JP4762219B2 - Control device for mechanical system - Google Patents

Control device for mechanical system Download PDF

Info

Publication number
JP4762219B2
JP4762219B2 JP2007267921A JP2007267921A JP4762219B2 JP 4762219 B2 JP4762219 B2 JP 4762219B2 JP 2007267921 A JP2007267921 A JP 2007267921A JP 2007267921 A JP2007267921 A JP 2007267921A JP 4762219 B2 JP4762219 B2 JP 4762219B2
Authority
JP
Japan
Prior art keywords
acceleration
time
speed
deceleration
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007267921A
Other languages
Japanese (ja)
Other versions
JP2009098786A (en
Inventor
清石 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007267921A priority Critical patent/JP4762219B2/en
Publication of JP2009098786A publication Critical patent/JP2009098786A/en
Application granted granted Critical
Publication of JP4762219B2 publication Critical patent/JP4762219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Control Of Electric Motors In General (AREA)

Description

この発明は、各軸のモータ及び減速機などの伝達機構の制約を満たす範囲で最短の動作を行うための加減速パラメータを、動作毎に決定する機能を備えたメカニカルシステムの制御装置に関するものである。   The present invention relates to a control device for a mechanical system having a function for determining, for each operation, an acceleration / deceleration parameter for performing the shortest operation within a range that satisfies the constraints of a transmission mechanism such as a motor and a reducer of each axis. is there.

従来のメカニカルシステムの制御装置について説明する(例えば、特許文献1参照)。まず、メカニカルシステムの各軸が同時に動作を開始し、かつ同時に動作を終了する場合の各軸の出しうる最高速度を演算する。次に、各軸の速度を台形状に加減速を行う速度指令パターンで動作させる場合の加速時間、減速時間の初期値を設定する。当該動作の開始地点、終了地点、算出した加速時間、減速時間、最高速度から加速開始地点、加速終了地点、減速開始地点、減速終了地点の各軸の位置、速度を算出し、算出した位置、速度を用いて、加速開始地点でモータ及び伝達機構の許容トルク最大値などの制約を満たす範囲で最短となる加速時間t1aと、加速終了地点でモータ及び伝達機構の許容トルク最大値などの制約を満たす範囲で最短となる加速時間t1bを算出し、大きいほうを加速時間t1とする。同様に、算出した位置、速度を用いて、減速開始地点でモータ及び伝達機構の許容トルク最大値などの制約を満たす範囲で最短となる減速時間t2aと、減速終了地点でモータ及び伝達機構の許容トルク最大値などの制約を満たす範囲で最短となる減速時間t2bを算出し、大きいほうを減速時間t2とする。算出した加速時間t1、減速時間t2と開始地点、終了地点、最高速度から加速開始地点、加速終了地点、減速開始地点、減速終了地点の各軸の位置、速度を算出し直し、再度、加速時間、減速時間を算出する。上記繰り返しを規定回数実行する。   A conventional mechanical system control device will be described (for example, see Patent Document 1). First, the maximum speed that each axis can output is calculated when the axes of the mechanical system simultaneously start and end simultaneously. Next, initial values of acceleration time and deceleration time when the speed of each axis is operated in a speed command pattern for accelerating / decelerating in a trapezoidal shape are set. Start position, end point of the operation, calculated acceleration time, deceleration time, calculate the position and speed of each axis of acceleration start point, acceleration end point, deceleration start point, deceleration end point from the maximum speed, calculated position, Using the speed, the acceleration time t1a that is the shortest in a range that satisfies the constraints such as the maximum allowable torque of the motor and the transmission mechanism at the acceleration start point, and the maximum allowable torque of the motor and the transmission mechanism at the acceleration end point An acceleration time t1b that is the shortest within the range to be satisfied is calculated, and the larger one is set as the acceleration time t1. Similarly, using the calculated position and speed, the deceleration time t2a that is the shortest within a range that satisfies the constraints such as the maximum allowable torque of the motor and the transmission mechanism at the deceleration start point, and the allowance of the motor and the transmission mechanism at the deceleration end point. The deceleration time t2b that is the shortest within a range that satisfies the constraints such as the maximum torque value is calculated, and the larger one is set as the deceleration time t2. From the calculated acceleration time t1, deceleration time t2 and start point, end point, maximum speed, calculate the position and speed of each axis of acceleration start point, acceleration end point, deceleration start point, deceleration end point, and again, acceleration time Calculate the deceleration time. The above repetition is executed a specified number of times.

特開平07−200033号公報(実施例3、4、図4)Japanese Patent Application Laid-Open No. 07-200033 (Examples 3, 4 and 4)

上述したような従来のメカニカルシステムの制御装置では、高速域でモータの許容トルクが下がる場合、高速域に合わせて低速域でも加速度を下げる必要があるため、許容トルクを満たす範囲で十分な高速化が図れないという問題点があった。また、最高速度を上げると加速度が下がるために、かえって動作時間が長くなる場合があるという問題点があった。   In the conventional mechanical system control device as described above, when the allowable torque of the motor decreases in the high speed range, it is necessary to reduce the acceleration even in the low speed range in accordance with the high speed range. There was a problem that could not be achieved. Further, there is a problem that the operating time may be longer because the acceleration decreases when the maximum speed is increased.

この発明は、上述のような課題を解決するためになされたもので、その目的は、低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮でき、また、最高速度を高くしたため、かえって動作時間が伸びることを防止でき、さらに、各動作に応じた低速域、高速域の閾値が設定できるメカニカルシステムの制御装置を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to operate at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range. Acceleration / deceleration is not required to be reduced more than necessary in the low speed range, and the operating time can be shortened. In addition, the maximum speed can be increased to prevent the operating time from increasing. It is possible to obtain a control device for a mechanical system in which a threshold value can be set.

この発明に係るメカニカルシステムの制御装置は、メカニカルシステムの各軸のトルクを各軸の位置、速度、加速度を用いて算出し、時間−速度座標上の低速域の代表点でメカニカルシステムの動特性を表現した第1の運動方程式に基づいて、各軸のモータ及び伝達機構によって構成される駆動機構から定まる許容トルクを満たす範囲で最小の加速時間及び減速時間を演算する低速域加減速時間演算手段と、メカニカルシステムの各軸のトルクを各軸の位置、速度、加速度を用いて算出し、前記時間−速度座標上の高速域の代表点でメカニカルシステムの動特性を表現した第2の運動方程式に基づいて、各軸のモータ及び伝達機構によって構成される駆動機構から定まる許容トルクを満たす範囲で最小の加速時間及び減速時間を演算する高速域加減速時間演算手段と、前記低速域加減速時間演算手段により演算された低速域の加速時間及び減速時間、並びに前記高速域加減速時間演算手段により演算された高速域の加速時間及び減速時間に基づいて、低速域及び高速域で異なる加減速度の速度指令パターンを生成する指令生成手段とを設けたものである。

The control device of the mechanical system according to the present invention calculates the torque of each axis of the mechanical system using the position, speed, and acceleration of each axis, and the dynamic characteristic of the mechanical system at a representative point in the low speed region on the time-speed coordinate. Low-speed acceleration / deceleration time calculation means for calculating the minimum acceleration time and deceleration time in a range that satisfies the allowable torque determined from the drive mechanism constituted by the motor and transmission mechanism of each axis based on the first equation of motion And a second equation of motion that expresses the dynamic characteristics of the mechanical system at a representative point in the high-speed region on the time-speed coordinates , by calculating the torque of each axis of the mechanical system using the position, velocity, and acceleration of each axis. fast and calculates the minimum acceleration time and deceleration time range satisfying the permissible torque determined from the configured drive mechanism by a motor and transmission mechanism of each axis based on Acceleration / deceleration time calculation means, low-speed area acceleration time and deceleration time calculated by the low-speed area acceleration / deceleration time calculation means, and high-speed area acceleration time and deceleration time calculated by the high-speed area acceleration / deceleration time calculation means Based on this, command generation means for generating speed command patterns of different acceleration / deceleration in the low speed range and the high speed range is provided.

この発明に係るメカニカルシステムの制御装置は、低速域、高速域のそれぞれの区間でメカニカルシステムの動特性と駆動機構の出力制限値の双方を考慮して最小の加速時間、減速時間を算出するため、低速域と高速域で駆動機構の出力の制限値が異なり、かつ、各軸の変位により出しうる加減速度が異なるメカニカルシステムにおいて、動作毎に低速域と高速域のそれぞれの出力の制限を満たしながら短時間で動作できるという効果を奏する。   The mechanical system control device according to the present invention calculates the minimum acceleration time and deceleration time in consideration of both the dynamic characteristics of the mechanical system and the output limit value of the drive mechanism in each of the low speed range and the high speed range. In a mechanical system where the limit value of the output of the drive mechanism is different between the low speed range and the high speed range and the acceleration / deceleration that can be generated by the displacement of each axis is different, the output limits of the low speed range and the high speed range are satisfied for each operation. However, there is an effect that it can be operated in a short time.

実施の形態1.
この発明の実施の形態1に係るメカニカルシステムの制御装置について図1から図6までを参照しながら説明する。図1は、この発明の実施の形態1に係るメカニカルシステムの制御装置の構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A control device for a mechanical system according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a block diagram showing the configuration of a control device for a mechanical system according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

図1において、この発明の実施の形態1に係るメカニカルシステムの制御装置は、最高速度を演算する最高速度演算手段1と、低速域と高速域の境界を定める閾値を演算する閾値演算手段2と、低速域における加速時間及び減速時間を演算する低速域加減速時間演算手段3と、閾値を修正する閾値修正手段4と、高速域における加速時間及び減速時間を演算する高速域加減速時間演算手段5と、速度指令パターンを生成する指令生成手段6と、ロボット等のメカニカルシステム8の各軸を駆動するモータを制御するモータ制御手段7とが設けられている。なお、この発明に係る駆動機構は、各軸のモータ及び伝達機構から構成されている。   In FIG. 1, a control device for a mechanical system according to Embodiment 1 of the present invention includes a maximum speed calculation means 1 for calculating a maximum speed, and a threshold value calculation means 2 for calculating a threshold value that defines a boundary between a low speed range and a high speed range. , A low speed range acceleration / deceleration time calculation means 3 for calculating acceleration time and deceleration time in the low speed range, a threshold value correction means 4 for correcting the threshold value, and a high speed range acceleration / deceleration time calculation means for calculating the acceleration time and deceleration time in the high speed range 5, a command generation unit 6 that generates a speed command pattern, and a motor control unit 7 that controls a motor that drives each axis of a mechanical system 8 such as a robot. The drive mechanism according to the present invention includes a motor for each axis and a transmission mechanism.

つぎに、この実施の形態1に係るメカニカルシステムの制御装置の動作について図面を参照しながら説明する。図2は、この発明の実施の形態1に係るメカニカルシステムの制御装置の動作を示すフローチャートである。   Next, the operation of the control device for the mechanical system according to the first embodiment will be described with reference to the drawings. FIG. 2 is a flowchart showing the operation of the control device for the mechanical system according to Embodiment 1 of the present invention.

まず、最高速度演算手段1は、動作プログラムによる動作命令毎に、当該動作の動作開始点と動作終了点の情報を読み取り、当該動作でのメカニカルシステム8の各軸の出しうる最高速度(加減速時間を0とした場合の各軸の速度)を算出する。   First, the maximum speed calculation means 1 reads the information of the operation start point and the operation end point of the operation for each operation command by the operation program, and the maximum speed (acceleration / deceleration) that each axis of the mechanical system 8 can output in the operation. The speed of each axis when the time is 0 is calculated.

メカニカルシステム8の軸数がn(自然数)で、各動作で全ての軸が同時に動作を開始し、同時に動作を終了する場合、第i軸の許容最高速度をvmaxi、第i軸の動作開始点の値をspi、第i軸の動作終了点の値をepiとすれば、次の式(1)、(2)により、各軸の出しうる最高速度viが算出できる。ここで、abs()は絶対値、max()は最大値を意味している。   When the number of axes of the mechanical system 8 is n (natural number) and all the axes start to operate at the same time in each operation and end the operation at the same time, the allowable maximum speed of the i-th axis is vmaxi and the i-th axis operation start point Assuming that the value of i is spi and the value of the motion end point of the i-th axis is epi, the maximum speed vi that each axis can output can be calculated by the following equations (1) and (2). Here, abs () means an absolute value, and max () means a maximum value.

maxdl=max(abs(ep1−sp1)/vmax1,abs(ep2−sp2)/vmax2,・・・abs(epn−spn)/vmaxn) (1)   maxdl = max (abs (ep1-sp1) / vmax1, abs (ep2-sp2) / vmax2,... abs (epn-spn) / vmaxn) (1)

vi=abs(epi−spi)/maxdl (2)   vi = abs (epi-spi) / maxdl (2)

図3は、この発明の実施の形態1に係るメカニカルシステムの制御装置の制御対象であるモータの速度−トルク特性を示す図である。また、図4は、この発明の実施の形態1に係るメカニカルシステムの制御装置の低速域の速度指令パターンを示す図である。   FIG. 3 is a diagram showing speed-torque characteristics of a motor that is a control target of the control device of the mechanical system according to Embodiment 1 of the present invention. FIG. 4 is a diagram showing a speed command pattern in the low speed range of the control device for the mechanical system according to the first embodiment of the present invention.

次に、閾値演算手段2は、低速域と高速域の閾値minrを以下の手順で算出する(ステップ101)。まず、図3に示すように、第i軸のモータの速度−トルク特性において、速度vai以上の領域では出せるトルクが下がっているとする。このとき、各軸の中間変数riを、次の式(3)により求め、次の式(4)により示す、各軸の中間変数riの最小値を低速域と高速域の閾値minrとする。ただし、中間変数ri>1となる場合には、中間変数ri=1とする。   Next, the threshold value calculation means 2 calculates the threshold value minr for the low speed range and the high speed range according to the following procedure (step 101). First, as shown in FIG. 3, in the speed-torque characteristics of the i-axis motor, it is assumed that the torque that can be generated is reduced in the region of the speed vai or higher. At this time, the intermediate variable ri of each axis is obtained by the following equation (3), and the minimum value of the intermediate variable ri of each axis shown by the following equation (4) is set as the threshold value minr of the low speed region and the high speed region. However, if the intermediate variable ri> 1, the intermediate variable ri = 1.

ri=vai/vi (3)   ri = vai / vi (3)

minr=min(r1,r2,・・・,rn) (4)   minr = min (r1, r2,..., rn) (4)

このように、動作に応じて閾値minrを設定することにより、加減速度を高くできる区間(低速域)を動作に応じて延長することが可能になり、動作時間を短縮できる効果がある。   Thus, by setting the threshold value minr according to the operation, it is possible to extend the section (low speed region) where acceleration / deceleration can be increased according to the operation, and there is an effect that the operation time can be shortened.

次に、低速域加減速時間演算手段3は、各軸の速度がminr*vi以下の領域を低速域として、低速域での加減速時間を算出する(ステップ102〜104)。また、高速域加減速時間演算手段5は、各軸の速度がminr*viより大きくなる領域を高速域として、高速域での加減速時間を算出する(ステップ106〜108)。さらに、指令生成手段6は、各軸の速度がminr*vi以下の領域を低速域として、低速域加減速時間演算手段3で算出された加減速時間に基づいた加減速の速度指令パターンを生成し、各軸の速度がminr*viより大きくなる領域を高速域として、高速域加減速時間演算手段5で算出された加減速時間に基づいた加減速の速度指令パターンを生成する。そして、モータ制御手段7は、低速域及び高速域の速度指令パターンに基づいてモータの加減速の制御を行う。   Next, the low speed region acceleration / deceleration time calculation means 3 calculates the acceleration / deceleration time in the low speed region by setting the region where the speed of each axis is equal to or less than minr * vi as the low speed region (steps 102 to 104). Further, the high-speed area acceleration / deceleration time calculation means 5 calculates the acceleration / deceleration time in the high-speed area by setting the area where the speed of each axis is larger than minr * vi as the high-speed area (steps 106 to 108). Further, the command generation means 6 generates an acceleration / deceleration speed command pattern based on the acceleration / deceleration time calculated by the low-speed area acceleration / deceleration time calculation means 3 with the speed of each axis as the low speed range of minr * vi or less. Then, an acceleration / deceleration speed command pattern based on the acceleration / deceleration time calculated by the high-speed area acceleration / deceleration time calculation means 5 is generated by setting an area where the speed of each axis is larger than minr * vi as a high-speed area. The motor control means 7 controls the acceleration / deceleration of the motor based on the speed command patterns in the low speed range and the high speed range.

低速域加減速時間演算手段3は、次の式(5)により示す、各軸の最高速度vliとして、図4のような台形状の速度指令パターンで動作させる場合に、各軸のモータ及び伝達機構の許容トルクの制約を満たす範囲で最短の加速時間と減速時間を算出する。   The low-speed area acceleration / deceleration time calculation means 3 performs the motor and transmission of each axis when operating with the trapezoidal speed command pattern as shown in FIG. 4 as the maximum speed vli of each axis shown by the following equation (5). The shortest acceleration time and deceleration time are calculated within the range that satisfies the allowable torque limit of the mechanism.

vli=minr*(epi−spi)/maxdl (5)   vli = minr * (epi-spi) / maxdl (5)

ここで、加速時間及び減速時間は、低速域であっても、次の式(6)により示す、高速域も含めた最高速度vmiまで一定の加速度で加速する場合の加速及び減速に要する時間とする。   Here, the acceleration time and the deceleration time are the time required for acceleration and deceleration when accelerating at a constant acceleration up to the maximum speed vmi including the high speed range, as shown by the following equation (6), even in the low speed range. To do.

vmi=(epi−spi)/maxdl (6)   vmi = (epi-spi) / maxdl (6)

まず、加速時間及び減速時間の初期値を設定する。次に、設定した加速時間及び減速時間の初期値と、各軸の低速域での最高速度vliと、高速域も含めた最高速度vmiと、動作開始点と、動作終了点のデータから、図4に示すような、「加速開始点」、「加速終了点」、「減速開始点」、「減速終了点」の4つの代表点での各軸の位置と速度を算出する。算出した加速開始点の位置、速度と各軸のモータ及び伝達機構の許容トルクの制限値から加速開始点での加速時間t1aをメカニカルシステム8の運動方程式を用いて算出する。同様に、算出した加速終了点の位置、速度と各軸のモータ及び伝達機構の許容トルクの制限値から加速終了点での加速時間t1bをメカニカルシステム8の運動方程式を用いて算出する。算出した加速時間t1a、加速時間t1bを比較し、大きいほうを加速時間t1とする。   First, initial values of acceleration time and deceleration time are set. Next, from the initial values of the set acceleration time and deceleration time, the maximum speed vli in the low speed region of each axis, the maximum speed vmi including the high speed region, the operation start point, and the operation end point data, As shown in FIG. 4, the position and speed of each axis at four representative points of “acceleration start point”, “acceleration end point”, “deceleration start point”, and “deceleration end point” are calculated. The acceleration time t1a at the acceleration start point is calculated using the equation of motion of the mechanical system 8 from the calculated position and speed of the acceleration start point and the limit values of the allowable torque of the motor and transmission mechanism of each axis. Similarly, the acceleration time t1b at the acceleration end point is calculated using the equation of motion of the mechanical system 8 from the calculated position and speed of the acceleration end point and the limit value of the allowable torque of the motor and transmission mechanism of each axis. The calculated acceleration time t1a and acceleration time t1b are compared, and the larger one is set as the acceleration time t1.

「加速開始点」での加速時間t1aは、以下のように算出する。まず、メカニカルシステム8の運動方程式が、次の式(7)により、表現できるとする。ここで、Mは慣性行列、aは各軸の加速度から構成されるベクトル、hは各軸の遠心・コリオリ力、gは各軸の重力、fは各軸の摩擦力とする。   The acceleration time t1a at the “acceleration start point” is calculated as follows. First, it is assumed that the equation of motion of the mechanical system 8 can be expressed by the following equation (7). Here, M is an inertia matrix, a is a vector composed of acceleration of each axis, h is centrifugal / Coriolis force of each axis, g is gravity of each axis, and f is friction force of each axis.

τ=Ma+h+g+f (7)   τ = Ma + h + g + f (7)

このとき、M、h、g、fはそれぞれ、各軸の位置で構成されるベクトルp、各軸の速度で構成されるベクトルvの関数であり、M(p)、h(p,v)、g(p)、f(v)と表記できる。加速開始点での各軸位置から構成されるベクトルをp1a、加速開始点での各軸速度から構成されるベクトルをv1a、各軸の低速域の最高速度vliから構成されるベクトルをvl、高速域も含めた最高速度vmiから構成されるベクトルをvmとすれば、加速時間がktのときの運動方程式は、次の式(8)となる。   At this time, M, h, g, and f are functions of a vector p constituted by the position of each axis and a vector v constituted by the velocity of each axis, respectively, and M (p), h (p, v) , G (p), f (v). The vector composed of the position of each axis at the acceleration start point is p1a, the vector composed of the speed of each axis at the acceleration start point is v1a, the vector composed of the maximum speed vli in the low speed region of each axis is vl, and the high speed If the vector composed of the maximum speed vmi including the region is vm, the equation of motion when the acceleration time is kt is the following equation (8).

τ=M(p1a)vm/kt+h(p1a,v1a)+g(p1a)+f(v1a)
(8)
τ = M (p1a) vm / kt + h (p1a, v1a) + g (p1a) + f (v1a)
(8)

従って、M(p1a)vmの第i要素をmviとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(9)を満たすktiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の加速時間t1aiである。   Therefore, when the i-th element of M (p1a) vm is mvi and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, kti satisfying the following equation (9) is obtained. Is the shortest acceleration time t1ai within the range satisfying the allowable torque determined from.

τmaxi=mvi/kti+hi+gi+fi (mvi>0の場合)、
−τmaxi=mvi/kti+hi+gi+fi (mvi<0の場合)
(9)
τmaxi = mvi / kti + hi + gi + fi (when mvi> 0),
-Τmaxi = mvi / kti + hi + gi + fi (when mvi <0)
(9)

ここで、hi、gi、fiはそれぞれh(p1a,v1a)、g(p1a)、f(v1a)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、加速開始点では速度0での許容トルクτmax1iが式(9)のτmaxiとして用いられる。各軸の加速時間t1aiの最大値をt1aとする。   Here, hi, gi, and fi are the i-th elements of h (p1a, v1a), g (p1a), and f (v1a), respectively. When the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque τmax1i at the speed 0 is used as τmaxi in the equation (9) at the acceleration start point. The maximum value of the acceleration time t1ai for each axis is assumed to be t1a.

「加速終了点」での加速時間t1bも同様に、加速終了点の位置p1b、加速終了点の速度v1bから加速時間がktのときの運動方程式が、次の式(10)となる。   Similarly, for the acceleration time t1b at the “acceleration end point”, the equation of motion when the acceleration time is kt from the position p1b of the acceleration end point and the speed v1b of the acceleration end point is the following equation (10).

τ=M(p1b)vm/kt+h(p1b,v1b)+g(p1b)+f(v1b)
(10)
τ = M (p1b) vm / kt + h (p1b, v1b) + g (p1b) + f (v1b)
(10)

従って、M(p1b)vmの第i要素をmvbiとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(11)を満たすktiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の加速時間t1biである。各軸の加速時間t1biの最大値をt1bとする。   Therefore, when the i-th element of M (p1b) vm is mvbi and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, kti satisfying the following expression (11) is obtained. The shortest acceleration time t1bi within a range satisfying the allowable torque determined from The maximum value of the acceleration time t1bi of each axis is assumed to be t1b.

τmaxi=mvbi/kti+hbi+gbi+fbi (mvbi>0の場合)、
−τmaxi=mvbi/kti+hbi+gbi+fbi (mvbi<0の場合) (11)
τmaxi = mvbi / kti + hbi + gbi + fbi (when mvbi> 0),
−τmaxi = mvbi / kti + hbi + gbi + fbi (when mvbi <0) (11)

ここで、hbi、gbi、fbiはそれぞれh(p1b,v1b)、g(p1b)、f(v1b)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、加速終了点では速度vliでの許容トルクτmaxbiが式(11)のτmaxiとして用いられる。式(5)で用いるminrが初期値の場合には、τmaxbiは速度0での許容トルクτmax1iと同じになる。加速時間t1a、t1bの大きいほうを今回の繰り返し周期での低速域での加速時間t1とする。   Here, hbi, gbi, and fbi are i-th elements of h (p1b, v1b), g (p1b), and f (v1b), respectively. When the allowable torque determined by the motor and the transmission mechanism is determined by the motor, the allowable torque τmaxbi at the speed vli is used as τmaxi in the equation (11) at the acceleration end point. When minr used in Equation (5) is an initial value, τmaxbi is the same as the allowable torque τmax1i at speed 0. The larger of the acceleration times t1a and t1b is set as the acceleration time t1 in the low speed region in the current repetition cycle.

「減速開始点」での減速時間t2aは、下記の手順で算出する。まず、減速開始点での位置p2a、減速開始点の速度v2aから減速時間がgtのときの運動方程式が、次の式(12)となる。   The deceleration time t2a at the “deceleration start point” is calculated according to the following procedure. First, the equation of motion when the deceleration time is gt from the position p2a at the deceleration start point and the speed v2a at the deceleration start point is the following equation (12).

τ=−M(p2a)vm/gt+h(p2a,v2a)+g(p2a)+f(v2a)
(12)
τ = −M (p2a) vm / gt + h (p2a, v2a) + g (p2a) + f (v2a)
(12)

従って、M(p2a)vmの第i要素をmv2aiとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(13)を満たすgtiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の減速時間t2aiである。各軸の減速時間t2aiの最大値をt2aとする。   Therefore, when the i-th element of M (p2a) vm is mv2ai and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, gti satisfying the following equation (13) is the i-axis motor and transmission mechanism. Is the shortest deceleration time t2ai within a range satisfying the allowable torque determined from. The maximum value of the deceleration time t2ai for each axis is assumed to be t2a.

τmaxi=−mv2ai/gti+h2ai+g2ai+f2ai (mv2ai<0の場合)、
−τmaxi=−mv2ai/gti+h2ai+g2ai+f2ai (mv2ai>0の場合) (13)
τmaxi = −mv2ai / gti + h2ai + g2ai + f2ai (when mv2ai <0),
−τmaxi = −mv2ai / gti + h2ai + g2ai + f2ai (when mv2ai> 0) (13)

ここで、h2ai、g2ai、f2aiはそれぞれh(p2a,v2a)、g(p2a)、f(v2a)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、減速開始点では速度vliでの許容トルクτmax2aiが式(13)のτmaxiとして用いられる。式(5)で用いるminrが初期値の場合には、τmax2aiは速度0での許容トルクτmax1iと同じになる。   Here, h2ai, g2ai, and f2ai are the i-th elements of h (p2a, v2a), g (p2a), and f (v2a), respectively. When the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque τmax2ai at the speed vli is used as τmaxi in the equation (13) at the deceleration start point. When minr used in Equation (5) is an initial value, τmax2ai is the same as the allowable torque τmax1i at speed 0.

「減速終了点」での減速時間t2bは、下記の手順で算出する。まず、減速終了点での位置p2b、減速開始点の速度v2bから減速時間がgtのときの運動方程式が、次の式(14)となる。   The deceleration time t2b at the “deceleration end point” is calculated according to the following procedure. First, the equation of motion when the deceleration time is gt from the position p2b at the deceleration end point and the speed v2b at the deceleration start point is the following equation (14).

τ=−M(p2b)vm/gt+h(p2b,v2b)+g(p2b)+f(v2b)
(14)
τ = −M (p2b) vm / gt + h (p2b, v2b) + g (p2b) + f (v2b)
(14)

従って、M(p2b)vmの第i要素をmv2biとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(15)を満たすgtiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の減速時間t2biである。各軸の減速時間t2biの最大値をt2bとする。   Accordingly, when the i-th element of M (p2b) vm is mv2bi and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, gti satisfying the following equation (15) is the i-th axis motor and transmission mechanism. Is the shortest deceleration time t2bi within the range satisfying the allowable torque determined from. Let t2b be the maximum value of the deceleration time t2bi of each axis.

τmaxi=−mv2bi/gti+h2bi+g2bi+f2bi (mv2bi<0の場合)、
−τmaxi=−mv2bi/gti+h2bi+g2bi+f2bi (mv2bi>0の場合) (15)
τmaxi = −mv2bi / gti + h2bi + g2bi + f2bi (when mv2bi <0),
−τmaxi = −mv2bi / gti + h2bi + g2bi + f2bi (when mv2bi> 0) (15)

ここで、h2bi,g2bi,f2biはそれぞれh(p2b,v2b)、g(p2b)、f(v2b)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、減速終了点では速度0での許容トルクτmaxliが式(15)式のτmaxiとして用いられる。減速時間t2a、t2bの大きいほうを今回の繰り返し周期の低速域での減速時間t2とする。   Here, h2bi, g2bi, and f2bi are i-th elements of h (p2b, v2b), g (p2b), and f (v2b), respectively. When the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque τmaxli at the speed 0 is used as τmaxi in the equation (15) at the deceleration end point. The larger one of the deceleration times t2a and t2b is set as the deceleration time t2 in the low speed region of the current repetition cycle.

次に、閾値修正手段4は、次回の繰り返しでの閾値minrを下記の手順で算出する(ステップ105)。まず、各軸毎に加速終了点での使用トルクτki、減速開始点での使用トルクτgiをそれぞれ、次の式(16)、(17)により算出し、使用トルクτki、τgiの大きいほうを第i軸の使用トルク使用率τsiとする。   Next, the threshold value correcting means 4 calculates the threshold value minr in the next iteration according to the following procedure (step 105). First, for each axis, the use torque τki at the acceleration end point and the use torque τgi at the deceleration start point are calculated by the following equations (16) and (17), respectively, and the larger of the use torques τki and τgi The use torque usage rate τsi of the i-axis is assumed.

τki=abs(mvbi/t1+hbi+gbi+fbi) (16)
τgi=abs(−mv2ai/t2+h2ai+g2ai+f2ai) (17)
τki = abs (mvbi / t1 + hbi + gbi + fbi) (16)
τgi = abs (−mv2ai / t2 + h2ai + g2ai + f2ai) (17)

図5は、この発明の実施の形態1に係るメカニカルシステムの制御装置において閾値の修正値の算出方法を説明するための図である。また、図6は、この発明の実施の形態1に係るメカニカルシステムの制御装置の低速域及び高速域の速度指令パターンを示す図である。   FIG. 5 is a diagram for explaining a calculation method of a threshold correction value in the control device for a mechanical system according to the first embodiment of the present invention. FIG. 6 is a diagram showing speed command patterns in the low speed range and the high speed range of the control device for the mechanical system according to the first embodiment of the present invention.

次に、図5のように、各軸毎に、速度−トルク特性(折れ線)と直線τ=τsiの交点の速度v2iを算出する。ここで、使用トルク使用率τsiが許容トルクτmaxliと一致する場合には、速度v2iを速度−トルク特性の折れ点vaiとする。さらに、算出した速度v2iが最高速度viより大きくなっている場合には、速度v2iを最高速度viとする。算出した各軸の速度v2iから、次の式(18)を算出し、中間変数r2iの最小値を閾値minrの修正値とし、次回の繰り返しでの低速域と高速域の閾値とする。   Next, as shown in FIG. 5, the speed v2i at the intersection of the speed-torque characteristic (broken line) and the straight line τ = τsi is calculated for each axis. Here, when the use torque usage rate τsi matches the allowable torque τmaxli, the speed v2i is set as a break point vai of the speed-torque characteristic. Further, when the calculated speed v2i is larger than the maximum speed vi, the speed v2i is set as the maximum speed vi. From the calculated velocity v2i of each axis, the following equation (18) is calculated, and the minimum value of the intermediate variable r2i is set as the correction value of the threshold value minr, and the threshold value of the low speed range and the high speed range in the next iteration.

r2i=v2i/vi (18)   r2i = v2i / vi (18)

このようにして、動作に応じて低速域の範囲、つまり閾値を修正することにより、加減速度を高くできる区間を動作に応じて延長することが可能になり、動作時間を短縮できる効果がある。   In this way, by correcting the range of the low speed range according to the operation, that is, the threshold value, it is possible to extend the section in which the acceleration / deceleration can be increased according to the operation, and the operation time can be shortened.

2回目以降の繰り返しでは、修正した閾値minrと、前回の周期の加速時間、減速時間を用いて、低速域での加速終了点、減速開始点を算出し直し、再度、式(11)、式(13)の演算を行い、加速終了点、減速開始点での加速時間t1b、減速時間t2aを求め直す。加速時間t1a、t1bの大きいほうを今回の繰り返し周期での低速域での加速時間t1とする。また、減速時間t2a、t2bの大きいほうを今回の繰り返し周期での低速域での減速時間t2とする。   In the second and subsequent iterations, the corrected threshold value minr and the acceleration time and deceleration time of the previous cycle are used to recalculate the acceleration end point and deceleration start point in the low speed range. The calculation of (13) is performed, and the acceleration time t1b and the deceleration time t2a at the acceleration end point and the deceleration start point are obtained again. The larger of the acceleration times t1a and t1b is set as the acceleration time t1 in the low speed region in the current repetition cycle. Further, the larger one of the deceleration times t2a and t2b is set as the deceleration time t2 in the low speed region in the current repetition cycle.

規定回数をnとするとき、閾値修正手段4による閾値minrの修正をn−1回繰り返し、低速域加減速時間演算手段3での加速時間t1、減速時間t2の算出をn回繰り返すと、低速域での閾値minr、加速時間t1、及び減速時間t2の算出を終了し、高速域加減速時間演算手段5へ移行する。   When the specified number of times is n, correction of the threshold value minr by the threshold value correction means 4 is repeated n-1 times, and calculation of the acceleration time t1 and the deceleration time t2 in the low speed region acceleration / deceleration time calculation means 3 is repeated n times. The calculation of the threshold value minr, acceleration time t1, and deceleration time t2 in the region is terminated, and the process proceeds to the high-speed region acceleration / deceleration time calculation means 5.

また、n回目の繰り返しで算出した加速時間t1、減速時間t2と、n−1回目の繰り返しで算出した閾値minrを、低速域における加速時間t1、減速時間t2及び閾値minrとして高速域加減速時間演算手段5及び指令生成手段6へ出力する。   Further, the acceleration time t1 and deceleration time t2 calculated in the n-th iteration and the threshold value minr calculated in the (n-1) -th iteration are used as the acceleration time t1, the deceleration time t2 and the threshold minr in the low-speed region, and the high-speed region acceleration / deceleration time. It outputs to the calculation means 5 and the command generation means 6.

次に、高速域加減速時間演算手段5は、図6に示す「高速域開始点」、「高速域加速終了点」、「高速域減速開始点」、「高速域終了点」の4つの代表点でメカニカルシステム8の運動方程式の計算を行い、高速域の加速時間t3a、t3bと高速域の減速時間t4a、t4bを算出する。   Next, the high-speed region acceleration / deceleration time calculation means 5 has four representatives of “high-speed region start point”, “high-speed region acceleration end point”, “high-speed region deceleration start point”, and “high-speed region end point” shown in FIG. At the point, the equation of motion of the mechanical system 8 is calculated, and acceleration times t3a and t3b in the high speed region and deceleration times t4a and t4b in the high speed region are calculated.

まず、高速域の加速時間、減速時間の初期値をそれぞれ低速域の加速時間t1、低速域の減速時間t2とし、高速域加速終了点での各軸の位置p3b、各軸の速度v3bと、高速域減速開始点での各軸の位置p4a、各軸の速度v4aを算出する。   First, the initial values of the acceleration time and deceleration time in the high speed region are set as the acceleration time t1 in the low speed region and the deceleration time t2 in the low speed region, respectively, the position p3b of each axis at the end of the high speed region acceleration, the speed v3b of each axis, The position p4a of each axis and the speed v4a of each axis at the high speed region deceleration start point are calculated.

さらに、高速域開始点の位置、速度は、低速域加減速時間演算手段3による最後の繰り返しにおける加速終了点での位置p1b、速度v1bと同一とする。また、高速域終了点での位置、速度は、低速域加減速時間演算手段3による最後の繰り返しにおける減速開始点での位置p2a、速度v2aと同一とする。   Further, the position and speed of the high speed region start point are the same as the position p1b and the speed v1b at the acceleration end point in the last repetition by the low speed region acceleration / deceleration time calculation means 3. Further, the position and speed at the high speed region end point are the same as the position p2a and the speed v2a at the deceleration start point in the last repetition by the low speed region acceleration / deceleration time calculation means 3.

「高速域開始点」の運動方程式は、式(10)となるため、式(11)を満たすktiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の加速時間t3aiである。ただし、低速域における計算と異なるのは、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、許容トルクτmaxiとして高速域加速終了点での速度v3bの第i軸要素であるv3biでの許容トルクτmax3biを用いて算出する。算出した加速時間t3aiの最大値を加速時間t3aとする。   Since the equation of motion of the “starting point of the high speed region” is Equation (10), kti satisfying Equation (11) is the shortest acceleration time t3ai within the range satisfying the allowable torque determined from the i-axis motor and transmission mechanism. is there. However, the difference from the calculation in the low speed range is that when the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque at v3bi which is the i-th axis element of the speed v3b at the high speed range acceleration end point as the allowable torque τmaxi. Calculation is performed using τmax3bi. The maximum value of the calculated acceleration time t3ai is defined as the acceleration time t3a.

「高速域終了点」の運動方程式は、式(12)となるため、式(13)を満たすgtiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の減速時間t4biである。ただし、低速域における計算と異なるのは、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、許容トルクτmaxiとして高速域減速開始点での速度v4aの第i軸要素であるv4aiでの許容トルクτmax4aiを用いて算出する。算出した減速時間t4biの最大値を減速時間t4bとする。   Since the equation of motion of the “high-speed end point” is expressed by equation (12), gti that satisfies equation (13) satisfies the allowable torque determined from the i-axis motor and transmission mechanism, with the shortest deceleration time t4bi. is there. However, the difference from the calculation in the low speed range is that when the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque at v4ai that is the i-th axis element of the speed v4a at the high speed range deceleration start point as the allowable torque τmaxi. It calculates using (tau) max4ai. The maximum value of the calculated deceleration time t4bi is set as the deceleration time t4b.

すなわち、高速域加減速時間演算手段5は、高速域の代表点でメカニカルシステムの動特性を表現した運動方程式の演算の少なくとも1回を、低速域加減速時間演算手段3による、低速域の代表点でメカニカルシステムの動特性を表現した運動方程式の演算結果を用いて行うことにより、メカニカルシステムの動特性を表現した運動方程式の演算回数を少なくし、計算量を削減できる効果がある。   That is, the high-speed area acceleration / deceleration time calculation means 5 performs at least one calculation of the equation of motion expressing the dynamic characteristics of the mechanical system at a representative point in the high-speed area, and represents the low-speed area acceleration by the low-speed area acceleration / deceleration time calculation means 3. By using the calculation result of the equation of motion expressing the dynamic characteristic of the mechanical system in terms of points, the number of calculations of the equation of motion expressing the dynamic characteristic of the mechanical system can be reduced, and the amount of calculation can be reduced.

「高速域加速終了点」の運動方程式は、次の式(19)となる。   The equation of motion of the “high-speed region acceleration end point” is expressed by the following equation (19).

τ=M(p3b)vm/kt+h(p3b,v3b)+g(p3b)+f(v3b)
(19)
τ = M (p3b) vm / kt + h (p3b, v3b) + g (p3b) + f (v3b)
(19)

従って、M(p3b)vmの第i要素をmv3biとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(20)を満たすktiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の加速時間t3biである。各軸の加速時間t3biの最大値を加速時間t3bとする。   Therefore, if the i-th element of M (p3b) vm is mv3bi and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, kti satisfying the following equation (20) is obtained. Is the shortest acceleration time t3bi within the range satisfying the allowable torque determined from. The maximum value of the acceleration time t3bi of each axis is defined as the acceleration time t3b.

τmaxi=mv3bi/kti+h3bi+g3bi+f3bi (mv3bi>0の場合)、
−τmaxi=mv3bi/kti+h3bi+g3bi+f3bi (mv3bi<0の場合) (20)
τmaxi = mv3bi / kti + h3bi + g3bi + f3bi (when mv3bi> 0),
−τmaxi = mv3bi / kti + h3bi + g3bi + f3bi (when mv3bi <0) (20)

ここで、h3bi、g3bi、f3biはそれぞれh(p3b,v3b)、g(p3b)、f(v3b)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、許容トルクτmaxiとして高速域加速終了点での速度v3bの第i軸要素であるv3biでの許容トルクτmax3biが用いられる。   Here, h3bi, g3bi, and f3bi are i-th elements of h (p3b, v3b), g (p3b), and f (v3b), respectively. Further, when the allowable torque determined from the motor and the transmission mechanism is determined by the motor, the allowable torque τmax3bi at v3bi that is the i-th axis element of the speed v3b at the high speed region acceleration end point is used as the allowable torque τmaxi.

「高速域減速開始点」の運動方程式は、次の式(21)となる。   The equation of motion of the “high-speed region deceleration start point” is the following equation (21).

τ=−M(p4a)vm/kt+h(p4a,v4a)+g(p4a)+f(v4a)
(21)
τ = −M (p4a) vm / kt + h (p4a, v4a) + g (p4a) + f (v4a)
(21)

従って、M(p4a)vmの第i要素をmv4aiとし、各軸のモータ及び伝達機構から定まる許容トルクをτmaxiとすると、次の式(22)を満たすgtiが、第i軸のモータ及び伝達機構から定まる許容トルクを満たす範囲で最短の減速時間t4aiである。各軸の減速時間t4aiの最大値を減速時間t4aとする。   Accordingly, when the i-th element of M (p4a) vm is mv4ai and the allowable torque determined from the motor and transmission mechanism of each axis is τmaxi, gti satisfying the following equation (22) is the i-axis motor and transmission mechanism. Is the shortest deceleration time t4ai within the range satisfying the allowable torque determined from. The maximum value of the deceleration time t4ai for each axis is defined as a deceleration time t4a.

τmaxi=−mv4ai/gti+h4ai+g4ai+f4ai (mv4ai>0の場合)、
−τmaxi=−mv4ai/gti+h4ai+g4ai+f4ai (mv4ai<0の場合) (22)
τmaxi = −mv4ai / gti + h4ai + g4ai + f4ai (when mv4ai> 0),
−τmaxi = −mv4ai / gti + h4ai + g4ai + f4ai (when mv4ai <0) (22)

ここで、h4ai、g4ai、f4aiはそれぞれh(p4a,v4a)、g(p4a)、f(v4a)の第i要素である。また、モータ及び伝達機構から定まる許容トルクがモータにより決まる場合、許容トルクτmaxiとして高速域減速開始点での速度v4aの第i軸要素であるv4aiでの許容トルクτmax4aiが用いられる。   Here, h4ai, g4ai, and f4ai are the i-th elements of h (p4a, v4a), g (p4a), and f (v4a), respectively. Further, when the allowable torque determined by the motor and the transmission mechanism is determined by the motor, the allowable torque τmax4ai at v4ai that is the i-th axis element of the speed v4a at the high-speed region deceleration start point is used as the allowable torque τmaxi.

加速時間t3a、t3bの大きいほうを高速域での加速時間t3とし、減速時間t4a、t4bの大きいほうを高速域での減速時間t4とする。高速域での加速時間、減速時間の算出も規定の繰り返し回数であるm(自然数)回実施する。k回目の繰り返しでは高速域開始点、高速域加速終了点、高速域減速開始点、高速域終了点の位置、速度を前回の繰り返しにおける高速域での加速時間、減速時間を用いて算出し、加速時間t3a、t3b、減速時間t4a、t4bを再度計算し、加速時間t3a、t3bの大きいほうを高速域での加速時間t3とし、減速時間t4a、t4bの大きいほうを高速域での減速時間t4とする。算出した加速時間t3、減速時間t4は、指令生成手段6に出力される。   The larger acceleration time t3a, t3b is the acceleration time t3 in the high speed range, and the longer acceleration time t4a, t4b is the deceleration time t4 in the high speed range. The acceleration time and deceleration time in the high speed range are also calculated m (natural number), which is the specified number of repetitions. In the k-th iteration, the position and speed of the high-speed region start point, high-speed region acceleration end point, high-speed region deceleration start point, high-speed region end point are calculated using the acceleration time and deceleration time in the high-speed region in the previous iteration, The acceleration times t3a and t3b and the deceleration times t4a and t4b are calculated again, and the larger acceleration time t3a and t3b is set as the acceleration time t3 in the high speed region, and the larger deceleration time t4a and t4b is the deceleration time t4 in the high speed region. And The calculated acceleration time t3 and deceleration time t4 are output to the command generation means 6.

なお、低速域、高速域いずれも繰り返し回数は1回でもよい。また、加速時間、減速時間ではなく、加速度、減速度を算出してもよい。   Note that the number of repetitions may be one in both the low speed range and the high speed range. Further, acceleration and deceleration may be calculated instead of acceleration time and deceleration time.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

実施の形態2.
この発明の実施の形態2に係るメカニカルシステムの制御装置について説明する。
Embodiment 2. FIG.
A control device for a mechanical system according to Embodiment 2 of the present invention will be described.

上記の実施の形態1では、高速域開始点の位置を、低速域加減速時間演算手段3による最終繰り返しの計算で使用した加速終了点の位置と同一としたが、この実施の形態2では、低速域加減速時間演算手段3による最後の繰り返しにおいて、加速時間t1、減速時間t2を用いて加速終了点を求め直し、求め直した加速終了点の位置を、高速域開始点の位置とする。   In the first embodiment, the position of the high-speed region start point is the same as the position of the acceleration end point used in the final iteration calculation by the low-speed region acceleration / deceleration time calculation means 3, but in this second embodiment, In the last iteration by the low speed region acceleration / deceleration time calculation means 3, the acceleration end point is re-determined using the acceleration time t1 and the deceleration time t2, and the position of the re-determined acceleration end point is set as the position of the high speed region start point.

また、上記の実施の形態1では、高速域終了点の位置を、低速域加減速時間演算手段3による最終繰り返しの計算で使用した減速開始点の位置と同一としたが、この実施の形態2では、低速域加減速時間演算手段3による最後の繰り返しにおいて、加速時間t1、減速時間t2を用いて減速開始点を求め直し、求め直した減速開始点の位置を、高速域終了点の位置とする。   In the first embodiment, the position of the high speed region end point is the same as the position of the deceleration start point used in the final iteration calculation by the low speed region acceleration / deceleration time calculation means 3. Then, in the last iteration by the low-speed area acceleration / deceleration time calculation means 3, the deceleration start point is re-determined using the acceleration time t1 and the deceleration time t2, and the position of the re-determined deceleration start point is set as the position of the high-speed area end point. To do.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

実施の形態3.
この発明の実施の形態3に係るメカニカルシステムの制御装置について図7を参照しながら説明する。図7は、この発明の実施の形態3に係るメカニカルシステムの制御装置における閾値の修正値の算出方法を説明するための図である。
Embodiment 3 FIG.
A mechanical system control apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a diagram for explaining a method of calculating a threshold correction value in the control device for a mechanical system according to Embodiment 3 of the present invention.

上記の実施の形態1との差異は、閾値修正手段4の処理内容であるため、この閾値修正手段4の処理内容のみ説明する。上記の実施の形態1では、図5のように、速度−トルク特性(折れ線)と直線τ=τsiとの交点を求めていたが、この実施の形態3では、図7のように、速度−トルク特性(折れ線)C1(破線)から、粘性摩擦力を差し引いた速度−トルク特性(折れ線)C2(実線)と直線τ=τsiとの交点を求める。   Since the difference from the first embodiment described above is the processing content of the threshold value correcting means 4, only the processing content of the threshold value correcting means 4 will be described. In the first embodiment, as shown in FIG. 5, the intersection between the speed-torque characteristic (polygonal line) and the straight line τ = τsi is obtained. However, in the third embodiment, as shown in FIG. The intersection of the speed-torque characteristic (broken line) C2 (solid line) obtained by subtracting the viscous friction force from the torque characteristic (broken line) C1 (broken line) and the straight line τ = τsi is obtained.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

実施の形態4.
この発明の実施の形態4に係るメカニカルシステムの制御装置について図8を参照しながら説明する。図8は、この発明の実施の形態4に係るメカニカルシステムの制御装置の構成を示すブロック図である。
Embodiment 4 FIG.
A control device for a mechanical system according to Embodiment 4 of the present invention will be described with reference to FIG. FIG. 8 is a block diagram showing the configuration of the control device of the mechanical system according to Embodiment 4 of the present invention.

上記の実施の形態1との差異は、閾値修正手段4がないことである。低速域加減速時間演算手段3では各繰り返しにおいて、閾値演算手段2で算出した閾値minrを修正せずそのまま用いる。   The difference from the first embodiment is that there is no threshold correction means 4. In each repetition, the low speed region acceleration / deceleration time calculation means 3 uses the threshold value minr calculated by the threshold value calculation means 2 without modification.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

実施の形態5.
この発明の実施の形態5に係るメカニカルシステムの制御装置について図9を参照しながら説明する。図9は、この発明の実施の形態5に係るメカニカルシステムの制御装置の構成を示すブロック図である。
Embodiment 5 FIG.
A control device for a mechanical system according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 9 is a block diagram showing a configuration of a control device for a mechanical system according to Embodiment 5 of the present invention.

上記の実施の形態4との差異は、閾値演算手段2がないことである。この実施の形態5では、各軸のvai/vmaxiの最小値を閾値minrとして、図示しないメモリに予め記憶しておき、記憶した閾値minrを低速域加減速時間演算手段3、高速域加減速時間演算手段5、指令生成手段6で使用する。   The difference from the fourth embodiment is that there is no threshold value calculation means 2. In the fifth embodiment, the minimum value of vai / vmaxi of each axis is stored as a threshold value minr in advance in a memory (not shown), and the stored threshold value minr is stored in the low speed region acceleration / deceleration time calculation means 3 and the high speed region acceleration / deceleration time. Used by the calculation means 5 and the command generation means 6.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing.

実施の形態6.
この発明の実施の形態6に係るメカニカルシステムの制御装置について説明する。
Embodiment 6 FIG.
A control device for a mechanical system according to Embodiment 6 of the present invention will be described.

上記の実施の形態1では、低速域加減速時間演算手段3では各繰り返しで加速時間t1a、t1bの大きいほうを加速時間t1として採用したが、この実施の形態6では、第k回目の繰り返しにおける加速時間t1bをt1b(k)とし、次の式(23)により、k回目の繰り返しにおいて低速域の加速時間t1を算出する。   In the above-described first embodiment, the low-speed region acceleration / deceleration time calculation means 3 employs the larger acceleration time t1a, t1b as the acceleration time t1 in each iteration, but in this sixth embodiment, in the kth iteration The acceleration time t1b is set to t1b (k), and the acceleration time t1 in the low speed region is calculated in the k-th iteration by the following equation (23).

t1=max(t1a,t1b(1),t1b(2),・・・t1b(k))
(23)
t1 = max (t1a, t1b (1), t1b (2),... t1b (k))
(23)

同様に、k回目の繰り返しにおける減速時間t2aをt2a(k)とし、k回目の繰り返しにおいて低速域の減速時間t2を、次の式(24)により、算出する。   Similarly, the deceleration time t2a in the kth iteration is set to t2a (k), and the deceleration time t2 in the low speed region in the kth iteration is calculated by the following equation (24).

t2=max(t2b,t2a(1),t2a(2),・・・t2a(k))
(24)
t2 = max (t2b, t2a (1), t2a (2),... t2a (k))
(24)

また、高速域の加速時間t3、減速時間t4は、次の式(25)、(26)により、算出する。   Further, the acceleration time t3 and the deceleration time t4 in the high speed region are calculated by the following equations (25) and (26).

t3=max(t3a(1),t3a(2),・・・t3a(k),t3b(1),t3b(2),・・・t3b(k)) (25)   t3 = max (t3a (1), t3a (2),... t3a (k), t3b (1), t3b (2),... t3b (k)) (25)

t4=max(t4a(1),t4a(2),・・・t4a(k),t4b(1),t4b(2),・・・t4b(k)) (26)   t4 = max (t4a (1), t4a (2),... t4a (k), t4b (1), t4b (2),... t4b (k)) (26)

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

実施の形態7.
この発明の実施の形態7に係るメカニカルシステムの制御装置について説明する。
Embodiment 7 FIG.
A control device for a mechanical system according to Embodiment 7 of the present invention will be described.

上記の実施の形態1では、低速域加減速時間演算手段3は、各繰り返しで、加速開始点及び加速終了点から低速域の加速時間t1を算出したが、この実施の形態7では、加速開始点、加速終了点、及び低速域の加速区間の中点(時間軸上の中点)から低速域の加速時間t1を算出する。   In the first embodiment, the low speed region acceleration / deceleration time calculation means 3 calculates the acceleration time t1 in the low speed region from the acceleration start point and the acceleration end point in each iteration. However, in this seventh embodiment, the acceleration start time The acceleration time t1 in the low speed region is calculated from the point, the acceleration end point, and the middle point (middle point on the time axis) of the low speed region.

同様に、この実施の形態7では、減速開始点、減速終了点、及び低速域の減速区間の中点から低速域の減速時間t2を算出する。   Similarly, in the seventh embodiment, the deceleration time t2 in the low speed region is calculated from the deceleration start point, the deceleration end point, and the midpoint of the deceleration region in the low speed region.

さらに、この実施の形態7では、高速域加減速時間演算手段5は、各繰り返しで、高速域開始点、高速域加速終了点、及び高速域の加速区間の中点から高速域の加速時間t3を算出し、高速域終了点、高速域減速開始点、及び高速域の減速区間の中点から高速域の減速時間t4を算出する。   Further, in the seventh embodiment, the high-speed region acceleration / deceleration time calculation means 5 repeats the high-speed region acceleration time t3 from the high-speed region start point, the high-speed region acceleration end point, and the midpoint of the high-speed region acceleration section. And the deceleration time t4 in the high speed range is calculated from the end point of the high speed range, the start point of deceleration in the high speed range, and the midpoint of the deceleration range in the high speed range.

低速域、高速域それぞれ独立してモータ及び伝達機構の制限を満たす範囲でできるだけ高い加減速度で動作できるため、低速域で必要以上に加減速を落とす必要がなくなり動作時間が短縮できる。また、最高速度を高くしたため、かえって動作時間が伸びることを防止できる効果がある。さらに、各動作に応じた低速域と高速域の閾値が設定できる効果もある。   Since the operation can be performed at the highest possible acceleration / deceleration within the range satisfying the limitations of the motor and the transmission mechanism independently in the low speed range and the high speed range, it is not necessary to reduce the acceleration / deceleration more than necessary in the low speed range, and the operation time can be shortened. In addition, since the maximum speed is increased, there is an effect that it is possible to prevent the operating time from increasing. Furthermore, there is an effect that threshold values for the low speed range and the high speed range can be set according to each operation.

この発明の実施の形態1に係るメカニカルシステムの制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るメカニカルシステムの制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るメカニカルシステムの制御装置の制御対象であるモータの速度−トルク特性を示す図である。It is a figure which shows the speed-torque characteristic of the motor which is a control object of the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るメカニカルシステムの制御装置の低速域の速度指令パターンを示す図である。It is a figure which shows the speed command pattern of the low speed area of the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るメカニカルシステムの制御装置における閾値の修正値の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the correction value of the threshold value in the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るメカニカルシステムの制御装置の低速域及び高速域の速度指令パターンを示す図である。It is a figure which shows the speed command pattern of the low speed area of the control apparatus of the mechanical system which concerns on Embodiment 1 of this invention, and a high speed area. この発明の実施の形態3に係るメカニカルシステムの制御装置における閾値の修正値の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the correction value of the threshold value in the control apparatus of the mechanical system which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係るメカニカルシステムの制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the mechanical system which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るメカニカルシステムの制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the mechanical system which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 最高速度演算手段、2 閾値演算手段、3 低速域加減速時間演算手段、4 閾値修正手段、5 高速域加減速時間演算手段、6 指令生成手段、7 モータ制御手段、8 メカニカルシステム。   DESCRIPTION OF SYMBOLS 1 Maximum speed calculating means, 2 Threshold calculating means, 3 Low speed area acceleration / deceleration time calculating means, 4 Threshold correction means, 5 High speed area acceleration / deceleration time calculating means, 6 Command generation means, 7 Motor control means, 8 Mechanical system.

Claims (4)

メカニカルシステムの各軸のトルクを各軸の位置、速度、加速度を用いて算出し、時間−速度座標上の低速域の代表点でメカニカルシステムの動特性を表現した第1の運動方程式に基づいて、各軸のモータ及び伝達機構によって構成される駆動機構から定まる許容トルクを満たす範囲で最小の加速時間及び減速時間を演算する低速域加減速時間演算手段と、
メカニカルシステムの各軸のトルクを各軸の位置、速度、加速度を用いて算出し、前記時間−速度座標上の高速域の代表点でメカニカルシステムの動特性を表現した第2の運動方程式に基づいて、各軸のモータ及び伝達機構によって構成される駆動機構から定まる許容トルクを満たす範囲で最小の加速時間及び減速時間を演算する高速域加減速時間演算手段と、
前記低速域加減速時間演算手段により演算された低速域の加速時間及び減速時間、並びに前記高速域加減速時間演算手段により演算された高速域の加速時間及び減速時間に基づいて、低速域及び高速域で異なる加減速度の速度指令パターンを生成する指令生成手段と
を備えたことを特徴とするメカニカルシステムの制御装置。
The torque of each axis of the mechanical system is calculated using the position, speed, and acceleration of each axis, and based on the first equation of motion that expresses the dynamic characteristics of the mechanical system at the representative point in the low speed region on the time-speed coordinate. Low-speed acceleration / deceleration time calculating means for calculating the minimum acceleration time and deceleration time within a range that satisfies the allowable torque determined from the drive mechanism constituted by the motor and transmission mechanism of each axis ;
Based on the second equation of motion that calculates the torque of each axis of the mechanical system using the position, velocity, and acceleration of each axis, and expresses the dynamic characteristics of the mechanical system at the representative point in the high speed region on the time-speed coordinate. High-speed acceleration / deceleration time calculating means for calculating the minimum acceleration time and deceleration time within a range that satisfies the allowable torque determined from the drive mechanism constituted by the motor and transmission mechanism of each axis ;
The low speed range and the high speed range are calculated based on the low speed range acceleration time and deceleration time calculated by the low speed range acceleration / deceleration time calculation unit and the high speed range acceleration time and deceleration time calculated by the high speed range acceleration / deceleration time calculation unit. And a command generating means for generating a speed command pattern having different acceleration / deceleration in each region.
前記高速域加減速時間演算手段は、前記第2の運動方程式の高速域開始点及び高速域終了点の演算の少なくとも1回を、前記低速域加減速時間演算手段による、前記第1の運動方程式の演算結果を用いて行う
ことを特徴とする請求項1記載のメカニカルシステムの制御装置。
The high speed region acceleration / deceleration time calculation means performs at least one of the calculation of the high speed region start point and the high speed region end point of the second equation of motion by the low speed region acceleration / deceleration time calculation unit. The control apparatus for a mechanical system according to claim 1, wherein the control is performed using the calculation result.
前記駆動機構の速度−出力特性及び当該動作において前記駆動機構の出しうる最高速度に基づいて、低速域と高速域で異なる加減速度の速度指令パターンを生成する際の低速域と高速域の閾値を演算する閾値演算手段
をさらに備えたことを特徴とする請求項1又は2記載のメカニカルシステムの制御装置。
Based on the speed-output characteristics of the drive mechanism and the maximum speed that the drive mechanism can output in the operation, threshold values for the low speed range and the high speed range when generating speed command patterns of different acceleration / deceleration in the low speed range and the high speed range are set. The control device for a mechanical system according to claim 1 or 2, further comprising threshold value calculation means for calculating.
前記第1の運動方程式の演算結果に基づいて算出される加減速時間を用いた場合の各軸トルクを算出し、算出した各軸トルクに基づいて速度−トルク特性の折れ線を補正し、補正した折れ線に基づいて、前記閾値を修正する閾値修正手段
をさらに備えたことを特徴とする請求項3記載のメカニカルシステムの制御装置。
Each axis torque when the acceleration / deceleration time calculated based on the calculation result of the first equation of motion is used is calculated, and the broken line of the speed-torque characteristic is corrected based on each calculated axis torque. The mechanical system control device according to claim 3, further comprising threshold value correcting means for correcting the threshold value based on a broken line .
JP2007267921A 2007-10-15 2007-10-15 Control device for mechanical system Active JP4762219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267921A JP4762219B2 (en) 2007-10-15 2007-10-15 Control device for mechanical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267921A JP4762219B2 (en) 2007-10-15 2007-10-15 Control device for mechanical system

Publications (2)

Publication Number Publication Date
JP2009098786A JP2009098786A (en) 2009-05-07
JP4762219B2 true JP4762219B2 (en) 2011-08-31

Family

ID=40701754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267921A Active JP4762219B2 (en) 2007-10-15 2007-10-15 Control device for mechanical system

Country Status (1)

Country Link
JP (1) JP4762219B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634474B1 (en) 2012-03-01 2016-06-28 미쓰비시덴키 가부시키가이샤 Motor control device
JP6017513B2 (en) * 2014-11-07 2016-11-02 ファナック株式会社 Motor control device for generating command limited by motor torque

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120215B2 (en) * 1987-11-27 1995-12-20 ダイキン工業株式会社 Robot control method
JP2862052B2 (en) * 1993-04-01 1999-02-24 三菱電機株式会社 Position command method and device
JPH07210206A (en) * 1994-01-20 1995-08-11 Fujitsu Ltd Identifying method for conveyance control system and conveyance controller
JP4137673B2 (en) * 2003-03-12 2008-08-20 三菱電機株式会社 Load parameter identification method

Also Published As

Publication number Publication date
JP2009098786A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
KR102285648B1 (en) Repeat motion control method
JP3830475B2 (en) Control device
JP4779969B2 (en) Electric motor control device
JP4697139B2 (en) Servo control device
JP2001296912A (en) Motor velocity/acceleration decision method, acceleration/deceleration generation method, acceleration/deceleration control method, acceleration/ deceleration controller and motor controller
JP4920612B2 (en) Actuator angle transmission error compensation method
JP6564433B2 (en) Robot system
US11340578B2 (en) Machine control system, machine controller, and vibration suppression command generation method
JP4192780B2 (en) Robot control device
JP4762219B2 (en) Control device for mechanical system
CN107544247B (en) Method and system for inhibiting vibration of mechanical motion structure
JP2005044230A (en) Robot control device
KR100842978B1 (en) Servo control method
JP2014174842A (en) S-shaped acceleration/deceleration control program, operation control program, recording medium, controller, s-shaped acceleration/deceleration control calculation method, and work operation control system
CN109143981B (en) Computer-readable information recording medium, evaluation method, and control device
CN115664295A (en) Constant speed control method and system for high-power asynchronous traction motor
CN113852321B (en) Instruction generating device and instruction generating method
JP2023159641A (en) Path generation method of generating path of robot using command from external apparatus and robot control system
KR101368847B1 (en) Generation method of motion profile
JP2002518724A (en) Force / speed limit control system
JP2015159660A (en) Servo motor controller
WO2023012902A1 (en) Servo motor control device
WO2023012873A1 (en) Control system, control method, and control program
JP3355101B2 (en) Control device
JP2020107127A (en) Synchronization control device, synchronization control system, synchronization control method, and simulation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250