発生する水分や,固体高分子電解質形の燃料電池では電解質を加湿するための水が凍結する事態が起こるために,このような発電システムを好適に利用できないという問題がある。   In any power generation system, the electrolyzer stores water and electrolytic solution for electrolysis. Therefore, in cold regions, especially when the fuel cell is not operating, the water generated when operating the electrolyte and the fuel cell, or the water used to humidify the electrolyte in the solid polymer electrolyte fuel cell However, there is a problem that such a power generation system cannot be suitably used.

また,上記した発電システムとは別に,自然エネルギーを全て蓄電池に蓄積させて,電力負荷に供給するシステムも考えられる。この場合,蓄電池の許容電力以上の電力を貯蓄することはできないので,蓄電池を大型なものにしなければならないという問題がある。また,蓄電池の許容電力を超える自然エネルギーが蓄電池に供給された場合,自然エネルギーが無駄になるばかりでなく,蓄電池内で水の電気分解が起こり,その際の熱の発生により蓄電池温度が所定温度よりも上昇し,場合によっては劣化する問題がある。
特開2001-266923号公報 特開2004-71487号公報 特開2003-257443号公報
In addition to the power generation system described above, a system in which all natural energy is stored in a storage battery and supplied to an electric power load is also conceivable. In this case, there is a problem that the storage battery must be made large because it cannot store more than the allowable power of the storage battery. In addition, when natural energy exceeding the allowable power of the storage battery is supplied to the storage battery, not only is the natural energy wasted, but also water is electrolyzed in the storage battery, and the storage battery temperature is set to a predetermined temperature due to heat generation. There is a problem that it rises more and sometimes deteriorates.
JP 2001-266923 A JP 2004-71487 A JP2003-257443

本発明は,自然エネルギーを効率的に有効利用できる発電システムを提供することを目的とする。   An object of this invention is to provide the electric power generation system which can use natural energy efficiently efficiently.

本発明は,特に冷寒地においても安定に電力を供給することのできる,自然エネルギーを用いた発電システムを提供することを目的とする。   An object of the present invention is to provide a power generation system using natural energy that can supply power stably even in cold regions.

本発明は,過剰な自然エネルギーが供給される場合でも,蓄電池などが劣化しにくい発電システムを提供することを目的とする。   An object of the present invention is to provide a power generation system in which a storage battery or the like is hardly deteriorated even when excessive natural energy is supplied.

本発明は,比較的小さく,軽量な発電システムを提供することを目的とする。   An object of the present invention is to provide a relatively small and lightweight power generation system.

本発明は,上記の課題のうちいずれかひとつ以上を解決するためになされたものであり,基本的には,自然エネルギーを蓄電池の電力として貯蔵すると共に,電気分解によって発生した水素を燃料電池の電力源として貯蔵することにより,効率的に自然エネルギーを貯蔵すことができるという知見や,電源システム内の前記水電解槽又は前記燃料電池を加温するための加熱手段を設け,その加熱手段に適切に電力を供給することにより,余計な電力を消費することとなるものの,電解液などが凍結する事態を防止することにより,特に冷寒地においても安定に電力を供給することができるという知見などに基づくものである。すなわち,本発明は,以下の電源システムなどに関する。   The present invention has been made to solve any one or more of the above-mentioned problems. Basically, natural energy is stored as electric power of a storage battery, and hydrogen generated by electrolysis is stored in a fuel cell. The knowledge that natural energy can be efficiently stored by storing as a power source, and a heating means for heating the water electrolyzer or the fuel cell in the power supply system are provided, and the heating means The knowledge that by supplying power properly, extra power will be consumed, but by preventing the electrolyte from freezing, power can be supplied stably even in cold regions. Etc. That is, the present invention relates to the following power supply system.

[1]本発明の発電システムは,風力発電及び太陽光発電のいずれか又は両方による発電手段と,前記発電手段によって得られた電力を蓄積するための蓄電池と,前記発電手段によって得られた電力を用いて水を水素と酸素とに分解するための水電解槽と,前記水電解槽で発生した水素を貯蔵するための水素貯蔵部と,前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得るための燃料電池と,前記発電手段により得られる電力,前記蓄電池に蓄積される電力,及び前記燃料電池により得られる電力の供給先を制御するための電力制御手段と,を具備する発電システムであって,前記発電手段によって得られた電力を蓄電池に蓄積し,利用するとともに,前記蓄電池に蓄積された電力,又は前記発電手段によって得られた電力を用いて,前記水電解槽中の水を水素と酸素とに分解し,前記水素貯蔵部に前記水電解槽で発生した水素を貯蔵し,前記燃料電池が前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得,前記電力制御手段が,電気負荷及び前記加熱手段へ供給する電力を制御する発電システムである。   [1] A power generation system according to the present invention includes a power generation means using either or both of wind power generation and solar power generation, a storage battery for storing the power obtained by the power generation means, and the power obtained by the power generation means. A water electrolysis tank for decomposing water into hydrogen and oxygen using hydrogen, a hydrogen storage section for storing hydrogen generated in the water electrolysis tank, hydrogen generated in the water electrolysis tank, or the hydrogen storage A fuel cell for obtaining electric power using hydrogen stored in the unit, electric power obtained by the power generation means, electric power accumulated in the storage battery, and a supply destination of electric power obtained by the fuel cell An electric power control system comprising: an electric power control means for storing and using the electric power obtained by the electric power generation means in the storage battery; and the electric power stored in the electric storage battery or the electric power generation means. Using the obtained electric power, the water in the water electrolysis tank is decomposed into hydrogen and oxygen, the hydrogen generated in the water electrolysis tank is stored in the hydrogen storage section, and the fuel cell is used in the water electrolysis tank. In the power generation system, electric power is obtained by using generated hydrogen or hydrogen stored in the hydrogen storage unit, and the electric power control unit controls electric power supplied to the electric load and the heating unit.

本発明の発電システムは,自然エネルギーを蓄電池に貯蔵して電力負荷へ供給できるのみならず,蓄電池が貯蓄できない電力などについては燃料電池で電力に変換することができる水素ガスに変換して貯蔵できるので,自然エネルギーを効率的に有効利用できる発電システムを提供することができる。   The power generation system of the present invention not only can store natural energy in a storage battery and supply it to an electric power load, but also stores power that cannot be stored in the storage battery by converting it into hydrogen gas that can be converted into electric power by a fuel cell. Therefore, it is possible to provide a power generation system that can effectively use natural energy efficiently.

[2]本発明の発電システムは,好ましくは,前記水電解槽又は前記燃料電池のいずれか又は両方を加温するための加熱手段を具備する上記[1]に記載の発電システムである。   [2] The power generation system according to the present invention is preferably the power generation system according to the above [1], further comprising heating means for heating either or both of the water electrolyzer and the fuel cell.

消費電力に応じて自然エネルギーを蓄積し,自然エネルギーが得られない場合にその蓄積した電力を利用できるのみならず,加熱手段により水電解槽又は燃料電池のいずれか又は両方を加温できるので,水分の凍結による水電解槽の配管の破損や送水不良,燃料電池のガス配管の詰まりなど機器が正常に動かない事態の防止や機器の温度が上昇することにより,水電解槽における電力の水素変換効率や燃料電池における水素エネルギーの電力変換効率が落ちる事態を防止できる発電システムを提供することができる。   Since natural energy is stored according to power consumption and not available, not only can the stored power be used, but either one or both of the water electrolyzer or fuel cell can be heated by heating means. Hydrogen conversion of electric power in the water electrolyser by preventing equipment malfunction such as damage to water electrolyzer piping due to freezing of water, water supply failure, clogging of fuel cell gas piping, and temperature rise of the equipment It is possible to provide a power generation system capable of preventing a situation where efficiency and power conversion efficiency of hydrogen energy in a fuel cell are reduced.

[3]本発明の発電システムは,好ましくは,前記燃料電池へ水素を供給することができ,交換可能なバックアップ用の水素貯蔵部をさらに具備する上記[1]に記載の発電システムである。   [3] The power generation system of the present invention is preferably the power generation system according to the above [1], further comprising a backup hydrogen storage unit that can supply hydrogen to the fuel cell and can be replaced.

バックアップ用の水素貯蔵部により,燃料電池へ水素を供給できるので,例えば非常時などで電力供給が困難な場合であっても,バックアップ用の水素貯蔵部から燃料電池へ水素を供給し,電力を得ることができることとなる。   Hydrogen can be supplied to the fuel cell by the backup hydrogen storage unit, so even if it is difficult to supply power in an emergency, for example, hydrogen is supplied from the backup hydrogen storage unit to the fuel cell. It will be possible to obtain.

[4]本発明の発電システムは,好ましくは,前記水電解槽中の水の温度を測定するための温度測定手段をさらに具備し,前記電力制御手段は,前記温度測定手段により測定された温度が所定温度以下になった場合に,前記加熱手段へ電力を供給する上記[1]に記載の発電システムである。   [4] The power generation system of the present invention preferably further comprises a temperature measuring means for measuring the temperature of the water in the water electrolyzer, wherein the power control means is a temperature measured by the temperature measuring means. The power generation system according to [1], wherein power is supplied to the heating unit when the temperature becomes equal to or lower than a predetermined temperature.

温度測定手段を有するので,水電解槽中の水などが凍結する事態を効果的に防止できる。   Since the temperature measuring means is provided, it is possible to effectively prevent the water in the water electrolysis tank from freezing.

[5]本発明の発電システムは,好ましくは,前記電力制御手段は,前記蓄電池の電圧値が第1の設定値未満である場合には,前記燃料電池で電力を発生させ,前記電力負荷又は前記加熱手段へ電力を供給し,前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記加熱手段へ電力を供給し,前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値未満である場合には,前記蓄電池から前記電力負荷又は前記加熱手段へ電力を供給し,さらに前記発電手段により蓄電池へ蓄積される電力を用いて,前記水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵し,前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値以上である場合には,前記発電手段により蓄電池へ蓄積される電力を前記加熱手段又はダミー負荷へ供給するように電力を制御する上記[1]に記載の発電システムである。   [5] In the power generation system of the present invention, preferably, the power control means generates power in the fuel cell when the voltage value of the storage battery is less than a first set value, and the power load or When power is supplied to the heating means and the voltage value of the storage battery is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the heating means, When the voltage value of the storage battery is greater than or equal to the second set value and the amount of hydrogen stored in the hydrogen storage unit is less than a predetermined value, power is supplied from the storage battery to the power load or the heating means. And using the electric power stored in the storage battery by the power generation means to generate hydrogen in the water electrolysis tank, store the hydrogen in the hydrogen storage unit, and the voltage value of the storage battery is the second setting Greater than the value and the water When the amount of hydrogen stored in the storage unit is equal to or greater than a predetermined value, the power is controlled so that the power stored in the storage battery by the power generation unit is supplied to the heating unit or the dummy load. Power generation system.

[6]本発明の発電システムは,好ましくは,前記電力制御手段は,前記蓄電池の電圧値が第1の設定値未満である場合には,前記燃料電池で電力を発生させ,前記電力負荷又は前記加熱手段へ電力を供給し,前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記加熱手段へ電力を供給し,発電手段により前記第2の設定値よりも大きい第3の設定値に達し,かつ前記水素貯蔵部に貯蔵される水素量が所定値未満である場合には,蓄電池から電力負荷へ電力を供給し,さらに水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵するように電力を制御し,その結果,蓄電池の電圧が前記第2の設定値未満になった場合,または水素貯蔵部に貯蔵される水素量が所定値以上に達した場合には,蓄電池から電力負荷へ電力を供給するものの,水電解槽への電力の供給を止め,前記発電手段によって蓄電池が充電され,その電圧が再び前記第3の設定値以上になり,かつ水素貯蔵部に貯蔵される水素量が所定値未満である場合には,蓄電池から電力負荷へ電力を供給しながら,水電解槽への電力の供給を再開し,蓄電池の電圧が前記第3の設定値以上になり,かつ水素貯蔵部に貯蔵される水素量が所定値以上である場合には,前記発電手段により蓄電池へ蓄積される電力を前記加熱手段又はダミー負荷へ供給する制御を行う上記[1]に記載の発電システムである。   [6] In the power generation system of the present invention, preferably, the power control means generates power in the fuel cell when the voltage value of the storage battery is less than a first set value, and the power load or When power is supplied to the heating means and the voltage value of the storage battery is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the heating means, When the third set value larger than the second set value is reached by the power generation means and the amount of hydrogen stored in the hydrogen storage unit is less than a predetermined value, power is supplied from the storage battery to the power load. Further, hydrogen is generated in the water electrolyzer and the electric power is controlled so that the hydrogen is stored in the hydrogen storage unit. As a result, when the voltage of the storage battery becomes less than the second set value, or the hydrogen storage The amount of hydrogen stored in the If it reaches the upper limit, the power is supplied from the storage battery to the power load, but the supply of power to the water electrolysis tank is stopped, the storage battery is charged by the power generation means, and the voltage again exceeds the third set value. When the amount of hydrogen stored in the hydrogen storage unit is less than the predetermined value, the supply of power to the water electrolysis tank is resumed while supplying power from the storage battery to the power load, and the voltage of the storage battery is When the amount exceeds the third set value and the amount of hydrogen stored in the hydrogen storage unit is greater than or equal to a predetermined value, the power stored in the storage battery by the power generation unit is supplied to the heating unit or the dummy load. It is an electric power generation system given in the above [1] which performs control.

自然エネルギーから得られる電力を最大限有効利用することができ,さらに過剰な自然エネルギーが供給される場合でも,蓄電池の貯蔵電力が一定以上の場合は,その電力を水素に変換して貯蓄し,さらには,余剰電力を加熱手段や,ダミー負荷へと供給し,蓄電池などへ電力が過剰供給される事態を防止するので,蓄電池の過剰な温度上昇などを防ぐことが出来,劣化しにくい発電システムを提供することができる。   Electric power obtained from natural energy can be used to the maximum extent possible, and even when excessive natural energy is supplied, if the storage power of the storage battery is above a certain level, the electric power is converted to hydrogen and stored. In addition, surplus power is supplied to heating means and dummy loads to prevent a situation where power is excessively supplied to the storage battery, etc., so that an excessive temperature rise of the storage battery can be prevented and the power generation system hardly deteriorates. Can be provided.

[7]本発明の発電システムは,好ましくは,前記電力制御手段は,前記蓄電池の電圧値が所定値未満の状態である場合,前記水素貯蔵部に蓄積された水素を用いて前記燃料電池により電力を発生させ,前記蓄電池に電力を供給するように制御する上記[1]に記載の発電システムである。   [7] In the power generation system according to the present invention, preferably, when the voltage value of the storage battery is less than a predetermined value, the power control means uses the hydrogen stored in the hydrogen storage unit to perform the fuel cell operation. The power generation system according to [1], wherein the electric power is generated and controlled to supply electric power to the storage battery.

[8]本発明の発電システムは,好ましくは,前記燃料電池へ水素を供給することができるバックアップ用の水素貯蔵部をさらに具備し,前記蓄電池の電圧値が所定量未満の場合に,前記水素貯蔵部に貯蔵した水素を前記バックアップ用の水素貯蔵部に貯蔵した水素より優先的に前記燃料電池へ供給する手段をさらに具備する上記[1]に記載の発電システムである。   [8] The power generation system of the present invention preferably further includes a backup hydrogen storage unit capable of supplying hydrogen to the fuel cell, and when the voltage value of the storage battery is less than a predetermined amount, The power generation system according to [1], further comprising means for supplying the hydrogen stored in the storage unit to the fuel cell with priority over the hydrogen stored in the backup hydrogen storage unit.

[9]本発明の発電システムの上記とは別の態様は,風力発電及び太陽光発電のいずれか又は両方による発電手段と,前記発電手段によって得られた電力を蓄積するための蓄電池と, 前記発電手段によって得られた電力を用いて水を水素と酸素とに分解する水電解機能を有し,且つそれにより発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得る燃料電池の機能を有する電解セルと,前記電解セルが電力を取得する際に発生する水素を貯蔵するための水素貯蔵部と,前記発電手段により得られる電力,前記蓄電池に蓄積される電力,及び前記電解セルにより得られる電力の供給先を制御するための電力制御手段と,を具備する発電システムであって,前記発電手段によって得られた電力を蓄電池に蓄積し,利用するとともに,前記蓄電池に蓄積された電力,又は前記発電手段によって得られた電力を用いて,前記電解セル中の水を水素と酸素とに分解し,前記水素貯蔵部に前記電解セルで発生した水素を貯蔵し,発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得,前記電力制御手段が,電気負荷及び前記加熱手段へ供給する電力を制御する,発電システムである。   [9] An aspect different from the above of the power generation system of the present invention includes a power generation means by wind power generation and / or solar power generation, a storage battery for storing the power obtained by the power generation means, A fuel that has a water electrolysis function of decomposing water into hydrogen and oxygen using the electric power obtained by the power generation means, and obtains electric power using the hydrogen generated thereby or the hydrogen stored in the hydrogen storage unit An electrolytic cell having a battery function, a hydrogen storage unit for storing hydrogen generated when the electrolytic cell obtains electric power, electric power obtained by the power generation means, electric power accumulated in the storage battery, and A power control means for controlling a supply destination of power obtained by the electrolysis cell, wherein the power obtained by the power generation means is stored and used in a storage battery. , Using the electric power stored in the storage battery or the electric power obtained by the power generation means, the water in the electrolysis cell is decomposed into hydrogen and oxygen, and the hydrogen generated in the electrolysis cell is stored in the hydrogen storage section. It is a power generation system in which electric power is obtained using hydrogen generated and stored or hydrogen stored in the hydrogen storage unit, and the electric power control unit controls electric power supplied to the electric load and the heating unit.

水を電解する機能を有する燃料電池を用いるので,水電解槽と燃料電池を一体化でき,システム全体として比較的小さく軽量にすることができる。   Since a fuel cell having a function of electrolyzing water is used, the water electrolyzer and the fuel cell can be integrated, and the entire system can be made relatively small and lightweight.

本発明によれば,自然エネルギーを蓄電池に貯蔵して電力負荷へ供給できるのみならず,蓄電池が貯蓄できない電力などについては燃料電池で電力に変換することができる水素ガスに変換して貯蔵できるので,自然エネルギーを効率的に有効利用できる発電システムを提供することができる。   According to the present invention, not only the natural energy can be stored in the storage battery and supplied to the power load, but also the power that the storage battery cannot store can be stored after being converted into hydrogen gas that can be converted into electric power by the fuel cell. Therefore, it is possible to provide a power generation system that can effectively use natural energy efficiently.

本発明によれば,消費電力に応じて自然エネルギーを蓄積し,自然エネルギーが得られない場合にその蓄積した電力を利用できるのみならず,加熱手段により水電解槽又は燃料電池のいずれか又は両方を加温できるので,水分の凍結による水電解槽の配管の破損や送水不良,燃料電池のガス配管の詰まりなど機器が正常に動かない事態の防止や機器の温度が上昇することにより,水電解槽における電力の水素変換効率や燃料電池における水素エネルギーの電力変換効率が落ちる事態を防止できる発電システムを提供することができる。   According to the present invention, natural energy is stored in accordance with power consumption, and when the natural energy cannot be obtained, the stored power can be used, and either or both of the water electrolysis tank and the fuel cell are used by the heating means. Since water can be heated, water electrolysis can be prevented by preventing the equipment from operating normally, such as water electrolysis tank piping breakage due to freezing of water, poor water transfer, and fuel cell gas piping clogging, and the temperature of the equipment rises. It is possible to provide a power generation system capable of preventing a situation in which the hydrogen conversion efficiency of power in a tank and the power conversion efficiency of hydrogen energy in a fuel cell are reduced.

本発明によれば,過剰な自然エネルギーが供給される場合でも,蓄電池の貯蔵電力が一定以上の場合は,その電力を水素に変換して貯蓄し,さらには,余剰電力を加熱手段や,ダミー負荷へと供給し,蓄電池などへ電力が過剰供給される事態を防止するので,蓄電池の過剰な温度上昇などを防ぐことが出来,劣化しにくい発電システムを提供することができる。   According to the present invention, even when excessive natural energy is supplied, if the storage power of the storage battery is greater than a certain level, the power is converted to hydrogen and stored, and the surplus power is further stored in the heating means or the dummy. Since it prevents the situation where power is supplied to a load and power is excessively supplied to a storage battery or the like, an excessive temperature rise of the storage battery can be prevented and a power generation system that is not easily deteriorated can be provided.

本発明によれば,蓄電池のみならず,水を分解した水素をエネルギー源として貯蔵できるので,重量の重い蓄電池の数を減少させることができるなど軽量にすることができ,結果として発電システム全体を比較的小さく,軽量な発電システムを提供できる。また,本発明の好ましい実施態様では,水を電解する機能を有する燃料電池を用いるので,水電解槽と燃料電池を一体化でき,システム全体として比較的小さく軽量にすることができる。   According to the present invention, not only the storage battery but also hydrogen obtained by decomposing water can be stored as an energy source, so that the weight of the storage battery can be reduced, and as a result, the entire power generation system can be reduced. A relatively small and lightweight power generation system can be provided. In the preferred embodiment of the present invention, since the fuel cell having the function of electrolyzing water is used, the water electrolyzer and the fuel cell can be integrated, and the entire system can be made relatively small and light.

以下では,図面を参照しつつ,本発明の実施形態について説明する。図1は,本発明のある実施態様を説明するためのブロック図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram for explaining an embodiment of the present invention.

図1に示されるように,本発明の発電システム1は,発電手段2と,蓄電池3と,水電解槽4と,水素貯蔵部5と,燃料電池6と,加熱手段7と,電力制御手段8とを具備する。なお,図1において,9はバックアップ用の水素貯蔵部を示し,10は温度測定手段を示し,11は電力負荷を示し,12〜16は配線を示し,17〜26は配管を示す。また,27はゼオライトなどの乾燥剤を注入した容器,28は燃料遮断弁,29は圧力レギュレータ,30は逆支弁または圧力制御手段である。   As shown in FIG. 1, a power generation system 1 according to the present invention includes a power generation means 2, a storage battery 3, a water electrolysis tank 4, a hydrogen storage section 5, a fuel cell 6, a heating means 7, and a power control means. 8 and. In FIG. 1, 9 indicates a backup hydrogen storage unit, 10 indicates a temperature measuring means, 11 indicates a power load, 12-16 indicate wiring, and 17-26 indicate piping. Reference numeral 27 denotes a container filled with a desiccant such as zeolite, 28 denotes a fuel cutoff valve, 29 denotes a pressure regulator, and 30 denotes a reverse valve or pressure control means.

本発明の発電システムは,自然エネルギーによる発電手段によって得られた電力を蓄電池に蓄積し,利用する。蓄電池に蓄積された電力,又は発電手段によって得られた電力(特に蓄電池に蓄積しきれない電力)を用いて,水電解槽中の水を水素と酸素とに分解する。水電解槽で発生した水素を水素貯蔵部に貯蔵する。燃料電池が水電解槽で発生した水素,又は水素貯蔵部に貯蔵された水素を用いて電力を得る。そして,電力制御手段が,電気負荷及び前記加熱手段などへ供給する電力を制御する。このようにして,特に自然エネルギーが過剰な場合には,水素に変換してエネルギーを貯蔵し,必要に応じて電力に変換する。これにより,自然エネルギーが得られない場合であっても,効果的に電力を供給し続けることができる。さらに,所定の場合には,加熱手段に電力が供給されるので,水や電解液が凍結するなどして,機器が正常に動かない事態の防止や機器が停止し,再び運転するまでに温度が低下することにより電力の水素変換効率などが悪化する事態を防止できる。以下では,本発明を構成する各要素について説明する。   The power generation system of the present invention stores and uses power obtained by power generation means using natural energy in a storage battery. The water in the water electrolyzer is decomposed into hydrogen and oxygen using the power stored in the storage battery or the power obtained by the power generation means (particularly the power that cannot be stored in the storage battery). Hydrogen generated in the water electrolyzer is stored in a hydrogen storage unit. The fuel cell obtains electric power using hydrogen generated in the water electrolyzer or hydrogen stored in the hydrogen storage unit. The power control means controls the power supplied to the electric load and the heating means. In this way, especially when the natural energy is excessive, it is converted to hydrogen to store the energy, and converted to electric power as necessary. Thereby, even when natural energy cannot be obtained, it is possible to continue to supply power effectively. In addition, in certain cases, power is supplied to the heating means, preventing water and electrolytes from freezing, etc., preventing the device from malfunctioning, and shutting down the device until it is restarted. It is possible to prevent a situation where the hydrogen conversion efficiency of electric power deteriorates due to the decrease in power. Below, each element which comprises this invention is demonstrated.

発電手段2は,風力発電又は太陽光発電により電力を得るための手段である。風力発電により電力を得るために,公知の風力発電装置を用いることができる。このような風力発電装置として,風力により風車のプロペラを回転させ,そのプロペラが回転するとともに発電機本体が回転し,これにより交流電力を得るものがあげられる。発電手段2により得られた電力は,導線12を経て蓄電池へ伝えられる。なお,発電手段として風力発電装置を用いた場合,通常,導線12には,発生した交流電力を直流電力に変換するためのA/D変換器などの変換手段と,電力を整流するための整流器などの整流手段がさらに設けられる。風車は,通常,屋外に設置される。一方,太陽光発電により電力を得るために,公知の太陽光発電装置を用いることができる。このような太陽光発電装置として,多数のソーラーセルからなる太陽電池モジュールを用いることができる。ソーラーセルは,通常,屋外に設置される。   The power generation means 2 is means for obtaining electric power by wind power generation or solar power generation. In order to obtain electric power by wind power generation, a known wind power generator can be used. As such a wind power generator, there is one that rotates a propeller of a wind turbine by wind power, and the generator body rotates as the propeller rotates, thereby obtaining AC power. The electric power obtained by the power generation means 2 is transmitted to the storage battery via the conductor 12. When a wind power generator is used as the power generation means, the conductor 12 usually has a conversion means such as an A / D converter for converting the generated AC power into DC power, and a rectifier for rectifying the power. Etc. are further provided. Windmills are usually installed outdoors. On the other hand, in order to obtain electric power by solar power generation, a known solar power generation device can be used. As such a solar power generation device, a solar cell module including a large number of solar cells can be used. Solar cells are usually installed outdoors.

より具体的な風力発電装置として,プロペラ型(水平軸)風力発電機,ジャイロミル形(垂直軸型)風車などがある。プロペラ型(水平軸)風力発電機は,風向を感知し風車先端部が風向位置までプロペラ回転部を誘導させなければ十分な発電を得ることが出来ず,風向が変化するたびにヨーイングを繰り返す制御方式のため風向変動のある地域では発電のロスが発生し,発電効率が低下してしまう。また,風向が安定していても乱気流が発生することにより風向風速の変動によりピッチ変動が追従できなくなり,そのため安全性を確保するために緊急停止する機能が必要となる。しかし,ジャイロミル形(垂直軸型)風車の場合,従来のプロペラ形(水平軸)風力発電機とは異なり,回転軸を垂直に設置しており,風車翼も主軸を中心に2枚から6枚の翼で構成されてあるため,変動の激しい受風時にも翼のピッチ変動やヨーイングの必要無しに,全ての方向よりの受風に瞬時に発電可能である。また,省スペースでの設置可能であり,無指向性,風向制御も必要なしで,風切り音が小さく低騒音型であるなどの特徴をもつため,本システムで使用する風力発電装置としては,ジャイロミル形(垂直軸型)風車の方がより好ましい。   More specific wind power generators include a propeller type (horizontal axis) wind generator and a gyromill type (vertical axis type) wind turbine. Propeller type (horizontal axis) wind power generator is a control that repeats yawing every time the wind direction changes because it cannot sense the wind direction and sufficient wind power cannot be obtained unless the wind turbine tip is guided to the wind direction position. Because of this method, power generation loss occurs in areas with wind direction fluctuations, which reduces power generation efficiency. In addition, even if the wind direction is stable, turbulent airflow is generated, which makes it impossible to follow pitch fluctuations due to fluctuations in the wind direction and wind speed, and therefore a function of emergency stop is necessary to ensure safety. However, in the case of a gyromill type (vertical axis type) wind turbine, unlike the conventional propeller type (horizontal axis) wind power generator, the rotating shaft is installed vertically, and the wind turbine blades are also two to six around the main axis. Because it is composed of a single blade, it can instantly generate power from all directions, even when wind fluctuations are severe, without the need for pitch fluctuations or yawing. In addition, it can be installed in a small space, has no omnidirectional characteristics, no wind direction control is required, and has a low wind noise and low noise type. A mill type (vertical axis type) wind turbine is more preferable.

蓄電池3は,発電手段2によって得られた電力を蓄積するためのものであり,蓄電池から電力負荷11,水電解槽4,又は加熱手段7などへ電力が供給される。そして,電力が供給される相手や,供給する電力量は,電力制御手段8によって調整される。蓄電池として,公知の蓄電池を用いることができる。本発明において好ましい蓄電池として,満充電状態から放電をして一定放電後,再充電を行う事を繰り返す用途専用に製作されるサイクル用蓄電池が望ましい。その種類には,ナトリウム硫黄電池や鉛蓄電池などがあげられるが,特にナトリウム硫黄電池にくらべ寿命が短いものの,その電気的性能に優れ,コンパクトで安価な鉛蓄電池が望ましい。その中でも中の液体が漏れないよう安全設計されているシール形鉛蓄電池が望ましい。また,蓄電池の端子電圧は6V,12V,24V,48Vなどがあるが,1kW以上の電力負荷がある場合については,その電圧が交流100Vであっても,蓄電池の端子電圧を24Vや48Vのものを使用することによって,インバータまでの配線に流れる電流値や配線などの抵抗を小さくし,安全性や省エネルギー性を高めることが望ましい。   The storage battery 3 is for accumulating the electric power obtained by the power generation means 2, and the electric power is supplied from the storage battery to the power load 11, the water electrolysis tank 4, the heating means 7, or the like. The power supply means and the power supply partner and the amount of power to be supplied are adjusted by the power control means 8. A known storage battery can be used as the storage battery. As a preferred storage battery in the present invention, a cycle storage battery manufactured exclusively for applications in which recharging is performed after discharging from a fully charged state and after a certain discharge is desirable. The types include sodium-sulfur batteries and lead-acid batteries, but lead batteries with excellent electrical performance, compactness, and low cost are desirable, especially compared to sodium-sulfur batteries. Among them, a sealed lead-acid battery that is designed to be safe so that the liquid inside does not leak is desirable. The storage battery terminal voltage is 6V, 12V, 24V, 48V, etc. If there is a power load of 1kW or more, the storage battery terminal voltage is 24V or 48V even if the voltage is 100V AC. Therefore, it is desirable to reduce the value of the current flowing in the wiring to the inverter and the resistance of the wiring, etc., and to improve safety and energy saving.

なお,本明細書において“電力負荷”とは,本発明の発電システムにより電力を供給する本発明システム外の負荷を意味し,たとえば,家庭内における家電などの電力消費材があげられる。なお,電力負荷が家電など交流電力を必要とするものであり,得られる電力が直流電力である場合,交流変換機などを通して電力を電力負荷へ供給する。   In the present specification, the “power load” means a load outside the system of the present invention that supplies power by the power generation system of the present invention, and examples thereof include power consuming materials such as home appliances in the home. If the power load requires AC power, such as home appliances, and the obtained power is DC power, the power is supplied to the power load through an AC converter or the like.

水電解槽4は,発電手段1によって得られた電力や蓄電池2に蓄積された電力を用いて,電気分解により,水を水素と酸素とに分解するためのものである。そして,この際発生する水素は後述の燃料電池における電力源となるものである。水電解槽は,好ましくは蓄電池に蓄積された電力量が所定量以上となった場合(たとえば,蓄電池が貯蔵できる電力量の10%以上の電力が蓄積された場合,好ましくは80%の電力が蓄積された場合,より好ましくは90%以上が蓄積された場合,さらに好ましくは100%の電力が蓄積された場合)に,発電手段又は蓄電池から電力が供給され電気分解を起こすものである。すなわち,本発明において,最も望ましい態様は,まずは蓄電池に電力を蓄積し,余剰電力が自然エネルギーから供給された場合に,その自然エネルギーを無駄にするのではなく,水電解槽で水素を得てこれを燃料電池の電力源とするものである。なお,水電解槽で発生した水素は,後述の水素貯蔵部又はバックアップ用の水素貯蔵部に貯蔵されることとなる。そこで,これらの貯蔵部に貯蔵できる水素が所定量(たとえば,貯蔵量の限界値)以上の場合は,水電解槽で水素を得ることは望ましくない。そこで,これらの貯蔵部に連結された配管に取り付けられた圧力計により計測される水素ガス圧が所定量以上の場合は,水電解槽で電気分解が起こらないように制御されることが好ましい。このような場合,余剰電力は,後述の電力制御手段により,加熱手段やダミー負荷へと供給されることが好ましい。   The water electrolysis tank 4 is for decomposing water into hydrogen and oxygen by electrolysis using the power obtained by the power generation means 1 or the power stored in the storage battery 2. The hydrogen generated at this time becomes a power source in a fuel cell described later. The water electrolyzer is preferably configured to store 80% of the power when the amount of power stored in the storage battery exceeds a predetermined amount (for example, when 10% or more of the power stored in the storage battery is stored). When accumulated, more preferably when 90% or more is accumulated, and even more preferably when 100% of electric power is accumulated), electric power is supplied from the power generation means or the storage battery to cause electrolysis. In other words, in the present invention, the most desirable mode is that power is first stored in a storage battery, and when surplus power is supplied from natural energy, the natural energy is not wasted, but hydrogen is obtained in a water electrolyzer. This is used as the power source of the fuel cell. Note that the hydrogen generated in the water electrolysis tank is stored in a hydrogen storage section or a backup hydrogen storage section described later. Therefore, when the amount of hydrogen that can be stored in these storage units is greater than or equal to a predetermined amount (for example, the limit value of the storage amount), it is not desirable to obtain hydrogen in the water electrolysis tank. Therefore, when the hydrogen gas pressure measured by a pressure gauge attached to a pipe connected to these storage units is a predetermined amount or more, it is preferable to control so that electrolysis does not occur in the water electrolysis tank. In such a case, the surplus power is preferably supplied to the heating means and the dummy load by the power control means described later.

水電解槽は,通常,電解質及びその両端に水を水素と酸素とに電気分解する反応を促進するための電極触媒,外部から電力を供給する集電体などを保持した電解セルを有している。液体の電解質を使う場合には安価な構成材料でも腐食しないように電解液に水酸化カリウム水溶液などアルカリ性水溶液を使用することが好ましい。また純水を使う場合は電解質として,ナフィオンなど固体高分子形の電解質を用いることができる。これらの水電解槽はいずれも100℃以下の低温で使用することができ,短時間で起動ができる利点がある。いずれの場合も電解セルで発生した水素は,特に水分管理のため注入時に低い露点が求められる市販の燃料電池を用いる場合などは,水電解槽外の配管17を経て,一度ゼオライトなどの乾燥剤を注入した容器27で乾燥され,配管18へ送られる。配管18へ送られた水素は,配管19,26を経て水素貯蔵部5又は配管19,20,21,燃料遮断弁28,配管22を経て燃料電池6へ送られる。なお,バックアップ用の水素貯蔵部を用いる場合は,例えば,配管25,圧力レギュレータ29,配管24,逆支弁または圧力制御手段30,配管23,21,燃料遮断弁28,配管22を経由して燃料電池6へ送られる。なお,水電解槽で発生した酸素は,酸素管などの配管を通じて,燃料電池の空気極へ送られるようにしても良いし,発電システム内や大気に開放しても良い。   A water electrolyzer usually has an electrolytic cell holding an electrolyte, an electrode catalyst for promoting the reaction of electrolyzing water into hydrogen and oxygen, and a current collector for supplying power from the outside. Yes. When using a liquid electrolyte, it is preferable to use an alkaline aqueous solution such as an aqueous potassium hydroxide solution for the electrolytic solution so as not to corrode even inexpensive components. When pure water is used, a solid polymer electrolyte such as Nafion can be used as the electrolyte. All of these water electrolyzers can be used at low temperatures of 100 ° C or less, and have the advantage of being able to start up in a short time. In any case, the hydrogen generated in the electrolysis cell is once a desiccant such as zeolite through the pipe 17 outside the water electrolysis tank, especially when using a commercially available fuel cell that requires a low dew point during injection for water management. Is dried in a container 27 filled with, and sent to a pipe 18. The hydrogen sent to the pipe 18 is sent to the fuel cell 6 via the pipes 19 and 26, the hydrogen storage unit 5 or the pipes 19, 20 and 21, the fuel cutoff valve 28, and the pipe 22. In the case where a backup hydrogen storage unit is used, for example, fuel is supplied via a pipe 25, a pressure regulator 29, a pipe 24, a reverse valve or pressure control means 30, pipes 23 and 21, a fuel cutoff valve 28, and a pipe 22. It is sent to the battery 6. Note that oxygen generated in the water electrolysis tank may be sent to the air electrode of the fuel cell through a pipe such as an oxygen pipe, or may be opened in the power generation system or to the atmosphere.

水素貯蔵部5は,水電解槽で発生した水素を貯蔵するためのものである。水素貯蔵部として,公知の水素ボンベや高圧ガス用の圧力容器,2次圧力容器を用いることができる。水素ボンベや高圧ガス用の圧力容器,2次圧力容器は,1個でも複数個あっても良い。水素ボンベや高圧ガス用の圧力容器,2次圧力容器の材料として,鋼板製やカーボン繊維で強化されたプラスティック製があげられ,水電解槽にかかる圧力以上の耐圧容器であればよい。すなわち,1MPa以下の圧力であれば2次圧力容器,それ以上であれば高圧ガス用の圧力容器が利用できる。   The hydrogen storage unit 5 is for storing hydrogen generated in the water electrolysis tank. As the hydrogen storage unit, a known hydrogen cylinder, a pressure vessel for high pressure gas, or a secondary pressure vessel can be used. One or more hydrogen cylinders, high pressure gas pressure vessels, and secondary pressure vessels may be provided. Examples of materials for hydrogen cylinders, high pressure gas pressure vessels, and secondary pressure vessels include steel plates and plastics reinforced with carbon fibers, and any pressure vessel that exceeds the pressure applied to the water electrolysis tank may be used. That is, a secondary pressure vessel can be used if the pressure is 1 MPa or less, and a pressure vessel for high-pressure gas can be used if the pressure is more than 1 MPa.

水素貯蔵部5として,前記の水素ボンベや高圧ガス用の圧力容器,2次圧力容器の他に公知の水素吸蔵合金を用いてもよい。水素吸蔵合金としては,希土類金属―ニッケル系などのAB5型合金,チタンやクロム系などの体心立方(BCC)構造を持つ合金などが利用でき,前記の水素ボンベや高圧ガス用の圧力容器,2次圧力容器に含有させるなどの方法により,水素貯蔵量を増加させたり,同一体積の水素量を貯蔵する場合は,水素貯蔵部の圧力を低下させることができる。

水素貯蔵部5から新たに配管を連結し,水素を昇圧するためのコンプレッサーを用い,水素貯蔵部は昇圧した水素を貯蔵できるようにしてもよい。このような水素貯蔵部を用いれば,より小さなスペースで多くの水素を貯蔵できることになるからである。このようなコンプレッサーとして,ピストン多段式のコンプレッサーがあげられ,0.6MPa以上の,より好ましくは1MPa以上のさらに好ましくは10MPa以上の圧力が好ましい。また,水素の純度を下げないように無給油式のものが望ましい。昇圧した水素を貯蔵するために,水素貯蔵部は,前記コンプレッサーの昇圧圧力に耐えるものであればよい。通常の高圧ガス用の貯蔵部はその耐圧が20MPaなどのものがあるので,昇圧した水素を貯蔵できる。
As the hydrogen storage unit 5, a known hydrogen storage alloy may be used in addition to the hydrogen cylinder, the pressure vessel for high pressure gas, and the secondary pressure vessel. As the hydrogen storage alloy, AB5 type alloys such as rare earth metal-nickel and alloys with body-centered cubic (BCC) structure such as titanium and chromium can be used. When the hydrogen storage amount is increased or the same volume of hydrogen is stored by a method such as containing in a secondary pressure vessel, the pressure of the hydrogen storage unit can be reduced.

A pipe may be newly connected from the hydrogen storage unit 5 and a compressor for boosting the hydrogen may be used so that the hydrogen storage unit can store the boosted hydrogen. This is because if such a hydrogen storage unit is used, a large amount of hydrogen can be stored in a smaller space. An example of such a compressor is a piston multistage compressor, and a pressure of 0.6 MPa or more, more preferably 1 MPa or more, and further preferably 10 MPa or more is preferable. An oil-free type is desirable so as not to lower the purity of hydrogen. In order to store the boosted hydrogen, the hydrogen storage unit only needs to withstand the boosted pressure of the compressor. A normal high-pressure gas storage unit has a pressure resistance of 20 MPa, so that it can store pressurized hydrogen.

燃料電池6は,水電解槽4で発生した水素,水素貯蔵部に貯蔵された水素,又はバックアップ用の水素貯蔵部に貯蔵された水素を用いて電力を得るためのものである。これらの水素は,たとえば配管17〜26を経由して燃料電池へ伝えられる。燃料電池として,公知の燃料電池を用いることができる。燃料電池は,基本的には,水の電気分解と逆の反応により水を生成させると共に,電力を取り出すものである。燃料電池の基本構造として,図2を示す。   The fuel cell 6 is for obtaining electric power using hydrogen generated in the water electrolyzer 4, hydrogen stored in the hydrogen storage unit, or hydrogen stored in the backup hydrogen storage unit. These hydrogens are transmitted to the fuel cell via piping 17 to 26, for example. A known fuel cell can be used as the fuel cell. The fuel cell basically generates water by taking a reaction opposite to the electrolysis of water and extracts electric power. FIG. 2 shows the basic structure of the fuel cell.

図2は,燃料電池の基本構造を示す概略図である。燃料電池6は,複数のセル31を多数積層した構成を有するものがあげられる。図2に示されるように,各セル31は,電解質32の両端に触媒層33を付与し,その外側にガスを拡散する機能を持つガス拡散層34で圧着し,その外側に燃料ガス,空気を導入する溝を持つセパレータ35を有する。なお,セパレータ35には,通常多数の溝が設けられており,これによりそれぞれの電極上の表面積が広くなるので,燃料電池をコンパクトにすることができる。そして,燃料電池の各セルの燃料極に水素供給口36から水素が供給される。一方,大気中などから例えばコンプレッサー及び配管を通して,酸素供給口37から酸素が空気極に供給される。この際,セルの電解質にパーフルオロスルホン酸系の電解質を用いる場合などはイオン導電性を高めるため加湿器を設置してもよい。燃料極では,触媒上で水素が水素イオンと電子となる。この水素イオンは,電解質32を経由し空気極へと移動し,電子は集電板38から集電され,外部回路を経由して空気極へと到達する。一方,空気極では,酸素と,水素イオン及び電子が結合し,水が生じる。このようにして,燃料電池へ供給される水素量と発電効率に応じた電力を得ることができ,電力変換されなかったエネルギーは熱に変換される。また,逆に言えば,電力負荷へ供給する電力と発電効率に応じた量の水素を消費する。   FIG. 2 is a schematic diagram showing the basic structure of the fuel cell. An example of the fuel cell 6 has a configuration in which a plurality of cells 31 are stacked. As shown in FIG. 2, each cell 31 is provided with a catalyst layer 33 on both ends of an electrolyte 32, and is pressure-bonded with a gas diffusion layer 34 having a function of diffusing gas on the outer side. It has the separator 35 with the groove | channel which introduce | transduces. The separator 35 is usually provided with a large number of grooves, which increases the surface area on each electrode, so that the fuel cell can be made compact. Then, hydrogen is supplied from the hydrogen supply port 36 to the fuel electrode of each cell of the fuel cell. On the other hand, oxygen is supplied to the air electrode from the oxygen supply port 37 through, for example, a compressor and piping from the atmosphere. At this time, when a perfluorosulfonic acid type electrolyte is used as the electrolyte of the cell, a humidifier may be installed in order to increase the ionic conductivity. At the fuel electrode, hydrogen becomes hydrogen ions and electrons on the catalyst. The hydrogen ions move to the air electrode via the electrolyte 32, and the electrons are collected from the current collector plate 38 and reach the air electrode via an external circuit. On the other hand, at the air electrode, oxygen is combined with hydrogen ions and electrons to produce water. In this way, electric power according to the amount of hydrogen supplied to the fuel cell and the power generation efficiency can be obtained, and the energy that has not been converted into electric power is converted into heat. Conversely, it consumes an amount of hydrogen corresponding to the power supplied to the power load and the power generation efficiency.

なお,燃料電池として,以下のように発電する際に起こる電気化学反応の逆反応,すなわち水の電気分解反応を同一のセルで行うことができるものが好ましい。図3は,燃料電池として,水の電気分解反応を同一のセルで行うことができるものを用いた発電システムのブロック図である。例えば図3に示されるように気液分離器45,46を設置し,発電を行う際,水素貯蔵部51から水素が燃料極に供給され,一部が三方電磁弁55により排気できる構造とし,空気側はコンプレッサー49より空気を吸い込み,電磁弁58,電解質の加湿器の役目をする気液分離器45を経て,燃料電池の空気極に導入され,利用されなかった空気中の酸素ガスが三方電磁弁56により排気できる構造とする。一方,同じセルで水を電気分解する場合には水の貯蔵タンク52からポンプ54で気液分離器45にフロート47を利用し水を供給し,電解セルには循環ポンプ53でセルに水を供給する。発生した酸素は反応に寄与しなかった水と一緒に排気され,気液分離器45で水と水分を含む酸素に分離され,酸素は電磁弁48より系外に放出される。反対側の燃料極では水分を含んだ水素が生成し,乾燥剤を含む容器50を通過し,乾燥された水素が貯蔵される。また気液分離器45中の水分はフロート48を利用し,適度な水量になった時,電磁弁57を開け水の貯蔵タンク52に戻される。このような燃料電池であれば,水電解槽としても機能しうる。よって,この態様の発電システムによれば,システムの大きさを小さくすることができる。   In addition, as a fuel cell, what can perform the reverse reaction of the electrochemical reaction which occurs at the time of generating electric power as follows, ie, the electrolysis reaction of water, in the same cell is preferable. FIG. 3 is a block diagram of a power generation system using a fuel cell that can perform an electrolysis reaction of water in the same cell. For example, as shown in FIG. 3, when gas-liquid separators 45 and 46 are installed and power generation is performed, hydrogen is supplied from the hydrogen storage unit 51 to the fuel electrode, and a part can be exhausted by the three-way solenoid valve 55. On the air side, air is sucked in from the compressor 49, and is introduced into the air electrode of the fuel cell via the solenoid valve 58 and the gas-liquid separator 45 that functions as an electrolyte humidifier. The structure is such that the electromagnetic valve 56 can exhaust. On the other hand, when water is electrolyzed in the same cell, water is supplied from the water storage tank 52 to the gas-liquid separator 45 by the pump 54 using the float 47, and water is supplied to the electrolysis cell by the circulation pump 53. Supply. The generated oxygen is exhausted together with water that has not contributed to the reaction, and is separated into oxygen containing water and moisture by the gas-liquid separator 45, and oxygen is released out of the system from the electromagnetic valve 48. In the fuel electrode on the opposite side, hydrogen containing moisture is generated, passes through the container 50 containing the desiccant, and the dried hydrogen is stored. Further, the water in the gas-liquid separator 45 uses the float 48, and when an appropriate amount of water is obtained, the electromagnetic valve 57 is opened and returned to the water storage tank 52. Such a fuel cell can also function as a water electrolysis tank. Therefore, according to the power generation system of this aspect, the size of the system can be reduced.

燃料電池に水素を供給する配管22などに燃料遮断弁28が設けられていることは,本発明の好ましい実施態様である。この燃料遮断弁は,好ましくは,燃料電池が作動している際にのみ弁が開くように電力制御手段により制御される。これにより燃料電池が作動していない際に,水素が供給される事態を防止できるので,水素の供給口に燃料遮断弁とその制御回路を必要とする市販の燃料電池を使用する場合も問題なく使用できる。   It is a preferred embodiment of the present invention that the fuel cutoff valve 28 is provided in the piping 22 for supplying hydrogen to the fuel cell. This fuel shut-off valve is preferably controlled by the power control means so that the valve opens only when the fuel cell is operating. This prevents the situation where hydrogen is supplied when the fuel cell is not in operation, so there is no problem even when using a commercially available fuel cell that requires a fuel cutoff valve and its control circuit at the hydrogen supply port. Can be used.

加熱手段7は,水電解槽又は燃料電池のいずれか又は両方を加温するための任意の手段であり,電力を供給されて放熱するものを含むものであれば特に限定されない。加熱手段として,ニクロム線などの抵抗体があげられる。また,燃料電池から電力を得る際に発生する熱を併せて利用するものでもよい。また,水電解槽又は燃料電池を含む系(たとえば,断熱容器や断熱家屋など)の内部全体を加熱することにより水電解槽又は燃料電池を間接的に加熱するものであってもよい。加熱手段へ供給される電力は,例えば,電力制御手段により調整される。   The heating means 7 is an arbitrary means for heating either or both of the water electrolyzer and the fuel cell, and is not particularly limited as long as it includes one that is supplied with electric power and dissipates heat. As a heating means, a resistor such as a nichrome wire can be used. Further, heat generated when power is obtained from the fuel cell may be used together. Further, the water electrolysis tank or the fuel cell may be indirectly heated by heating the entire interior of the system (for example, a heat insulation container or a heat insulation house) including the water electrolysis tank or the fuel cell. The power supplied to the heating means is adjusted by, for example, the power control means.

電力制御手段8は,発電手段により得られる電力,蓄電池に蓄積される電力,又は燃料電池により得られる電力の供給先を制御するための手段である。特に図示しないが,電力制御手段は,情報を受け取り,又は情報を提供する部位と電気的に接続されている。そして,電力制御手段は,例えば,各電池などの電圧値を測定する手段から各電圧値などの情報や,また水素貯蔵部内の水素ガス圧を測定する手段からガス圧値などの情報を入手し,その入手した電圧値や水素ガス量などの情報に応じて,電力の発生場所や電力供給先などを制御する。具体的な電力制御手段として,コンピュータを電力制御手段として機能させるためのプログラムを搭載したコンピュータがあげられる。すなわち,各種計測器などの計測手段からの情報をコンピュータに入力する。コンピュータの記憶手段(ROM,RAM,HDなど)が,各種設定値や所定の値を記憶する。これらの値は,変更可能とされていても良い。比較手段が,入力された計測値に関する情報と,記憶手段が記憶した値とを比較する。そして,指令手段が,比較手段の比較結果に基づいて,電力供給先などを決定する指令を出す。このようにすれば,電力の供給先を適切に制御できることとなる。   The power control means 8 is a means for controlling the supply destination of the power obtained by the power generation means, the power accumulated in the storage battery, or the power obtained by the fuel cell. Although not particularly illustrated, the power control means is electrically connected to a part that receives information or provides information. Then, the power control means obtains information such as each voltage value from the means for measuring the voltage value of each battery or the like, and information such as the gas pressure value from the means for measuring the hydrogen gas pressure in the hydrogen storage unit. In accordance with the obtained information such as the voltage value and the amount of hydrogen gas, the power generation location and the power supply destination are controlled. Specific examples of the power control means include a computer equipped with a program for causing a computer to function as the power control means. That is, information from measuring means such as various measuring instruments is input to the computer. The storage means (ROM, RAM, HD, etc.) of the computer stores various setting values and predetermined values. These values may be changeable. The comparison means compares the information regarding the input measurement value with the value stored by the storage means. Then, the command unit issues a command for determining the power supply destination and the like based on the comparison result of the comparison unit. In this way, the power supply destination can be appropriately controlled.

なお,水電解槽中の水の温度を測定するための温度測定手段10をさらに具備し,電力制御手段は,温度測定手段により測定された温度が所定温度以下になった場合に,前記加熱手段へ電力を供給するものは本発明の好ましい実施態様である。このような温度測定手段として,公知の電子温度計,温度に対して電気抵抗のへ変化が大きい抵抗体を用いたサーミスタ式や白金など金属の温度抵抗率が温度に比例して変わる測温抵抗体,二種の異なる金属を接合して,2つの接合点を異なる温度にした際の熱起電力を利用した熱電対を利用したものがあげられる。温度測定手段によって測定された温度情報は,電力制御手段に伝えられる。この態様においては,電力制御手段は,伝えられた温度情報が所定温度以下である場合に,加熱手段へ所定量の電力を供給するようにすることにより,上記のように電力の供給を制御できる。ここで,所定温度としては,例えば−20℃〜10℃があげられ,好ましくは−10℃〜5℃であり,より好ましくは−5℃〜5℃である。   The temperature measuring means 10 for measuring the temperature of the water in the water electrolysis tank is further provided, and the power control means is configured such that when the temperature measured by the temperature measuring means falls below a predetermined temperature, the heating means It is a preferred embodiment of the present invention that supplies power to the. As such temperature measuring means, a known electronic thermometer, a thermistor type using a resistor having a large change in electrical resistance with respect to temperature, or a resistance temperature measuring resistor in which the temperature resistivity of a metal such as platinum changes in proportion to the temperature. And a thermocouple that uses thermoelectromotive force when two different metals are joined and the two junctions are brought to different temperatures. The temperature information measured by the temperature measuring means is transmitted to the power control means. In this aspect, the power control means can control the supply of power as described above by supplying a predetermined amount of power to the heating means when the transmitted temperature information is below a predetermined temperature. . Here, examples of the predetermined temperature include −20 ° C. to 10 ° C., preferably −10 ° C. to 5 ° C., and more preferably −5 ° C. to 5 ° C.

温度測定手段は,水電解槽中の水の温度を測定するもののみならず,発電システムの任意の箇所の温度(たとえば,配管の内部又は外部の温度,燃料電池の温度,蓄電池の表面温度,水電解槽の槽温度,又は発電システムのシステム雰囲気温度)を測定するものであってよい。   The temperature measurement means not only measures the temperature of the water in the water electrolysis tank, but also the temperature at any point in the power generation system (for example, the temperature inside or outside the piping, the temperature of the fuel cell, the surface temperature of the storage battery, The temperature of the water electrolysis tank or the system atmosphere temperature of the power generation system) may be measured.

電力制御手段8のある態様は,前記蓄電池の電圧値が第1の設定値未満である場合には,前記燃料電池で電力を発生させ,前記電力負荷又は前記加熱手段へ電力を供給し,前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記加熱手段へ電力を供給し,前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値未満である場合には,前記蓄電池から前記電力負荷又は前記加熱手段へ電力を供給し,さらに前記発電手段により蓄電池へ蓄積される電力を用いて,前記水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵し,前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値以上である場合には,前記発電手段により蓄電池へ蓄積される電力を前記加熱手段又はダミー負荷へ供給するように電力を制御するものである。   In one aspect of the power control means 8, when the voltage value of the storage battery is less than a first set value, the fuel cell generates power, supplies power to the power load or the heating means, When the voltage value of the storage battery is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the heating means, and the voltage value of the storage battery is the second set value. If the amount of hydrogen stored in the hydrogen storage unit is less than a predetermined value, the power is supplied from the storage battery to the power load or the heating means, and further to the storage battery by the power generation means. Using the stored electric power, hydrogen is generated in the water electrolyzer, the hydrogen is stored in the hydrogen storage unit, the voltage value of the storage battery is not less than the second set value, and the hydrogen storage unit The amount of hydrogen stored in The case is at least, controls the power to supply the electric power to be accumulated in the battery to the heating means or a dummy load by the power generating means.

ここで“蓄電池の電圧値が第1の設定値未満である場合”とは,例えば,有効に電力供給できなくなる程度を意味し,蓄電池の定格電圧によって異なる。例えば蓄電池の定格電圧が48Vのものである場合,蓄電池の電圧が,0V〜45V,好ましくは30V〜40V,より好ましくは,有効に電力供給できなくなる程度を意味する。この場合は,すでに貯蔵していた水素貯蔵部から水素を燃料電池に供給することによって,電力負荷へ電力を供給する。このことによって,蓄電池の備蓄電力が乏しい場合でも,燃料電池を用いて電力負荷へ電力を供給できる。特に,蓄電池に蓄積された自然エネルギーを使い果たし,自然エネルギーから得られるエネルギーが乏しい場合であっても,効果的に電力負荷へ電力を供給できることとなる。     Here, “when the voltage value of the storage battery is less than the first set value” means, for example, the extent to which power cannot be effectively supplied, and differs depending on the rated voltage of the storage battery. For example, when the rated voltage of the storage battery is 48 V, it means that the storage battery voltage is 0 V to 45 V, preferably 30 V to 40 V, and more preferably, the power cannot be effectively supplied. In this case, power is supplied to the power load by supplying hydrogen to the fuel cell from the hydrogen storage part that has already been stored. As a result, even when the stored power of the storage battery is scarce, power can be supplied to the power load using the fuel cell. In particular, even when the natural energy stored in the storage battery is used up and the energy obtained from the natural energy is scarce, it is possible to effectively supply power to the power load.

ここで“蓄電池の電圧値が第1の設定値以上第2の設定値未満である場合”とは,例えば,蓄電池から有効に電力負荷へ電力は供給できるものの,蓄電池に電力が余剰している訳ではなく,水電解槽に電力を供給することによってエネルギー損出を生む程度の電圧値を意味し,蓄電池の定格電圧によって異なる。例えば蓄電池の定格電圧が48Vである場合,蓄電池の電圧が,30V〜48V,好ましくは40V〜48V,より好ましくは,蓄電池から有効に電力負荷へ電力は供給できるものの,蓄電池に電力が余剰している訳ではなく,水電解槽に電力を供給することによってエネルギー損出を生む程度の電圧値を意味する。水電解槽に電力を供給し,水素に変換し,水素貯蔵部に貯蔵し,さらに上記のように燃料電池に供給する場合,電力を水素に変換する効率,水素を電力に交換する効率が発生し,蓄電池が余剰していないこのケースでは水電解槽に電力を供給することはエネルギーの損出を招き,上記のように蓄電池からの電力供給は電力負荷又は加熱手段のみとすることが好ましい。   Here, “when the voltage value of the storage battery is greater than or equal to the first set value and less than the second set value” means that, for example, power can be effectively supplied from the storage battery to the power load, but there is surplus power in the storage battery. It does not mean that it means a voltage value that causes energy loss by supplying power to the water electrolyzer, and differs depending on the rated voltage of the storage battery. For example, when the rated voltage of the storage battery is 48V, the storage battery voltage is 30V to 48V, preferably 40V to 48V, and more preferably, power can be effectively supplied from the storage battery to the power load, but the storage battery has excess power. Instead, it means a voltage value that causes energy loss by supplying power to the water electrolyzer. When power is supplied to the water electrolyzer, converted to hydrogen, stored in the hydrogen storage unit, and supplied to the fuel cell as described above, the efficiency of converting power to hydrogen and the efficiency of exchanging hydrogen for power are generated. However, in this case where the storage battery is not surplus, supplying power to the water electrolyzer causes loss of energy, and as described above, the power supply from the storage battery is preferably limited to the power load or heating means.

ここで“蓄電池の電圧値が第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値未満である場合”とは,例えば,蓄電池から有効に電力負荷へ電力は供給でき,さらに蓄電池に電力が余剰しており,蓄電池の電圧が水電解槽に電力を供給することによってエネルギーの貯蔵が可能になる程度の電圧値であり,かつ水電解槽や配管における水素の圧力が水電解槽や配管の圧力の耐圧未満であり,水素の貯蔵が可能である状態の場合を意味し,蓄電池の定格電圧や水電解槽や配管の耐圧によって異なる。例えば蓄電池の定格電圧については,その電圧が48Vである場合,蓄電池の電圧が40V以上,好ましくは44V以上,より好ましくは48V以上,さらに好ましくは蓄電池から有効に電力負荷へ電力は供給でき,さらに蓄電池に電力が余剰しており,水電解槽に電力を供給することによってエネルギーの貯蔵が可能になる程度の電圧値を意味する。また,水電解槽や配管の耐圧については,それらの内部に存在する水素の圧力が,たとえば,10kPa〜100MPa未満,好ましくは100kPa〜10MPa未満,より好ましくは0.6MPa未満を意味し,好ましくは水電解槽や配管の耐圧未満であり,水素の貯蔵が可能である程度の圧力であることを意味する。このケースでは,蓄電池の電力が余剰しているため,蓄電池から電力負荷や加熱手段へ電力を供給するとともに水電解槽に電力を供給し,水素を貯蔵することによってエネルギーの貯蔵が可能になる。   Here, “when the voltage value of the storage battery is greater than or equal to the second set value and the amount of hydrogen stored in the hydrogen storage unit is less than a predetermined value” means, for example, that power is effectively transferred from the storage battery to the power load. In addition, there is surplus power in the storage battery, and the voltage of the storage battery is such that the energy can be stored by supplying power to the water electrolyzer. This means that the pressure is less than the pressure resistance of the water electrolyzer or pipe, and hydrogen can be stored, and it depends on the rated voltage of the storage battery and the pressure of the water electrolyzer or pipe. For example, if the rated voltage of the storage battery is 48V, the storage battery voltage is 40V or more, preferably 44V or more, more preferably 48V or more, and more preferably power can be effectively supplied from the storage battery to the power load. It means a voltage value at which power is stored in the storage battery and energy can be stored by supplying power to the water electrolyzer. As for the pressure resistance of water electrolyzers and pipes, the pressure of hydrogen existing in them means, for example, 10 kPa to less than 100 MPa, preferably less than 100 kPa to 10 MPa, more preferably less than 0.6 MPa, preferably This means that the pressure is below the pressure resistance of the water electrolyzer and piping, and that hydrogen can be stored at a certain pressure. In this case, since the power of the storage battery is surplus, energy can be stored by supplying power from the storage battery to the power load and heating means, supplying power to the water electrolyzer, and storing hydrogen.

ここで“蓄電池の電圧値が第2の設定値以上であり,かつ前記水素貯蔵部に貯蔵される水素量が所定値以上である場合”とは,蓄電池の定格電圧や水電解槽や配管の耐圧によって異なる。例えば蓄電池の定格電圧値については,その電圧が48Vの場合,蓄電池の電圧が40V以上,好ましくは44V以上,より好ましくは48V以上,さらに好ましくは蓄電池から有効に電力負荷や加熱手段へ電力が供給でき,さらに蓄電池に電力が余剰しており,水電解槽に電力を供給することによってエネルギーの貯蔵が可能になる程度の電圧値を意味する。また,水電解槽や配管の耐圧については,それらの内部に存在する水素の圧力が,たとえば,10kPa〜100MPa,好ましくは100kPa〜10MPa,より好ましくは0.6MPa以上を意味し,好ましくは水電解槽や配管の圧力がその耐圧以上となり,貯蔵できる水素量が満タン状態の場合を意味する。このケースについては,蓄電池の蓄電池の電力が余剰しているものの,蓄電池から電力負荷や加熱手段へ電力を供給するとともに水電解槽に電力を供給すると,水電解槽で過剰に水の電気分解が行われ,水電解槽や配管の水素ガスの圧力が異常に高まる事態が発生する可能性がある。また,蓄電池から電力を消費する手段へ電力を供給しない場合,発電手段から蓄電池へ電力が過剰に供給され,蓄電池の温度が上昇する事態が発生する可能性がある。このため,発電手段により蓄電池へ蓄積される電力を加熱手段又はダミー負荷へ供給するように電力を制御することが好ましい。なお,加熱手段の温度が所定の温度以下の場合は,優先的に加熱手段へ電力を供給し,加熱温度が所定の温度以上の場合は,優先的にダミー負荷へ電力を供給するように制御しても良い。このように制御することで,水電解槽において電気分解が過剰に行われることを防止できる。さらには加熱手段により水電解槽を加熱しすぎて水又は電解液が蒸発する事態を防止でき,燃料電池を加熱しすぎて,電解質が乾燥し,電力変換効率が低下する事態を防止できる。   Here, “when the voltage value of the storage battery is greater than or equal to the second set value and the amount of hydrogen stored in the hydrogen storage unit is greater than or equal to the predetermined value” means that the rated voltage of the storage battery, the water electrolyzer or the piping is It depends on the pressure resistance. For example, regarding the rated voltage value of a storage battery, when the voltage is 48 V, the storage battery voltage is 40 V or more, preferably 44 V or more, more preferably 48 V or more, and more preferably power is effectively supplied from the storage battery to a power load or heating means. In addition, it means a voltage value that allows the storage battery to store energy by supplying power to the water electrolyzer. Regarding the pressure resistance of water electrolyzers and pipes, the pressure of hydrogen existing in them means, for example, 10 kPa to 100 MPa, preferably 100 kPa to 10 MPa, more preferably 0.6 MPa or more, preferably water electrolysis This means that the tank or piping pressure exceeds its pressure resistance and the amount of hydrogen that can be stored is full. In this case, although the power of the storage battery is surplus, when the power is supplied from the storage battery to the power load or the heating means and the power is supplied to the water electrolysis tank, the water electrolysis tank excessively electrolyzes the water. This may cause a situation in which the pressure of hydrogen gas in the water electrolyzer and piping increases abnormally. Further, when power is not supplied from the storage battery to the means for consuming power, there is a possibility that power is excessively supplied from the power generation means to the storage battery and the temperature of the storage battery rises. For this reason, it is preferable to control the power so that the power stored in the storage battery by the power generation means is supplied to the heating means or the dummy load. Control is made so that power is preferentially supplied to the heating means when the temperature of the heating means is lower than a predetermined temperature, and power is supplied preferentially to the dummy load when the heating temperature is higher than the predetermined temperature. You may do it. By controlling in this way, it is possible to prevent excessive electrolysis in the water electrolysis tank. Furthermore, it is possible to prevent a situation where water or an electrolytic solution evaporates due to heating of the water electrolysis tank by the heating means, and it is possible to prevent a situation where the fuel cell is overheated, the electrolyte is dried, and the power conversion efficiency is lowered.

このように制御することによって,自然エネルギーから得られた電力を最大限有効利用するとともに,蓄電池の劣化や水電解槽,配管の破損などを防止でき,電力負荷へ安定した電力を行うことができる。   By controlling in this way, the electric power obtained from natural energy can be used to the maximum extent possible, and it is possible to prevent deterioration of the storage battery, damage to the water electrolyzer and piping, and to provide stable power to the power load. .

なお,上記の制御では蓄電池の電圧が第2の設定値近辺で推移し,水電解槽の始動,停止を頻繁に行わなければならないケースがあり,水電解槽を安定に運転するためには好ましくない。この場合は,以下のような電力制御をすることが好ましい。   In the above control, there are cases where the voltage of the storage battery changes in the vicinity of the second set value and the water electrolyzer must be frequently started and stopped, which is preferable for stable operation of the water electrolyzer. Absent. In this case, it is preferable to perform power control as follows.

蓄電池の電圧が所定値2より大きい所定値3を設け,蓄電池の電圧値が第3の設定値以上でかつ前記水素貯蔵部に貯蔵される水素量が所定値未満である場合には,蓄電池から電力負荷へ電力を供給し,さらに水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵するように電力を制御し,その結果,蓄電池の電圧が前記第2の設定値未満になった場合,または水素貯蔵部に貯蔵される水素量が所定値以上に達した場合には,蓄電池から電力負荷へ電力を供給するものの,水電解槽への電力の供給を止め,前記発電手段によって蓄電池が充電され,その電圧が再び前記第3の設定値以上になり,かつ水素貯蔵部に貯蔵される水素量が所定値未満である場合には,蓄電池から電力負荷へ電力を供給しながら,水電解槽への電力の供給を再開する。   When the storage battery voltage is set to a predetermined value 3 greater than the predetermined value 2, the storage battery voltage value is greater than or equal to a third set value, and the amount of hydrogen stored in the hydrogen storage unit is less than the predetermined value, Power is supplied to the power load, hydrogen is generated in the water electrolyzer, and the power is controlled to store the hydrogen in the hydrogen storage unit. As a result, the storage battery voltage is less than the second set value. If the amount of hydrogen stored in the hydrogen storage unit reaches a predetermined value or more, the power is supplied from the storage battery to the power load, but the power supply to the water electrolyzer is stopped, and the power generation means When the storage battery is charged, the voltage again becomes equal to or higher than the third set value, and the amount of hydrogen stored in the hydrogen storage unit is less than the predetermined value, power is supplied from the storage battery to the power load. , Supply of electric power to water electrolyzer Resume.

ここで“蓄電池の電圧値が第3の設定値以上である場合”とは,蓄電池から有効に電力負荷へ電力は供給でき,さらに蓄電池に電力が余剰しており,水電解槽に電力を供給することによってエネルギーの貯蔵が可能になり,かつ第2の設定値と一定の値の差をつけることによって,水電解槽の頻繁な始動,停止を避けることができる程度の電圧値を意味し,蓄電池の定格電圧,容量によって異なる。例えば蓄電池の定格電圧が48V,65A・hである場合,蓄電池の電圧が,第2の設定値よりも0.1V以上大きく,好ましくは1V以上大きく,より好ましくは4V以上大きく,さらに好ましくは蓄電池から有効に電力負荷へ電力は供給でき,さらに蓄電池に電力が余剰しており,水電解槽に電力を供給することによってエネルギーの貯蔵が可能になり,かつ第2の設定値と一定の値の差をつけることによって,水電解槽の頻繁な始動,停止を避けることができる程度の電圧値を意味する。   Here, “when the voltage value of the storage battery is greater than or equal to the third set value” means that the storage battery can effectively supply power to the power load, and the storage battery has surplus power, which supplies power to the water electrolyzer. This means a voltage value that enables energy storage, and by making a difference between the second set value and a constant value, avoiding frequent starting and stopping of the water electrolyzer, It depends on the rated voltage and capacity of the storage battery. For example, when the rated voltage of the storage battery is 48 V, 65 A · h, the storage battery voltage is 0.1 V or more larger than the second set value, preferably 1 V or more, more preferably 4 V or more, more preferably from the storage battery. Power can be effectively supplied to the power load, and the storage battery has surplus power. By supplying power to the water electrolyzer, energy can be stored, and the difference between the second set value and a constant value is possible. This means that the voltage value is such that frequent start and stop of the water electrolyzer can be avoided.

蓄電池の電圧値は,蓄電池に取り付けられた電圧計などの電圧測定手段により測定することができる。そして,電圧測定手段により測定された電圧に関する情報を,電力制御手段へ伝える。そして,電力制御手段は,その伝えられた電圧に関する情報と,あらかじめ設定された電圧値とを比較し,その電圧が設定電圧よりも低い場合は,燃料電池で電力を発生させるように,燃料遮断弁28を開くように制御する。これにより,蓄電池に蓄積した電力が低くなった場合に,水素を用いて燃料電池から電力を得ることができることとなる。後述のとおり,好ましくは水素貯蔵部のバルブを優先的に開き,水素貯蔵部内の水素が少なくなった場合にバックアップ用水素貯蔵部のバルブを開く。   The voltage value of the storage battery can be measured by voltage measuring means such as a voltmeter attached to the storage battery. And the information regarding the voltage measured by the voltage measurement means is transmitted to the power control means. Then, the power control means compares the information on the transmitted voltage with a preset voltage value, and when the voltage is lower than the set voltage, the fuel shut-off is performed so that the fuel cell generates power. Control valve 28 to open. As a result, when the power stored in the storage battery becomes low, power can be obtained from the fuel cell using hydrogen. As will be described later, the valve of the hydrogen storage unit is preferably opened preferentially, and when the hydrogen in the hydrogen storage unit is low, the valve of the backup hydrogen storage unit is opened.

電力制御手段の好ましい別の態様は,蓄電池の電圧値が所定値未満の状態である場合,水素貯蔵部(又はバックアップ用の水素貯蔵部)に蓄積された水素を用いて燃料電池により電力を発生させ,蓄電池に電力を供給するように制御するものである。ここで,“蓄電池の電圧値が所定値未満”とは,蓄電池の定格電圧によって異なる。例えば蓄電池の定格電圧値が48Vの場合,0V〜45Vを意味し,好ましくは30〜40V,特に好ましくは蓄電池に蓄積される電力量が最大量の状態を意味する。さらに好ましくは,蓄電池が電力負荷へ電力を供給することができない電圧値を意味する。電力の供給をこのように制御することで,蓄電池の備蓄電力が乏しい場合でも,燃料電池を用いて電力負荷へ電力を供給できる。特に,蓄電池に蓄積された自然エネルギーを使い果たし,自然エネルギーから得られるエネルギーが乏しい場合であっても,効果的に電力負荷へ電力を供給できることとなる。なお,水素貯蔵部の圧力を測定する圧力計などの圧力測定手段によって水素貯蔵部に含まれている水素量(圧力)に関する情報を得て,水素貯蔵部に水素が存在している間は,優先的に水素貯蔵部から水素を取得し,水素貯蔵部に水素が存在しない場合にバックアップ用水素貯蔵部から水素を取得するように制御されることは,本発明の好ましい実施態様である。どの貯蔵部から水素を取得するかは,バルブなどと前記測定手段とに連結された制御機構によって容易に制御できる。すなわち,前記測定手段が,ある水素貯蔵部に水素が残留していると判断した場合は,その情報を制御機構へ伝え,制御機構が当該水素貯蔵部のバルブを開くように情報を伝え,そのバルブが所定量分開かれる。一方,測定手段が,全ての水素貯蔵部について水素が残留していないと判断した場合は,その情報を制御機構へ伝え,制御機構は,バックアップ用の水素貯蔵部のバルブを所定量分開き,これによりバックアップ用の水素貯蔵部から水素が供給される。なお,測定手段は,通常貯蔵部内ではなく,貯蔵部に連結された配管に存在する気体の圧力を測定する。   Another preferred mode of the power control means is that when the voltage value of the storage battery is less than a predetermined value, the fuel cell generates power using hydrogen stored in the hydrogen storage part (or backup hydrogen storage part). And control to supply power to the storage battery. Here, “the voltage value of the storage battery is less than a predetermined value” differs depending on the rated voltage of the storage battery. For example, when the rated voltage value of the storage battery is 48V, it means 0V to 45V, preferably 30 to 40V, particularly preferably the state where the amount of electric power stored in the storage battery is the maximum amount. More preferably, it means a voltage value at which the storage battery cannot supply power to the power load. By controlling the supply of power in this way, even when the stored power of the storage battery is scarce, power can be supplied to the power load using the fuel cell. In particular, even when the natural energy stored in the storage battery is used up and the energy obtained from the natural energy is scarce, it is possible to effectively supply power to the power load. While information on the amount of hydrogen (pressure) contained in the hydrogen storage unit is obtained by pressure measuring means such as a pressure gauge that measures the pressure in the hydrogen storage unit, and while hydrogen is present in the hydrogen storage unit, It is a preferred embodiment of the present invention that the hydrogen is preferentially acquired from the hydrogen storage unit and is controlled to acquire hydrogen from the backup hydrogen storage unit when no hydrogen is present in the hydrogen storage unit. Which storage unit obtains hydrogen can be easily controlled by a control mechanism connected to a valve or the like and the measuring means. That is, when the measurement means determines that hydrogen remains in a certain hydrogen storage section, the information is transmitted to the control mechanism, and the control mechanism transmits information to open the valve of the hydrogen storage section. The valve is opened a predetermined amount. On the other hand, when the measuring means determines that no hydrogen remains in all the hydrogen storage units, the information is transmitted to the control mechanism, and the control mechanism opens the valve of the backup hydrogen storage unit by a predetermined amount, Thereby, hydrogen is supplied from the hydrogen storage unit for backup. The measuring means measures the pressure of the gas present in the pipe connected to the storage unit, not in the normal storage unit.

バックアップ用の水素貯蔵部9は,水素貯蔵部に水素がなくなった場合であっても,燃料電池へ水素を供給するためのものである。バックアップ用の水素貯蔵部として,鋼板製や近年開発されているカーボン繊維で強化されたプラスティック製など,高圧ガス用の圧力容器があげられる。バックアップ用の水素貯蔵部内の水素圧は,1MPa以上のものが好ましいが,1kPa〜1MPaのものを用いても良い。バックアップ用の水素貯蔵部は,配管23,24,25などを通じて燃料電池に連結される。バックアップ用の水素貯蔵部として,交換可能なものがあげられる。交換可能であれば,バックアップ用の水素貯蔵部を用意しておくことにより,自然エネルギーが得られず,蓄電池に電力が貯蔵されていない状態であっても,電力を供給できることとなる。さらに,そのような状態であっても,水分が凍結し,水電解槽の配管の破損や送水不良,燃料電池のガス配管の詰まりなど機器が正常に動かない事態の防止や機器の温度が上昇することにより,水電解槽における電力の水素変換効率や燃料電池における水素エネルギーの電力変換効率が落ちる事態を防止できることとなる。   The backup hydrogen storage unit 9 is for supplying hydrogen to the fuel cell even when the hydrogen storage unit runs out of hydrogen. As a hydrogen storage part for backup, a pressure vessel for high-pressure gas, such as a steel plate or a plastic reinforced with carbon fiber which has been developed recently, can be mentioned. The hydrogen pressure in the backup hydrogen storage unit is preferably 1 MPa or more, but may be 1 kPa to 1 MPa. The backup hydrogen storage unit is connected to the fuel cell through pipes 23, 24, 25, and the like. A backup hydrogen storage unit is replaceable. If replacement is possible, a hydrogen storage unit for backup is prepared, so that natural energy cannot be obtained and power can be supplied even when power is not stored in the storage battery. Furthermore, even in such a state, moisture freezes, preventing the malfunction of water electrolyzer piping, poor water supply, clogged fuel cell gas piping, etc. By doing so, it is possible to prevent a situation in which the hydrogen conversion efficiency of power in the water electrolyzer and the power conversion efficiency of hydrogen energy in the fuel cell are reduced.

バックアップ用の水素貯蔵部(の配管)に,圧力レギュレータ29,及び逆支弁30(又は圧力測定手段)を設けることは,本発明の好ましい別の実施態様である。このような構成を採用すれば,水電解槽から発生した水素を他の貯蔵部に貯蔵する際にバックアップ用の水素貯蔵部から水素が無駄に放出することがなく,水素貯蔵部にもガスが貯蔵されていない場合には,水素配管の圧力の低下に応じてバックアップ用の水素貯蔵部から自動的に配管へ水素が供給される。このため,電力負荷に対応する際,蓄電池の貯蔵電力が無く,しかも燃料電池を使い発電するために必要な量の水素が貯蔵部貯蔵されていない場合は,バックアップの水素貯蔵部から自動的に燃料電池へ水素が供給される。ここで,圧力レギュレータとは,高圧のガスを低圧に制御して配管などへ供給する機器を意味し,例えば,15MPaのような高圧ガスを0.1MPaに制御するステンレスダイアフラムを採用した一段式圧力調整器があげられる。   It is another preferred embodiment of the present invention to provide a pressure regulator 29 and a reverse valve 30 (or pressure measuring means) in the backup hydrogen storage section (pipe). By adopting such a configuration, when hydrogen generated from the water electrolyzer is stored in another storage unit, hydrogen is not discharged from the backup hydrogen storage unit, and gas is also stored in the hydrogen storage unit. When not stored, hydrogen is automatically supplied to the pipe from the backup hydrogen storage section as the pressure of the hydrogen pipe decreases. For this reason, when there is no storage power in the storage battery and the amount of hydrogen required for power generation using the fuel cell is not stored in the storage unit when dealing with the power load, the backup hydrogen storage unit automatically Hydrogen is supplied to the fuel cell. Here, the pressure regulator means a device that controls a high pressure gas to a low pressure and supplies it to a pipe, etc. For example, a single-stage pressure adjustment employing a stainless diaphragm that controls a high pressure gas such as 15 MPa to 0.1 MPa. A bowl is raised.

バックアップ用の水素貯蔵部内の水素圧が所定量未満になった場合に,その情報を伝える手段(例えば,圧力が所定量以下になると無線に信号を送り遠隔地でも受信できるシステム)を設けることは,本発明の好ましい別の実施態様である。このような発電システムでは,バックアップ用の水素貯蔵部に水素が少なくなった場合に,予備として貯蔵していた水素貯蔵部を取り替えることができるので,常に安定して電力を供給できることとなる。すなわち,自然災害などの非常時においてもバックアップ用の水素貯蔵部を用いれば電力を得ることができることとなる。   When the hydrogen pressure in the hydrogen storage unit for backup becomes less than a predetermined amount, it is necessary to provide means for transmitting the information (for example, a system that can wirelessly send a signal when the pressure falls below a predetermined amount and receive it at a remote location). , Another preferred embodiment of the present invention. In such a power generation system, when hydrogen is reduced in the backup hydrogen storage unit, the hydrogen storage unit stored as a backup can be replaced, so that power can be supplied stably at all times. In other words, even in the event of an emergency such as a natural disaster, power can be obtained by using a backup hydrogen storage unit.

なお,水素貯蔵部(全体)の貯蔵可能な量が電力負荷に対し,十分に多い場合は,バックアップ用の水素貯蔵部システムを設けなくてもよい。   Note that if the storable amount of the hydrogen storage unit (whole) is sufficiently large relative to the power load, a backup hydrogen storage unit system need not be provided.

なお,発電システム全体,配管,又は水電解槽を断熱部材で覆うことは本発明の好ましい実施態様である。このようにすれば,冷寒地においても,結露により効率が悪化する事態を効果的に防止できる。このような断熱部材として,公知の断熱部材を用いることができ,例えば,ポリウレタン,ポリエチレン,フェノール樹脂,発泡スチレン,グラスウール,セルロースファイバー,ロックウォールなどを1種又は2種以上組み合わせて用いることができる。より具体的には,(1)例えば特許3292891号公報に記載のポリウレタン断熱材,特許3242090号公報に記載のポリウレタンフォーム断熱材,特許3273685号公報に記載のポリスチレン系樹脂発泡断熱材,ポリエチレン系樹脂を高発泡させて得られる断熱材(旭化成の断熱材「サニーライト」(登録商標)など),フェノールフォームに面材としてポリエステル不織紙を用いたもの(旭化成の断熱材「ネオマフォーム」(登録商標)など)などの発泡プラスティック系断熱材;(2)特許3390182号公報に記載された炭素繊維系成形断熱材,特公平6−53626号公報に記載のジルコニア質複合耐火断熱材,特公平8−005733号公報に記載の無機質系断熱材,特許2753888号公報に記載の吹込用グラスウール断熱材などのグラスウール系断熱材;(3)例えば,特公平7−004914号公報に記載のセルロースファイバー系の断熱材;(4)ロックウォール系断熱材などがあげられ,これらのうちひとつ又は2つ以上を適宜採用することができる。この場合の,断熱部材は,一部を覆っても良いし,対象物全体を覆っても良い。そして,断熱部材の厚さは,その素材にもよるが,通常1mm〜100mmである。   In addition, it is a preferable embodiment of the present invention to cover the entire power generation system, piping, or water electrolysis tank with a heat insulating member. In this way, it is possible to effectively prevent a situation in which the efficiency deteriorates due to condensation even in a cold region. As such a heat insulating member, a known heat insulating member can be used. For example, polyurethane, polyethylene, phenol resin, foamed styrene, glass wool, cellulose fiber, rock wall, or the like can be used alone or in combination. . More specifically, (1) for example, a polyurethane heat insulating material described in Japanese Patent No. 3292901, a polyurethane foam heat insulating material described in Japanese Patent No. 3423090, a polystyrene resin foam heat insulating material described in Japanese Patent No. 3273665, and a polyethylene resin Heat insulation material obtained by high foaming of Asahi Kasei's heat insulation material “Sunnylight” (registered trademark), etc., phenol foam using polyester non-woven paper as a face material (Asahi Kasei's heat insulation material “Neoma Foam” (registered trademark) (2) Carbon fiber-based molded heat insulating material described in Japanese Patent No. 3390182, zirconia composite fireproof heat insulating material described in Japanese Patent Publication No. 6-53626, and Japanese Patent Publication No. 8- Inorganic heat insulating material described in Japanese Patent No. 005733, and blown glass described in Japanese Patent No. 2753888 Glass wool type heat insulating materials such as wool heat insulating materials; (3) for example, cellulose fiber type heat insulating materials described in JP-B-7-004914; (4) rock wall type heat insulating materials, Two or more can be appropriately employed. In this case, the heat insulating member may cover a part or the entire object. The thickness of the heat insulating member is usually 1 mm to 100 mm, although it depends on the material.

ダミー負荷を用いることは,本発明の好ましい別の実施態様である。“ダミー負荷”とは,余剰電力を消費するための負荷を意味する。“ダミー負荷”として,不燃性のため発火することなく信頼性が高い巻線抵抗管などの抵抗体があげられる。ダミー負荷を用いると,余剰電力が発生し,加熱手段が必要以上に加熱し,電解液などを蒸発させる事態や蓄電池などを劣化させる事態を防止できる。ダミー負荷へ供給される電力についても,好ましくは,電力制御手段が制御する。具体的には,加熱手段の温度を電力制御手段へ提供し,その情報に基づいて,加熱手段が一定の温度以上である場合は,それ以上加熱手段への電力供給を行わず,ダミー負荷へ電力が供給されるように制御する。   The use of a dummy load is another preferred embodiment of the present invention. “Dummy load” means a load for consuming surplus power. “Dummy loads” include resistors such as wound resistance tubes that are nonflammable and have high reliability without igniting. When the dummy load is used, it is possible to prevent a situation in which surplus power is generated, the heating means heats more than necessary, and the electrolyte solution evaporates or the storage battery deteriorates. The power supplied to the dummy load is also preferably controlled by the power control means. Specifically, the temperature of the heating means is provided to the power control means, and if the heating means is above a certain temperature based on the information, no further power is supplied to the heating means and the dummy load is supplied. Control to supply power.

“水素貯蔵部に貯蔵した水素をバックアップ用の水素貯蔵部に貯蔵した水素より優先的に燃料電池へ供給する手段”は,水素貯蔵部に貯蔵した水素をバックアップ用の水素貯蔵部に貯蔵した水素より優先的に燃料電池へ供給することのできる手段であれば特に限定されるものではなく,このような機能を有する公知の機構を適宜利用することができる。このような手段の具体例として,水素貯蔵部内の水素の圧力を測定できる圧力計などを水素貯蔵部からの配管に設けて,その水素貯蔵部内の水素の圧力が所定量以下(たとえば,1MPa以下,好ましくは0.15MPa以下)となった場合に,バックアップ用の水素貯蔵部のバルブが開くように制御するものがあげられる。また別の例として,バックアップ用の水素貯蔵部に圧力レギュレータを備え,その先に逆止弁を備えるものがあげられる。このような構成を採用したものでは,水素貯蔵部に連結される水素配管内の水素ガスの圧力が,バックアップ用の水素貯蔵部の2次圧力よりも高い場合は,水素貯蔵部に貯蔵される水素ガスがバックアップ用の水素貯蔵部に貯蔵される水素ガスよりも優先的に取り出され,燃料電池へと供給されることとなる。   “Means of supplying hydrogen stored in the hydrogen storage unit to the fuel cell with priority over the hydrogen stored in the backup hydrogen storage unit” means that the hydrogen stored in the hydrogen storage unit is stored in the backup hydrogen storage unit. The means is not particularly limited as long as it can be supplied to the fuel cell more preferentially, and a known mechanism having such a function can be used as appropriate. As a specific example of such means, a pressure gauge or the like capable of measuring the hydrogen pressure in the hydrogen storage unit is provided in the pipe from the hydrogen storage unit, and the hydrogen pressure in the hydrogen storage unit is below a predetermined amount (for example, 1 MPa or less). , Preferably 0.15 MPa or less), so that the valve of the backup hydrogen storage unit is opened. As another example, a backup hydrogen storage unit is provided with a pressure regulator, and a check valve is provided at the pressure regulator. In the case of adopting such a configuration, when the pressure of the hydrogen gas in the hydrogen pipe connected to the hydrogen storage unit is higher than the secondary pressure of the backup hydrogen storage unit, it is stored in the hydrogen storage unit. The hydrogen gas is extracted with priority over the hydrogen gas stored in the backup hydrogen storage unit and supplied to the fuel cell.

本発明の発電システムは,発電手段以外の部分が,断熱又は密閉された小屋や容器などの空間内に収められていても良い。また,発電手段以外の部分が,容器などに収められているものであってもよい。このような発電システムであれば,比較的容易に持ち運ぶことができ好ましい。この場合,上記の小屋の容積として,3600×1800mm程度のユニット式断熱プレハブがあげられる。本発明の発電システムでは,蓄電池及び燃料電池を用いたので,比較的発電システムを小さくすることができる。   In the power generation system of the present invention, parts other than the power generation means may be housed in a space such as a heat-insulated or sealed hut or container. Further, parts other than the power generation means may be housed in a container or the like. Such a power generation system is preferable because it can be carried relatively easily. In this case, a unit-type heat insulation prefab of about 3600 x 1800mm can be mentioned as the volume of the hut. In the power generation system of the present invention, since the storage battery and the fuel cell are used, the power generation system can be made relatively small.

図4は,本発明の別の実施態様に係る発電システムの例を示す図である。図4における各符号は先に説明したものと同一であるので,ここではそれらの記載を引用し,特に繰り返し説明しない。この例の発電システムでは,一つの電解セルが先の例の水電解槽と燃料電池との機能を備えている。すなわち,これら2つの部分をひとつの部分にまとめることができるので,システム全体を小さくでき,また軽量化できる。このような電解セルは,発電手段によって得られた電力を用いて水を水素と酸素とに分解する水電解機能を有し,且つそれにより発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得る燃料電池の機能を有する電解セルがあげられる。より具体的な,電解セルとして,先に説明した電解セルがあげられる。   FIG. 4 is a diagram showing an example of a power generation system according to another embodiment of the present invention. Since the reference numerals in FIG. 4 are the same as those described above, the descriptions thereof are cited here and are not particularly described repeatedly. In the power generation system of this example, one electrolytic cell has the functions of the water electrolysis tank and the fuel cell of the previous example. That is, since these two parts can be combined into one part, the entire system can be made smaller and lighter. Such an electrolysis cell has a water electrolysis function of decomposing water into hydrogen and oxygen using the electric power obtained by the power generation means, and hydrogen generated thereby or hydrogen stored in the hydrogen storage unit. An electrolysis cell having a function of a fuel cell that obtains electric power by using a battery. As a more specific electrolysis cell, the above-described electrolysis cell can be mentioned.

以下,本発明を,実施例を用いて具体的に説明する。図5は,本発明の発電システム101の例である。図5に示されるように,この実施例における本発明の発電システム101は,発電手段としてのジャイロミル(垂直軸型)形風力発電機102と,蓄電池103と,水電解槽104と,水素ボンベ105と,燃料電池106と,加熱手段107と,電力制御手段108とを具備する。なお,図5において,109は,バックアップ用の水素ボンベを示す。110は,温度測定手段を示す。111は,電力負荷を示す。112〜116は,配線を示す。117〜126は,ガス配管を示す。127は,乾燥剤を含む容器を示す。128は,燃料遮断弁を示す。129は,圧力レギュレータを示す。130は,逆支弁または圧力制御手段を示す。131は,整流器を示す。132は,コンバータを示す。133は,交流変換器を示す。134は,ダミー負荷を示す。135〜140は,配線を示す。   Hereinafter, the present invention will be specifically described with reference to examples. FIG. 5 is an example of the power generation system 101 of the present invention. As shown in FIG. 5, a power generation system 101 of the present invention in this embodiment includes a gyromill (vertical axis type) wind power generator 102 as a power generation means, a storage battery 103, a water electrolysis tank 104, a hydrogen cylinder. 105, a fuel cell 106, a heating means 107, and a power control means 108. In FIG. 5, reference numeral 109 denotes a backup hydrogen cylinder. Reference numeral 110 denotes a temperature measuring means. Reference numeral 111 denotes a power load. Reference numerals 112 to 116 denote wirings. Reference numerals 117 to 126 denote gas pipes. 127 indicates a container containing a desiccant. Reference numeral 128 denotes a fuel cutoff valve. Reference numeral 129 denotes a pressure regulator. Reference numeral 130 denotes a reverse valve or pressure control means. 131 denotes a rectifier. Reference numeral 132 denotes a converter. Reference numeral 133 denotes an AC converter. Reference numeral 134 denotes a dummy load. Reference numerals 135 to 140 denote wirings.

風力発電機として,エネルギープロダクト株式会社製ジャイロミル(垂直軸型)形風力発電機(定格2kW)を使用した。この風車の出力電圧は,AC36VからAC180Vで,風速3.0m/sからカットインに入り,風速15.0m/sでカットアウトとなる。また,定格風速は12.0m/sであり,定格時の翼回転数は,183rpm最大翼回転数は344rpmである。このジャイロミル形(垂直軸型)風車には,永久磁石型多極同期発電機を搭載していて,制御機にはエアー駆動式ディスクブレーキを使用している。風車ポール全長は,2,000mm 直径972mmであり,翼全長は2,000mmである。また,風車から得られた電力を整流する整流器がコンバータ内に内蔵されている。蓄電池103として,日本電池株式会社製鉛蓄電池EB65(定格12V,65A・h,4個直列で使用),交流変換器として,株式会社電菱製S1500を用いた。また,水電解槽104として,スガ試験機(株)製水電解水素ガス発生装置 定格電解電流50A(水素発生流量200NL/h,水素ガス耐圧0.6MPa)を用いた。この水電解槽のシステム電源はAC100Vであり交流変換器から入力される。一方,電解電力の入力電圧はDC48Vであり,その電力は蓄電池から直接入力される。圧力レギュレータ129として,2次ゲージ圧が0.15MPaである日酸タナカ株式会社製圧力レータ)を,逆支弁130として,山本産業株式会社製LCM型気体・真空用逆支弁を用いた。水素ボンベ105として,北海道エアウォータ株式会社製鋼板製2次圧力容器0.1MPaを3本用いた。バックアップ用の水素ボンベ109として,北海道エアウォータ(株)製,鋼板製高圧ボンベ15MPaを1本用いた。このバックアップ用の水素ボンベは取替え可能である。燃料電池106として,荏原バラード株式会社製純水素用燃料電池FC-BOX(定格850W)を用いた。なお,風力発電機以外はすべて断熱家屋内(3600×1800)に設置した。   As a wind power generator, a gyro mill (vertical shaft type) wind power generator (rated 2kW) manufactured by Energy Product Co., Ltd. was used. The output voltage of this windmill is AC36V to AC180V, cut-in starts at a wind speed of 3.0m / s, and cuts out at a wind speed of 15.0m / s. The rated wind speed is 12.0m / s, and the blade rotation speed at the time of rating is 183rpm and the maximum blade rotation speed is 344rpm. This gyromill type (vertical shaft type) wind turbine is equipped with a permanent magnet type multi-pole synchronous generator, and the controller uses an air-driven disc brake. The total length of the windmill pole is 2,000 mm, the diameter is 972 mm, and the blade length is 2,000 mm. A rectifier that rectifies the electric power obtained from the windmill is built in the converter. As the storage battery 103, a lead storage battery EB65 manufactured by Nippon Battery Co., Ltd. (rated 12V, 65A · h, used in series in 4 units) was used. As an AC converter, S1500 manufactured by Denryo Corporation was used. In addition, a water electrolysis hydrogen gas generator rated electrolysis current 50 A (hydrogen generation flow rate 200 NL / h, hydrogen gas pressure resistance 0.6 MPa) manufactured by Suga Test Instruments Co., Ltd. was used as the water electrolysis tank 104. The system power supply of this water electrolyzer is AC100V and is input from an AC converter. On the other hand, the input voltage of electrolytic power is DC48V, and the power is directly input from the storage battery. As the pressure regulator 129, a pressure regulator manufactured by Nihon Tanaka Co., Ltd. with a secondary gauge pressure of 0.15 MPa was used, and as a reverse valve 130, an LCM gas / vacuum reverse valve manufactured by Yamamoto Sangyo Co., Ltd. was used. As the hydrogen cylinder 105, three secondary pressure vessels 0.1 MPa made of steel plate manufactured by Hokkaido Air Water Co., Ltd. were used. As a hydrogen cylinder 109 for backup, one high-pressure cylinder 15 MPa made by Hokkaido Air Water Co., Ltd. was used. This backup hydrogen cylinder can be replaced. As the fuel cell 106, a fuel cell FC-BOX for pure hydrogen (rated 850 W) manufactured by EBARA Ballard Co., Ltd. was used. All but the wind generators were installed in an insulated house (3600 x 1800).

風力発電機102により発生した電力は,整流器131を経て58V〜188Vの直流電圧に変換され,コンバータ132により48Vの直流電圧に変換される。そして,電力は,定格電圧48Vの蓄電池103に蓄積される。制御部108は,蓄電池の電圧,電力負荷111の必要電力,水素ガス配管のガス圧を検知した信号を受け取り,それに基づいて,蓄電池又は燃料電池106から電力を得る電力源を制御し,交流変換器133を経由する水電解槽104のシステムへ供給する電力,電力負荷へ供給する電力,ダミー負荷134へ供給する電力,または交流変換器133を経由しない水電解槽104の電解電力を制御する。その制御方法としては,たとえば以下のものがあげられる。   The electric power generated by the wind power generator 102 is converted into a DC voltage of 58 V to 188 V through the rectifier 131 and converted into a DC voltage of 48 V by the converter 132. The electric power is stored in the storage battery 103 having a rated voltage of 48V. The control unit 108 receives a signal that detects the voltage of the storage battery, the required power of the power load 111, and the gas pressure of the hydrogen gas pipe, and based on the signal, controls a power source that obtains power from the storage battery or the fuel cell 106, and performs AC conversion. The power supplied to the system of the water electrolysis tank 104 via the condenser 133, the power supplied to the power load, the power supplied to the dummy load 134, or the electrolysis power of the water electrolysis tank 104 not via the AC converter 133 is controlled. Examples of the control method include the following.

まず,風力発電機102から蓄電池103への電力の入力は風が吹いている時は常に可能な状態としておく。蓄電池の電圧が40V未満の時は燃料電池106を起動し,電力負荷111へ電力を供給する。次に蓄電池の電圧が40V以上で44V未満の時,蓄電池から電力負荷111に電力を供給する。この際,蓄電池から水電解槽へ電力は投入しない。風力発電機から供給される電力が蓄電池から電力負荷へ供給される電力を上回り,蓄電池の電圧が48V以上となり,且つガス配管118の圧力が水電解槽の耐圧限界である0.6MPa未満の場合,蓄電池から電力負荷へ電力を供給するとともに水電解槽へも電力を供給し,水素を発生させる。この際,蓄電池の電圧が44V未満になった場合,再び蓄電池から水電解槽への電力供給を止める。さらに,蓄電池の電圧が,48V以上で且つガス配管118の圧力が水電解槽の耐圧限界である0.6MPa以上の場合,蓄電池から電力負荷へ電力を供給するとともにダミー負荷134へ電力を供給する。   First, power input from the wind power generator 102 to the storage battery 103 is always possible when the wind is blowing. When the voltage of the storage battery is less than 40V, the fuel cell 106 is activated and power is supplied to the power load 111. Next, when the voltage of the storage battery is 40 V or more and less than 44 V, power is supplied from the storage battery to the power load 111. At this time, power is not supplied from the storage battery to the water electrolysis tank. When the power supplied from the wind power generator exceeds the power supplied from the storage battery to the power load, the storage battery voltage is 48 V or higher, and the pressure of the gas pipe 118 is less than 0.6 MPa, which is the pressure limit of the water electrolysis tank, In addition to supplying power from the storage battery to the power load, it also supplies power to the water electrolyzer to generate hydrogen. At this time, if the voltage of the storage battery becomes less than 44V, the power supply from the storage battery to the water electrolyzer is stopped again. Further, when the voltage of the storage battery is 48 V or more and the pressure of the gas pipe 118 is 0.6 MPa or more, which is the pressure limit of the water electrolysis tank, power is supplied from the storage battery to the power load and the dummy load 134 is supplied.

以下に蓄電池の電圧値が40V未満である場合に,燃料電池で電力を発生させ,前記電力負荷又は前記加熱手段へ電力を供給するケース(ケース1),及び蓄電池の電圧値が44V以上48V未満である場合に,蓄電池から電力負荷へ電力を供給するとともに,水電解槽において水素を発生させ,水素を水素ボンベに貯蔵するように制御を行った例(ケース2)を説明する。   Below, when the voltage value of the storage battery is less than 40V, power is generated by the fuel cell and the power is supplied to the power load or the heating means (case 1), and the voltage value of the storage battery is 44V or more and less than 48V In this case, a description will be given of an example (case 2) in which power is supplied from the storage battery to the power load, hydrogen is generated in the water electrolysis tank, and hydrogen is stored in the hydrogen cylinder.

ケース1(蓄電池の電圧値が40V未満である場合に,燃料電池で電力を発生させ,前記電力負荷又は前記加熱手段へ電力を供給するケース)
蓄電池の端子電圧が38Vの時,燃料電池を稼働し負荷へ電力を送るとともに風車から蓄電池へ電力を供給した。平均電力負荷699.6Wの時,燃料電池から負荷へ電力を供給したところ,その時の平均水素消費流量は9.63NL/minで発電効率(負荷電力量/消費した水素の高位発熱量)は34.2%であった。
Case 1 (case in which when the storage battery voltage value is less than 40V, power is generated by the fuel cell and the power is supplied to the power load or the heating means)
When the terminal voltage of the storage battery was 38V, the fuel cell was operated and power was sent to the load, and power was supplied from the windmill to the storage battery. When the average power load is 699.6W, when power is supplied from the fuel cell to the load, the average hydrogen consumption flow rate at that time is 9.63NL / min, and the power generation efficiency (load energy / higher heating value of consumed hydrogen) is 34.2%. there were.

ケース2(蓄電池の電圧値が44V以上48未満である場合に,蓄電池から電力負荷へ電力を供給するとともに,水電解槽において水素を発生させ,水素を水素ボンベに貯蔵するように制御を行った例)
バッテリーの端子電圧が46.9V,ボンベの水素圧力が0.174MPa,バッテリーから外部への平均電力負荷が652Wの時,バッテリーから負荷へ電力を供給するとともに電解電流20.3A(599W)で水電解を行った。その結果,平均流量1.35NL/minで水素が発生し,水素変換効率(発生した水素の高位発熱量/バッテリーから水電解槽に入力した電力量)は48.0%,電解電流効率は96.0%であった。また,20分後のバッテリー端子電圧は44.3Vであった。
Case 2 (When the voltage value of the storage battery was 44V or more and less than 48, power was supplied from the storage battery to the power load, and hydrogen was generated in the water electrolysis tank, and the hydrogen was stored in the hydrogen cylinder. Example)
When the battery terminal voltage is 46.9V, the hydrogen pressure of the cylinder is 0.174MPa, and the average power load from the battery to the outside is 652W, power is supplied from the battery to the load and water electrolysis is performed with an electrolysis current of 20.3A (599W) It was. As a result, hydrogen was generated at an average flow rate of 1.35 NL / min, and the hydrogen conversion efficiency (higher heating value of the generated hydrogen / the amount of power input from the battery to the water electrolyzer) was 48.0%, and the electrolysis current efficiency was 96.0%. It was. The battery terminal voltage after 20 minutes was 44.3V.

本発明の発電システムは,酪農家用の電源や山小屋など商用電力がない遠隔地での電源などに好適に利用できる。   The power generation system of the present invention can be suitably used as a power source for dairy farmers and a power source in a remote place where there is no commercial power, such as a mountain hut.

本発明の概念を示すブロック図Block diagram showing the concept of the present invention 燃料電池のセルの一例を示す外観図External view showing an example of a fuel cell 水電解槽の機能も持つ燃料電池の一例を示す外観図External view showing an example of a fuel cell that also functions as a water electrolyzer 水電解槽の機能も持つ燃料電池を用いた場合の本発明の概念を示すブロック図The block diagram which shows the concept of this invention at the time of using the fuel cell which also has the function of a water electrolyzer 本発明の実施例の発電システムを示すブロック図The block diagram which shows the electric power generation system of the Example of this invention.

符号の説明Explanation of symbols

1 発電システム
2 発電手段
3 蓄電池
4 水電解槽
5 水素貯蔵部
6 燃料電池
7 加熱手段
8 電力制御手段
9 バックアップ用の水素貯蔵部
10 温度測定手段
11 電力負荷
12〜16 配線
17〜26 ガス配管
27 乾燥剤を含む容器
28 燃料遮断弁
29 圧力レギュレータ
30 逆支弁または圧力制御手段
31 燃料電池セル
32 電解質
33 触媒層
34 ガス拡散層
35 セパレータ
36 水素供給口
37 酸素供給口
38 集電板
45,46 気液分離器
47 フロート
48 電磁弁
49 コンプレッサー
50 乾燥剤を含む容器
51 水素貯蔵部
52 水の貯蔵タンク
53 循環ポンプ
54 ポンプ
55 三方電磁弁
56 三方電磁弁
57 電磁弁
58 電磁弁
101 本発明の発電システムの例
102 ジャイロミル(垂直軸型)形風力発電機
103 蓄電池
104 水電解槽
105 水素ボンベ
106 燃料電池
107 加熱手段
108 電力制御手段
109 バックアップ用の水素ボンベ
110 温度測定手段
111 電力負荷
112〜116 配線
117〜126 ガス配管
127 乾燥剤を含む容器
128 燃料遮断弁
129 圧力レギュレータ
130 逆支弁または圧力制御手段
131 整流器
132 コンバータ
133 交流変換器
134 ダミー負荷
135〜140 配線



DESCRIPTION OF SYMBOLS 1 Power generation system 2 Power generation means 3 Storage battery 4 Water electrolysis tank 5 Hydrogen storage part 6 Fuel cell 7 Heating means 8 Electric power control means 9 Backup hydrogen storage part 10 Temperature measurement means 11 Electric power load 12-16 Wiring 17-26 Gas piping 27 Container 28 containing desiccant Fuel shut-off valve 29 Pressure regulator 30 Reverse support valve or pressure control means 31 Fuel cell 32 Electrolyte 33 Catalyst layer 34 Gas diffusion layer 35 Separator 36 Hydrogen supply port 37 Oxygen supply port 38 Current collector plates 45 and 46 Liquid separator 47 Float 48 Solenoid valve 49 Compressor 50 Container 51 containing desiccant Hydrogen storage unit 52 Water storage tank 53 Circulation pump 54 Pump 55 Three-way solenoid valve 56 Three-way solenoid valve 57 Solenoid valve 58 Solenoid valve 101 Power generation system of the present invention Example 102 Gyromill (vertical shaft type) wind power generator 103 Storage battery 104 Hydroelectric Tank 105 Hydrogen cylinder 106 Fuel cell 107 Heating means 108 Electric power control means 109 Backup hydrogen cylinder 110 Temperature measuring means 111 Electric power loads 112 to 116 Wiring 117 to 126 Gas pipe 127 Container containing desiccant 128 Fuel shutoff valve 129 Pressure regulator 130 Reverse valve or pressure control means 131 Rectifier 132 Converter 133 AC converter 134 Dummy loads 135-140 Wiring



Claims (8)

風力発電及び太陽光発電のいずれか又は両方による発電手段と,
前記発電手段によって得られた電力を蓄積するための蓄電池と,
前記発電手段によって得られた電力を用いて水を水素と酸素とに分解するための水電解槽と,
前記水電解槽で発生した水素を貯蔵するための水素貯蔵部と,
前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得るための燃料電池と,
前記発電手段及び前記燃料電池により得られた電力を消費するための電力消費手段と,
前記発電手段により得られる電力,前記蓄電池に蓄積される電力,及び前記燃料電池により得られる電力の供給先を制御するための電力制御手段と,
を具備し,
前記発電手段によって得られた電力を蓄電池に蓄積し,利用するとともに,
前記蓄電池に蓄積された電力,又は前記発電手段によって得られた電力を用いて,前記水電解槽中の水を水素と酸素とに分解し,
前記水素貯蔵部に前記水電解槽で発生した水素を貯蔵し,
前記燃料電池が前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得,
前記電力制御手段が,電力負荷及び前記電力消費手段へ供給する電力を制御する,
発電システムであって,
前記電力消費手段は,前記水電解槽又は前記燃料電池のいずれか又は両方を加温するための加熱手段,又は余剰電力を消費するためのダミー負荷であり,
前記発電システムは,さらに,
前記蓄電池において蓄積した電力の電圧値を測定する電圧値測定手段と,
前記水素貯蔵部内の水素ガス圧を測定する水素ガス圧測定手段を備え,
前記電力制御手段は,
前記電圧値測定手段により測定された前記蓄電池の電圧値が第1の設定値未満である場合には,前記燃料電池で電力を発生させ,前記電力負荷又は前記電力消費手段へ電力を供給し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記電力消費手段へ電力を供給し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第2の設定値以上であり,かつ,前記水素ガス圧測定手段によって測定された前記水素貯蔵部内の水素ガス圧が所定値未満である場合には,前記蓄電池から前記電力負荷又は前記電力消費手段へ電力を供給し,さらに前記発電手段により蓄電池へ蓄積される電力を用いて,前記水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素ガス圧測定手段によって測定された前記水素貯蔵部内の水素ガス圧が所定値以上である場合には,前記発電手段により蓄電池へ蓄積される電力を前記電力消費手段へ供給するように電力を制御する
発電システム。
Power generation means by wind power and / or solar power, and
A storage battery for storing the power obtained by the power generation means;
A water electrolyzer for decomposing water into hydrogen and oxygen using the electric power obtained by the power generation means;
A hydrogen storage unit for storing hydrogen generated in the water electrolyzer;
A fuel cell for obtaining electric power using hydrogen generated in the water electrolyzer or hydrogen stored in the hydrogen storage unit;
Power consumption means for consuming the power obtained by the power generation means and the fuel cell;
Power control means for controlling the power obtained by the power generation means, the power stored in the storage battery, and the power supply destination obtained by the fuel cell;
Equipped with,
While accumulating and using the power obtained by the power generation means in a storage battery,
Using the electric power stored in the storage battery or the electric power obtained by the power generation means, the water in the water electrolysis tank is decomposed into hydrogen and oxygen,
Storing hydrogen generated in the water electrolyzer in the hydrogen storage unit;
The fuel cell obtains electric power using hydrogen generated in the water electrolyzer, or hydrogen stored in the hydrogen storage unit,
The power control means controls the power supplied to the power load and the power consumption means ;
A power generation system,
The power consuming means is a heating means for heating either or both of the water electrolyzer or the fuel cell, or a dummy load for consuming surplus power,
The power generation system further includes:
Voltage value measuring means for measuring a voltage value of electric power stored in the storage battery;
Comprising hydrogen gas pressure measuring means for measuring the hydrogen gas pressure in the hydrogen storage unit,
The power control means includes
If the voltage value of the storage battery measured by the voltage value measuring means is less than a first set value, power is generated by the fuel cell, and power is supplied to the power load or the power consuming means,
When the voltage value of the storage battery measured by the voltage value measuring means is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the power consuming means. ,
The voltage value of the storage battery measured by the voltage value measuring means is not less than the second set value, and the hydrogen gas pressure in the hydrogen storage unit measured by the hydrogen gas pressure measuring means is less than a predetermined value. In some cases, power is supplied from the storage battery to the power load or the power consuming means, and further, hydrogen is generated in the water electrolyzer using the power stored in the storage battery by the power generation means, and the hydrogen is Storing in the hydrogen storage unit,
The voltage value of the storage battery measured by the voltage value measuring means is not less than the second set value, and the hydrogen gas pressure in the hydrogen storage part measured by the hydrogen gas pressure measuring means is not less than a predetermined value. In this case, the power generation system controls the power so that the power stored in the storage battery by the power generation means is supplied to the power consumption means .
前記電力消費手段は,前記水電解槽又は前記燃料電池のいずれか又は両方を加温するための加熱手段である請求項1に記載の発電システム。
Power generation system according to the power consumption unit, according to claim 1 one or both of the water electrolyzer or a fuel cell is a heating means for heating.
前記燃料電池へ水素を供給することができ,交換可能なバックアップ用の水素貯蔵部をさらに具備する請求項1に記載の発電システム。
The power generation system according to claim 1, further comprising a replaceable backup hydrogen storage unit capable of supplying hydrogen to the fuel cell.
前記水電解槽中の水の温度を測定するための温度測定手段をさらに具備し,
前記電力制御手段は,前記温度測定手段により測定された温度が所定温度以下になった場合に,前記加熱手段へ電力を供給する請求項2に記載の発電システム。
Further comprising a temperature measuring means for measuring the temperature of water in the water electrolyzer;
The power generation system according to claim 2 , wherein the power control unit supplies power to the heating unit when the temperature measured by the temperature measurement unit falls below a predetermined temperature.
前記電力制御手段は,
前記電圧値測定手段により測定された前記蓄電池の電圧値が所定値未満の状態である場合,前記水素貯蔵部に蓄積された水素を用いて前記燃料電池により電力を発生させ,前記蓄電池に電力を供給するように制御する請求項1に記載の発電システム。
The power control means includes
When the voltage value of the storage battery measured by the voltage value measuring means is less than a predetermined value, power is generated by the fuel cell using hydrogen stored in the hydrogen storage unit, and power is supplied to the storage battery. The power generation system according to claim 1, which is controlled to be supplied.
前記燃料電池へ水素を供給することができるバックアップ用の水素貯蔵部をさらに具備し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が所定量未満の場合に,前記水素貯蔵部に貯蔵した水素を前記バックアップ用の水素貯蔵部に貯蔵した水素より優先的に前記燃料電池へ供給する手段をさらに具備する請求項1に記載の発電システム。
A backup hydrogen storage unit capable of supplying hydrogen to the fuel cell;
When the voltage value of the storage battery measured by the voltage value measuring means is less than a predetermined amount, the hydrogen stored in the hydrogen storage unit is given priority to the fuel cell over the hydrogen stored in the backup hydrogen storage unit. The power generation system according to claim 1, further comprising means for supplying.
風力発電及び太陽光発電のいずれか又は両方による発電手段と,
前記発電手段によって得られた電力を蓄積するための蓄電池と,
前記発電手段によって得られた電力を用いて水を水素と酸素とに分解するための水電解槽と,
前記水電解槽で発生した水素を貯蔵するための水素貯蔵部と,
前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得るための燃料電池と,
前記発電手段及び前記燃料電池により得られた電力を消費するための電力消費手段と,
前記発電手段により得られる電力,前記蓄電池に蓄積される電力,及び前記燃料電池により得られる電力の供給先を制御するための電力制御手段と,
を具備し,
前記発電手段によって得られた電力を蓄電池に蓄積し,利用するとともに,
前記蓄電池に蓄積された電力,又は前記発電手段によって得られた電力を用いて,前記水電解槽中の水を水素と酸素とに分解し,
前記水素貯蔵部に前記水電解槽で発生した水素を貯蔵し,
前記燃料電池が前記水電解槽で発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得,
前記電力制御手段が,電力負荷及び前記電力消費手段へ供給する電力を制御する,
発電システムであって,
前記電力消費手段は,前記水電解槽又は前記燃料電池のいずれか又は両方を加温するための加熱手段,又は余剰電力を消費するためのダミー負荷であり,
前記発電システムは,さらに,
前記蓄電池において蓄積した電力の電圧値を測定する電圧値測定手段と,
前記水素貯蔵部内の水素ガス圧を測定する水素ガス圧測定手段を備え,
前記電力制御手段は,
前記電圧値測定手段により測定された前記蓄電池の電圧値が第1の設定値未満である場合には,前記燃料電池で電力を発生させ,前記電力負荷又は前記電力消費手段へ電力を供給し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記電力消費手段へ電力を供給し,前記発電手段により前記第2の設定値よりも大きい第3の設定値に達し,かつ前記水素ガス圧測定手段により測定された前記水素貯蔵部内の水素ガス圧が所定値未満である場合には,前記蓄電池から前記電力負荷へ電力を供給し,さらに前記水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵するように電力を制御し,その結果,前記蓄電池の電圧が前記第2の設定値未満になった場合,または前記水素貯蔵部内の水素ガス圧が所定値以上に達した場合には,前記蓄電池から前記電力負荷へ電力を供給するものの,前記水電解槽への電力の供給を止め,前記発電手段によって前記蓄電池が充電され,その電圧が再び前記第3の設定値以上になり,かつ前記水素貯蔵部内の水素ガス圧が所定値未満である場合には,前記蓄電池から前記電力負荷へ電力を供給しながら,前記水電解槽への電力の供給を再開し, 前記蓄電池の電圧が前記第3の設定値以上になり,かつ前記水素貯蔵部内の水素ガス圧が所定値以上である場合には,前記発電手段により前記蓄電池へ蓄積される電力を前記電力消費手段へ供給する制御を行う
発電システム。
Power generation means by wind power and / or solar power, and
A storage battery for storing the power obtained by the power generation means;
A water electrolyzer for decomposing water into hydrogen and oxygen using the electric power obtained by the power generation means;
A hydrogen storage unit for storing hydrogen generated in the water electrolyzer;
A fuel cell for obtaining electric power using hydrogen generated in the water electrolyzer or hydrogen stored in the hydrogen storage unit;
Power consumption means for consuming the power obtained by the power generation means and the fuel cell;
Power control means for controlling the power obtained by the power generation means, the power stored in the storage battery, and the power supply destination obtained by the fuel cell;
Comprising
While accumulating and using the power obtained by the power generation means in a storage battery,
Using the electric power stored in the storage battery or the electric power obtained by the power generation means, the water in the water electrolysis tank is decomposed into hydrogen and oxygen,
Storing hydrogen generated in the water electrolyzer in the hydrogen storage unit;
The fuel cell obtains electric power using hydrogen generated in the water electrolyzer, or hydrogen stored in the hydrogen storage unit,
The power control means controls the power supplied to the power load and the power consumption means;
A power generation system,
The power consuming means is a heating means for heating either or both of the water electrolyzer or the fuel cell, or a dummy load for consuming surplus power,
The power generation system further includes:
Voltage value measuring means for measuring a voltage value of electric power stored in the storage battery;
Comprising hydrogen gas pressure measuring means for measuring the hydrogen gas pressure in the hydrogen storage unit,
The power control means includes
If the voltage value of the storage battery measured by the voltage value measuring means is less than a first set value, power is generated by the fuel cell, and power is supplied to the power load or the power consuming means ,
When the voltage value of the storage battery measured by the voltage value measuring means is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the power consuming means . , when the hydrogen gas pressure in the second setting value reaches a third predetermined value greater than, and in the hydrogen storage unit, which is measured by the hydrogen gas pressure measuring means by said power generating means it is less than a predetermined value , the power supply from the storage battery to the power load, further to generate hydrogen in the water electrolysis cell, and controls the power of the hydrogen to be stored in the hydrogen storage unit, as a result, the voltage of the storage battery If it becomes less than the second set value, or when the hydrogen gas pressure in the hydrogen storage unit reaches a predetermined value or more, although power is supplied from the storage battery to the power load, the water electrolyzer Of power to Stopping feeding, the is the battery by the generator means charging, the voltage becomes higher again the third set value, and when the hydrogen gas pressure in the hydrogen storage unit is less than the predetermined value, the battery while supplying power to the power load from, resumes the supply of power to the water electrolyzer, the voltage of the battery becomes more than the third set value, and the hydrogen gas pressure in the hydrogen storage unit If it is less than the predetermined value, the power generation system for controlling supplying electric power to be accumulated into the battery by the power generation unit to the power unit.
風力発電及び太陽光発電のいずれか又は両方による発電手段と,
前記発電手段によって得られた電力を蓄積するための蓄電池と,
前記発電手段によって得られた電力を用いて水を水素と酸素とに分解する水電解機能を有し,
且つそれにより発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得る燃料電池の機能を有する電解セルと,
前記電解セルが電力を取得する際に発生する水素を貯蔵するための水素貯蔵部と,
前記発電手段及び前記燃料電池により得られた電力を消費するための電力消費手段と,
前記発電手段により得られる電力,前記蓄電池に蓄積される電力,及び前記電解セルにより得られる電力の供給先を制御するための電力制御手段と,
を具備し,
前記発電手段によって得られた電力を蓄電池に蓄積し,利用するとともに,
前記蓄電池に蓄積された電力,又は前記発電手段によって得られた電力を用いて,前記電解セル中の水を水素と酸素とに分解し,
前記水素貯蔵部に前記電解セルで発生した水素を貯蔵し,
発生した水素,又は前記水素貯蔵部に貯蔵された水素を用いて電力を得,
前記電力制御手段が,電力負荷及び前記電力消費手段へ供給する電力を制御する,
発電システムであって,
前記電力消費手段は,前記水電解槽又は前記燃料電池のいずれか又は両方を加温するための加熱手段,又は余剰電力を消費するためのダミー負荷であり,
前記発電システムは,さらに,
前記蓄電池において蓄積した電力の電圧値を測定する電圧値測定手段と,
前記水素貯蔵部内の水素ガス圧を測定する水素ガス圧測定手段を備え,
前記電力制御手段は,
前記電圧値測定手段により測定された前記蓄電池の電圧値が第1の設定値未満である場合には,前記電解セルで電力を発生させ,前記電力負荷又は前記電力消費手段へ電力を供給し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第1の設定値以上第2の設定値未満である場合には,前記蓄電池から前記電力負荷又は前記電力消費手段へ電力を供給し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第2の設定値以上であり,かつ,前記水素ガス圧測定手段によって測定された前記水素貯蔵部内の水素ガス圧が所定値未満である場合には,前記蓄電池から前記電力負荷又は前記電力消費手段へ電力を供給し,さらに前記発電手段により蓄電池へ蓄積される電力を用いて,前記水電解槽において水素を発生させ,前記水素を前記水素貯蔵部に貯蔵し,
前記電圧値測定手段により測定された前記蓄電池の電圧値が前記第2の設定値以上であり,かつ前記水素ガス圧測定手段によって測定された前記水素貯蔵部内の水素ガス圧が所定値以上である場合には,前記発電手段により蓄電池へ蓄積される電力を前記電力消費手段へ供給するように電力を制御する
発電システム。
Power generation means by wind power and / or solar power, and
A storage battery for storing the power obtained by the power generation means;
Having water electrolysis function of decomposing water into hydrogen and oxygen using the electric power obtained by the power generation means,
And an electrolysis cell having a function of a fuel cell that obtains electric power using hydrogen generated thereby or hydrogen stored in the hydrogen storage unit;
A hydrogen storage unit for storing hydrogen generated when the electrolysis cell acquires power; and
Power consumption means for consuming the power obtained by the power generation means and the fuel cell;
Power control means for controlling the power obtained by the power generation means, the power stored in the storage battery, and the power supply destination obtained by the electrolysis cell;
Equipped with,
While accumulating and using the power obtained by the power generation means in a storage battery,
Using the power stored in the storage battery or the power obtained by the power generation means, the water in the electrolysis cell is decomposed into hydrogen and oxygen,
Storing hydrogen generated in the electrolytic cell in the hydrogen storage unit;
Using the generated hydrogen or the hydrogen stored in the hydrogen storage unit to obtain electric power,
The power control means controls the power supplied to the power load and the power consumption means ;
A power generation system,
The power consuming means is a heating means for heating either or both of the water electrolyzer or the fuel cell, or a dummy load for consuming surplus power,
The power generation system further includes:
Voltage value measuring means for measuring a voltage value of electric power stored in the storage battery;
Comprising hydrogen gas pressure measuring means for measuring the hydrogen gas pressure in the hydrogen storage unit,
The power control means includes
When the voltage value of the storage battery measured by the voltage value measuring means is less than a first set value, power is generated in the electrolysis cell, and power is supplied to the power load or the power consuming means,
When the voltage value of the storage battery measured by the voltage value measuring means is not less than the first set value and less than the second set value, power is supplied from the storage battery to the power load or the power consuming means. ,
The voltage value of the storage battery measured by the voltage value measuring means is not less than the second set value, and the hydrogen gas pressure in the hydrogen storage unit measured by the hydrogen gas pressure measuring means is less than a predetermined value. In some cases, power is supplied from the storage battery to the power load or the power consuming means, and further, hydrogen is generated in the water electrolyzer using the power stored in the storage battery by the power generation means, and the hydrogen is Storing in the hydrogen storage unit,
The voltage value of the storage battery measured by the voltage value measuring means is not less than the second set value, and the hydrogen gas pressure in the hydrogen storage part measured by the hydrogen gas pressure measuring means is not less than a predetermined value. In this case, the power generation system controls the power so that the power stored in the storage battery by the power generation means is supplied to the power consumption means .
JP2005048546A 2005-02-24 2005-02-24 A power generation system that effectively uses natural energy, Active JP4775790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048546A JP4775790B2 (en) 2005-02-24 2005-02-24 A power generation system that effectively uses natural energy,

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048546A JP4775790B2 (en) 2005-02-24 2005-02-24 A power generation system that effectively uses natural energy,

Publications (2)

Publication Number Publication Date
JP2006236741A JP2006236741A (en) 2006-09-07
JP4775790B2 true JP4775790B2 (en) 2011-09-21

Family

ID=37044159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048546A Active JP4775790B2 (en) 2005-02-24 2005-02-24 A power generation system that effectively uses natural energy,

Country Status (1)

Country Link
JP (1) JP4775790B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187153A1 (en) 2018-03-30 2019-10-03 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011003449A (en) * 2009-06-19 2011-01-06 Tokai Koshi:Kk Power generation system
US20130168237A1 (en) 2010-09-30 2013-07-04 Hitachi, Ltd. Hydrogen production system
JP5617592B2 (en) * 2010-12-14 2014-11-05 コニカミノルタ株式会社 Secondary battery type fuel cell system
FR2972867B1 (en) * 2011-03-17 2014-02-07 Cassidian Sas AUTONOMOUS HYBRID POWER SUPPLY SYSTEM OF AN ELECTRICAL EQUIPMENT AND UNIT AND METHOD OF MANAGING THE SYSTEM
JP5780827B2 (en) * 2011-05-13 2015-09-16 株式会社東芝 Energy management method, energy management program, energy management device, energy management system
JP5895736B2 (en) * 2012-06-25 2016-03-30 コニカミノルタ株式会社 Secondary battery type fuel cell system and power supply system including the same
JP6189448B2 (en) * 2015-07-21 2017-08-30 株式会社東芝 Power supply system, control device, and power supply method
US11008663B2 (en) 2017-11-30 2021-05-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrolysis system
JP6819651B2 (en) * 2017-11-30 2021-01-27 株式会社豊田中央研究所 Electrolytic system
JP7076730B2 (en) * 2018-01-30 2022-05-30 清水建設株式会社 Power supply system
AU2018409334B2 (en) 2018-02-19 2022-03-03 Kabushiki Kaisha Toshiba Control apparatus for power supply system, control method for power supply system, and power supply system
JP6740505B2 (en) * 2018-03-20 2020-08-12 本田技研工業株式会社 Energy system, energy management server, energy management method, and program
JP7417972B2 (en) * 2018-04-19 2024-01-19 パナソニックIpマネジメント株式会社 Power systems and power system control methods
CN108736042A (en) * 2018-04-25 2018-11-02 全球能源互联网研究院有限公司 A kind of heat-transfer device, hydrogen utilize device and temperature control method
JP2019200839A (en) * 2018-05-14 2019-11-21 グローバル・リンク株式会社 Power generation system
JP7364182B2 (en) * 2019-04-10 2023-10-18 清水建設株式会社 Hydrogen-based power supply system and hydrogen-based power supply method
JP2021059748A (en) * 2019-10-04 2021-04-15 日立造船株式会社 Water electrolysis device, and method of controlling water electrolysis device
JP7373140B2 (en) 2020-01-21 2023-11-02 清水建設株式会社 Power generation system and power generation method
JP7336172B2 (en) * 2020-01-23 2023-08-31 東芝エネルギーシステムズ株式会社 Control device for hydrogen system, hydrogen generation system, and control method for hydrogen system
JP7452842B2 (en) * 2020-03-03 2024-03-19 日本水力株式会社 Hydrogen production system and hydrogen production method
CN112103994B (en) * 2020-08-25 2022-04-01 同济大学 Layered coordination control method and device for wind-hydrogen coupling system based on MPC
JP7089323B1 (en) * 2020-10-30 2022-06-22 株式会社辰巳菱機 Power / hydrogen supply station
JP7141671B1 (en) * 2020-10-30 2022-09-26 株式会社辰巳菱機 Power/hydrogen supply station
CN115149039B (en) * 2022-09-02 2022-11-29 北京新研创能科技有限公司 Fuel cell with high-efficient cooling system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327611B2 (en) * 1993-03-01 2002-09-24 三菱重工業株式会社 Fuel cell power generation system with water electrolysis device with secondary battery
JP2002075388A (en) * 2000-08-25 2002-03-15 Sekisui Chem Co Ltd Operation method for feed system and feed system
JP2002184418A (en) * 2000-12-13 2002-06-28 Hitachi Zosen Corp Moving body with fuel battery mounted thereon
US20040013923A1 (en) * 2002-02-19 2004-01-22 Trent Molter System for storing and recoving energy and method for use thereof
JP4969018B2 (en) * 2003-07-18 2012-07-04 パナソニック株式会社 Power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187153A1 (en) 2018-03-30 2019-10-03 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method
JPWO2019187153A1 (en) * 2018-03-30 2020-07-30 本田技研工業株式会社 Energy management device, hydrogen utilization system, program, and energy management method
US10910838B1 (en) 2018-03-30 2021-02-02 Honda Motor Co., Ltd. Energy management device, hydrogen utilization system, non-transitory computer readable medium, and energy management method

Also Published As

Publication number Publication date
JP2006236741A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4775790B2 (en) A power generation system that effectively uses natural energy,
RU2589889C2 (en) Stand-alone hybrid power supply system for electric equipment and system control unit and method
US8003268B2 (en) Modular regenerative fuel cell system
CN100527510C (en) A method and device for low-temperature start of the fuel battery
US9634343B2 (en) Hydrogen offloading in an electrochemical generator unit including a hydrogen fuel cell
EP2150999B1 (en) Fuel cell systems with maintenance hydration by displacement of primary power
BR112012026923B1 (en) electrical energy storage and restoration device
CN102244283A (en) Membrane electrolysis hydrogen self-supply proton exchange membrane fuel cell power generation system and method
JP2013009548A (en) Uninterruptible power supply system
JP5492460B2 (en) Reversible cell operation method
RU2371813C1 (en) Autonomous power supply system and method of its operation
JP2020090695A (en) Electrochemical hydrogen compression system
KR101466105B1 (en) Fuel cells system and method for load following thereof
JP4010165B2 (en) High-pressure hydrogen production apparatus and production method thereof
JP2005032585A (en) Power supply system using fuel cell
JP2007179886A (en) Fuel cell system for coping with emergency
KR20220076172A (en) Home energy storage system using small redox flow battery which is convenient for installation and maintenance
JP2003221690A (en) Apparatus and process for generating high-pressure hydrogen
US20070141429A1 (en) Storing energy in a fuel cell system
JP2010218692A (en) Fuel cell power generation system and method of maintenance power generation control for the same
CN114726085B (en) Hydropower station standby power supply system
CN218352262U (en) Modular green electricity hydrogen production storage system
EP4280325A1 (en) Proton-conducting soec and oxygen ion-conducting sofc joint apparatus
WO2005027305A1 (en) Method and system for providing uninterrupted power supply using fuel cells
CN115852402A (en) Heat energy utilization system and heat energy utilization method of energy supply unit based on safe hydrogen storage

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4775790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250