JP4771643B2 - High-purity quartz powder, method for producing the same, and glass molding - Google Patents

High-purity quartz powder, method for producing the same, and glass molding Download PDF

Info

Publication number
JP4771643B2
JP4771643B2 JP2002211362A JP2002211362A JP4771643B2 JP 4771643 B2 JP4771643 B2 JP 4771643B2 JP 2002211362 A JP2002211362 A JP 2002211362A JP 2002211362 A JP2002211362 A JP 2002211362A JP 4771643 B2 JP4771643 B2 JP 4771643B2
Authority
JP
Japan
Prior art keywords
quartz powder
synthetic quartz
helium
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002211362A
Other languages
Japanese (ja)
Other versions
JP2003095677A (en
Inventor
芳雄 勝呂
圭二 山原
隆 山口
寛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002211362A priority Critical patent/JP4771643B2/en
Publication of JP2003095677A publication Critical patent/JP2003095677A/en
Application granted granted Critical
Publication of JP4771643B2 publication Critical patent/JP4771643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高純度かつ高品質な石英粉、及びその製造方法、並びに該粉体を溶融、成型してなる、泡が極めて少ないガラス成形体に関する。
【0002】
【従来の技術】
近年、光通信分野、半導体産業等に使用されるガラス製品については、非常に高い品質が要求されており、その純度に関しては厳しい管理がなされている。このような高純度ガラスは主に、▲1▼天然石英を粉砕して得た砂状の天然石英粉(いわゆるsandと称される。)を原料とする方法が知られている。更に高純度のガラスを望む場合には、▲2▼四塩化珪素を酸水素炎中で分解して発生したヒュームを基材に付着・成長させて得られたヒュームの塊を用いる酸水素炎法や、▲3▼金属アルコキシド等の有機金属化合物を原料として得られるゲルを用いる、いわゆるゾルゲル法による合成石英粉を原料とする方法が挙げられる。
【0003】
しかしながら、これらいずれの方法にも一長一短があった。例えば▲1▼の方法では、天然石英粉を原料とするので、本質的にはアルミニウム、鉄などの金属元素が石英粒子内部に含有されており、酸洗浄等の精製を繰り返しても製品となる石英粉中の金属不純物含有量を100ppb以下とする高純度化は困難である。また▲2▼の方法では、高純度化は計れるものの、工業的に見合う程度に低コストでの生産は困難であり、量産化に到っていない。
【0004】
一方▲3▼のゾルゲル法では、量産化できるものの原料、中間体、製品は製造装置に接触せざるを得ず、装置との接触によって不純物が混入するという不具合があった。特に、原料である有機金属化合物とアルコキシド、及び水との反応により生成する粒子(ゾル、ゲル)やウェットゲルは、装置内壁に接触し、付着、剥離、脱落を繰り返す課程で製品中に異常粒子(スケーリング物)を混入する。スケーリング物の発生する装置としては、反応器、粉砕器、乾燥機、配管部等の、少なくとも反応液やウェットゲル、またはドライゲルに接触する部分を擁する合成石英製造に用いる一連の装置やこれらの個別装置が挙げられる。またこのスケーリング物を製品から分離、除去することは、大変困難であった。
【0005】
そしてゲルを焼成して合成石英粉を製造する際に、このようなスケーリング物はカーボン成分となる。カーボン成分は凝集して黒点異物となって製品中に生成する。また合成石英粉を溶融しガラス成型体とする際に、このカーボン成分が分解してガスとなり、これが気泡としてガラス成型品中に形成されてしまい、ガラス成型品の品質を著しく悪化させることが知られていた。
【0006】
【発明が解決しようとする課題】
この解決方法としては例えば、ゾルゲル反応により得られる合成石英粉の粉体中の黒点粒子個数を5個/50g以下とすることが知られている(特開平8−188411号公報)。また同公報には、この合成石英粉を溶融して得られるガラス成型体においては、従来のものよりも泡の発生が少ないとの記載もある。
【0007】
しかしながら最近の光通信分野、半導体産業等に使用されるガラス製品への品質要求は更に厳しくなっており、この様な従来の技術で成し得た以上に、更に泡発生を低レベルに抑制する合成石英粉の開発が望まれていた。
またゾルゲル法による合成石英粉の高純度化に於いては、別の方法も知られている。これは、製造装置との接触により混入すると思しきスケーリング物の製品への混入量低減と、混入したスケーリング物による未燃カーボンが残留しないように、焼成過程で空気の供給を充分に行う方法である。これによってガラス成型体中の気泡を低減出来ることが知られていた。しかしこの方法でも近年の高純度化の要求を満足するものではなく、更に高度に泡の発生を抑制する合成石英粉の提供が望まれていた。更には真空下での加熱処理方法も提案されているが、真空条件を工業的に実現するには多大なコストが必要となるなど、工業化が困難であるという問題があった。
【0008】
【課題を解決するための手段】
上述の課題を解決すべく本発明者らが鋭意検討を重ねた結果、石英粉、特にゾルゲル反応により製造される合成石英粉において、石英粉を室温から1700℃まで加熱する間に発生するガスにおいて、COが300ナノリットル/g以下で且つ、COが30ナノリットル/g以下である際に、目的とする高純度の石英粉となることを見出した。さらにこの石英粉を溶融することによって、気泡が極めて少ないガラス成型体が得られることをも見出した。
【0009】
またこの石英粉は、アルコキシシラン類を加水分解して得られた平均粒径10〜500μmのシリカゲルを、1000℃以上の温度条件下で10〜50時間、酸素含有雰囲気中で加熱処理する工程を含み、かつ、(1)加熱処理に先立ち、シリカゲルを400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程、及び/又は(2)シリカゲルの加熱処理物を400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程により、合成石英粉として得られることをも見出し、本発明を完成するに到った。
【0010】
即ち本発明の要旨は、アルコキシシラン類を加水分解して得られた平均粒径10〜500μmのシリカゲルを、1000℃以上の温度条件下で10〜50時間、酸素含有雰囲気中で加熱処理する工程を含み、かつ、(1)加熱処理に先立ち、シリカゲルを400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程、及び/又は(2)シリカゲルの加熱処理物を400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程、を含むことを特徴とする合成石英粉の製造方法に存する。
さらに本発明の別の要旨は、上記の方法で合成石英粉を製造し、得られた合成石英紛を溶融し成型することを特徴とするガラス成形体の製造方法に存する。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の石英粉は、室温から1700℃まで加熱したときに発生する総ガス量のうち、COが300ナノリットル/g以下で且つCOが30ナノリットル/g以下の高純度石英粉である。中でも、室温から1700℃まで加熱したときに発生する総ガス量のうち、Nが50ナノリットル/g以下、且つHが150ナノリットル/g以下あることが好ましい。
【0012】
石英粉を加熱することによって発生するガスを定量する方法は、一般的に知られている任意の方法を用いることが出来る。中でも非常に微量な生成ガスをとらえられ、かつ高温条件で分析可能であることが好ましいく、例えばTPD−MS(Temperature Programmed Desorption-Mass Spectroscopy)法等が挙げられる。
本発明においては、この発生ガスを定量するの際、測定対象の石英粉(サンプル)を真空ガラスアンプルに封入し、このアンプルを室温から1700℃まで加熱した際に発生するガスを定量する。
具体的には、石英粉サンプルをガラス製アンプルに入れ、一旦、アンプル内部圧力を1.3×10−3〜1.3×10−4Paとする。次いで水分など吸着成分を加速的に除去するため、200℃、10分間加熱し、その後約1時間放置する。アンプル内の真空度が1.3×10−3〜1.3×10−4Paで安定しているのを確認し、端部を溶融し、封をして真空アンプルを作成する。
【0013】
本発明の石英粉は、石英粉を室温から1700℃まで加熱した際に発生する総ガス量において、COが300ナノリットル/g以下でかつ、COが30ナノリットル/g以下であることが特徴である。この温度条件は石英粉の粉体が焼結せず、最大限のガス発生量が得られる点で好ましい。
【0014】
また本発明に於いては、石英粉が室温から加熱到達温度となる迄に要する時間(昇温速度)が短い程良い。具体的には10分以内、好ましくは5分以内に加熱到達温度となることが好ましい。この様に急速に加熱し、合成石英粉から発生するガスを定量することで、安定した結果が得られるので好ましい。昇温速度が長すぎると、測定結果が振れることがある。
更に本発明の石英粉は、充填嵩密度が1.3〜1.7g/cmで且つ金属不純物含有量が500ppb以下であることが、ガラス成型体とした際に泡の含有量が一層抑制されるので好ましい。
充填嵩密度は1.3g/cm以上であることが好ましく、この値が低すぎると石英粉を溶融成型する際の体積収縮が大きくなり、寸法安定性が低下する場合がある。また充填嵩密度が1.7g/cmを超える様な石英粉は製造が困難な場合がある。
また本発明の石英粉における金属不純物含有量は、アルカリ金属、アルカリ土類金属や、アルミニウム、鉄、銅等、全金属不純物の含有量を意味し、その測定方法は任意である。本発明の石英粉における金属不純物含有量は、中でも200ppb以下、特に100ppb以下であることが好ましい。
【0015】
本発明の石英粉、例えば合成石英粉の製造方法は任意であるが、中でもゾルゲル法によって製造することが好ましい。特に、アルコキシシラン類の加水分解で得られた平均粒径10〜500μmのシリカゲルを、400℃〜1300℃の温度でヘリウム及び/又は水素ガスと接触させる製造方法により、製造することが好ましい。
ヘリウム及び/又は水素ガスと接触させるシリカゲルの平均粒径は10〜500μm、中でも100〜500μmであることが好ましい。平均粒径が小さすぎると粒子の表面積が大きくなるためにガスの吸着等が生じやすくなり、ガラス成型体とした際の気泡の原因となる場合がある。逆に、平均粒径が大きすぎても、粒子中の不純物除去効率が低下し、ガラス成型体とした際の気泡の原因となる場合がある。
ヘリウム及び/又は水素ガスと接触させる温度は、好ましくは600℃〜1300℃、特に800℃〜1300℃であることが好ましい。
【0016】
また接触させるガスであるヘリウム及び/又は水素ガスにおいては、中でも4%以下の水素を含むヘリウム・水素の混合ガスが好ましく、特に純ヘリウムガスと接触させることが好ましい。ヘリウム及び/又は水素ガスとの接触方法は任意であり、例えば合成石英粉体中に通気させたり、容器中に粉体とヘリウム及び/又は水素ガスとを閉じこめて、ヘリウム及び/又は水素ガス雰囲気下として、常圧もしくは加圧で保持する方法等が挙げられる。
【0017】
またゾルゲル法による合成石英粉の製造工程においては、平均粒径10〜500μmのシリカゲルへの、ヘリウム及び/又は水素ガスとの接触タイミングは任意である。例えば一度室温まで冷却されたシリカゲルを再加熱し、400℃〜1300℃の温度でヘリウム及び/又は水素ガスとの接触を行ってもよいし、シリカゲルの焼成工程において、その一部又は全部をヘリウム及び/又は水素ガス雰囲気下にて行ってもよい。また焼成して製品となった合成石英粉を、再加熱処理するときに、これをヘリウム及び/又は水素ガスと接触させてもよい。
【0018】
中でもシリカゲルをヘリウム及び/又は水素ガスと接触させる前又は後に、1000℃以上で10〜50時間、酸素含有雰囲気中で加熱処理することが好ましい。この際の加熱温度は、好ましくはガラス化温度以上であって、中でも1200℃以上であることが好ましい。またこの温度下での加熱処理時間は、好ましくは20〜40時間、特に好ましくは25〜35時間である。
【0019】
酸素を含む雰囲気中での加熱処理方法としては例えば、乾燥空気を流通させながら加熱処理を行う方法が挙げられる。加熱処理温度に到達するまでの時間(昇温速度)は任意だが、一般的には50〜200℃/hr、好ましくは70〜150℃/hrである。
上述したシリカゲルに対する酸素含有雰囲気中での加熱処理と、400℃〜1300℃でのヘリウム及び/又は水素ガスとの接触処理の順番は任意であるが、酸素含有雰囲気中での加熱処理を行った後に、ヘリウム及び/又は水素ガスとの接触処理を行うのが好ましい。
【0020】
またこの二つの処理(酸素含有雰囲気中での加熱処理と、ヘリウム及び/又は水素ガスとの接触処理)を、複数回に分けて交互に行ってもよい。例えば、ゾルゲル法によって得られたシリカゲルを乾燥空気流通下で800℃前後まで加熱し、次いで乾燥空気に代えてヘリウム及び/又は水素ガスの流通下で1700℃まで加熱する。そして到達温度条件下での全加熱処理時間のうち前半の10〜50%経過した後に再び乾燥空気に切り替えて到達温度条件下での全加熱処理を行う。そして加熱終了またはその直前に再度ヘリウム及び/又は水素ガスに切り替える。尚、その後にもう一度乾燥空気に切り替えてもよい。
【0021】
本発明の石英粉、例えば上述の様にして得られた合成石英粉において、室温から1700℃まで加熱する間に発生するガス量におけるCOやCO、H及びN発生が抑制されている理由は不明であるが、ヘリウムや水素などのサイズの小さい分子は、石英粒子中に十分溶解しかつ拡散速度も大きく、特に粒子内の拡散が不利なCOやCO、N等の分子サイズが大きいガスを、粒子から追い出すことによる為と考えられる。
又、COやCOが減ることによって、合成石英粉中の水(石英粉中でのシラノール基(≡SiOH)とシリカ(SiO)との平衡反応において生ずる水)と、これらの平衡反応(CO+HO⇔CO+H)で生ずるHが、同時に減ることと考えられる。
【0022】
本発明の合成石英粉をゾルゲル法で製造する際には、上述の通り、アルコキシシラン類の加水分解で得られる、平均粒径10〜500μmのシリカゲルを400℃〜1300℃の温度でヘリウム及び/又は水素ガスと接触させれば、その他の製造条件は適宜選択すればよい。
例えば具体的には、反応器にアルコキシシランと高純水とを仕込み、アルコキシシランに対する純水の量を当量から10倍当量仕込み、ゾルゲル反応を行う。その後、反応生成物(ウエットゲル)を平均粒径10〜500μmに粉砕、乾燥してシリカ前駆体であるシリカゲル(ドライゲル)を得る。アルコキシシラン類としてはテトラメトキシシランやテトラエトキシシラン等、加水分解縮重合反応によりアルコキシシランオリゴマーが得られるものであればよく、任意のアルコキシシランを用いることが出来る。中でもテトラアルコキシシラン類が好ましく、特にテトラメトキシシランが好ましい。
【0023】
またこの加水分解縮合反応の際、溶媒として水と相溶性のあるアルコール類やエーテル類などの有機溶媒を混合してもよい。また更に、この反応を促進する方法として、酸やアルカリ等の触媒を用いてもよく、中でも金属を含まない触媒が好ましく、一般には有機酸やアンモニア水などが好ましい。
加水分解生成物のゲル化を制御するために、反応容器を加熱若しくは冷却してもよい。この反応によって得られるウェットゲルは、粉砕により粒度を調整される。ここでの粉砕の粒度分布が、最終製品である合成石英粉の粒度分布を支配する。目的とする製品の粒度分布から、乾燥、焼成による粒子の収縮分を考慮して、ウェットゲルの最適粒度を決めることが重要である。乾燥後のシリカゲル(ドライゲル)の平均粒径は10〜500μm、中でも90〜500μm、特に100〜500μmとすることが好ましい。ゲルの乾燥の程度は、水含有量で、通常1〜30重量%であり、通常減圧下あるいは不活性ガス雰囲気中で100〜200℃に加熱することによって行われる。
【0024】
このように製造したドライゲルは400℃〜1300℃の温度でヘリウム及び/又は水素ガスと接触させ、高純度合成石英粉とする。通常、更に400℃〜1250℃の領域で温度変化させ、通常10〜100時間焼成を行い、無孔化させて高純度合成石英粉とする。
また本発明においては、ガラス成型体の気泡発生状況を確認するため、溶融試験を行った。石英粉の溶融は、酸水素炎による溶融法、すなわちベルヌーイ法によって行われ、作成されたインゴット中の泡の数を数えて、泡発生傾向を比較することができる。
【0025】
【実施例】
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
実施例1−1、1−2
攪拌槽にテトラメトキシシランとこれに対して5倍当量の水を仕込み、30℃の温度で1時間攪拌して、加水分解反応によって均一なゾル溶液を得た。さらにこれを塩化ビニル製のバットに移し、5時間放置してゲル化させた。このゲルを140℃の真空乾燥機を用いて12時間乾燥した後、平均粒径320μmの粒径に粒度調整を行った。
【0026】
このようにして得られたドライゲル粉末1kgを石英ガラス製の蓋付き容器に仕込み、電気炉内にセットし、蓋にあけた穴からガス吹き込みノズルを挿入して乾燥空気を流通しながら、100℃/hrの昇温速度で1200℃へ昇温し、1200℃で30時間保持することによって焼成し、乾燥空気は粉体が十分に冷却するまで流通を続け、合成石英粉を得た。
【0027】
得られた高純度合成石英粉500gを石英ガラス製の蓋付き容器に仕込み、電気炉内にセットし、蓋にあけた穴からガス吹き込みノズルを挿入してヘリウムガスを流通しながら、400℃/hrの昇温速度で1200℃へ昇温し、1200℃で10時間保持することによって焼成を行った。ヘリウムガスは粉体が十分に冷却するまで流通を続けた。
【0028】
この様にして得られた、ヘリウムガス処理合成石英粉のうち、100gを100mlのガラス製メスシリンダーにいれ、充填嵩密度(タップ密度)を測定したところ、1.34g/cmであった。
またこの合成石英粉における総金属不純物含有量を測定した。測定方法はまず、合成石英粉を高純度フッ酸に溶解し、得られた溶解液を加熱乾固させた。ついでこの乾固物を、高純度希硝酸及び高純度希硫酸の10:1(容積比)液に溶解させた。こうして得られた溶液を、ICP−MASSを用いて金属不純物含有量を測定したところ、金属不純物含有量は約57ppbであった。金属毎の含有量の詳細は表1に示した。
【0029】
【表1】

Figure 0004771643
【0030】
次に、このヘリウムガス処理合成石英粉の一部を、以下の方法によって真空アンプルに封入し、これを20℃/分の昇温速度で1700℃まで加熱し、その間に発生するガス量を定量した。
アンプル作成
試験管形封入管(試験管形8本:石英製、内径約8mm、厚さ約1mm、長さ約130mm)を中性洗剤及び蒸留水で洗浄後、アセトン置換して窒素送気にて乾燥した。封入管に上述の方法により得られた合成石英粉サンプルを1.02g秤取った。封入管は底部から約5cmの所をバーナーで加熱し、絞って細くした後、真空装置(TOKUDA製 MODEL EH-2A)のa〜dのガラスポートに溶接接続し、真空引きを行った。真空装置の概略図を図1に示す(アンプル管は図示せず)。尚、電離真空計はTOKUDA製 MODEL HFT−4を用いた。4個のアンプルのうち、図1のガラスポートa、bに接続されたアンプル管には合成石英粉を入れ、ガラスポートc、dに接続されたアンプル管には何も入れず、ブランクとした。
【0031】
回転ポンプ8を駆動させて系内圧力を低下させ、ガイスラー管10が殆ど発光してないことを確認した後、背圧弁3を開いた。そして背圧弁3を開いてから約15分後、拡散ポンプ7を駆動させ、更に系内の真空度を上げるべく、高真空度化を開始した。高真空化開始から約10分後、電離真空計9(TOKUDA MODEL HFT−4)による真空度は5.3×10−3Paであった。
次いで、水分など吸着成分を加速的に除去するため、200℃、10分間加熱した。開始約60分後、真空度は2.7×10−3Paで安定していた。接続弁1を閉めて真空装置系のみによる真空度を確認したが、変化は認められなかった。接続弁1を開け、アンプル開口部分をバーナーで加熱して封止して、ガラスポートから切り離し、真空ガラスアンプルを作成した。この際、系内の真空計は2.7×10−3Paで安定しており、変化は認められなかった。
【0032】
発生ガス量・種類の測定
富士電波工業(株)製の小型真空加圧炉(型式:FVPHP−R−5、FRET−35)及びカーボン製るつぼを用い、このるつぼに、上記方法で作成した石英ガラスアンプルを入れて真空度40Pa、20℃/分で1700℃まで昇温し、20分加熱した。冷却後、常圧にしてからガラスアンプルを取り出した。
【0033】
アンプル内のガス定量分析
排気ポンプ、及び質量分析装置への開口部を有し、系内を密閉可能な破壊容器の内部にアンプルをセットした。排気ポンプによって容器内部を排気後、破壊容器に付属の、質量分析装置(アネルバ株式会社製、AGS7000)へのゲートバルブを開けて、更に容器内部を高真空(1.3×10−3Pa)とし、これを1時間以上持続させた。
次に、質量分析装置を検出器電圧2600Vで用い、m/z=2(水素)、4(He)、18(水)、28(窒素とCO)、30(NO)、32(酸素)、及び44(二酸化炭素)をモニターしながら、アンプルを破壊した。尚、窒素とCOとの区別は、m/zが12及び14の比率を利用して区別した。
アンプルからガスが放出され、ピークが得られる。標準物質または標準ガスピークとの相対感度比との相対感度比を用いて、得られたピーク面積から発生ガスの定量を行った。この様な発生ガス量の定量を、実施例1−1、及び1−2として2回行った。結果を表2に示した。表2より明らかなとおり、加熱後のアンプル管の体積膨張も少なく、ガス発生量が抑制されていた。また2度に亘る測定結果を比べても数値差は小さく、分析精度が優れていることが判る。
【0034】
【表2】
Figure 0004771643
【0035】
更にこれら先述の方法で得られた、ヘリウムガス処理合成石英粉末を用いて、酸水素炎によるベルヌーイ法溶融装置を用いて直径12mm高さ60mmのインゴットを作成した。このインゴットに対して、暗室内にて懐中電灯を照射し、ルーペを通して気泡の数を目視で観察した。その結果、気泡の数は、僅か3個であり、優れたものであった。
比較例1
ウムガス処理を行わなかった以外は、実施例1と同様の方法にて合成石英粉を得た。そして実施例1と同様の方法でCO、CO等の発生量を定量した。結果を表2に記した。表2より明らかなとおり、加熱後のアンプル管の体積膨張は大きく、多くのガスが発生した。
【0036】
更にこの合成石英粉を用いて実施例1と同様にインゴットを作成し、暗室内で懐中電灯を照射し気泡の数を観察した。その結果、気泡の数は42個と多く、るつぼ等のガラス成型体とした際に問題があることは、明らかであった。
【0037】
比較例2
ウムガス処理に替えて、1150℃、真空度30〜100Paでの加熱処理を8時間行った以外は、実施例1と同様にして合成石英粉を得た。そして実施例1と同様にCO、CO等の発生量を定量した。結果を表2に示した。表2から明らかなとおり、ヘリウムガス処理合成石英粉と同様にガス発生量は抑えられたが、処理時間が長いばかりでなく、加熱処理装置内部を真空条件とする必要があるなど、工業的には不向きであった。
【0038】
【発明の効果】
本発明により、溶融時、泡の発生が少ない高品質な合成石英粉及びガラス成形体を得ることが出来る。
本発明の合成石英粉を溶融し得られたガラス成形体は、極めて気泡が少ない、高品質のものとなる。この理由は凡そ次のように考える。
【0039】
混入したスケーリング(異常粒子)から炭素成分を除去するため、空気の流通を十分に行ったり、酸素濃度を管理したりすることで、燃焼を促進して黒点化を抑制することは従来の技術でもある程度可能であった。しかしながら、完全に炭化して明らかな黒点とはならなくても、部分的に炭素成分が寄せ集まったクラスター状の炭素化合物集合体が、石英粉中に残留する可能性がある。また、炭素成分の濃度が高くなっているこのような異常粒子中の炭素は合成石英中のシリカ骨格のシリコン原子と置換して骨格に組み込まれることも知られており、一度骨格に組み込まれてしまった炭素はなかなか除きにくいことが予想される。石英粉のガラス化には通常1700℃以上高温が必要とされ、その温度よりも低温で製造される合成石英粉に炭素成分があらかじめ残留すると、高温溶融時にCOまたはCO2等の形でガラス成形体中に泡を発生するものと考えられる。石英粉粒子から放出されるCOやCO2等のガスは製品中のスケーリング物に含まれる炭素成分と強く関係していると考えられ、高温加熱時の合成石英粉から発生するCOやCOが少ないものは、粉体のスケーリング物中の炭素成分が少なく、溶融してガラス成形体を得るときに泡の発生が抑えられるものと考えられる。
【図面の簡単な説明】
【図1】真空ガラスアンプル管の作成装置の概略図である。
【符号の説明】
1:接続弁、2:本引弁、3:背圧弁、4:リーク弁、5:粗引弁、6:リーク弁、7:拡散ポンプ、8:回転ポンプ、9:電離真空計、10:ガイスラー管、a〜d:ガラスアンプル接続ポート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-purity and high-quality quartz powder, a method for producing the same, and a glass molded body obtained by melting and molding the powder and having very few bubbles.
[0002]
[Prior art]
In recent years, glass products used in the optical communication field, the semiconductor industry, and the like have been required to have extremely high quality, and strict management has been performed on their purity. For such high-purity glass, (1) a method using as a raw material sandy natural quartz powder (so-called sand) obtained by pulverizing natural quartz is known. If higher purity glass is desired, (2) Oxyhydrogen flame method using a mass of fumes obtained by attaching and growing fumes generated by decomposition of silicon tetrachloride in an oxyhydrogen flame. And (3) a method using a synthetic quartz powder by a so-called sol-gel method using a gel obtained from an organic metal compound such as a metal alkoxide as a raw material.
[0003]
However, both of these methods have advantages and disadvantages. For example, in the method (1), since natural quartz powder is used as a raw material, metal elements such as aluminum and iron are essentially contained inside the quartz particles, and the product is obtained even after repeated purification such as acid washing. It is difficult to achieve high purity so that the metal impurity content in the quartz powder is 100 ppb or less. In addition, although the method (2) can achieve high purity, it is difficult to produce at a low cost to an industrially reasonable level, and has not yet reached mass production.
[0004]
On the other hand, the sol-gel method (3) has a problem that raw materials, intermediates, and products, which can be mass-produced, must be brought into contact with the production apparatus, and impurities are mixed in by contact with the apparatus. In particular, particles (sol, gel) and wet gel generated by the reaction of organometallic compound, alkoxide, and water, which are raw materials, come into contact with the inner wall of the device and repeat abnormal adhesion in the product in the process of repeated adhesion, peeling and dropping. (Scaling material) is mixed. As a device for generating scaled materials, a series of devices used for manufacturing synthetic quartz having at least a portion in contact with a reaction solution, wet gel, or dry gel, such as a reactor, a pulverizer, a dryer, and a piping unit, and individual devices thereof. Apparatus. Also, it was very difficult to separate and remove this scaling product from the product.
[0005]
And when baking a gel and manufacturing synthetic quartz powder, such a scaling thing becomes a carbon component. The carbon component aggregates to form black spot foreign matter in the product. It is also known that when a synthetic quartz powder is melted to form a glass molded body, this carbon component is decomposed into a gas, which is formed as bubbles in the glass molded product, which significantly deteriorates the quality of the glass molded product. It was done.
[0006]
[Problems to be solved by the invention]
As a solution to this problem, for example, it is known that the number of black spot particles in a synthetic quartz powder obtained by a sol-gel reaction is 5/50 g or less (Japanese Patent Laid-Open No. Hei 8-188411). The publication also states that the glass molded body obtained by melting this synthetic quartz powder has less bubbles than the conventional one.
[0007]
However, the quality requirements for glass products used in the recent optical communication field, semiconductor industry, etc. are becoming stricter, and foam generation is further suppressed to a lower level than can be achieved by such conventional technology. Development of synthetic quartz powder has been desired.
In addition, another method is known for increasing the purity of synthetic quartz powder by the sol-gel method. This is a method to sufficiently supply air during the firing process so as to reduce the amount of scaling material mixed in the product that is thought to be mixed by contact with the manufacturing apparatus and to prevent unburned carbon from remaining in the mixed scaling material. . It has been known that this can reduce bubbles in the glass molded body. However, even this method does not satisfy the recent demand for high purity, and it has been desired to provide synthetic quartz powder that further suppresses the generation of bubbles. Furthermore, although a heat treatment method under vacuum has been proposed, there has been a problem that industrialization is difficult, for example, a large cost is required to industrially realize the vacuum conditions.
[0008]
[Means for Solving the Problems]
As a result of intensive investigations by the present inventors to solve the above-mentioned problems, quartz powder, particularly synthetic quartz powder produced by a sol-gel reaction, in the gas generated while heating quartz powder from room temperature to 1700 ° C. , CO is and below 300 nanoliters / g, when CO 2 is less than 30 nl / g, and found that a high purity quartz powder of interest. Furthermore, it has also been found that a glass molded body with extremely few bubbles can be obtained by melting the quartz powder.
[0009]
In addition, this quartz powder comprises a step of heat-treating silica gel having an average particle diameter of 10 to 500 μm obtained by hydrolysis of alkoxysilanes in an oxygen-containing atmosphere for 10 to 50 hours under a temperature condition of 1000 ° C. or higher. wherein, and, (1) prior to heat treatment, step Ru is contacted with helium and / or hydrogen gas on silica gel at a temperature of 400 ° C. to 1300 ° C., and / or (2) heat treatment of silica gel 400 ° C. It has also been found that it can be obtained as synthetic quartz powder by a step of contacting with helium and / or hydrogen gas under a temperature condition of ˜1300 ° C., and the present invention has been completed.
[0010]
That Abstract of the invention, silica gel having an average particle size of 10~500μm obtained by hydrolyzing the alkoxysilane, 10 to 50 hours at a temperature of above 1000 ° C., a heat treatment in an oxygen-containing atmosphere And (1) contacting the silica gel with helium and / or hydrogen gas under a temperature condition of 400 ° C. to 1300 ° C. prior to the heat treatment , and / or (2) 400 heat treated products of silica gel. And a step of contacting with helium and / or hydrogen gas under a temperature condition of from 1 ° C. to 1300 ° C.
Yet another aspect of the present invention is to produce a synthetic quartz powder by the above method, melting the obtained synthetic quartz powder, it consists in the manufacturing method of a glass molded body characterized by molding.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Quartz powder of the present invention, of the total amount of gas generated upon heating to 1700 ° C. from room temperature, CO is the and CO 2 below 300 nanoliters / g is 30 nl / g or less of a high-purity quartz powder . Above all, of the total amount of gas generated upon heating to 1700 ° C. from room temperature, N 2 is 50 nl / g or less, and it is preferable that H 2 is than 150 nanoliters / g.
[0012]
Any generally known method can be used as a method of quantifying the gas generated by heating the quartz powder. Among them, it is preferable that a very small amount of generated gas can be captured and analysis can be performed under high temperature conditions. For example, a TPD-MS (Temperature Programmed Desorption-Mass Spectroscopy) method or the like can be given.
In the present invention, when the generated gas is quantified, the quartz powder (sample) to be measured is enclosed in a vacuum glass ampule, and the gas generated when the ampule is heated from room temperature to 1700 ° C. is quantified.
Specifically, the quartz powder sample is put into a glass ampoule, and the ampoule internal pressure is once set to 1.3 × 10 −3 to 1.3 × 10 −4 Pa. Subsequently, in order to remove adsorbed components such as moisture at an accelerated rate, the mixture is heated at 200 ° C. for 10 minutes and then left for about 1 hour. After confirming that the degree of vacuum in the ampoule is stable at 1.3 × 10 −3 to 1.3 × 10 −4 Pa, the end is melted and sealed to create a vacuum ampule.
[0013]
Quartz powder of the present invention, the total gas quantity generated quartz powder when heated from room temperature to 1700 ° C., CO is and less 300 nanoliters / g, it CO 2 is less than 30 nanoliters / g It is a feature. This temperature condition is preferable because the powder of quartz powder is not sintered and the maximum gas generation amount can be obtained.
[0014]
In the present invention, it is better that the time (temperature increase rate) required for the quartz powder to reach the heating temperature from room temperature is shorter. Specifically, it is preferable that the temperature reaches the heating temperature within 10 minutes, preferably within 5 minutes. Heating rapidly in this manner and quantifying the gas generated from the synthetic quartz powder are preferable because stable results can be obtained. If the rate of temperature increase is too long, the measurement result may fluctuate.
Furthermore, when the quartz powder of the present invention has a filled bulk density of 1.3 to 1.7 g / cm 3 and a metal impurity content of 500 ppb or less, the foam content is further suppressed when a glass molded body is formed. This is preferable.
The filling bulk density is preferably 1.3 g / cm 3 or more. If this value is too low, volume shrinkage when the quartz powder is melt-molded becomes large, and dimensional stability may be lowered. In addition, it may be difficult to produce a quartz powder having a filling bulk density exceeding 1.7 g / cm 3 .
Further, the content of metal impurities in the quartz powder of the present invention means the content of all metal impurities such as alkali metals, alkaline earth metals, aluminum, iron, copper and the like, and the measuring method is arbitrary. The metal impurity content in the quartz powder of the present invention is preferably 200 ppb or less, particularly preferably 100 ppb or less.
[0015]
The method for producing the quartz powder of the present invention, for example, synthetic quartz powder, is arbitrary, but among these, it is preferable to produce by a sol-gel method. In particular, it is preferable to produce a silica gel having an average particle diameter of 10 to 500 μm obtained by hydrolysis of alkoxysilanes by a production method in which the silica gel is brought into contact with helium and / or hydrogen gas at a temperature of 400 ° C. to 1300 ° C.
The average particle diameter of the silica gel brought into contact with helium and / or hydrogen gas is preferably 10 to 500 μm, and more preferably 100 to 500 μm. If the average particle size is too small, the surface area of the particles is increased, so that gas adsorption or the like is likely to occur, which may cause bubbles when formed into a glass molded body. On the other hand, if the average particle size is too large, the efficiency of removing impurities in the particles is lowered, which may cause bubbles when formed into a glass molded body.
The temperature for contacting with helium and / or hydrogen gas is preferably 600 ° C. to 1300 ° C., particularly preferably 800 ° C. to 1300 ° C.
[0016]
In addition, the helium and / or hydrogen gas, which is a gas to be contacted, is preferably a mixed gas of helium and hydrogen containing 4% or less of hydrogen, particularly preferably in contact with pure helium gas. The contact method with helium and / or hydrogen gas is arbitrary. For example, a helium and / or hydrogen gas atmosphere is formed by ventilating synthetic quartz powder or confining powder and helium and / or hydrogen gas in a container. Below, the method etc. which hold | maintain under normal pressure or pressurization are mentioned.
[0017]
Moreover, in the manufacturing process of the synthetic quartz powder by the sol-gel method, the contact timing with helium and / or hydrogen gas to the silica gel having an average particle diameter of 10 to 500 μm is arbitrary. For example, the silica gel once cooled to room temperature may be reheated and contacted with helium and / or hydrogen gas at a temperature of 400 ° C. to 1300 ° C., or part or all of the silica gel may be helium in the baking step of silica gel. And / or under a hydrogen gas atmosphere. In addition, when the synthetic quartz powder that has been baked into a product is reheated, it may be contacted with helium and / or hydrogen gas.
[0018]
In particular, it is preferable to heat-treat in an oxygen-containing atmosphere at 1000 ° C. or higher for 10 to 50 hours before or after contacting silica gel with helium and / or hydrogen gas. The heating temperature at this time is preferably not less than the vitrification temperature, and particularly preferably not less than 1200 ° C. The heat treatment time under this temperature is preferably 20 to 40 hours, particularly preferably 25 to 35 hours.
[0019]
Examples of the heat treatment method in an atmosphere containing oxygen include a method of performing heat treatment while circulating dry air. The time required to reach the heat treatment temperature (temperature increase rate) is arbitrary, but is generally 50 to 200 ° C./hr, preferably 70 to 150 ° C./hr.
The order of the heat treatment in the oxygen-containing atmosphere for the silica gel and the contact treatment with helium and / or hydrogen gas at 400 ° C. to 1300 ° C. is arbitrary, but the heat treatment in the oxygen-containing atmosphere was performed. It is preferable to perform a contact treatment with helium and / or hydrogen gas later.
[0020]
Further, these two treatments (heat treatment in an oxygen-containing atmosphere and contact treatment with helium and / or hydrogen gas) may be alternately performed in a plurality of times. For example, silica gel obtained by the sol-gel method is heated to around 800 ° C. under a flow of dry air, and then heated to 1700 ° C. under a flow of helium and / or hydrogen gas instead of dry air. Then, after 10 to 50% of the first half of the total heat treatment time under the ultimate temperature condition has elapsed, switching to dry air is performed again to perform the total heat treatment under the ultimate temperature condition. Then, it is switched to helium and / or hydrogen gas again immediately before or after heating. In addition, you may switch to dry air once more after that.
[0021]
In the quartz powder of the present invention, for example, the synthetic quartz powder obtained as described above, the generation of CO, CO 2 , H 2 and N 2 in the amount of gas generated during heating from room temperature to 1700 ° C. is suppressed. The reason is unknown, but small-sized molecules such as helium and hydrogen are sufficiently dissolved in quartz particles and have a high diffusion rate. Especially, molecular sizes such as CO, CO 2 , and N 2 that are disadvantageous for diffusion in the particles. This is thought to be due to expelling large gas from the particles.
Further, by reducing CO and CO 2 , water in synthetic quartz powder (water generated in the equilibrium reaction between silanol groups (≡SiOH) and silica (SiO 2 ) in quartz powder) and these equilibrium reactions ( It is considered that H 2 generated in (CO + H 2 O⇔CO 2 + H 2 ) decreases at the same time.
[0022]
When the synthetic quartz powder of the present invention is produced by the sol-gel method, as described above, silica gel having an average particle size of 10 to 500 μm obtained by hydrolysis of alkoxysilanes is obtained at a temperature of 400 ° C. to 1300 ° C. with helium and / or Or if it makes it contact with hydrogen gas, what is necessary is just to select other manufacturing conditions suitably.
For example, specifically, alkoxysilane and high-purity water are charged into a reactor, and the amount of pure water with respect to alkoxysilane is charged from equivalent to 10 times equivalent to carry out the sol-gel reaction. Thereafter, the reaction product (wet gel) is pulverized to an average particle size of 10 to 500 μm and dried to obtain silica gel (dry gel) as a silica precursor. Any alkoxysilane may be used as long as an alkoxysilane oligomer can be obtained by hydrolysis condensation polymerization reaction, such as tetramethoxysilane or tetraethoxysilane. Of these, tetraalkoxysilanes are preferable, and tetramethoxysilane is particularly preferable.
[0023]
In this hydrolysis condensation reaction, an organic solvent such as alcohols and ethers compatible with water may be mixed as a solvent. Furthermore, as a method for promoting this reaction, a catalyst such as an acid or an alkali may be used. Among them, a catalyst containing no metal is preferable, and an organic acid or aqueous ammonia is generally preferable.
In order to control the gelation of the hydrolysis product, the reaction vessel may be heated or cooled. The wet gel obtained by this reaction is adjusted in particle size by pulverization. The particle size distribution of the pulverization here controls the particle size distribution of the synthetic quartz powder that is the final product. It is important to determine the optimum particle size of the wet gel from the particle size distribution of the target product in consideration of the shrinkage of the particles due to drying and baking. The average particle diameter of the dried silica gel (dry gel) is preferably 10 to 500 μm, more preferably 90 to 500 μm, and particularly preferably 100 to 500 μm. The degree of drying of the gel is the water content and is usually 1 to 30% by weight, and is usually performed by heating to 100 to 200 ° C. under reduced pressure or in an inert gas atmosphere.
[0024]
The dry gel thus produced is brought into contact with helium and / or hydrogen gas at a temperature of 400 ° C. to 1300 ° C. to obtain high-purity synthetic quartz powder. Usually, the temperature is further changed in the range of 400 ° C. to 1250 ° C., and the calcination is usually performed for 10 to 100 hours to make it non-porous to obtain a high purity synthetic quartz powder.
Moreover, in this invention, in order to confirm the bubble generation | occurrence | production condition of a glass molding, the melting test was done. The quartz powder is melted by a melting method using an oxyhydrogen flame, that is, the Bernoulli method, and the number of bubbles in the prepared ingot can be counted to compare the tendency of bubble generation.
[0025]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
Examples 1-1 and 1-2
Tetramethoxysilane and 5 equivalents of water were charged into the stirring tank and stirred at a temperature of 30 ° C. for 1 hour to obtain a uniform sol solution by hydrolysis reaction. This was further transferred to a vinyl chloride vat and left to gel for 5 hours. This gel was dried for 12 hours using a vacuum dryer at 140 ° C., and then the particle size was adjusted to a particle size of an average particle size of 320 μm.
[0026]
1 kg of the dry gel powder obtained in this way was charged into a quartz glass lidded container, set in an electric furnace, and a gas blowing nozzle was inserted through a hole drilled in the lid to circulate dry air at 100 ° C. The temperature was raised to 1200 ° C. at a rate of temperature increase of / hr and calcined by holding at 1200 ° C. for 30 hours, and the dry air continued to flow until the powder was sufficiently cooled to obtain synthetic quartz powder.
[0027]
500 g of the obtained high-purity synthetic quartz powder was charged into a quartz glass lidded container, set in an electric furnace, and a gas blowing nozzle was inserted through a hole drilled in the lid while flowing helium gas at 400 ° C. / Firing was performed by raising the temperature to 1200 ° C. at a rate of temperature increase of hr and holding at 1200 ° C. for 10 hours. Helium gas continued to flow until the powder was sufficiently cooled.
[0028]
100 g of the helium gas-treated synthetic quartz powder thus obtained was placed in a 100 ml glass graduated cylinder, and the filling bulk density (tap density) was measured and found to be 1.34 g / cm 3 .
Further, the total metal impurity content in the synthetic quartz powder was measured. First, synthetic quartz powder was dissolved in high-purity hydrofluoric acid, and the resulting solution was heated to dryness. Next, the dried product was dissolved in a 10: 1 (volume ratio) solution of high purity dilute nitric acid and high purity dilute sulfuric acid. When the metal impurity content of the solution thus obtained was measured using ICP-MASS, the metal impurity content was about 57 ppb. Details of the content of each metal are shown in Table 1.
[0029]
[Table 1]
Figure 0004771643
[0030]
Next, a portion of this helium gas-treated synthetic quartz powder is sealed in a vacuum ampoule by the following method, and this is heated to 1700 ° C. at a temperature increase rate of 20 ° C./min, and the amount of gas generated during that time is determined. did.
Ampule creation test tube type sealed tube (8 test tube types: made of quartz, inner diameter of about 8mm, thickness of about 1mm, length of about 130mm) is washed with neutral detergent and distilled water, then replaced with acetone for nitrogen supply And dried. 1.02 g of the synthetic quartz powder sample obtained by the above-described method was weighed into the sealed tube. The encapsulated tube was heated about 5 cm from the bottom with a burner and squeezed to make it thinner, and then welded to the glass ports a to d of a vacuum apparatus (MODEL EH-2A manufactured by TOKUDA), and evacuated. A schematic diagram of the vacuum apparatus is shown in FIG. 1 (the ampule tube is not shown). The ionization vacuum gauge used was MODEL HFT-4 manufactured by TOKUDA. Of the four ampoules, synthetic quartz powder is put into the ampule tubes connected to the glass ports a and b in FIG. 1, and nothing is put into the ampule tubes connected to the glass ports c and d, and blanks are used. .
[0031]
The back pressure valve 3 was opened after confirming that the Geisler tube 10 did not substantially emit light by driving the rotary pump 8 to reduce the internal pressure. Then, about 15 minutes after opening the back pressure valve 3, the diffusion pump 7 was driven, and the degree of vacuum was started to further increase the degree of vacuum in the system. About 10 minutes after the start of high vacuum, the degree of vacuum by an ionization vacuum gauge 9 (TOKUDA MODEL HFT-4) was 5.3 × 10 −3 Pa.
Subsequently, in order to remove adsorbing components such as moisture at an accelerated rate, the substrate was heated at 200 ° C. for 10 minutes. About 60 minutes after the start, the degree of vacuum was stable at 2.7 × 10 −3 Pa. Although the connection valve 1 was closed and the degree of vacuum was confirmed only by the vacuum system, no change was observed. The connection valve 1 was opened, and the ampoule opening was heated and sealed with a burner and cut off from the glass port to create a vacuum glass ampoule. At this time, the vacuum gauge in the system was stable at 2.7 × 10 −3 Pa, and no change was observed.
[0032]
Measurement of amount and type of generated gas A small vacuum pressurizing furnace (model: FVPHP-R-5, FRET-35) manufactured by Fuji Radio Industry Co., Ltd. and a carbon crucible were used. A glass ampule was put in, heated to 1700 ° C. at a vacuum degree of 40 Pa and 20 ° C./min, and heated for 20 minutes. After cooling, the glass ampoule was taken out after normal pressure.
[0033]
An ampoule was set in the inside of a destructive container having an opening to the gas quantitative analysis exhaust pump in the ampoule and a mass spectrometer and capable of sealing the system. After exhausting the inside of the container with an exhaust pump, the gate valve to the mass spectrometer (AGS7000, manufactured by Anelva Co., Ltd.) attached to the destruction container is opened, and the inside of the container is further vacuumed (1.3 × 10 −3 Pa) And this lasted for more than 1 hour.
Next, using a mass spectrometer with a detector voltage of 2600 V, m / z = 2 (hydrogen), 4 (He), 18 (water), 28 (nitrogen and CO), 30 (NO), 32 (oxygen), And 44 (carbon dioxide) were monitored while the ampule was destroyed. The distinction between nitrogen and CO was made using the ratio of m / z 12 and 14.
Gas is released from the ampoule and a peak is obtained. The generated gas was quantified from the obtained peak area using the relative sensitivity ratio to the relative sensitivity ratio with the standard substance or standard gas peak. Such determination of the amount of generated gas was carried out twice as Examples 1-1 and 1-2. The results are shown in Table 2. As apparent from Table 2, the volume expansion of the ampule tube after heating was small, and the amount of gas generated was suppressed. Moreover, even if the measurement results obtained twice are compared, it can be seen that the numerical difference is small and the analysis accuracy is excellent.
[0034]
[Table 2]
Figure 0004771643
[0035]
Further, an ingot having a diameter of 12 mm and a height of 60 mm was prepared by using a Bernoulli method melting apparatus with an oxyhydrogen flame using the helium gas-treated synthetic quartz powder obtained by the above-described methods. The ingot was irradiated with a flashlight in a dark room, and the number of bubbles was visually observed through a loupe. As a result, the number of bubbles was only three, which was excellent.
Comparative Example 1
Except for not performing the F Li Umugasu treatment, to obtain a synthetic quartz powder in the same manner as in Example 1. The amount of CO, CO 2 and the like generated was quantified in the same manner as in Example 1. The results are shown in Table 2. As is apparent from Table 2, the volume expansion of the ampule tube after heating was large, and a large amount of gas was generated.
[0036]
Further, using this synthetic quartz powder, an ingot was prepared in the same manner as in Example 1, and a flashlight was irradiated in the dark room to observe the number of bubbles. As a result, the number of bubbles was as large as 42, and it was clear that there was a problem when forming a glass molded body such as a crucible.
[0037]
Comparative Example 2
Instead of f re Umugasu process, except that it went 1150 ° C., the heat treatment at a vacuum degree 30~100Pa 8 hours to obtain a synthetic quartz powder in the same manner as in Example 1. In the same manner as in Example 1, the amount of CO, CO 2 and the like generated was quantified. The results are shown in Table 2. As is apparent from Table 2, the amount of gas generated was suppressed as in the case of helium gas-treated synthetic quartz powder, but not only the treatment time was long, but the inside of the heat treatment apparatus was required to be in a vacuum condition. Was unsuitable.
[0038]
【The invention's effect】
According to the present invention, it is possible to obtain a high-quality synthetic quartz powder and a glass molded body with less generation of bubbles during melting.
The glass molded body obtained by melting the synthetic quartz powder of the present invention is of high quality with very few bubbles. The reason is considered as follows.
[0039]
In order to remove carbon components from the mixed scaling (abnormal particles), it is possible to promote combustion and suppress sunspots by using sufficient air circulation or controlling oxygen concentration. It was possible to some extent. However, a cluster-like carbon compound aggregate in which carbon components are partially gathered may remain in the quartz powder even if it is not completely carbonized and has an obvious black spot. It is also known that carbon in such abnormal particles with a high concentration of carbon component is incorporated into the skeleton by replacing silicon atoms in the silica skeleton in synthetic quartz. It is expected that it will be difficult to remove the carbon. The vitrification of quartz powder usually requires a high temperature of 1700 ° C. or higher, and if a carbon component remains in advance in synthetic quartz powder produced at a temperature lower than that temperature, a glass molded body in the form of CO or CO 2 at the time of high-temperature melting. It is thought that bubbles are generated inside. CO and gas such as CO2 released from silica powder particles are believed to be strongly associated with the carbon component contained in the scaling of the product, less CO and CO 2 generated from the synthetic quartz powder at a high temperature heating It is considered that the product has a small amount of carbon component in the scaled product of the powder and can suppress the generation of bubbles when melted to obtain a glass molded body.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vacuum glass ampoule tube producing apparatus.
[Explanation of symbols]
1: Connection valve, 2: Main valve, 3: Back pressure valve, 4: Leak valve, 5: Rough valve, 6: Leak valve, 7: Diffusion pump, 8: Rotary pump, 9: Ionization gauge, 10: Geisler tube, ad: Glass ampoule connection port

Claims (4)

アルコキシシラン類を加水分解して得られた平均粒径10〜500μmのシリカゲルを、1000℃以上の温度条件下で10〜50時間、酸素含有雰囲気中で加熱処理する工程を含み、かつ、
(1)加熱処理に先立ち、シリカゲルを400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程、及び/又は
(2)シリカゲルの加熱処理物を400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程、
を含むことを特徴とする合成石英粉の製造方法。
Including a step of heat-treating silica gel having an average particle diameter of 10 to 500 μm obtained by hydrolyzing alkoxysilanes in an oxygen-containing atmosphere for 10 to 50 hours under a temperature condition of 1000 ° C. or higher, and
(1) Prior to heat treatment, the step of contacting silica gel with helium and / or hydrogen gas under a temperature condition of 400 ° C. to 1300 ° C. and / or
(2) A step of bringing a heat-treated product of silica gel into contact with helium and / or hydrogen gas under a temperature condition of 400 ° C. to 1300 ° C.,
A method for producing synthetic quartz powder, comprising:
酸素含有雰囲気中での加熱処理が、昇温速度50〜200℃/hrで行われることを特徴とする、請求項1に記載の合成石英紛の製造方法。The method for producing a synthetic quartz powder according to claim 1, wherein the heat treatment in an oxygen-containing atmosphere is performed at a temperature rising rate of 50 to 200 ° C / hr. シリカゲルの加熱処理物を400℃〜1300℃の温度条件下でヘリウム及び/又は水素ガスと接触させる工程を含むことを特徴とする、請求項1又は2に記載の合成石英紛の製造方法。The method for producing a synthetic quartz powder according to claim 1 or 2, comprising a step of bringing the heat-treated product of silica gel into contact with helium and / or hydrogen gas under a temperature condition of 400 ° C to 1300 ° C. 請求項1乃至3のいずれかに記載の方法で合成石英粉を製造し、得られた合成石英紛を溶融し成型することを特徴とするガラス成型体の製造方法。 To produce a synthetic quartz powder by the method according to any one of claims 1 to 3, by melting the obtained synthetic quartz powder, a manufacturing method of a glass molded body, characterized by molding.
JP2002211362A 2001-07-19 2002-07-19 High-purity quartz powder, method for producing the same, and glass molding Expired - Fee Related JP4771643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211362A JP4771643B2 (en) 2001-07-19 2002-07-19 High-purity quartz powder, method for producing the same, and glass molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001218997 2001-07-19
JP2001-218997 2001-07-19
JP2001218997 2001-07-19
JP2002211362A JP4771643B2 (en) 2001-07-19 2002-07-19 High-purity quartz powder, method for producing the same, and glass molding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008331742A Division JP2009114058A (en) 2001-07-19 2008-12-26 Method of producing synthetic quartz powder and glass molding

Publications (2)

Publication Number Publication Date
JP2003095677A JP2003095677A (en) 2003-04-03
JP4771643B2 true JP4771643B2 (en) 2011-09-14

Family

ID=26618969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211362A Expired - Fee Related JP4771643B2 (en) 2001-07-19 2002-07-19 High-purity quartz powder, method for producing the same, and glass molding

Country Status (1)

Country Link
JP (1) JP4771643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008332A1 (en) * 2001-07-19 2003-01-30 Mitsubishi Chemical Corporation High purity quartz powder and method for production thereof, and formed glass article from the powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617153B2 (en) * 1995-09-29 2005-02-02 三菱化学株式会社 Method for producing synthetic quartz powder
JPH10212115A (en) * 1997-01-28 1998-08-11 Mitsubishi Chem Corp Production of high purity quartz glass powder and production of quartz glass molding
JPH10287416A (en) * 1997-04-08 1998-10-27 Mitsubishi Chem Corp Production of synthetic quartz powder
JP2001089125A (en) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd Porous silica granule, its production and production of synthetic quartz glass powder using the porous silica granule
JP4898014B2 (en) * 2000-06-28 2012-03-14 ジャパンスーパークォーツ株式会社 Method for producing synthetic quartz powder and method for producing quartz glass crucible

Also Published As

Publication number Publication date
JP2003095677A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP2009114058A (en) Method of producing synthetic quartz powder and glass molding
CN102471125B (en) Silica vessel and process for producing same
TWI405728B (en) Silica container and method of manufacturing the same
TWI405730B (en) Silica container and method of manufacturing the same
TWI405729B (en) Silica container and method of manufacturing the same
CN102482137B (en) Silica powder, silica container, and method for producing the silica powder and container
CN102197002B (en) Silica container and method for producing same
EP1167309B1 (en) Synthetic quartz powder, its production process, and synthetic quartz crucible
JPH072513A (en) Production of synthetic quartz glass powder
JP2010083690A (en) Silica container and producing method of the same
JPH10287416A (en) Production of synthetic quartz powder
JP4771643B2 (en) High-purity quartz powder, method for producing the same, and glass molding
JPH09165214A (en) Production of synthetic quartz powder
JPH03275527A (en) Porous silica glass powder
JP2000169163A (en) Synthetic quartz glass powder containing aluminum, synthetic quartz glass formed body containing aluminum, and production of the same
JP2010195637A (en) Method for manufacturing silicon fine particle illuminant
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3594476B2 (en) Method for producing porous quartz glass body
JP2001192225A (en) Method for manufacturing quartz glass
JP2621702B2 (en) Method for producing silica glass
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
CN117945403A (en) Process for increasing synthetic particle size of silicon carbide powder
JPH05246708A (en) Production for powdery dry gel, silica glass powder and silica glass fusion molded goods
JPH10203821A (en) Production of synthetic quartz glass powder and quartz glass formed product
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4771643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees