JP4771471B2 - Fire extinguishing equipment - Google Patents

Fire extinguishing equipment Download PDF

Info

Publication number
JP4771471B2
JP4771471B2 JP2006100784A JP2006100784A JP4771471B2 JP 4771471 B2 JP4771471 B2 JP 4771471B2 JP 2006100784 A JP2006100784 A JP 2006100784A JP 2006100784 A JP2006100784 A JP 2006100784A JP 4771471 B2 JP4771471 B2 JP 4771471B2
Authority
JP
Japan
Prior art keywords
water
fire extinguishing
fire
water tank
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006100784A
Other languages
Japanese (ja)
Other versions
JP2007268186A (en
Inventor
浩二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2006100784A priority Critical patent/JP4771471B2/en
Publication of JP2007268186A publication Critical patent/JP2007268186A/en
Application granted granted Critical
Publication of JP4771471B2 publication Critical patent/JP4771471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

本発明は消火設備に関するものである。   The present invention relates to fire extinguishing equipment.

従来よりビル等にはスプリンクラ消火設備が設置されている。スプリンクラ消火設備は水を放水して冷却効果により火災を消火するものである。これに対し、特許文献1に記載された消火設備は、消火ヘッドに二流体ノズルを使用し、水を放水する際に、窒素等の不活性ガスを同時に噴射して火災を消火するものである。この場合、不活性ガスを噴射することで、水の冷却効果だけでなく、不活性ガスの窒息効果により火災を消火する。このため、スプリンクラ消火設備に比べ、消火効果が高く、水の噴霧量も少なくて済み水損を減らすことが可能となる。
登録実用新案3018363号公報
Sprinkler fire extinguishing equipment has been installed in buildings. Sprinkler fire extinguishing equipment discharges water and extinguishes fire by cooling effect. On the other hand, the fire extinguishing equipment described in Patent Document 1 uses a two-fluid nozzle for the fire extinguishing head, and when water is discharged, injects an inert gas such as nitrogen simultaneously to extinguish the fire. . In this case, the fire is extinguished not only by the cooling effect of water but also by the suffocation effect of the inert gas by injecting the inert gas. For this reason, compared with a sprinkler fire extinguishing equipment, the fire extinguishing effect is high, and the amount of water sprayed is small, so that water loss can be reduced.
Registered Utility Model No. 3018363

特許文献1に記載された消火設備では、不活性ガスを噴射させるにあたり、水を供給すする消火水の配管以外に、ガス用の消火ガスの配管が必要となる、設備の構築に費用が嵩んでしまうという問題がある。   In the fire extinguishing equipment described in Patent Document 1, in addition to the fire water pipe for supplying water to inject the inert gas, a fire extinguishing gas pipe for the gas is required, and the construction of the equipment is expensive. There is a problem of getting stuck.

そこで、本発明は、設備費用を高めることなく、スプリンクラ消火設備より消火効果の高い消火設備を得ることを目的とする。   Therefore, an object of the present invention is to obtain a fire extinguishing equipment having a higher fire extinguishing effect than a sprinkler fire extinguishing equipment without increasing the equipment cost.

本発明は、消火ヘッドが接続された二次側配管と、二次側配管の基端側に設けられた流水検知装置と、流水検知装置の一次側にある一次側配管にポンプを介して接続された給水源の水槽とを備えた消火設備において、水槽にマイクロバブルを発生さるマイクロバブル発生装置を接続し、マイクロバブル発生装置には窒素ボンベを接続し、水槽内にマイクロバブル発生装置により窒素ガスを封入したマイクロバブルを発生させ、ポンプを起動して、水槽内の前記マイクロバブルを含んだ水を二次側配管内に充水したことを特徴とするものである。
The present invention connects a secondary side pipe to which a fire extinguishing head is connected, a running water detection device provided on the base end side of the secondary side piping, and a primary side pipe on the primary side of the running water detection device via a pump. in fire extinguishing installation comprising a has been the water supply water tank, connecting the microbubble generating apparatus Ru generates microbubbles in the water tank, connects the nitrogen cylinder to the microbubble generator, a micro bubble generator in the water tank the nitrogen gas is generated encapsulated microbubbles, start the pump, it is characterized in that it has filled with water in a water containing the microbubbles in the water tank the secondary side inner pipe.

本発明は以上のように構成され、マイクロバブルを発生されるマイクロバブル発生装置を設けて、そのマイクロバブル発生装置により不活性ガスを封入したマイクロバブルを発生させ、そのマイクロバブルを含んだ水を二次側配管に供給する。このため、一本の配管から不活性ガスを含んだ消火水を放水できるので、設備費用を高めることなく消火効率を高めることができる。   The present invention is configured as described above, and is provided with a microbubble generator that generates microbubbles. The microbubble generator generates microbubbles filled with an inert gas, and water containing the microbubbles is generated. Supply to the secondary piping. For this reason, since the fire-extinguishing water containing the inert gas can be discharged from one pipe, the fire-extinguishing efficiency can be increased without increasing the equipment cost.

本件発明者は、消火用のガス配管を使用せずに、消火効果を高めるためには、消火水への不活性ガスの溶存量を高めれば良いと考えた。そして、そのためにマイクロバルブを使用すれば良いことが分かった。   The present inventor considered that the dissolved amount of the inert gas in the fire-extinguishing water should be increased in order to enhance the fire-extinguishing effect without using the gas pipe for fire-extinguishing. And it has been found that a microvalve may be used for that purpose.

ここで、マイクロバルブとは、気泡径が10〜数10μmの微細気泡のことをいう。マイクロバルブは、水と空気を高速で混合させたりすることで、発生させることができる。マイクロバルブは、普通の泡に比べ、液体中の浮遊物にくっついて浮かす能力が優れている他、 液体に内包する気体を溶かす溶解能力などの特性があり、魚介類の養殖業などの酸素欠乏対策としてすでに実用化されている技術である。また、マイクロバブル内には、空気だけでなく、各種ガスを封入できるようになっており、気泡同士の合体や吸収が起こらず、単一気体のままで水中に長時間留まり、その寿命は比較的長い。この発明は、上記知見に基づいてなされたものである。   Here, the microvalve refers to fine bubbles having a bubble diameter of 10 to several tens of μm. The microvalve can be generated by mixing water and air at high speed. Compared to ordinary bubbles, microvalves are superior in their ability to stick to floats in liquids and have the ability to dissolve gases contained in liquids. This technology has already been put to practical use as a countermeasure. In addition, not only air but also various gases can be enclosed in the microbubbles, so that bubbles do not coalesce or absorb and stay in water for a long time as a single gas, and their lifetimes are compared. Long. The present invention has been made based on the above findings.

この発明の実施例を図1により説明する。図1は本発明の消火設備のシステム図である。
11は二次側配管12に接続された消火ヘッドとしてスプリンクラヘッドである。二次側配管12の基端側には流水検知装置13が設けられ、この流水検知装置13の一次側には
一次側配管14が接続されている。
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a system diagram of the fire extinguishing equipment of the present invention.
11 is a sprinkler head as a fire extinguishing head connected to the secondary side pipe 12. A running water detector 13 is provided on the proximal end side of the secondary pipe 12, and a primary pipe 14 is connected to the primary side of the running water detector 13.

一次側配管14の基端側には、ポンプ15を介して給水源の水槽16が接続されている。水槽16にはマイクロバブル発生装置17が接続され、この装置17により、マイクロバブルを水槽16内に発生させる。このマイクロバブル発生装置16は水槽16内に設けるようにしてもよい。   A water tank 16 as a water supply source is connected to the base end side of the primary side pipe 14 through a pump 15. A microbubble generator 17 is connected to the water tank 16, and this apparatus 17 generates microbubbles in the water tank 16. The microbubble generator 16 may be provided in the water tank 16.

マイクロバブル発生装置16には窒素ボンベ18が制御弁19を介して接続される。また、循環ポンプ20により水槽16の水が供給されるようになっている。循環ポンプ20及び制御弁19は制御盤21が信号線を介して接続されている。   A nitrogen cylinder 18 is connected to the microbubble generator 16 via a control valve 19. Further, the water in the water tank 16 is supplied by the circulation pump 20. A control panel 21 is connected to the circulation pump 20 and the control valve 19 via a signal line.

次に本発明の動作について説明する。まず、水槽16内は水が満たされているが、一次側配管14及び二次側配管12内には充水されてなく、これから配管内に充水する場合について説明する。制御盤21は循環ポンプ20を起動させると共に、窒素ボンベ18の制御弁を19を開放し、マイクロバブル発生装置17に窒素ガスを供給できる状態にする。   Next, the operation of the present invention will be described. First, the water tank 16 is filled with water, but the primary side pipe 14 and the secondary side pipe 12 are not filled with water. The control panel 21 activates the circulation pump 20 and opens the control valve 19 of the nitrogen cylinder 18 so that nitrogen gas can be supplied to the microbubble generator 17.

マイクロバブル発生装置17は、一例として、特開平11−333491号に記載されたものがあり、気液2相流を流体力学的にせん断させたり、気液を特殊な方法で高速又は激しく混合させたり、超音波で水を振動させることで、マイクロバルブを発生させることができる。本実施例では、図2、図3に示すマイクロバルブ発生装置17により、水槽16内の水と窒素ボンベ18の窒素ガスを混合させて、不活性ガスである窒素ガスを封入したマイクロバブルを水槽16内に発生している。   As an example, the microbubble generator 17 is described in Japanese Patent Application Laid-Open No. 11-333491. The gas-liquid two-phase flow is hydrodynamically sheared, or the gas-liquid is mixed at high speed or vigorously by a special method. Alternatively, the microvalve can be generated by vibrating water with ultrasonic waves. In this embodiment, the microvalve generating device 17 shown in FIGS. 2 and 3 mixes the water in the water tank 16 with the nitrogen gas in the nitrogen cylinder 18 so that microbubbles filled with nitrogen gas, which is an inert gas, are stored in the water tank. 16 has occurred.

図2は、マイクロバブル発生装置の斜視図で、図3は、マイクロバブル発生装置の縦断面図である。図において、マイクロバブル発生装置17は、漏斗状を成す円錐容器1の頂部側に噴流口2を、他方、底部側には窒素ガスの吸入口4を有する奥行の短い漏斗壁5を縁部3に形成した形状を有する。   FIG. 2 is a perspective view of the microbubble generator, and FIG. 3 is a longitudinal sectional view of the microbubble generator. In the figure, the microbubble generator 17 has a short depth funnel wall 5 having a jet port 2 on the top side of the conical container 1 having a funnel shape and a nitrogen gas suction port 4 on the bottom side. It has the shape formed in.

この容器の縁部3の周囲に設けた2ケ所の流入管6より加圧された水槽16の水aを取り込むと、円錐容器1及び漏斗壁5の内壁に沿って廻りながら頂部側に流れ込むことにより渦流Aが起こる。さらに流れ込むことで強い渦流Aになるにしたがい中心部は真空状態を成す。その吸引力によりガスの吸入口4より取り込まれた窒素ガスは渦流気柱Bとなって、前記の渦流A水に衝突することで強力なセン断作用が起こり、きわめて多量でかつ微細なマイクロバブルCを連続して発生させ渦流A水に取り込まれる。さらにそのマイクロバブルCが取り込まれたバブル水bは噴流口2より吐出される。   When water a in the pressurized water tank 16 is taken in from the two inflow pipes 6 provided around the edge 3 of the container, it flows into the top side while rotating along the inner walls of the conical container 1 and the funnel wall 5. Causes vortex A to occur. Further, as the strong vortex A is generated by flowing in, the central portion forms a vacuum state. Nitrogen gas taken in from the gas inlet 4 by the suction force becomes a vortex air column B and collides with the vortex A water to cause a strong shearing action. C is continuously generated and taken into the vortex A water. Further, the bubble water b in which the microbubbles C are taken is discharged from the jet port 2.

こうして水槽16内に発生した、10μm程度の気泡は、1mをおよそ3時間かけてゆっくり上昇し、かつ発生した気泡同士は非合体で単独に存在することから、普通の大きな気泡のような水面にすぐに上昇して破裂してなくなる訳ではない。マイクロバルブは泡の表面張力が大きく水中で水圧により泡が消滅するが、この際、泡内の気体が水中に溶け込む。この気体の溶解度は、通常の溶解量の数倍から数10倍に達する。このため、水槽16内の水は、水中における溶存窒素濃度が高くなっている。   The bubbles of about 10 μm generated in the water tank 16 ascend slowly over 1 m over about 3 hours, and the generated bubbles are non-unioned and exist independently. It does not rise immediately and cease to burst. In the microvalve, the surface tension of the bubbles is large and the bubbles disappear due to water pressure in water. At this time, the gas in the bubbles dissolves in the water. The solubility of this gas reaches from several times to several tens of times the usual amount of dissolution. For this reason, the water in the water tank 16 has a high dissolved nitrogen concentration in the water.

マイクロバブルを利用して溶存濃度をあげる場合、そのバブル内に封入される気体の種類や温度などの条件によって溶存濃度は変化するが、気体として窒素を使用した場合では、溶存窒素濃度を10mg/1Lにまで上昇させる。   When using microbubbles to increase the dissolved concentration, the dissolved concentration varies depending on the type of gas enclosed in the bubble and the temperature, but when nitrogen is used as the gas, the dissolved nitrogen concentration is 10 mg / Raise to 1L.

十分にマイクロバブルを水槽16内に発生させたら、図示しないポンプ制御盤によりポンプ15を起動させ、この水槽16内の水を一次側配管14に圧送して、二次側配管12内にマイクロバブルを含んだ水を供給して配管内を充水させる。   When the microbubbles are sufficiently generated in the water tank 16, the pump 15 is activated by a pump control panel (not shown), and the water in the water tank 16 is pumped to the primary side pipe 14 to be microbubbles in the secondary side pipe 12. Supply water containing water to fill the inside of the pipe.

このようにして、二次側配管12内には、通常の水に比べ、窒素ガスを多く含んだ水が充水されていることになる。   In this way, the secondary side pipe 12 is filled with water containing more nitrogen gas than normal water.

ここで火災が発生し、消火ヘッドであるスプリンクラヘッド11が熱を感知して開放すると、窒素ガスを多く含んだ水が放水される。この水により水の冷却効果だけでなく、窒素ガスの窒息効果によって火災が消火されることになる。このため、
一本の配管から不活性ガスを含んだ消火水を放水できるので、設備費用を高めることなく消火効率を高めることができる。
When a fire occurs here and the sprinkler head 11 as a fire extinguishing head senses heat and releases it, water containing a lot of nitrogen gas is discharged. This water extinguishes the fire not only by the cooling effect of water but also by the suffocation effect of nitrogen gas. For this reason,
Since fire-extinguishing water containing inert gas can be discharged from a single pipe, fire-extinguishing efficiency can be increased without increasing equipment costs.

本実施例では、予め、二次側配管12内に、不活性ガスを封入したマイクロバブルを含んだ水を供給して充水させるようにしたが、火災感知器からの火災信号の入力に伴いマイクロバブル発生装置を動かして、水槽内に不活性ガスを封入したマイクロバブルを発生させるようにしてもよい。また、消火ヘッドとして閉鎖型のスプリンクラヘッドを例にあげたが、開放型のヘッドを使用してもよい。また不活性ガスの一例として窒素ガスをあげたが、消火効果のあるガスであれば、ハロンガス、二酸化炭素などを使用してもよく、特に二酸化炭素は水への溶解度が窒素に比べ高いので、消火ガスとして望ましい。    In this embodiment, the secondary side pipe 12 is preliminarily supplied with water containing microbubbles filled with an inert gas and filled with water, but with the input of a fire signal from the fire detector. You may make it generate the microbubble which moved the microbubble generator and enclosed the inert gas in the water tank. In addition, although a closed sprinkler head is taken as an example of a fire extinguishing head, an open head may be used. Nitrogen gas has been cited as an example of an inert gas. However, as long as it has a fire extinguishing effect, halon gas, carbon dioxide, etc. may be used. In particular, carbon dioxide has higher solubility in water than nitrogen, Desirable as a fire extinguishing gas.

本発明の消火設備のシステム図である。It is a system diagram of the fire extinguishing equipment of the present invention. 本発明のマイクロバブル発生装置の斜視図である。It is a perspective view of the microbubble generator of the present invention. 本発明のマイクロバブル発生装置の縦断面図である。It is a longitudinal cross-sectional view of the microbubble generator of this invention.

符号の説明Explanation of symbols

11 消火ヘッド、 12 二次側配管、 13 流水検知装置、
14 一次側配管、 15 ポンプ、 16 水槽、
17 マイクロバブル発生装置、 18 窒素ボンベ、 19 制御弁、
20 循環ポンプ、 21 制御盤、 tt
11 Fire extinguishing head, 12 Secondary piping, 13 Flowing water detection device,
14 Primary piping, 15 Pump, 16 Water tank,
17 Microbubble generator, 18 Nitrogen cylinder, 19 Control valve,
20 circulation pump, 21 control panel, tt

Claims (2)

消火ヘッドが接続された二次側配管と、該二次側配管の基端側に設けられた流水検知装置と、該流水検知装置の一次側にある一次側配管にポンプを介して接続された給水源の水槽とを備えた消火設備において、
前記水槽にマイクロバブルを発生さるマイクロバブル発生装置を接続し、
該マイクロバブル発生装置には窒素ボンベを接続し、
前記水槽内に前記マイクロバブル発生装置により窒素ガスを封入したマイクロバブルを発生させ、前記ポンプを起動して、前記水槽内の前記マイクロバブルを含んだ水を前記二次側配管内に充水したことを特徴とする消火設備。
The secondary side pipe to which the fire extinguishing head was connected, the running water detection device provided on the base end side of the secondary side piping, and the primary side piping on the primary side of the running water detection device were connected via a pump. In fire extinguishing equipment equipped with a water tank
Connect the microbubble generating apparatus Ru to generate microbubbles in the water tub,
A nitrogen cylinder is connected to the microbubble generator,
Microbubbles in which nitrogen gas is sealed by the microbubble generator are generated in the water tank, the pump is activated , and water containing the microbubbles in the water tank is filled in the secondary pipe . Fire extinguishing equipment characterized by that.
火災感知器を設け、該火災感知器からの火災信号の入力に伴い前記マイクロバブル発生装置を動かすことを特徴とする請求項1記載の消火設備。 The fire extinguishing equipment according to claim 1 , wherein a fire detector is provided, and the microbubble generator is moved in accordance with a fire signal input from the fire detector .
JP2006100784A 2006-03-31 2006-03-31 Fire extinguishing equipment Expired - Fee Related JP4771471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100784A JP4771471B2 (en) 2006-03-31 2006-03-31 Fire extinguishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100784A JP4771471B2 (en) 2006-03-31 2006-03-31 Fire extinguishing equipment

Publications (2)

Publication Number Publication Date
JP2007268186A JP2007268186A (en) 2007-10-18
JP4771471B2 true JP4771471B2 (en) 2011-09-14

Family

ID=38671579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100784A Expired - Fee Related JP4771471B2 (en) 2006-03-31 2006-03-31 Fire extinguishing equipment

Country Status (1)

Country Link
JP (1) JP4771471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971658A (en) * 2016-05-06 2016-09-28 太原理工大学 Bubble atomizing goaf gas-liquid two-phase flow fire prevention and extinguishing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567953B2 (en) * 2010-09-14 2014-08-06 ホーチキ株式会社 Fire extinguishing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732789Y2 (en) * 1989-07-03 1995-07-31 瀬戸内金網商工株式会社 Green fence
JP3609920B2 (en) * 1997-08-29 2005-01-12 ホーチキ株式会社 Fixed fire extinguishing system
JPH11333491A (en) * 1998-05-28 1999-12-07 Terabondo:Kk Microbubble jet water purifying apparatus
JP2002035156A (en) * 2000-07-25 2002-02-05 Shigeto Matsuo Fire-extinguishing apparatus with carbon dioxide gas dissolving water
JP2003117365A (en) * 2001-10-19 2003-04-22 Malhaty Pump Mfg Co Ltd Micro-bubble producing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971658A (en) * 2016-05-06 2016-09-28 太原理工大学 Bubble atomizing goaf gas-liquid two-phase flow fire prevention and extinguishing system
CN105971658B (en) * 2016-05-06 2018-05-18 太原理工大学 A kind of effervescent atomization goaf biphase gas and liquid flow fire extinguishing system

Also Published As

Publication number Publication date
JP2007268186A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
KR100353178B1 (en) Fire extinguishing device for releasing liquid-gas mist
US4828038A (en) Foam fire fighting apparatus
JP3507902B2 (en) Fire extinguisher
JP2008212788A (en) Cleaning apparatus and cleaning method
JP2005334869A (en) Method and apparatus for micro bubble generation
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2010209633A (en) Method of improving ground
JP4771471B2 (en) Fire extinguishing equipment
JP3550297B2 (en) Drive source for firefighting equipment
JP5103625B2 (en) Fluid mixer and fluid mixing method
JP2007313465A (en) Gas dissolving apparatus
JP2007185576A (en) Apparatus for dissolving gas and apparatus for preparing water wherein gas is dissolved
WO2016082004A1 (en) Fire-fighting system
JP2008272632A (en) Fine bubble generating apparatus and pressure-dissolving method
JP2009226328A (en) Gas dissolving vessel
JP3208394B2 (en) Oxygen dissolution method using water pressure
JP2009255039A (en) Gas dissolving vessel
JP4872459B2 (en) Gas dissolving device
RU2401681C1 (en) Acoustic foam generator
JP2008178780A (en) Microbubble generating apparatus
JP4830867B2 (en) Microbubble generator
JP2999766B1 (en) Gas fire extinguisher with water spray
KR102205276B1 (en) Fire extinguisher
JP2008080259A (en) Fluid mixer and fluid mixing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees