JP4772705B2 - Metal evaporation heating element - Google Patents

Metal evaporation heating element Download PDF

Info

Publication number
JP4772705B2
JP4772705B2 JP2007006448A JP2007006448A JP4772705B2 JP 4772705 B2 JP4772705 B2 JP 4772705B2 JP 2007006448 A JP2007006448 A JP 2007006448A JP 2007006448 A JP2007006448 A JP 2007006448A JP 4772705 B2 JP4772705 B2 JP 4772705B2
Authority
JP
Japan
Prior art keywords
boat
heating element
grooves
metal evaporation
evaporation heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006448A
Other languages
Japanese (ja)
Other versions
JP2008169458A (en
Inventor
厚樹 五十嵐
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007006448A priority Critical patent/JP4772705B2/en
Publication of JP2008169458A publication Critical patent/JP2008169458A/en
Application granted granted Critical
Publication of JP4772705B2 publication Critical patent/JP4772705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は金属蒸発発熱体に関する。 The present invention relates to a metal evaporation heating element.

直方体形状の導電性セラミックス焼結体から構成された金属蒸発発熱体(以下、「ボート」ともいう。)は、二硼化チタン粉末と、窒化硼素粉末と、必要に応じて窒化アルミニウム粉末とを含む原料粉末に、例えば酸化カルシウム、酸化ストロンチウム等の焼結助剤を配合し、成型後、非酸化性雰囲気下で焼結することによって製造されており、その市販品の一例に電気化学工業社製商品名「BNコンポジットEC」がある。溶融金属に対する濡れ性を改善するため、ボート上面(金属蒸発面)に溝を施したものも知られている(特許文献1)。さらには、ボートの上面及び下面にキャビティを設け、上面の使用後に下面を使えるようにした構造の両面キャビティボートもある(特許文献2)。
特開2006−118017号公報 特開2004−124139号公報
A metal evaporation heating element (hereinafter also referred to as “boat”) composed of a conductive ceramic sintered body having a rectangular parallelepiped shape includes titanium diboride powder, boron nitride powder, and, if necessary, aluminum nitride powder. It is manufactured by blending raw material powder with a sintering aid such as calcium oxide, strontium oxide, etc., and molding and sintering in a non-oxidizing atmosphere. There is a product name “BN Composite EC”. In order to improve the wettability with respect to the molten metal, there is also known one in which a groove is formed on the upper surface of the boat (metal evaporation surface) (Patent Document 1). Further, there is a double-sided cavity boat having a structure in which cavities are provided on the upper and lower surfaces of the boat so that the lower surface can be used after the upper surface is used (Patent Document 2).
JP 2006-1118017 A JP 2004-124139 A

ボートの寿命は、例えばフィルムに蒸着された金属膜の膜厚、膜質(ピンホール)等が、管理値をこえることによって判断される。とりわけピンホールの数が重要である。ピンホールとは、飛散物がフィルム表面に付着することによって発生するいわゆる「蒸着抜け」現象である。この飛散物は、溶融金属のスプラッシュで生じた金属粒、溶融金属とボートとの反応によって生成したスラッジなどである。ボートが寿命となる主因は溶融金属によるボートの浸食であり、下面を蒸着に使用するボートにあってはこれに更に金属蒸発面に堆積したスラッジが加わる。堆積スラッジとは、上面から這い出た溶融金属やスラッジが側面を伝って下面に到達し堆積したスラッジのことである。この堆積スラッジが存在する状態で下面を使用すると、初期の上面の使用ほどの膜質を得ることができない。 The life of the boat is determined by, for example, the film thickness of the metal film deposited on the film, the film quality (pinhole), etc. exceeding the control value. The number of pinholes is especially important. The pinhole is a so-called “deposition loss” phenomenon that occurs when scattered matter adheres to the film surface. The scattered matter is metal particles generated by the splash of molten metal, sludge generated by the reaction between the molten metal and the boat, and the like. The main reason for the life of a boat is erosion of the boat by molten metal. In a boat using the lower surface for vapor deposition, sludge deposited on the metal evaporation surface is further added. Accumulated sludge is sludge accumulated from the upper surface of molten metal or sludge that reaches the lower surface along the side. If the lower surface is used in the presence of this accumulated sludge, the film quality as high as that of the initial upper surface cannot be obtained.

本発明の目的は、上面から這い出た溶融金属やスラッジが側面を伝って下面に到達することを軽減したボートを提供することであり、特に下面を使用するボートにおける堆積スラッジの生成を抑制したボートを提供することである。 An object of the present invention is to provide a boat in which molten metal and sludge that crawls out from the upper surface are reduced from reaching the lower surface along the side surface, and in particular, the generation of accumulated sludge in a boat that uses the lower surface is suppressed. Is to provide a boat.

本発明は、直方体形状の導電性セラミックス焼結体から構成された金属蒸発発熱体の通電方向となる二側面に、幅0.2〜1.0mm、深さ0.1〜1.5mm、長さ50mm以上の溝を通電方向と平行方向に1本以上設けてなる金属蒸発発熱体である。本発明においては以下の実施態様から選ばれた少なくとも一つを備えていることが好ましい。(1)二側面のそれぞれの側面に設けられた溝の本数が2本以上であり、溝同士の辺間距離、すなわち隣接する溝同士の距離であって溝幅を含まない距離(以下、「溝同士の辺間距離」ともいう)が0.5〜1.5mmであること。(2)金属蒸発発熱体の上面及び下面の少なくとも一方にキャビティを設けること。(3)金属蒸発発熱体の上面及び下面の少なくとも一方に溝を1本以上設けること。(4)ボートの上面及び下面の少なくとも一方に設けられた少なくとも一方のキャビティの底面に溝を1本以上設けてなること。なお、ボートの上面、下面又はキャビティ底面に設けられる溝の寸法は、幅0.2〜1.0mm、深さ0.1〜1.5mm、長さ10mm以上であることが好ましい。 The present invention has a width of 0.2 to 1.0 mm, a depth of 0.1 to 1.5 mm, and a length on two side surfaces in the energization direction of a metal evaporation heating element composed of a conductive ceramic sintered body having a rectangular parallelepiped shape. This is a metal evaporation heating element in which one or more grooves having a length of 50 mm or more are provided in a direction parallel to the energizing direction. In the present invention, it is preferable to include at least one selected from the following embodiments. (1) The number of grooves provided on each of the two side surfaces is two or more, and the distance between the sides of the grooves, that is, the distance between adjacent grooves and not including the groove width (hereinafter, “ Also referred to as “distance between grooves” is 0.5 to 1.5 mm. (2) A cavity is provided on at least one of the upper surface and the lower surface of the metal evaporation heating element. (3) At least one groove is provided on at least one of the upper surface and the lower surface of the metal evaporation heating element. (4) One or more grooves are provided on the bottom surface of at least one cavity provided on at least one of the upper surface and the lower surface of the boat. In addition, it is preferable that the dimension of the groove | channel provided in the upper surface of a boat, a lower surface, or a cavity bottom face is width 0.2-1.0mm, depth 0.1-1.5mm, and length 10mm or more.

本発明によれば、上面から這い出た溶融金属やスラッジが側面を伝って下面に到達することを軽減したボートが提供され、特に下面を使用するボートにおける堆積スラッジの生成が抑制されたボートが提供される。その結果、寿命が更に延長されたボートが提供される。 According to the present invention, there is provided a boat in which molten metal and sludge that crawls out from the upper surface are reduced from reaching the lower surface along the side surface, and in particular, a boat in which the generation of accumulated sludge in a boat using the lower surface is suppressed Provided. As a result, a boat with a further extended life is provided.

ボートを構成する導電性セラミックス焼結体は、二硼化チタンからなる導電物質と、窒化硼素の絶縁物質とを必須成分として含有する。両者の構成比率は、導電性及び機械加工性の観点から、二硼化チタンが40〜60質量%、窒化硼素が60〜40質量%であることが好ましい。これらの必須成分の他に、常法により焼結助剤等の成分を含ませたものであってもよい。また、導電性セラミックス焼結体の相対密度は90%以上が好ましく、特に93%以上が好ましい。相対密度が90%よりも著しく小さいと、溶融金属がボートの気孔に浸食する機会が多くなる。相対密度90%以上の導電性セラミックス焼結体は、上記必須成分の原料粉末に0.5〜2.5質量%の焼結助剤を含有させた混合原料粉末を焼結することによって可能となる。なお、相対密度は、焼結体を所定の寸法の直方体に加工し、その外寸及び質量より求めた実測密度を理論密度で除することによって求められる。 The conductive ceramic sintered body constituting the boat contains a conductive material made of titanium diboride and an insulating material of boron nitride as essential components. From the viewpoints of electrical conductivity and machinability, the constituent ratio of the two is preferably 40 to 60% by mass of titanium diboride and 60 to 40% by mass of boron nitride. In addition to these essential components, components such as a sintering aid may be added by a conventional method. The relative density of the conductive ceramic sintered body is preferably 90% or more, particularly preferably 93% or more. If the relative density is significantly less than 90%, there will be more opportunities for the molten metal to erode into the pores of the boat. A conductive ceramic sintered body having a relative density of 90% or more can be obtained by sintering a mixed raw material powder containing 0.5 to 2.5% by mass of a sintering aid in the essential component raw material powder. Become. The relative density is obtained by processing a sintered body into a rectangular parallelepiped having a predetermined size and dividing the measured density obtained from the outer dimension and mass by the theoretical density.

二硼化チタン粉末は、金属チタンとの直接反応や、チタニア等のチタン酸化物の還元反応を利用した方法によって製造されたものなどが使用される。平均粒子径は5〜15μmが好ましい。窒化硼素粉末は、六方晶窒化硼素、非晶質窒化硼素、又はこれらの混合物が使用される。窒化硼素粉末は、硼砂と尿素の混合物をアンモニア雰囲気中、800℃以上で加熱する方法などによって製造することができる。この場合、得られた窒化硼素粉末を窒素雰囲気中で加熱をすれば、その程度に応じて六方晶窒化硼素の割合が多くなる。窒化アルニミウム粉末は、直接窒化法、アルミナ還元法などで製造されたものが使用される。窒化硼素粉末と窒化アルミニウム粉末の平均粒子径は10μm以下、特に5μm以下であることが好ましい。 As the titanium diboride powder, a powder produced by a method using a direct reaction with titanium metal or a reduction reaction of titanium oxide such as titania is used. The average particle size is preferably 5 to 15 μm. As the boron nitride powder, hexagonal boron nitride, amorphous boron nitride, or a mixture thereof is used. Boron nitride powder can be produced by a method of heating a mixture of borax and urea in an ammonia atmosphere at 800 ° C. or higher. In this case, if the obtained boron nitride powder is heated in a nitrogen atmosphere, the proportion of hexagonal boron nitride increases depending on the degree. As the aluminum nitride powder, one produced by a direct nitriding method, an alumina reduction method or the like is used. The average particle size of the boron nitride powder and the aluminum nitride powder is preferably 10 μm or less, particularly preferably 5 μm or less.

焼結助剤としては、アルカリ土類金属酸化物、希土類元素酸化物及び加熱によってこれらの酸化物となる化合物が用いられる。具体的には、CaO、MgO、SrO、BaO、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca(OH)、MgCOなどであるが、SrO、SrCOが好ましい。平均粒子径は10μm以下、特に5μm以下が好ましい。 As the sintering aid, alkaline earth metal oxides, rare earth element oxides, and compounds that become these oxides upon heating are used. Specifically, CaO, MgO, SrO, BaO , Y 2 O 3, La 2 O 3, Ce 2 O 3, Pr 2 O 3, Nd 2 O 3, Pm 2 O 3, Sm 2 O 3, Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 , Ca (OH) 2 , MgCO 3 and the like, but SrO and SrCO 3 are preferable. The average particle size is preferably 10 μm or less, particularly preferably 5 μm or less.

原料粉末は成形後焼結されて導電性セラミックス焼結体となる。その一例は、0.5〜200MPaの一軸加圧又は冷間等方圧加圧をしてから、1800〜2200℃で常圧焼結するか又は同温度範囲内での1MPa以下の加圧焼結である。また、1600〜2200℃、1〜100MPaのホットプレス又は熱間等方圧プレスも可能である。焼結は黒鉛製容器、窒化硼素製容器、窒化硼素で内張した容器などに収納して行うことが望ましい。ホットプレス法では黒鉛又は窒化硼素製スリーブ、窒化硼素で内張したスリーブなどを用いて焼結することが好ましい。焼結は窒素、アルゴン等の非酸化性雰囲気下で行われる。 The raw material powder is sintered after forming into a conductive ceramic sintered body. One example is uniaxial pressing of 0.5 to 200 MPa or cold isostatic pressing, followed by normal pressure sintering at 1800 to 2200 ° C., or pressure sintering of 1 MPa or less within the same temperature range. It is a conclusion. Moreover, a hot press or a hot isostatic press of 1600-2200 degreeC and 1-100 Mpa is also possible. Sintering is preferably carried out in a graphite vessel, a boron nitride vessel, a vessel lined with boron nitride, or the like. In the hot press method, sintering is preferably performed using a sleeve made of graphite or boron nitride, a sleeve lined with boron nitride, or the like. Sintering is performed in a non-oxidizing atmosphere such as nitrogen or argon.

導電性セラミックス焼結体から適宜寸法の直方体形状に機械加工することによってボートが作製される。この場合、ボートの上面及び下面の少なくとも一方にキャビティを設けることもできる。ボート寸法の一例は、縦80〜150mm、幅(横)20〜40mm、厚み8〜11mmである。キャビティを有する場合、その寸法は、縦70mm〜120mm、幅(横)18〜38mm、深さ0.5〜2mmである。キャビティは上面又は下面の中央部に形成される。 A boat is produced by machining a conductive ceramic sintered body into a rectangular parallelepiped shape having an appropriate size. In this case, a cavity can be provided on at least one of the upper surface and the lower surface of the boat. An example of the boat size is 80 to 150 mm in length, 20 to 40 mm in width (width), and 8 to 11 mm in thickness. In the case of having a cavity, the dimensions are 70 mm to 120 mm in length, 18 to 38 mm in width (width), and 0.5 to 2 mm in depth. The cavity is formed at the center of the upper surface or the lower surface.

また、溶融金属に対する濡れ性を改善するため、ボートの上面、下面及びキャビティ底面の少なくとも一方に溝を1本以上設けることもできる。溝の寸法は、幅0.2〜1.0mm、深さ0.1〜1.5mm、長さ10mm以上であることが好ましい。溝の形成方法の詳細は特許文献1に記載されているのでそれに従えばよい。図1、図2にはキャビティ底面に上記寸法の溝を設けたボートが例示されており、図3にはボート上面に上記寸法の溝を設けたボートが例示してある。さらには、図1、図2のボートにおいて、キャビティ底面に溝を施すことなく、キャビティ以外のボート上面に溝を形成することもできる(図示なし)。なお、図1〜3の(A)は本発明のボートの一例を示す斜視図であり、(B)はその中心部における縦断面図である。符号の1はボートの上面、2はボートの下面、3、4はボートの側面である。3、4あわせてボートの通電方向の二側面となる。 Moreover, in order to improve the wettability with respect to the molten metal, one or more grooves can be provided on at least one of the upper surface, the lower surface, and the cavity bottom surface of the boat. The dimensions of the groove are preferably a width of 0.2 to 1.0 mm, a depth of 0.1 to 1.5 mm, and a length of 10 mm or more. Details of the method of forming the groove are described in Patent Document 1 and may be followed. 1 and 2 exemplify a boat provided with a groove having the above dimensions on the bottom surface of the cavity, and FIG. 3 illustrates a boat having a groove having the above dimensions provided on the top surface of the boat. Further, in the boats shown in FIGS. 1 and 2, grooves can be formed on the upper surface of the boat other than the cavities without providing grooves on the bottom surfaces of the cavities (not shown). In addition, (A) of FIGS. 1-3 is a perspective view which shows an example of the boat of this invention, (B) is a longitudinal cross-sectional view in the center part. Reference numeral 1 is the upper surface of the boat, 2 is the lower surface of the boat, and 3 and 4 are side surfaces of the boat. 3 and 4 are the two sides of the energizing direction of the boat.

本発明のボートの特徴は、上記ボートにおいて、通電方向(すなわち電極と電極を結ぶ方向)となる二側面に特定寸法の溝を1本以上設けたことである。これによって、ボート上面から溢れた溶融金属は溝に沿って通電方向に速やかに濡れ広がり、金属が容易に蒸発するのでボート下面への伝搬が著しく抑制される。溝加工は、例えばエンドミル等を使用した機械加工、サンドブラスト、ウオータージェット等によって行うことができる。詳細は特許文献1に記載されている。 The boat according to the present invention is characterized in that in the boat described above, one or more grooves having specific dimensions are provided on two side surfaces that are in the energization direction (that is, the direction connecting the electrodes). As a result, the molten metal overflowing from the upper surface of the boat quickly wets and spreads in the energizing direction along the groove, and the metal easily evaporates, so that the propagation to the lower surface of the boat is remarkably suppressed. The grooving can be performed by, for example, machining using an end mill or the like, sand blasting, water jet, or the like. Details are described in Patent Document 1.

ボートの二側面のそれぞれに設けられる溝の本数は1本でも効果があるが、溝同士の辺間距離を0.5〜1.5mmとし、溝によって形成された模様の占有面積率が側面積の30%以上、更には50%以上、特に70%以上になるように溝の長さと本数を決めることが望ましい。ここで、模様の占有面積率とは、最も外側にある溝の始点と終点を結ぶことによって形成された面積を、ボートの側面積で除した値の百分率として定義される。図1〜図3には模様の占有面積率がほぼ100%の溝を設けた例が示されており、特に図2には一筆書き形状の模様が示されている。 The number of grooves provided on each of the two side surfaces of the boat is effective even with one, but the distance between the sides of the grooves is 0.5 to 1.5 mm, and the occupied area ratio of the pattern formed by the grooves is the side area It is desirable to determine the length and the number of grooves so that it is 30% or more, further 50% or more, particularly 70% or more. Here, the occupied area ratio of the pattern is defined as a percentage of a value obtained by dividing the area formed by connecting the start point and the end point of the outermost groove by the side area of the boat. FIGS. 1 to 3 show an example in which grooves having a pattern occupation area ratio of almost 100% are provided, and FIG. 2 shows a one-stroke pattern.

二側面に設けられる溝の寸法は、幅が0.2〜1.0mm、深さが0.1〜1.5mm、長さが50mm以上であり、特に好ましくは幅が0.3〜0.5mm、深さが0.1〜0.3mm、長さが50mm以上である。溝の幅が上記以外では溶融金属が溝に沿って濡れ広がる効果が小さくなる。溝の深さが0.1mm未満ではボート上面から溢れた溶融金属が溝をのりこえて下面に伝達しやすくなり、また1.5mmをこえるとボートの折損基点となる。溝の長さが50mm未満であると、溝のない部分から溶融金属が下面に伝搬する。 The dimensions of the grooves provided on the two side surfaces are a width of 0.2 to 1.0 mm, a depth of 0.1 to 1.5 mm, and a length of 50 mm or more, and particularly preferably a width of 0.3 to 0.00. It is 5 mm, the depth is 0.1 to 0.3 mm, and the length is 50 mm or more. When the width of the groove is other than the above, the effect that the molten metal spreads along the groove becomes small. If the depth of the groove is less than 0.1 mm, the molten metal overflowing from the upper surface of the boat tends to be transferred to the lower surface over the groove, and if it exceeds 1.5 mm, it becomes a breakage starting point of the boat. When the length of the groove is less than 50 mm, the molten metal propagates from the portion without the groove to the lower surface.

実施例1
二硼化チタン粉末(平均粒子径11.1μm、純度99質量%以上)50質量%、窒化硼素粉末(平均粒子径4.2μm、純度99質量%以上)45質量%、炭酸ストロンチウム粉末5質量%(平均粒子径8.5μm、純度99質量%以上)を、窒素雰囲気下、ボールミルで1時間混合して混合原料粉末を調製した。これを黒鉛ダイスに充填し、窒素雰囲気中、温度1800℃でホットプレスを行って導電性セラミックス焼結体(直径200mm×高さ150mm)を製造した。この焼結体から、長さ130mm×幅35mm×厚み10mmの直方体を切り出し、更に直方体の上面及び下面の中央部にキャビティ(長さ100mm×幅32mm×厚み1mm)を機械加工により設けた。ついで、この両面キャビティボートの上下2つのキャビティの底面に、幅0.5mm、深さ0.2mm、長さ30mmの溝の50本を、溝同士の中心間距離を1.0mmにして通電方向に対して垂直に機械加工した。その後、通電方向となる二側面に、幅0.5mm、深さ0.2mm、長さ120mmの溝の5本を、溝同士の辺間距離を1.0mmにして通電方向に対して平行に機械加工により設け、本発明の両面キャビティボートとした(図1参照)。
Example 1
Titanium diboride powder (average particle size 11.1 μm, purity 99% by mass or more) 50% by mass, boron nitride powder (average particle size 4.2 μm, purity 99% by mass or more) 45% by mass, strontium carbonate powder 5% by mass (Average particle diameter 8.5 μm, purity 99% by mass or more) were mixed in a ball mill for 1 hour under a nitrogen atmosphere to prepare a mixed raw material powder. This was filled in a graphite die and hot-pressed at a temperature of 1800 ° C. in a nitrogen atmosphere to produce a conductive ceramic sintered body (diameter 200 mm × height 150 mm). From this sintered body, a rectangular parallelepiped having a length of 130 mm, a width of 35 mm, and a thickness of 10 mm was cut out, and a cavity (length 100 mm × width 32 mm × thickness 1 mm) was provided by machining at the center of the upper and lower surfaces of the rectangular parallelepiped. Next, on the bottom surfaces of the upper and lower cavities of this double-sided cavity boat, 50 grooves with a width of 0.5 mm, a depth of 0.2 mm, and a length of 30 mm were set, and the distance between centers of the grooves was set to 1.0 mm. Machined perpendicular to After that, on the two side surfaces that become the energization direction, 5 grooves of width 0.5 mm, depth 0.2 mm, length 120 mm, parallel to the energization direction with the distance between sides of the grooves being 1.0 mm The double-sided cavity boat of the present invention was provided by machining (see FIG. 1).

実施例2
二側面に設けた溝の寸法を、幅1.0mm、深さ0.3mm、長さ70mmとしたこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Example 2
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the dimensions of the grooves provided on the two side surfaces were 1.0 mm in width, 0.3 mm in depth, and 70 mm in length.

実施例3
二側面に設けた溝の溝同士の辺間距離を、0.5mmとしたこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Example 3
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the distance between the sides of the grooves provided on the two side surfaces was 0.5 mm.

実施例4
二側面に設けた溝同士を端部で連結し、幅0.5mm、長さ604mmの一筆書き形状の溝としたこと以外は、実施例1と同様にして両面キャビティボートを製造した(図2参照)。
Example 4
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the grooves provided on the two side surfaces were connected at the ends to form a single-stroke groove having a width of 0.5 mm and a length of 604 mm (FIG. 2). reference).

実施例5
直方体の上面及び下面にキャビティを形成させることなく溝を設けたこと以外は、実施例1と同様にしてボートを製造した(図3参照)。
Example 5
A boat was manufactured in the same manner as in Example 1 except that grooves were formed in the upper and lower surfaces of the rectangular parallelepiped without forming cavities (see FIG. 3).

実施例6
二側面に設ける溝加工をサンドブラストで行ったこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Example 6
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the groove processing provided on the two side surfaces was performed by sandblasting.

実施例7
二側面に設ける溝加工をウオータージェットで行ったこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Example 7
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the groove processing provided on the two side surfaces was performed with a water jet.

実施例8
溝同士の辺間距離を2.5mmで本数を3本としたこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Example 8
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the distance between the sides of the grooves was 2.5 mm and the number was three.

比較例1
二側面のいずれにも溝を形成させなかったこと以外は、実施例1と同様にして両面キャビティボートを製造した。
Comparative Example 1
A double-sided cavity boat was manufactured in the same manner as in Example 1 except that no groove was formed on either of the two side surfaces.

比較例2〜6
二側面に設けた溝において、幅を0.1mmにした(比較例2)、幅が1.5mmで本数を4本にした(比較例3)、深さを0.05mmにした(比較例4)、深さを2.0mmにした(比較例5)、長さを40mmにした(比較例6)こと以外は、実施例1と同様にして両面キャビティボートを製造した。
Comparative Examples 2-6
In the grooves provided on the two side surfaces, the width was 0.1 mm (Comparative Example 2), the width was 1.5 mm and the number was 4 (Comparative Example 3), and the depth was 0.05 mm (Comparative Example) 4) A double-sided cavity boat was manufactured in the same manner as in Example 1 except that the depth was 2.0 mm (Comparative Example 5) and the length was 40 mm (Comparative Example 6).

以上の両面キャビティボート又はボートについて、以下の特性を測定した。それらの結果を表1に示した。 The following characteristics were measured for the above double-sided cavity boat or boat. The results are shown in Table 1.

(1)相対密度:実測密度と理論密度から算出した。
(2)比抵抗:室温抵抗は市販機(アドバンテスト社製マルチメーター「型式RS6552」)を用いて測定した。1500℃比抵抗はボート両端をクランプで電極につなぎ、キャビティ中央部の温度が1500℃になる電圧を測定し、そのときの電圧と電流から算出した。
(1) Relative density: Calculated from measured density and theoretical density.
(2) Specific resistance: Room temperature resistance was measured using a commercial machine (advantest multimeter “model RS6552”). The 1500 ° C. specific resistance was calculated from the voltage and current obtained by measuring the voltage at which the temperature at the center of the cavity was 1500 ° C. by connecting both ends of the boat to the electrodes with clamps.

(3)飛散物の数:ボートの上方200mmの所に、縦90mm×横90mm×厚み0.5mmのステンレス製平板を配置し、以下の条件でAl蒸発を行った後、ステンレス製平板表面に付着した0.3mm以上の飛散物の数を光学顕微鏡にて計測し、その全個数をステンレス製平板1cm平方あたりの個数に換算した。
[Al蒸発]
まず、10−2Pa以下の真空下、1600℃に加熱されたボートの上面に、10g/分の供給速度でAl線を2分間供給してから室温まで冷却した(操作1)。ついで、Al線の供給を1時間としたこと以外は、操作1と同一条件にしてAlの蒸発を行い室温まで冷却した(操作2)。この操作2を6サイクル行ってからボートをひっくり返し、ボート下面を用いて上記操作1と同一条件でAl蒸発を行った。
(3) Number of scattered matter: A stainless steel flat plate of 90 mm long × 90 mm wide × 0.5 mm thick was placed 200 mm above the boat, and after evaporation of Al under the following conditions, it adhered to the surface of the stainless steel flat plate. The number of scattered objects of 0.3 mm or more was measured with an optical microscope, and the total number was converted to the number per 1 cm square of a stainless steel flat plate.
[Al evaporation]
First, Al wire was supplied for 2 minutes at a supply rate of 10 g / min on the upper surface of a boat heated to 1600 ° C. under a vacuum of 10 −2 Pa or less, and then cooled to room temperature (operation 1). Next, Al was evaporated and cooled to room temperature under the same conditions as in Operation 1 except that the supply of Al wire was set to 1 hour (Operation 2). After performing this operation 2 for 6 cycles, the boat was turned over, and Al was evaporated under the same conditions as in the above operation 1 using the bottom surface of the boat.

(4)下面の堆積スラッジの付着面積率:上記Al蒸発試験で上面を使用した後の下面について、堆積スラッジに覆われていない清浄面の面積を画像解析によって求め、次式よって堆積スラッジ付着面積率を求めた。
堆積スラッジ付着面積率=(下面の全面積−清浄面の面積率)/下面の全面積
(4) Deposited sludge adhesion area ratio on the lower surface: For the lower surface after using the upper surface in the Al evaporation test, the area of the clean surface that is not covered by the accumulated sludge is obtained by image analysis. The rate was determined.
Deposited sludge adhesion area ratio = (total area of the bottom surface-area ratio of the clean surface) / total area of the bottom surface

実施例と比較例の対比から、本発明のボートは、飛散物の数が著しく低減されることがわかる。 From the comparison between Example and Comparative Example, it can be seen that the number of scattered objects is significantly reduced in the boat of the present invention.

実施例1によって製造された両面キャビティボート。(A)が斜視図、(B)が(A)の中心部における縦断面図。The double-sided cavity boat manufactured according to Example 1. (A) is a perspective view, (B) is a longitudinal cross-sectional view in the center part of (A). 実施例4によって製造された両面キャビティボート。(A)が斜視図、(B)が(A)の中心部における縦断面図。A double-sided cavity boat manufactured according to Example 4. (A) is a perspective view, (B) is a longitudinal cross-sectional view in the center part of (A). 実施例5によって製造されたボート。(A)が斜視図、(B)が(A)の中心部における縦断面図。A boat manufactured according to Example 5. (A) is a perspective view, (B) is a longitudinal cross-sectional view in the center part of (A).

符号の説明Explanation of symbols

1 ボートの上面
2 ボートの下面
3、4 ボートの側面
1 Upper surface of boat 2 Lower surface of boat 3, 4 Side of boat

Claims (5)

直方体形状の導電性セラミックス焼結体から構成された金属蒸発発熱体の通電方向となる二側面に、幅0.2〜1.0mm、深さ0.1〜1.5mm、長さ50mm以上の溝を通電方向と平行方向に1本以上設けてなる金属蒸発発熱体。 On the two side surfaces in the direction of energization of the metal evaporation heating element composed of the conductive ceramic sintered body having a rectangular parallelepiped shape, the width is 0.2 to 1.0 mm, the depth is 0.1 to 1.5 mm, and the length is 50 mm or more. A metal evaporation heating element in which one or more grooves are provided in a direction parallel to the energization direction. 二側面のそれぞれの側面に設けられた溝の本数が2本以上であり、溝同士の辺間距離、すなわち隣接する溝同士の距離であって溝幅を含まない距離が0.5〜1.5mmである請求項1に記載の金属蒸発発熱体。 The number of grooves provided on each of the two side surfaces is two or more, and the distance between the sides of the grooves, that is, the distance between adjacent grooves and not including the groove width is 0.5 to 1. The metal evaporation heating element according to claim 1 which is 5 mm. 請求項1又は2の金属蒸発発熱体の上面及び下面の少なくとも一方にキャビティを設けてなる金属蒸発発熱体。 A metal evaporation heating element comprising a cavity in at least one of an upper surface and a lower surface of the metal evaporation heating element according to claim 1. 請求項1〜3のいずれかの金属蒸発発熱体の上面及び下面の少なくとも一方に溝を1本以上設けてなる金属蒸発発熱体。 A metal evaporation heating element comprising at least one groove on at least one of an upper surface and a lower surface of the metal evaporation heating element according to claim 1. 上面及び下面の少なくとも一方に設けられた少なくとも一方のキャビティの底面に溝を1本以上設けてなる請求項3又は4に記載の金属蒸発発熱体。 The metal evaporation heating element according to claim 3 or 4, wherein at least one groove is provided on the bottom surface of at least one cavity provided on at least one of the upper surface and the lower surface.
JP2007006448A 2007-01-15 2007-01-15 Metal evaporation heating element Expired - Fee Related JP4772705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006448A JP4772705B2 (en) 2007-01-15 2007-01-15 Metal evaporation heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006448A JP4772705B2 (en) 2007-01-15 2007-01-15 Metal evaporation heating element

Publications (2)

Publication Number Publication Date
JP2008169458A JP2008169458A (en) 2008-07-24
JP4772705B2 true JP4772705B2 (en) 2011-09-14

Family

ID=39697831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006448A Expired - Fee Related JP4772705B2 (en) 2007-01-15 2007-01-15 Metal evaporation heating element

Country Status (1)

Country Link
JP (1) JP4772705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470545A1 (en) * 2017-10-10 2019-04-17 3M Innovative Properties Company Evaporation boat for evaporation of metals
DE102018113528B4 (en) 2018-06-06 2022-07-28 Cvt Gmbh & Co. Kg evaporator body

Also Published As

Publication number Publication date
JP2008169458A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
KR102167571B1 (en) Ceramic member and member for semiconductor manufacturing equipment
JP3797905B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP6591455B2 (en) High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
EP2767524B1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP4425860B2 (en) Metal evaporation heating element and metal evaporation method
CN104137357B (en) Spark plug
CN101844916B (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
JP5039097B2 (en) Power module
JP4772705B2 (en) Metal evaporation heating element
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP7365221B2 (en) Parts for semiconductor manufacturing equipment, holding device, and method for manufacturing parts for semiconductor manufacturing equipment
JP2006118017A (en) Metal-evaporating heater
JP2005135594A (en) Heating element for metal vapor deposition and its manufacturing method
JP2006225176A (en) Ceramic sintered compact, method of manufacturing the same and metal vapor-deposited heating element
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2006265037A (en) Ceramic sintered compact and metal vapor deposition heating element
JP2005113171A (en) Metal evaporation vessel
US20190263725A1 (en) Bonded ceramic assembly
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2007084871A (en) Metal vapor deposition heater
TWI281509B (en) Metal vaporizing heating element and metal vaporizing method
JP2008063184A (en) Method of manufacturing ceramic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees