JP4771380B2 - Magnesium alloy precision forging method - Google Patents

Magnesium alloy precision forging method Download PDF

Info

Publication number
JP4771380B2
JP4771380B2 JP2008160250A JP2008160250A JP4771380B2 JP 4771380 B2 JP4771380 B2 JP 4771380B2 JP 2008160250 A JP2008160250 A JP 2008160250A JP 2008160250 A JP2008160250 A JP 2008160250A JP 4771380 B2 JP4771380 B2 JP 4771380B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
spacer
opening
mold
air vent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008160250A
Other languages
Japanese (ja)
Other versions
JP2010000516A (en
Inventor
雄二 牟禮
豪彦 松田
聡 桑原田
俊一 中村
賢二 中西
学 前田
士郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokubu Denki Co Ltd
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Original Assignee
Kokubu Denki Co Ltd
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokubu Denki Co Ltd, Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken filed Critical Kokubu Denki Co Ltd
Priority to JP2008160250A priority Critical patent/JP4771380B2/en
Publication of JP2010000516A publication Critical patent/JP2010000516A/en
Application granted granted Critical
Publication of JP4771380B2 publication Critical patent/JP4771380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、複雑な形状を有する鍛造品の成形精度を向上するようにしたマグネシウム合金の精密鍛造加工方法に関する。   The present invention relates to a magnesium alloy precision forging method for improving the forming accuracy of a forged product having a complicated shape.

近年、自動車、家電、OA機器等の各種製品について軽量化の要求が高まっている。また、製品の軽量化に伴って、その組み立てに使用されるボルト、ナット等の各種部品等にも軽量化が求められている。このような軽量化に適する素材としては、アルミニウム合金等が知られているが、近年においては、アルミニウム合金よりもさらに軽量であり、比強度にも優れているマグネシウム合金が各種工業製品の軽量化と高性能化に有益な高強度軽金属素材として注目されている。   In recent years, there is an increasing demand for weight reduction of various products such as automobiles, home appliances, and OA equipment. In addition, with the reduction in weight of products, various parts such as bolts and nuts used for the assembly are also required to be reduced in weight. As materials suitable for such weight reduction, aluminum alloys and the like are known, but in recent years, magnesium alloys that are lighter than aluminum alloys and superior in specific strength have become lighter for various industrial products. It is attracting attention as a high-strength light metal material that is beneficial for high performance.

このマグネシウム合金は、室温では塑性変形能が低く、脆性材料であるが、300〜400℃で鍛造加工が可能となり、加圧するほど変形抵抗が低下するという加工軟化現象を示すなど、他の金属とは異なる特性を有する金属として知られている。ただし、他の延性金属と比較して、マグネシウム合金は転位すべり面の数が少ないため、複雑な塑性流動を伴う鍛造加工は困難である。   This magnesium alloy has a low plastic deformability at room temperature and is a brittle material, but it can be forged at 300 to 400 ° C. and exhibits a work softening phenomenon in which the deformation resistance decreases with increasing pressure. Are known as metals with different properties. However, compared with other ductile metals, a magnesium alloy has a small number of dislocation slip surfaces, so that forging with complicated plastic flow is difficult.

また、鍛造加工においては、例えばスクロール部品の羽根部を形成するために設けられた金型内の開口部に流動素材を充填する際、開口部内の空気が圧縮されることによって反発を受け、開口部の奥に流動素材の未充満部ができるため、背圧をかけないと形状精度に優れた鍛造品を得ることができないという問題があった。   In the forging process, for example, when filling the fluid material into the opening in the mold provided to form the blade part of the scroll part, the air in the opening is repelled by being compressed, and the opening Since there is an unfilled part of the fluid material at the back of the part, there is a problem that a forged product having excellent shape accuracy cannot be obtained unless back pressure is applied.

そこで、このような問題に対処した従来技術を検討した結果、マグネシウム合金に関する技術は見出せなかったが、Al−Si系合金で可動スクロールを製造する方法として特許文献1を見出すことができた。この文献は、「可動スクロールの製造法」と称するものであり、その技術は、Al−Si系合金粉末をプレス成形して圧粉体とし、この圧粉体を熱間鍛造することにより羽根部、軸部および支持体部からなる熱間鍛造体を製作し、次いでこの熱間鍛造を機械加工して所定の寸法に仕上げ加工する可動スクロールの製造法において、上記圧粉体を熱間鍛造して熱間鍛造体を製作する際に、上記羽根部および軸部に背圧を施しつつ熱間鍛造することを特徴とするものである。   Thus, as a result of examining the prior art that addresses such a problem, a technique related to a magnesium alloy could not be found, but Patent Document 1 could be found as a method of manufacturing a movable scroll using an Al—Si based alloy. This document is referred to as “manufacturing method of movable scroll”, and the technique is to press-mold an Al—Si based alloy powder into a green compact, and hot forge the green compact to produce a blade portion. In the manufacturing method of the movable scroll in which a hot forged body including a shaft portion and a support portion is manufactured, and then the hot forging is machined and finished to a predetermined size, the green compact is hot forged. Thus, when producing a hot forged body, hot forging is performed while applying back pressure to the blade portion and the shaft portion.

この文献のプレス構造に関する基本的技術は、図9に示すものと同様であると思われる。即ち、ダイス31とパンチ32との間に金型30の成形空間33を形成し、この成形空間33に材料34を収容して昇温により材料34を軟化すると共に、パンチ32の背後に油圧タンク35に連結された背圧機構36を設け、この背圧機構36によって作動する背圧棒37を介してパンチ32を押圧することにより、成形空間33内で軟化した材料34を成形空間33の開口部38に背圧をかけながら成形するようにしたものである。   The basic technique related to the press structure in this document seems to be the same as that shown in FIG. That is, a molding space 33 of the mold 30 is formed between the die 31 and the punch 32, the material 34 is accommodated in the molding space 33, the material 34 is softened by increasing the temperature, and a hydraulic tank is placed behind the punch 32. A back pressure mechanism 36 connected to 35 is provided, and the punch 32 is pressed through a back pressure rod 37 operated by the back pressure mechanism 36, whereby the material 34 softened in the molding space 33 is opened in the molding space 33. The portion 38 is molded while applying back pressure.

ところが、このような技術によると、油圧タンク35、背圧機構36及び背圧棒37等の設備が複雑となり、設備費が高騰するという不都合があった。
特開平5―171212号公報
However, according to such a technique, the equipment such as the hydraulic tank 35, the back pressure mechanism 36, the back pressure rod 37, and the like are complicated, and there is a disadvantage that the equipment cost increases.
JP-A-5-171212

本発明は、上記の事情に鑑みてなされたもので、鍛造加工中においてマグネシウム合金素材に動的再結晶を生じさせることにより材料に0.2mmの微細空間であっても塑性流動が生じる加工軟化を生じさせ、複雑な形状を有する鍛造品であっても、複雑な油圧機構を用いることなく、優れた形状精度を確保することができるマグネシウム合金の精密鍛造加工方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by softening the magnesium alloy material during forging, softening that causes plastic flow even in a fine space of 0.2 mm. It is an object of the present invention to provide a magnesium alloy precision forging method that can ensure excellent shape accuracy without using a complicated hydraulic mechanism even for forged products having a complicated shape. .

上記の問題を解決するために、本発明における請求項1のマグネシウム合金の精密鍛造加工方法は、金型内に固体のマグネシウム合金素材を収容して押出し加工することにより当該素材を塑性変形して、パンチ開口部と同じ断面形状を有する板状又は棒状からなる変形部を有する鍛造品を形成するマグネシウム合金の精密鍛造加工方法であって、
変形部を形成するための開口部を有するパンチを加圧方向に対して垂直方向に分割することによって成形部とスペーサとパンチホルダとが連続してなる分割構造とし、
スペーサの両端面のうち成形部とは反対側の面に外周方向へ抜ける空気抜き溝を形成し、
成形部に設けた貫通状の開口部に流動する素材の未充満部の位置に応じて特定されたスペーサの成形部側の空気が抜けない部位とスペーサの空気抜き溝とを連通する連通溝を形成してなる金型を用いたマグネシウム合金の精密鍛造加工方法において、
成形部とスペーサとパンチホルダとが連続してなる分割構造を締結する結合用ボルト又はノックアウトピンの穴部を介して連通溝と空気抜き溝とを連通した構成とすることにより、
金型内に収容されたマグネシウム合金素材を金型の加圧によって成形部の開口部に充満する際、開口部内の未充満部の空気を連通溝と穴部と空気抜き溝とを経て外方へ抜き出すようにしたことを特徴とする。
In order to solve the above-described problem, the magnesium alloy precision forging method according to claim 1 of the present invention is a method in which a solid magnesium alloy material is accommodated in a mold and extruded to plastically deform the material. A precision forging method of magnesium alloy for forming a forged product having a deformed portion having a plate shape or a rod shape having the same cross-sectional shape as the punch opening portion ,
By dividing a punch having an opening for forming a deformed portion in a direction perpendicular to the pressurizing direction, a divided structure in which a molding portion, a spacer, and a punch holder are continuous,
An air vent groove is formed in the outer surface of the spacer on the opposite side to the molding part,
A communication groove is formed that communicates the part where the air on the molding part side of the spacer, which is specified according to the position of the unfilled part of the material flowing in the through-shaped opening provided in the molding part, does not escape and the air vent groove of the spacer. In the precision forging processing method of magnesium alloy using the mold formed ,
By adopting a configuration in which the communication groove and the air vent groove are communicated with each other through a hole of a coupling bolt or a knockout pin that fastens a divided structure in which the molded part, the spacer, and the punch holder are continuous.
The contained magnesium alloy material in the mold when filling the opening of the molded portion by pressure of the mold, the air in the unfilled portion of the opening outwardly through the communicating groove and bore and air vent groove It is characterized by being extracted.

本発明によれば、金型内にマグネシウム合金素材を収容し素材の再結晶温度付近で加圧することによってマグネシウム合金素材に動的再結晶による加工軟化を生じさせ、0.2mm程度の微細な空隙にも流入することが可能となるため、この流動素材を利用することによって複雑な形状の鍛造加工を行うことが可能となる。   According to the present invention, a magnesium alloy material is housed in a mold and pressurized near the recrystallization temperature of the material to cause softening of the magnesium alloy material by dynamic recrystallization, and a fine gap of about 0.2 mm. Therefore, it becomes possible to forge a complicated shape by using this fluid material.

また、パンチ又は成形ダイスの分割構造における成形部の開口部に流動する素材の未充満部の位置に応じて特定されたスペーサの成形部側の空気が抜けない部位とスペーサに設けられた空気抜き溝とを連通する連通溝が形成されたことにより、鍛造加工中に開口部内の未充満部の空気を外周方向へ抜き出すことにより、流動素材を開口部に完全充満させることができ、これによって複雑な形状の鍛造品であっても優れた成形精度を確保することが可能となる。   In addition, the part where the air on the molding part side of the spacer specified according to the position of the unfilled part of the material flowing into the opening of the molding part in the divided structure of the punch or molding die and the air vent groove provided in the spacer As a result of the formation of the communication groove that communicates with each other, it is possible to completely fill the opening with the fluid material by extracting the air in the unfilled part in the opening part in the outer circumferential direction during the forging process. Even a forged product having a shape can ensure excellent forming accuracy.

さらに、本発明方法は、パンチ又は成形ダイスの構造を成形部とスペーサとパンチホルダが連続してなる分割構造とし、スペーサに空気抜き溝を形成すると共に、成形部の開口部に流動する素材の未充満部の位置に応じて特定されたスペーサの成形部側の空気が抜けない部位とスペーサの空気抜き溝とを連通するようにした連通溝を形成するという簡単な構造によって実現でき、背圧をかけるなどの複雑な油圧機構を用いることがないため、設備費の高騰を抑えることが可能となる。   Further, according to the method of the present invention, the structure of the punch or the forming die is a divided structure in which the forming portion, the spacer, and the punch holder are continuously formed, and an air vent groove is formed in the spacer and the material that flows into the opening of the forming portion is not formed. It can be realized by a simple structure that forms a communication groove that connects the part where the air on the molded part side of the spacer specified according to the position of the filled part does not escape and the air vent groove of the spacer, and applies back pressure. Therefore, it is possible to suppress an increase in equipment costs.

以下、本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例では、図1(a)、(b)に示すようなスクロール部品1を成形目的の鍛造品としている。このスクロール部品1は、円盤状のフランジ部2と、フランジ部2の一方の面に形成された渦巻状の羽根部3と、フランジ部2の他方の面に形成された取付部4とから構成され、例えば自動車用エアコン等のスクロール型コンプレッサに可動スクロールとして使用することができる。   In this embodiment, the scroll component 1 as shown in FIGS. 1A and 1B is a forged product for molding purposes. The scroll component 1 includes a disk-shaped flange portion 2, a spiral blade portion 3 formed on one surface of the flange portion 2, and an attachment portion 4 formed on the other surface of the flange portion 2. For example, it can be used as a movable scroll in a scroll compressor such as an automotive air conditioner.

また、本実施例においては、図2(a)の後方押出しに適用される金型5Aの内部構造を図3(b)に示すことによって、後方押出しの金型5Aを用いた鍛造加工方法について説明してある。本実施例では、図6(a)に示すように、後方押出しの金型5A(図2参照)に用いられるパンチ6を加圧方向に対して垂直方向に三分割することにより、成形部7とスペーサ8とプレスへの取付部であるパンチホルダ9とからなる分割構造としている。   In this embodiment, the internal structure of the mold 5A applied to the backward extrusion shown in FIG. 2A is shown in FIG. 3B, and the forging method using the backward extrusion mold 5A is shown. Explained. In this embodiment, as shown in FIG. 6A, the punch 6 used in the backward extrusion die 5A (see FIG. 2) is divided into three in the direction perpendicular to the pressurizing direction, thereby forming the molded portion 7. In addition, the structure is divided into a spacer 8 and a punch holder 9 which is an attachment portion to the press.

なお、本発明は、前方押しの金型にも適用することが可能である。この前方押出しの場合、図2(b)に示すように、成形ダイス11を成形部7とスペーサ8とパンチホルダ9とからなる分割構造とすればよい。   The present invention can also be applied to a forward pushing mold. In the case of this forward extrusion, as shown in FIG. 2 (b), the forming die 11 may have a divided structure including the forming portion 7, the spacer 8, and the punch holder 9.

図3(b)に示す後方押出しの金型5Aの構造は、ダイス10の内部にて上下一対に垂直方向に作動するパンチ6とカウンターパンチ14を有し、ダイス10はアンビル15に対して固定用ボルト15aで固定され、アンビル15の上部に設けられたカウンターパンチホルダ14aの内部をカウンターパンチ14が収容されている。   The rear extrusion die 5A shown in FIG. 3B has a punch 6 and a counter punch 14 that operate in a vertical direction in a pair of upper and lower sides inside the die 10, and the die 10 is fixed to the anvil 15. The counter punch 14 is accommodated inside a counter punch holder 14 a fixed by the use bolt 15 a and provided on the upper part of the anvil 15.

パンチ6は上記のように加圧方向に対して垂直方向に分割することにより、成形部7とパンチホルダ9との間にスペーサ8を介在した構造としている。成形部7には、上記のスクロール部品1の羽根部3(即ち、変形部12)の形状に応じて当該変形部12を形成するための開口部13(図6(b)参照)が貫通状に設けられている。なお、変形部12に相当するスクロール部品1の羽根部3は曲面をなす板状の形状を有するが、他に、変形部12の形状としては、ヒートシンクのように断面形状が四角形あるいは円形あるいは楕円形の棒状を有するものとしてもよい。   As described above, the punch 6 is divided in a direction perpendicular to the pressurizing direction so that a spacer 8 is interposed between the molding portion 7 and the punch holder 9. An opening 13 (see FIG. 6B) for forming the deformable portion 12 according to the shape of the blade portion 3 (that is, the deformable portion 12) of the scroll component 1 is formed in the molding portion 7 so as to penetrate therethrough. Is provided. The blade portion 3 of the scroll component 1 corresponding to the deformable portion 12 has a curved plate-like shape. In addition, the deformable portion 12 may have a rectangular, circular, or elliptical cross-sectional shape like a heat sink. It may have a bar shape.

また、成形部7とスペーサ8とパンチホルダ9とを上下方向に貫通したピン穴17(図3(a)参照)に加工品取り出し用のノックアウトピン18が設けられている。また、成形部7とスペーサ8とパンチホルダ9とからなる分割構造を結合するための締結用ボルト16を挿通する締結用ボルト穴19(図3(a)参照)が形成され、その他、不図示のプレス機にパンチホルダ9を固定するための固定用ボルト穴20(図3(a)参照)が形成されている。   Further, a knockout pin 18 for taking out a processed product is provided in a pin hole 17 (see FIG. 3A) penetrating the molding portion 7, the spacer 8, and the punch holder 9 in the vertical direction. Further, a fastening bolt hole 19 (see FIG. 3A) is formed through which a fastening bolt 16 for joining the divided structure composed of the molding portion 7, the spacer 8, and the punch holder 9 is inserted. A fixing bolt hole 20 (see FIG. 3A) for fixing the punch holder 9 to the press machine is formed.

上記の構成においては、図5(a)、(b)又は(c)に示すように、成形部7とは反対側のスペーサ面8aにスペーサ8の中心を通って外周へ貫く空気抜き溝21が形成されている。このスペーサ8のスペーサ面8aには、ピン穴17と締結用ボルト穴19とが貫通して形成され、空気抜き溝21はこれらの穴17、19を包含する形で形成されている。   In the above configuration, as shown in FIG. 5A, 5B, or 5C, the air vent groove 21 that penetrates to the outer periphery through the center of the spacer 8 is formed on the spacer surface 8a opposite to the molding portion 7. Is formed. A pin hole 17 and a fastening bolt hole 19 are formed through the spacer surface 8 a of the spacer 8, and the air vent groove 21 is formed so as to include these holes 17 and 19.

また、空気抜き溝21は、成形部7の開口部13に流動する素材Sの未充満部22の位置に応じて特定されたスペーサの成形部側の空気が抜けない部位とスペーサ8の空気抜き溝21とを連通する連通溝24とが連結された構造を有する。即ち、図4(a)、(b)に示すように、スペーサ8に上記の空気抜き溝21が形成されていない場合、変形部12である羽根部3の上端面に流動素材Sの未充満部22が生じると、この未充満部22の領域が、例えば図4(b)の2点鎖線の斜線部で示すような不完全形状23bとなり、羽根部3の上端面が波打ったような形状となるため、後加工が必要となる。これに対して、開口部13に素材Sが充満した場合、羽根部3の上端面が均一に揃った完全形状23aとなる。   Further, the air vent groove 21 is a portion where the air on the molding portion side of the spacer specified according to the position of the unfilled portion 22 of the material S flowing into the opening portion 13 of the molding portion 7 and the air vent groove 21 of the spacer 8 are omitted. And a communication groove 24 that communicates with each other. That is, as shown in FIGS. 4A and 4B, when the air vent groove 21 is not formed in the spacer 8, the unfilled portion of the fluid material S on the upper end surface of the blade portion 3 that is the deformable portion 12. When 22 is generated, the region of the unfilled portion 22 becomes, for example, an incomplete shape 23b as shown by the hatched portion of the two-dot chain line in FIG. 4B, and the shape in which the upper end surface of the blade portion 3 is wavy. Therefore, post-processing is necessary. On the other hand, when the material S is filled in the opening portion 13, the complete shape 23a is obtained in which the upper end surfaces of the blade portions 3 are evenly aligned.

そこで、図5(a)の開口部の上端形状13a(2点鎖線で示す仮想線)において未充填部22が生じる領域の数と位置を数値計算、モデル実験又は実試作によって決定する。このように決定した部位に連通溝24を形成する。この連通溝24はスペーサ8の成形部7に対面する側の面8bに形成するため、各連通溝24をその近傍のピン穴17又はボルト穴19に連通することによって、開口部13の未充満部22が連通溝24からピン穴17又はボルト穴19を経て空気抜き溝21に抜けるようにしている。なお、空気抜き溝21の深さは、本事例の場合は、0.3mm程度であるが、成形圧力次第では弾性変形による溝の閉塞を生じるため、別途数値計算等で成形圧力を求めて決定する。   Therefore, the number and position of the regions where the unfilled portion 22 occurs in the upper end shape 13a (the phantom line indicated by a two-dot chain line) of the opening in FIG. 5A is determined by numerical calculation, model experiment, or actual trial manufacture. The communication groove 24 is formed at the site determined in this way. Since the communication groove 24 is formed on the surface 8b of the spacer 8 facing the molding portion 7, the communication groove 24 is communicated with the pin hole 17 or the bolt hole 19 in the vicinity thereof, so that the opening 13 is not filled. The portion 22 is made to pass from the communication groove 24 to the air vent groove 21 through the pin hole 17 or the bolt hole 19. In this case, the depth of the air vent groove 21 is about 0.3 mm. However, since the groove is closed due to elastic deformation depending on the molding pressure, it is determined by separately determining the molding pressure by numerical calculation or the like. .

さらに、本実施例においては、図6(a)に示すように、上記の成形部7とスペーサ8とパンチホルダ9の分割構造のうち、スペーサ8とパンチホルダ9の直径を成形部7の直径よりも僅かに縮小することにより、図3(b)に示すダイス10の内周との間にできる外周隙間25を形成し、これによって未充満部22の空気を連通溝24とピン穴17又はボルト穴19と空気抜き溝21とを経て外周隙間25から外方へ抜き出すようにしている。なお、本実施例においては、連通溝24と空気抜き溝21とを連結する手段としてピン穴17又はボルト穴19を用いてあるが、スペーサ8の成形部7側に設けられた連通溝24をスペーサ8の内部に開けた貫通穴(不図示)を通じて空気抜き溝21に連通する構成としてもよい。   Furthermore, in the present embodiment, as shown in FIG. 6A, among the divided structure of the molding part 7, the spacer 8, and the punch holder 9, the diameter of the spacer 8 and the punch holder 9 is the same as the diameter of the molding part 7. The outer peripheral clearance 25 formed between the inner periphery of the die 10 shown in FIG. 3B is formed by slightly reducing the size of the air, and thereby the air in the unfilled portion 22 is allowed to pass through the communication groove 24 and the pin hole 17 or The bolt hole 19 and the air vent groove 21 are extracted from the outer peripheral gap 25 to the outside. In this embodiment, the pin hole 17 or the bolt hole 19 is used as a means for connecting the communication groove 24 and the air vent groove 21, but the communication groove 24 provided on the molding part 7 side of the spacer 8 is used as the spacer. It is good also as a structure connected to the air vent groove 21 through the through-hole (not shown) opened in the inside of 8.

本実施例においては、上記の構成を有する金型を用いて鍛造加工を実施する際、図3(b)に示す金型5A内に固形のマグネシウム合金素材Sを素材の再結晶温度付近で加圧することによって塑性変形に伴う動的再結晶による加工軟化が生じ、流動性が高くなった素材Sを用いている。   In this embodiment, when forging is performed using the mold having the above-described configuration, a solid magnesium alloy material S is added in the mold 5A shown in FIG. 3B near the recrystallization temperature of the material. The material S that is softened due to dynamic recrystallization accompanying plastic deformation due to the pressing is used, and the fluidity S is increased.

この流動性能は、φ1mm以下の微細空隙、実験によれば0.2mmの微細空隙にも流動する性能を有することが確認されている。   This flow performance has been confirmed to have the ability to flow even in fine voids of φ1 mm or less, experimentally 0.2 mm fine voids.

なお、図8に、マグネシウム合金の鍛造加工方法を用いた変形特性試験に基づく真応力―真ひずみ曲線を示してある。この変形特性試験において、パンチの加工速度は5mm/Sである。   FIG. 8 shows a true stress-true strain curve based on a deformation characteristic test using a forging method of a magnesium alloy. In this deformation characteristic test, the punching speed is 5 mm / S.

上記の動的再結晶による加工軟化によって、マグネシウム合金素材Sに亀裂や破断等が発生することを抑制された状態で塑性流動が進み、軟化されたマグネシウム合金素材Sが金型5Aの各開口部13に流動することによって所定の変形部12を有する鍛造品が形成されることとなる。   The plastic flow proceeds in a state where cracks and fractures are suppressed from occurring in the magnesium alloy material S due to the work softening due to the dynamic recrystallization, and the softened magnesium alloy material S is opened in each opening of the mold 5A. As a result, the forged product having the predetermined deformed portion 12 is formed.

なお、上記の塑性加工においては、金型5A内のマグネシウム合金素材Sを後方押出しによって塑性流動させることにより、デッドメタルゾーン(材料流動がない領域)が発生せず、ひけ等の欠陥が発生しない鍛造品を得ることができるため、鍛造品の精度向上に有益となる。   In the plastic processing described above, the magnesium alloy material S in the mold 5A is plastically flowed by backward extrusion, so that a dead metal zone (a region without material flow) does not occur and defects such as sinks do not occur. Since a forged product can be obtained, it is useful for improving the accuracy of the forged product.

上記の構成により、各開口部13内の空気は、パンチ6の加圧に従って連通溝24から空気抜き溝21を経て外部に抜き出される結果、軟化したマグネシウム合金素材Sは各開口部13に完全充満し、各開口部13の型形状に忠実な成形精度に優れた鍛造品を得ることが可能となる。   With the above configuration, the air in each opening 13 is extracted outside from the communication groove 24 through the air vent groove 21 in accordance with the pressurization of the punch 6, so that the softened magnesium alloy material S is completely filled in each opening 13. In addition, it is possible to obtain a forged product excellent in molding accuracy faithful to the mold shape of each opening 13.

さらに、本実施例において、図7に示すように、金型5A内に収容する加工前のマグネシウム合金素材Sのプリフォーム26の形状を未充満部22の高さに応じて決定することにより、鍛造品の成形精度を向上することが可能である。この場合、加工前のプリフォーム26の形状は、未充満部22の領域または深さを考慮して、数値計算、モデル実験又は実試作で得られた結果から、未充満部に相当する体積に応じて決定するとよい。   Furthermore, in this example, as shown in FIG. 7, by determining the shape of the preform 26 of the magnesium alloy material S before processing accommodated in the mold 5A according to the height of the unfilled portion 22, It is possible to improve the forming accuracy of the forged product. In this case, the shape of the preform 26 before processing takes a volume corresponding to the unfilled portion from the results obtained by numerical calculation, model experiment, or actual trial production in consideration of the region or depth of the unfilled portion 22. It is better to decide accordingly.

本発明のマグネシウム合金の精密鍛造加工方法は、鍛造加工中においてマグネシウム合金素材に動的再結晶を生じさせることにより加工軟化を生じた素材を用いると共に、金型内の開口部に流動素材の未充満部が生じないように構成したことによって、設備費が高騰することなく、形状精度に優れた鍛造品を形成することができるマグネシウム合金の精密鍛造加工方法として利用可能である。   The magnesium alloy precision forging method of the present invention uses a material that has undergone work softening by causing dynamic recrystallization in the magnesium alloy material during the forging process, and the flow material is not yet formed in the opening in the mold. By being configured so as not to cause a full portion, it can be used as a magnesium alloy precision forging method capable of forming a forged product having excellent shape accuracy without increasing equipment costs.

(a)は本発明によるマグネシウム合金の精密鍛造加工方法に係るスクロール部品の斜視図であり、(b)はA−A線断面図である。(A) is a perspective view of the scroll components which concern on the precision forging processing method of the magnesium alloy by this invention, (b) is an AA sectional view. (a)は本発明によるマグネシウム合金の精密鍛造加工方法において後方押出しの金型を示す斜視図であり、(b)は前方押出しの金型を示す斜視図である。(a) is a perspective view which shows the metal mold | die of back extrusion in the precision forging processing method of the magnesium alloy by this invention, (b) is a perspective view which shows the metal mold | die of forward extrusion. (a)は本発明によるマグネシウム合金の精密鍛造加工方法に使用する金型の平面図であり、(b)はその金型の正面からの断面図である。(A) is a top view of the metal mold | die used for the precision forging processing method of the magnesium alloy by this invention, (b) is sectional drawing from the front of the metal mold | die. (a)は開口部の未充満部の状況を示す断面図であり、(b)は空気抜き溝を設けていない場合のスクロール部品における羽根部の上端面の形成状況を示す平面図である。(a) is sectional drawing which shows the condition of the unfilled part of an opening part, (b) is a top view which shows the formation condition of the upper end surface of the blade | wing part in a scroll component in case the air vent groove is not provided. (a)は連通溝の形成状況を示すスペーサの成形部に接する面であり、(b)は空気抜き溝を形成したスペーサの成形部に接する面の反対面であり、(c)は開口部の未充満部と空気抜き溝とを連通溝とピン穴を介して連通した状態を示す断面図である。(a) is a surface in contact with the molded portion of the spacer showing the formation state of the communication groove, (b) is a surface opposite to the surface in contact with the molded portion of the spacer in which the air vent groove is formed, and (c) is the surface of the opening. It is sectional drawing which shows the state which connected the unfilled part and the air vent groove through the communicating groove and the pin hole. (a)は本発明によるマグネシウム合金の精密鍛造加工方法に用いるパンチ又は成形ダイスの分割構造を示す側面図であり、(b)は成形型の下端面を示す下面図である。(a) is a side view which shows the division structure of the punch or forming die used for the precision forging processing method of the magnesium alloy by this invention, (b) is a bottom view which shows the lower end surface of a shaping | molding die. (a)は本発明によるマグネシウム合金の精密鍛造加工方法における流動素材の未充満部の発生箇所を示すスクロール部品の羽根部を示す平面図であり、(b)はその未充満部に応じて形成したマグネシウム合金のプリフォームを示す斜視図である。(a) is a top view which shows the blade | wing part of the scroll components which shows the generation | occurrence | production location of the unfilled part of the fluid raw material in the precision forging processing method of the magnesium alloy by this invention, (b) is formed according to the unfilled part FIG. 3 is a perspective view showing a preform of a magnesium alloy obtained. 本発明によるマグネシウム合金の精密鍛造加工で用いたマグネシウム合金AZ31Bの変形特性試験に基づく真応力―真ひずみ曲線を示すグラフである。It is a graph which shows the true stress-true strain curve based on the deformation | transformation characteristic test of magnesium alloy AZ31B used by the precision forging process of the magnesium alloy by this invention. 従来の鍛造加工方法を説明するための背圧構造を有する金型の断面図である。It is sectional drawing of the metal mold | die which has a back pressure structure for demonstrating the conventional forge processing method.

符号の説明Explanation of symbols

1 スクロール部品
2 フランジ部
3 羽根部
4 取付部
5A 後方押出し用金型
5B 前方押出し用金型
6 パンチ
7 成形部
8 スペーサ
8a 成形部と反対側の面
8b 成形部に接する面
9 パンチホルダ
10 ダイス
11 成形ダイス
12 開口部へ塑性流動した素材
13 開口部
13a 開口部の上端形状(仮想線)
14 カウンターパンチ
14a カウンターパンチホルダ
15 アンビル
15a アンビルとダイスの締結用ボルト穴
16 締結用ボルト
17 ピン穴
18 ノックアウトピン
19 締結用ボルト穴
20 プレスへの固定用ボルト穴
21 空気抜き溝
22 未充満部
23a 羽根部(変形部)の完全充満部
23b 羽根部(変形部)の未充満部
24 連通溝
25 外周隙間
26 プリフォーム
S マグネシウム合金素材
DESCRIPTION OF SYMBOLS 1 Scroll part 2 Flange part 3 Blade | wing part 4 Attachment part 5A Backward extrusion die 5B Front extrusion die 6 Punch 7 Molding part 8 Spacer 8a Surface 8b on the opposite side to a molding part Surface 9 in contact with a molding part 9 Punch holder 10 Dies 11 Molding Dies 12 Material that Plastically Flowed to the Opening 13 Opening 13a Top End Shape of the Opening (Virtual Line)
14 counter punch 14a counter punch holder 15 anvil 15a bolt hole 16 for fastening the anvil and the die 16 fastening bolt 17 pin hole 18 knockout pin 19 fastening bolt hole 20 fixing bolt hole 21 to the press air vent groove 22 unfilled portion 23a blade Completely filled portion 23b of the portion (deformed portion) Unfilled portion 24 of the blade portion (deformed portion) Communication groove 25 Peripheral clearance 26 Preform S Magnesium alloy material

Claims (1)

金型内に固体のマグネシウム合金素材を収容して押出し加工することにより当該素材を塑性変形して、パンチ開口部と同じ断面形状を有する板状又は棒状からなる変形部を有する鍛造品を形成するマグネシウム合金の精密鍛造加工方法であって、
変形部を形成するための開口部を有するパンチを加圧方向に対して垂直方向に分割することによって成形部とスペーサとパンチホルダとが連続してなる分割構造とし、
スペーサの両端面のうち成形部とは反対側の面に外周方向へ抜ける空気抜き溝を形成し、
成形部に設けた貫通状の開口部に流動する素材の未充満部の位置に応じて特定されたスペーサの成形部側の空気が抜けない部位とスペーサの空気抜き溝とを連通する連通溝を形成してなる金型を用いたマグネシウム合金の精密鍛造加工方法において、
成形部とスペーサとパンチホルダとが連続してなる分割構造を締結する結合用ボルト又はノックアウトピンの穴部を介して連通溝と空気抜き溝とを連通した構成とすることにより、
金型内に収容されたマグネシウム合金素材を金型の加圧によって成形部の開口部に充満する際、開口部内の未充満部の空気を連通溝と穴部と空気抜き溝とを経て外方へ抜き出すようにしたことを特徴とするマグネシウム合金の精密鍛造加工方法。
A solid magnesium alloy material is accommodated in a mold and extruded to plastically deform the material, thereby forming a forged product having a plate-shaped or bar-shaped deformed portion having the same cross-sectional shape as the punch opening. A precision forging method of magnesium alloy ,
By dividing a punch having an opening for forming a deformed portion in a direction perpendicular to the pressurizing direction, a divided structure in which a molding portion, a spacer, and a punch holder are continuous,
An air vent groove is formed in the outer surface of the spacer on the opposite side to the molding part,
A communication groove is formed that communicates the part where the air on the molding part side of the spacer, which is specified according to the position of the unfilled part of the material flowing in the through-shaped opening provided in the molding part, does not escape and the air vent groove of the spacer. In the precision forging processing method of magnesium alloy using the mold formed ,
By adopting a configuration in which the communication groove and the air vent groove are communicated with each other through a hole of a coupling bolt or a knockout pin that fastens a divided structure in which the molded part, the spacer, and the punch holder are continuous.
The contained magnesium alloy material in the mold when filling the opening of the molded portion by pressure of the mold, the air in the unfilled portion of the opening outwardly through the communicating groove and bore and air vent groove A precision forging method of magnesium alloy characterized by being extracted.
JP2008160250A 2008-06-19 2008-06-19 Magnesium alloy precision forging method Expired - Fee Related JP4771380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160250A JP4771380B2 (en) 2008-06-19 2008-06-19 Magnesium alloy precision forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160250A JP4771380B2 (en) 2008-06-19 2008-06-19 Magnesium alloy precision forging method

Publications (2)

Publication Number Publication Date
JP2010000516A JP2010000516A (en) 2010-01-07
JP4771380B2 true JP4771380B2 (en) 2011-09-14

Family

ID=41582658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160250A Expired - Fee Related JP4771380B2 (en) 2008-06-19 2008-06-19 Magnesium alloy precision forging method

Country Status (1)

Country Link
JP (1) JP4771380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109434004A (en) * 2018-11-02 2019-03-08 燕山大学 A kind of the isothermal forging forming device and its method of wrought magnesium alloy cross axle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818648A (en) * 1981-07-27 1983-02-03 Ricoh Co Ltd Image reproducing device
JPH04136491A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Scroll and its processing device and method
JPH07310137A (en) * 1994-05-12 1995-11-28 Sky Alum Co Ltd Aluminum alloy sheet for warm forming and its production
JPH0857573A (en) * 1994-08-19 1996-03-05 Yamada Seisakusho Kk Forming method of scroll member
JPH0857572A (en) * 1994-08-19 1996-03-05 Yamada Seisakusho Kk Forming die of scroll member and forming method thereof
JPH10118734A (en) * 1996-10-17 1998-05-12 Nippon Light Metal Co Ltd Forging die, forging method and its product
JP3700811B2 (en) * 1998-02-27 2005-09-28 ボッシュ株式会社 Cold forging method
JP3901836B2 (en) * 1998-04-03 2007-04-04 東久株式会社 Molds for forging products with protruding parts with different heights
JP2001047174A (en) * 1999-08-10 2001-02-20 Yasuharu Imahori Closed type forging apparatus

Also Published As

Publication number Publication date
JP2010000516A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
CN107206447B (en) The method for manufacturing pipe fitting and machine used in it
CN109093048B (en) Large-scale machine brake type forging die and forging method
JP2846263B2 (en) Manufacturing method of half machine parts
Politis et al. A review of force reduction methods in precision forging axisymmetric shapes
CN106312016A (en) Vibrating casting and forging composite forming method for aluminum alloy forgings
TW201323109A (en) Method for manufacturing magnesium alloy
CN105414233A (en) Backward extrusion die with back pressure and processing technology adopting same
CN107186160A (en) The quiet step forming process of disk two of new-energy automotive air-conditioning compressor
CN112846064B (en) Isothermal forming method and device for aluminum alloy flange forging material distribution control
JP4771380B2 (en) Magnesium alloy precision forging method
JP2010000515A (en) Forging method of magnesium alloy
JP2014240082A (en) Hot upset forging device and hot upset forging method
US9770749B2 (en) Hybrid stamping system
Sagara et al. Finite volume analysis of two-stage forging process for aluminium 7075 alloy
Jeon et al. Plate forging process design for an under-drive brake piston in automatic transmission
Kong et al. Numerical and experimental investigation of preform design in non-axisymmetric warm forming
Liu et al. Influence of punch shape on geometrical profile and quality of hole piercing-flanging under high pressure
CN104646945B (en) Special high-strength aluminum alloy part forming method
CN106363363A (en) Semi-solid thixo-forging forming technology for steel impeller
CN113319238A (en) Multidirectional forging forming method for complex aluminum alloy transmission shaft forge piece
JP5483292B2 (en) Manufacturing method of metal forging products
JP4703961B2 (en) Manufacturing method of metal forging products
JP5766190B2 (en) Multi-step molding method of piston assembly
Chandramouli Fundamental concepts of metal forming technology
Qi et al. Forging force analysis of truck knuckle and selection of forging equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees