JP4775059B2 - Command pattern generation method - Google Patents

Command pattern generation method Download PDF

Info

Publication number
JP4775059B2
JP4775059B2 JP2006082294A JP2006082294A JP4775059B2 JP 4775059 B2 JP4775059 B2 JP 4775059B2 JP 2006082294 A JP2006082294 A JP 2006082294A JP 2006082294 A JP2006082294 A JP 2006082294A JP 4775059 B2 JP4775059 B2 JP 4775059B2
Authority
JP
Japan
Prior art keywords
acceleration
tact
time
command pattern
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082294A
Other languages
Japanese (ja)
Other versions
JP2007257414A (en
Inventor
健一 鈴木
勝 西園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006082294A priority Critical patent/JP4775059B2/en
Publication of JP2007257414A publication Critical patent/JP2007257414A/en
Application granted granted Critical
Publication of JP4775059B2 publication Critical patent/JP4775059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、一定の条件下でモータを駆動するときの、加速度実効値を最小とする指令パターン生成方法に関する。   The present invention relates to a command pattern generation method for minimizing an effective acceleration value when a motor is driven under a certain condition.

モータを駆動した場合のモータの温度上昇は、駆動電流の2乗におおむね比例する。これはモータの抵抗分に電流の2乗を掛けた銅損成分が、モータの温度上昇で大きな部分を占めるためである。したがって駆動電流実効値を小さくすることは、モータの温度上昇を下げることにつながる。   The temperature rise of the motor when the motor is driven is roughly proportional to the square of the drive current. This is because the copper loss component obtained by multiplying the resistance of the motor by the square of the current occupies a large part due to the temperature rise of the motor. Therefore, reducing the drive current effective value leads to lowering the temperature rise of the motor.

モータの駆動電流は、通常トルクと比例関係を持つよう電流制御されるため、モータの加速度に比例する。したがって位置制御を行うときに、この加速度の実効値を最小とする指令パターンを生成すれば、駆動電流実効値を最小化することができ、モータの温度上昇も最小化することができる。   Since the motor drive current is controlled to have a proportional relationship with the normal torque, it is proportional to the motor acceleration. Accordingly, if a command pattern that minimizes the effective value of acceleration is generated when performing position control, the effective value of drive current can be minimized, and the temperature rise of the motor can also be minimized.

このような加速度実効値を指定する従来の方法として、規格化関数で表される指令パターンを、変倍操作や時間軸伸縮操作を行うことで変形し、限界性能の制約下で指定の加速度実効値を得る方法が提案されている(例えば、特許文献1参照)。
特開平9−128031号公報
As a conventional method for specifying such acceleration effective value, the command pattern represented by the normalization function is transformed by performing scaling operation or time axis expansion / contraction operation, and the specified acceleration effective value is limited under the limit performance limit. A method for obtaining a value has been proposed (see, for example, Patent Document 1).
JP-A-9-128031

しかし、上記方法では加速度実効値を指定することはできるが、これが最小となるパターンを示すことはできない。また、規格化関数そのものについても、ユーザの設計事項とされており、ある移動量とタクトに対し、どのような規格化関数が加速度実効値を最小とするかは示していない。   However, although the effective acceleration value can be specified by the above method, a pattern in which this is the minimum cannot be indicated. Further, the normalization function itself is also a design matter of the user, and does not indicate what normalization function minimizes the effective acceleration value for a certain movement amount and tact.

さらに、この手法を実現する際には、非常に高速な計算能力と複雑なアルゴリズムが必要となる。   Furthermore, in order to realize this method, a very high-speed calculation capability and a complicated algorithm are required.

本発明は上記従来の課題を解決するものであり、真に加速度実効値を最小とする指令パターンを、少ない計算量で生成可能とする方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a method that can generate a command pattern that truly minimizes an effective acceleration value with a small amount of calculation.

上記課題を解決するために本発明は、移動量θmaxとタクトtactを指定し、時刻0から時刻tactまでをn等分(nは2以上の整数)したとき、区間i(i=1〜n)における加速度α(i)が一定で、かつ隣の区間i+1の加速度α(i+1)との差が一定で、かつ時刻0および時刻tactでの速度が0で、かつ時刻0から時刻tactまでの移動量がθmaxである、加速度α(i)が下記(式11)で表される、指令パターン生成方法である。 In order to solve the above-described problem, the present invention designates the movement amount θmax and the tact tact, and when the time 0 to the time tact are equally divided into n (n is an integer of 2 or more), the section i (i = 1 to n) ) Is constant, the difference from the acceleration α (i + 1) of the adjacent section i + 1 is constant, the speed at time 0 and time tact is 0, and from time 0 to time tact This is a command pattern generation method in which the movement amount is θmax and the acceleration α (i) is expressed by the following (formula 11).

なお、上記において、分割数nが大きくなるに従って、速度が放物線パターンに漸近していく In the above description, as the number of divisions n increases, the speed gradually approaches a parabolic pattern .

移動量とタクトと分割数nの制約下で、加速度実効値を最小化できる。   The acceleration effective value can be minimized under the constraints of the movement amount, the tact, and the division number n.

移動量θmaxとタクトtactを指定し、時刻0から時刻tactまでをn等分(nは2以上の整数)したとき、区間i(i=1〜n)における加速度α(i)が一定で、かつ隣の区間i+1の加速度α(i+1)との差が一定で、かつ時刻0および時刻tactでの速度が0で、かつ時刻0から時刻tactまでの移動量がθmaxである、指令パターンを生成する。   When the movement amount θmax and the tact tact are specified and the time 0 to the time tact are divided into n equal parts (n is an integer of 2 or more), the acceleration α (i) in the section i (i = 1 to n) is constant, A command pattern is generated in which the difference from the acceleration α (i + 1) in the adjacent section i + 1 is constant, the speed at time 0 and time tact is 0, and the movement amount from time 0 to time tact is θmax. To do.

図1は、n=7(奇数)の場合とn=8(偶数)の場合を示したものである。   FIG. 1 shows the case of n = 7 (odd number) and n = 8 (even number).

移動量θmaxとタクトtactを指定し、時刻0から時刻tactまでをn等分(nは2以上の整数)したとき、区間i(i=1〜n)における加速度α(i)が一定の条件から、この指令パターンはn自由度を持つことが分かる。   When the movement amount θmax and the tact tact are specified and the time 0 to the time tact are equally divided into n (n is an integer of 2 or more), the acceleration α (i) in the section i (i = 1 to n) is constant. From this, it is understood that this command pattern has n degrees of freedom.

ある区間iの加速度α(i)と、隣の区間i+1の加速度α(i+1)との差が、一定という条件から式1が導き出せる。   Equation 1 can be derived from the condition that the difference between the acceleration α (i) in a certain section i and the acceleration α (i + 1) in the adjacent section i + 1 is constant.

したがって、式1で区間1の加速度α(1)=Aと置くと、区間iの加速度α(i)は式2で表せる。   Therefore, if the acceleration α (1) in section 1 is set as A in equation 1, the acceleration α (i) in section i can be expressed by equation 2.

また、区間i(i=1〜n)における加速度α(i)が一定であることから、時刻i×tact/nにおける速度ω(i)は、加速度を時刻0から時刻tactまで定積分することで式3となる。   Further, since the acceleration α (i) in the section i (i = 1 to n) is constant, the speed ω (i) at the time i × tact / n is obtained by integrating the acceleration from time 0 to time tact. Thus, Equation 3 is obtained.

式3に式2を代入すると、式4が得られる。   Substituting equation 2 into equation 3, equation 4 is obtained.

時刻tactでの速度が0の条件は、式4でi=nとしたω(n)=0より、式5で表せる。   The condition that the speed at time tact is 0 can be expressed by Equation 5 from ω (n) = 0 where i = n in Equation 4.

式5を式2に代入すると、加速度α(i)は式6で表される。   When Expression 5 is substituted into Expression 2, acceleration α (i) is expressed by Expression 6.

また、式5を式4に代入すると、速度ω(i)は式7で表される。   Further, when Expression 5 is substituted into Expression 4, the speed ω (i) is expressed by Expression 7.

最後に時刻i×tact/nにおける位置θ(i)は、区間毎の速度の面積を合計したものであり、図1を見ると分かるように、これは上辺・下辺がω(i−1)とω(i)で高さがtact/nである台形の面積の和で計算できる。これを式で表すと式8となる。   Finally, the position θ (i) at the time i × tact / n is the sum of the areas of the speeds for each section, and as can be seen from FIG. 1, the upper side and the lower side are ω (i−1). And ω (i) and the sum of the trapezoidal areas whose height is tact / n. When this is expressed by an equation, it becomes an equation 8.

また、式7を式8に代入すると、位置θ(i)は式9となる。   Further, when Expression 7 is substituted into Expression 8, the position θ (i) becomes Expression 9.

時刻tactにおける位置θ(n)が移動量θmaxに等しい条件は、式9でi=nと置いたθ(n)=θmaxから式10で表せる。   The condition that the position θ (n) at the time tact is equal to the movement amount θmax can be expressed by Expression 10 from θ (n) = θmax set as i = n in Expression 9.

これを式9に代入することで、区間iの加速度α(i)を求める式11が得られる。   By substituting this into Equation 9, Equation 11 for obtaining the acceleration α (i) in the section i is obtained.

このときの加速度実効値は式12となる。   The acceleration effective value at this time is expressed by Equation 12.

分割数nを横軸に、加速度実効値にタクトtactの2乗を掛け、移動量θmaxで除することで正規化した、正規化加速度実効値を縦軸としたグラフを図2に示す。   FIG. 2 shows a graph in which the normalized acceleration effective value is normalized by multiplying the division number n by the horizontal axis and multiplying the acceleration effective value by the square of the tact tact and dividing by the movement amount θmax.

分割数nを大きくするほど、正規化加速度実効値の係数部は真の最小値である6/√3に近づく。ただし実用上は、n=10分割でも真の最小値に対し0.5%程度の実効値増加に抑えることができるため、十分と言える。   As the division number n is increased, the coefficient part of the normalized acceleration effective value approaches 6 / √3 which is the true minimum value. However, practically, it can be said that even if n = 10 divisions, the effective value can be suppressed to about 0.5% increase with respect to the true minimum value.

なお、ここでは回転系のモータを例に挙げたが、リニアモータなどの直線系でも同じ方法が使用できることは明白である。また、特に同じ移動距離を往復する用途で本方式を適用すると、加速度指令を連続にでき振動を励起しにくくなるため、非常に適している。   Here, the rotary motor is taken as an example, but it is obvious that the same method can be used for a linear system such as a linear motor. Further, when this method is applied particularly for the purpose of reciprocating the same moving distance, it is very suitable because acceleration commands can be made continuous and vibrations are hardly excited.

さらに、指令パターンから加速度実効値までの応答特性を考慮し、その逆モデルに指令パターンを通した出力を用いることで、加速度実効値の最小化をより精度よく行うことができる。   Furthermore, by considering the response characteristics from the command pattern to the acceleration effective value and using the output through the command pattern for the inverse model, the acceleration effective value can be minimized more accurately.

以上、本発明の指令パターン生成方法は、モータの加速度実効値を最小化し、モータの温度上昇を最小化することができるため、モータの小型化、省エネルギー化に有用である。   As described above, since the command pattern generation method of the present invention can minimize the effective acceleration value of the motor and minimize the temperature rise of the motor, it is useful for miniaturization and energy saving of the motor.

本発明の実施例1における指令パターンの説明図Explanatory drawing of the command pattern in Example 1 of this invention 本発明の指令パターンの分割数nと正規化加速度実効値のグラフGraph of command pattern division number n and normalized acceleration effective value of the present invention

Claims (1)

移動量θmaxとタクトtactを指定し、時刻0から時刻tactまでをn等分(nは2以上の整数)したとき、区間i(i=1〜n)における加速度α(i)が一定で、かつ隣の区間i+1の加速度α(i+1)との差が一定で、かつ時刻0および時刻tactでの速度が0で、かつ時刻0から時刻tactまでの移動量がθmaxである、加速度α(i)が下記(式11)で表される、指令パターン生成方法。
When the movement amount θmax and the tact tact are specified and the time 0 to the time tact are divided into n equal parts (n is an integer of 2 or more), the acceleration α (i) in the section i (i = 1 to n) is constant, and the difference between the acceleration interval i + 1 of the next alpha (i + 1) is constant and at a rate at time 0 and time tact is 0 and the movement amount from time 0 to time tact is .theta.max, acceleration alpha (i ) Is represented by the following (formula 11) .
JP2006082294A 2006-03-24 2006-03-24 Command pattern generation method Expired - Fee Related JP4775059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082294A JP4775059B2 (en) 2006-03-24 2006-03-24 Command pattern generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082294A JP4775059B2 (en) 2006-03-24 2006-03-24 Command pattern generation method

Publications (2)

Publication Number Publication Date
JP2007257414A JP2007257414A (en) 2007-10-04
JP4775059B2 true JP4775059B2 (en) 2011-09-21

Family

ID=38631577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082294A Expired - Fee Related JP4775059B2 (en) 2006-03-24 2006-03-24 Command pattern generation method

Country Status (1)

Country Link
JP (1) JP4775059B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120215B2 (en) * 1987-11-27 1995-12-20 ダイキン工業株式会社 Robot control method
JPH06168021A (en) * 1992-11-27 1994-06-14 Fanuc Ltd Acceleration/deceleration control method for servo motor
JP4508135B2 (en) * 2006-03-08 2010-07-21 パナソニック株式会社 Command pattern generation method

Also Published As

Publication number Publication date
JP2007257414A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Wang et al. A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism
CN100340934C (en) Reference model tracking control system and method
Masoudi et al. Force ripple and jerk minimisation in double sided linear switched reluctance motor used in elevator application
WO2019041657A1 (en) Quintic polynomial trajectory planning method for industrial robot
JP5277655B2 (en) Power generation device that generates electricity by receiving fluid
EP3743619B1 (en) Power take-off for a wave energy converter
JP4508135B2 (en) Command pattern generation method
CN104894970A (en) Eddy current damper for stay cable out-of-surface vibration control and damping generation method
JP4775059B2 (en) Command pattern generation method
JP5499865B2 (en) Generation method of speed command profile for articulated robot
CN106655882B (en) A kind of supersonic motor servo-control system hysteresis control method
KR101115019B1 (en) Method for speed sensorless control of permanent magnet synchronous motor
KR100761689B1 (en) Torque limited motor controll methode & motor controller
RU2489798C1 (en) Servo drive
CN111181438A (en) Method and device for driving piezoelectric ceramic actuator
CN107707168B (en) Permanent magnet synchronous motor control method based on double-current observer
JP2008061470A (en) Vibration detector and motor control device therewith
CN111045461A (en) Continuous small line segment discrete speed control method of cutting bed
JP4762219B2 (en) Control device for mechanical system
JP2008099420A (en) Drive method for stepping motor
Choi et al. Simulation of wave generation system with linear generator
JP3977091B2 (en) Control device and control method for elastic mode vibration of structure
KR20190036726A (en) Control method of linear motor
KR101311790B1 (en) System and method for controlling position for a second order mass-spring system, and a medium having computer readable program for executing the method
JP2749349B2 (en) Step motor drive method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R151 Written notification of patent or utility model registration

Ref document number: 4775059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees